WO2016046978A1 - Hot-water supply and heating system - Google Patents

Hot-water supply and heating system Download PDF

Info

Publication number
WO2016046978A1
WO2016046978A1 PCT/JP2014/075703 JP2014075703W WO2016046978A1 WO 2016046978 A1 WO2016046978 A1 WO 2016046978A1 JP 2014075703 W JP2014075703 W JP 2014075703W WO 2016046978 A1 WO2016046978 A1 WO 2016046978A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heating
hot water
hot
path
Prior art date
Application number
PCT/JP2014/075703
Other languages
French (fr)
Japanese (ja)
Inventor
修平 内藤
泰成 松村
恭平 飯田
利幸 佐久間
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP14902428.3A priority Critical patent/EP3199884B1/en
Priority to PCT/JP2014/075703 priority patent/WO2016046978A1/en
Priority to JP2016549878A priority patent/JP6252685B2/en
Publication of WO2016046978A1 publication Critical patent/WO2016046978A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0214Central heating systems using heat accumulated in storage masses using heat pumps water heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material

Definitions

  • the present invention relates to a hot water supply / heating system.
  • the hot water storage type heating device disclosed in Patent Document 1 below includes a heating circuit that connects heating means such as a heat pump and a hot water storage tank so that water can circulate, and water on the secondary side supplied to an external heater.
  • a heat exchanger for heating, and a heat exchange circuit for connecting the heat exchanger and the heating means so that water can circulate are provided.
  • This hot water storage type heating device includes distribution ratio adjusting means for adjusting the distribution ratio between the amount circulating in the hot water storage tank and the amount circulating in the heat exchanger at the branch point between the heating circulation circuit and the heat exchange circulation circuit.
  • the above-mentioned conventional hot water storage type heating apparatus does not directly supply hot water from the heating means to the external heating appliance, but supplies secondary hot water heated by the heat exchanger to the heating appliance.
  • This hot water storage type heating device requires a pump for circulating hot water on the secondary side of the heat exchanger to the heating appliance in addition to the heating circulation pump for circulating water through the heating means.
  • Heat storage water circuit that performs heat storage operation that stores heat in the hot water storage tank by circulating water between the water heater and the hot water storage tank, and heating water that performs heating operation that circulates water between the water heater and an external heater If the circuit shares one water pump, the number of water pumps can be reduced and the cost can be reduced. However, when doing so, there are the following problems. In the heating water circuit, the length, number, connection method, and the like of the internal pipes and the heating appliances vary depending on the installation site. The pressure loss in the heating water circuit can be much higher than the pressure loss in the heat storage water circuit. Therefore, the performance of one water pump needs to be a performance that can satisfy the required flow rate in the heating water circuit having a high pressure loss.
  • the present invention has been made to solve the above-described problems.
  • a configuration in which one water pump is commonly used for a heat storage operation and a heating operation the hot water flowing into the hot water storage tank during the heat storage operation is provided.
  • An object of the present invention is to provide a hot water supply and heating system capable of increasing the temperature of the hot water.
  • the hot water supply and heating system of the present invention includes a hot water storage tank, a first water outlet through which water inside the hot water storage tank is discharged, a first water inlet through which water enters the hot water storage tank, a water heater that heats the water, and a water pump A first water outlet, a water pump, a water heater, a heat storage water path connecting the first water inlet in this order, a second water outlet from which water supplied to an external heater is discharged, and a heater A heating water path that connects the second water inlet, the second water inlet, the water pump, the water heater, and the second water outlet in this order, a heat storage water path, and a heating water path.
  • a switching valve for switching, the heat storage water path and the heating water path have overlapping portions, and the pressure loss of the heat storage water path is higher than the pressure loss of the heating water path.
  • the hot water supply and heating system of the present invention it is possible to increase the temperature of hot water flowing into the hot water storage tank during the heat storage operation in a configuration in which one water pump is commonly used for the heat storage operation and the heating operation. Become.
  • FIG. 1 It is a block diagram which shows the hot-water supply heating system of Embodiment 1 of this invention. It is a figure which shows the circulation circuit of the water at the time of the heat storage driving
  • water is a concept including water of all temperatures from low-temperature cold water to high-temperature hot water.
  • FIG. 1 is a configuration diagram illustrating a hot water supply / heating system according to Embodiment 1 of the present invention.
  • the hot water supply and heating system 1 according to the first embodiment includes a water heater 100 and a tank unit 200.
  • the water heater 100 and the tank unit 200 are connected via a first common pipe 9, a second common pipe 3, and electrical wiring (not shown).
  • the hot water supply and heating system 1 according to the first embodiment has a configuration in which the water heater 100 and the tank unit 200 are separated, but in the present invention, the water heater 100 and the tank unit 200 may be integrated.
  • the water heater 100 is a heat pump type water heater.
  • the water heater 100 includes a compressor 13 that compresses refrigerant, a water-refrigerant heat exchanger 15, a decompression device 16 that decompresses the refrigerant, and a low-temperature side heat exchanger that absorbs heat from a low-temperature heat source (for example, outside air). 17 (evaporator) and the refrigerant
  • the water heater 100 heats water by operating a heat pump cycle (refrigeration cycle) with this refrigerant circuit.
  • the water heater 100 heats water by exchanging heat between the high-temperature and high-pressure refrigerant compressed by the compressor 13 and water in the water-refrigerant heat exchanger 15.
  • the water heater in the present invention is not limited to the heat pump type water heater as described above, and may be of any type.
  • the water heater in the present invention may be a solar water heater that heats water with solar heat, or a combustion water heater that heats water with the combustion heat of fuel (eg, gas, kerosene, heavy oil, coal, etc.).
  • fuel eg, gas, kerosene, heavy oil, coal, etc.
  • the tank unit 200 includes a hot water storage tank 2, a switching valve 6, and a water pump 11. Water is stored in the hot water storage tank 2. In the hot water storage tank 2, a temperature stratification can be formed in which the upper side is high temperature and the lower side is low temperature due to the difference in water density due to the temperature difference.
  • a water supply pipe 18 is connected to the lower part of the hot water storage tank 2. Water supplied from a water source such as water is supplied into the hot water storage tank 2 through the water supply pipe 18.
  • a hot water supply pipe 19 is connected to the upper part of the hot water storage tank 2. When hot water is supplied to the outside, the hot water stored in the hot water storage tank 2 is sent out to the hot water supply pipe 19.
  • the hot water storage tank 2 has a first water outlet 25 and a first water inlet 26. Water inside the hot water storage tank 2 comes out from the first water outlet 25. Hot water heated by the water heater 100 enters the hot water storage tank 2 from the first water inlet 26.
  • the first water outlet 25 is in the lower part of the hot water storage tank 2.
  • the first water inlet 26 is at the top of the hot water storage tank 2.
  • the switching valve 6 has a first port 6a, a second port 6b, and a third port 6c. The switching valve 6 has a state in which the third port 6c is communicated with the first port 6a and the second port 6b is shut off, and a state in which the third port 6c is communicated with the second port 6b and the first port 6a is shut off. Can be switched to.
  • the lower pipe 8 connects between the first water outlet 25 of the hot water storage tank 2 and the upstream end of the first common pipe 9.
  • the downstream end of the first common pipe 9 is connected to the water inlet of the water-refrigerant heat exchanger 15 of the water heater 100.
  • a water pump 11 is connected in the middle of the first common pipe 9. In Embodiment 1, the water pump 11 is built in the tank unit 200. However, in the present invention, the water pump 11 may be installed on the water heater 100 side.
  • the second common pipe 3 connects between the water outlet of the water-refrigerant heat exchanger 15 of the water heater 100 and the third port 6 c of the switching valve 6.
  • the upper pipe 4 connects between the first port 6 a of the switching valve 6 and the first water inlet 26 of the hot water storage tank 2.
  • the heating terminal 12 is provided outside the water heater 100 and the tank unit 200.
  • the tank unit 200 and the heating terminal 12 are connected via a first external pipe 22 and a second external pipe 23.
  • the tank unit 200 has a second water outlet 27 and a second water inlet 28.
  • the water supplied from the tank unit 200 to the heating terminal 12 goes out of the tank unit 200 through the second water outlet 27.
  • the first internal pipe 5 connects between the second port 6 b of the switching valve 6 and the second water outlet 27 inside the tank unit 200.
  • the upstream end of the first outer pipe 22 is connected to the second water outlet 27 from the outside of the tank unit 200.
  • the downstream end of the first outer pipe 22 is connected to the entrance side of the heating terminal 12.
  • the upstream end of the second external pipe 23 is connected to the outlet side of the heating terminal 12.
  • the downstream end of the second outer pipe 23 is connected to the second water inlet 28 from the outside of the tank unit 200.
  • the second inner pipe 7 connects between the second water inlet 28 and the upstream end of the first common pipe 9 inside the tank unit 200. Water returning from the heating terminal 12 to the tank unit 200 enters the tank unit 200 through the second water inlet 28.
  • the tank unit 200 incorporates the control unit 10.
  • the control unit 10 and the remote controller 21 are connected so that they can communicate with each other.
  • a user can input commands relating to the operation of the hot water supply and heating system 1 and changes in set values from the remote controller 21.
  • the control unit 10 executes arithmetic processing based on a storage unit including a ROM (Read Only Memory), a RAM (Random Access Memory), and a nonvolatile memory, and a program stored in the storage unit.
  • CPU Central Processing Unit
  • the actuators and sensors included in the hot water supply / heating system 1 are electrically connected to the control unit 10.
  • the control unit 10 controls the operation of the hot water supply / heating system 1 based on detection values of sensors, a signal from the remote controller 21, and the like.
  • the remote controller 21 is equipped with a display unit for displaying information such as the state of the hot water supply / heating system 1, an operation unit such as a switch operated by a user, a speaker, a microphone, and the like.
  • a plurality of temperature sensors are attached to the surface of the hot water storage tank 2 at intervals in the vertical direction.
  • the controller 10 can calculate the amount of stored hot water, the amount of stored heat, the amount of remaining hot water, etc. in the hot water storage tank 2 by detecting the temperature distribution in the vertical direction in the hot water storage tank 2 using these temperature sensors.
  • the control unit 10 controls the timing of starting and stopping a heat storage operation, which will be described later, based on the amount of stored hot water, the amount of stored heat, or the amount of remaining hot water in the hot water storage tank 2.
  • FIG. 2 is a diagram illustrating a water circulation circuit during the heat storage operation of the hot water supply and heating system 1 according to the first embodiment.
  • the arrows in FIG. 2 indicate the direction in which water flows.
  • the switching valve 6 is controlled so that the third port 6c communicates with the first port 6a and the second port 6b is shut off, and the water pump 11 is driven.
  • the low-temperature water in the lower part of the hot water storage tank 2 passes through the first water outlet 25, the lower pipe 8, and the first common pipe 9 and is sent to the water-refrigerant heat exchanger 15 of the water heater 100.
  • Water heated to a high temperature by being heated by the water-refrigerant heat exchanger 15 is supplied to the second common pipe 3, the third port 6c of the switching valve 6, the first port 6a, the upper pipe 4, and the first It passes through the water inlet 26 and flows into the upper part of the hot water storage tank 2.
  • the heat storage operation as the water circulates as described above, high temperature water is stored in the hot water storage tank 2 from the top to the bottom, and the amount of heat stored in the hot water storage tank 2 increases.
  • the water circulation circuit during the heat storage operation described above is referred to as a “heat storage water circuit”. From the first water outlet 25, the lower pipe 8, the first common pipe 9, the water-refrigerant heat exchanger 15, the second common pipe 3, the third port 6c of the switching valve 6, the first port 6a, and the upper pipe A path that passes through 4 and reaches the first water inlet 26 is referred to as a “heat storage water path”.
  • FIG. 3 is a diagram illustrating a water circulation circuit during the heating operation of the hot water supply and heating system 1 according to the first embodiment.
  • the arrows in FIG. 3 indicate the direction in which water flows.
  • the switching valve 6 is controlled so that the third port 6c communicates with the second port 6b and the first port 6a is shut off, and the water pump 11 is driven.
  • water heated by the water-refrigerant heat exchanger 15 of the water heater 100 is supplied from the second common pipe 3, the third port 6c of the switching valve 6, the second port 6b, the first inner pipe 5, the second It passes through the water outlet 27 and the first outer pipe 22 and is sent to the heating terminal 12. And this water falls in temperature by the heat terminal 12 being deprived of heat by indoor air or a floor.
  • the water whose temperature has decreased is returned to the water-refrigerant heat exchanger 15 of the water heater 100 through the second outer pipe 23, the second water inlet 28, the second inner pipe 7, and the first common pipe 9.
  • the water returned to the water-refrigerant heat exchanger 15 is reheated and recirculated.
  • the water circulation circuit during the heating operation described above is referred to as a “heating water circuit”. Further, from the second water inlet 28, the second inner pipe 7, the first common pipe 9, the water-refrigerant heat exchanger 15, the second common pipe 3, the third port 6c of the switching valve 6, the second port 6b, A path that passes through the first inner pipe 5 and reaches the second water outlet 27 is referred to as a “heating water path”.
  • the switching valve 6 can switch between the heat storage water path and the heating water path.
  • the first common pipe 9, the water-refrigerant heat exchanger 15, the second common pipe 3, and the third port 6c correspond to overlapping portions where the heat storage water path and the heating water path overlap.
  • the first common pipe 9 and the second common pipe 3 correspond to pipes that form this overlapping portion.
  • the upper pipe 4 and the lower pipe 8 correspond to pipes forming a heat storage water path other than the overlapping part.
  • the 1st internal pipe 5 and the 2nd internal pipe 7 are corresponded to the pipe
  • the heating terminal 12 includes one or a plurality of heating appliances 24. By flowing water heated by the water heater 100 to the heater 24, the temperature of the indoor air is raised.
  • the heating appliance 24 for example, at least one of a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector can be used.
  • the fan convector includes a blower for circulating indoor air and a heat exchanger for exchanging heat of indoor air and liquid, and performs heating by forced convection.
  • the types thereof may be the same or different.
  • a plurality of heating appliances 24 may be incorporated. Moreover, the some heating terminal 12 may be connected in parallel. For each installation site of the heating terminal 12, the length, number, and connection method of the internal piping of the heating terminal 12, the length, number, and connection method of the heating appliance 24 are variously different.
  • 4-7 is a figure which shows the structural example of the heating terminal 12. As shown in FIG. In FIG. 4 to FIG. 7, for the sake of convenience, an uppercase alphabet is added to the reference numeral of the heating terminal 12 for distinction.
  • a heating terminal 12 ⁇ / b> A shown in FIG. 4 includes a single heating appliance 24.
  • the heating terminal 12 of FIGS. 5 to 7 includes a plurality of heating appliances 24. In FIG. 5 to FIG. 7, for the sake of convenience, a lowercase alphabet is added to the reference numerals of the heating appliances 24 to distinguish them.
  • the heating terminal 12B shown in FIG. 5 includes five heating appliances 24a, 24b, 24c, 24d, and 24e. Heating appliances 24c and 24d are connected in series. Heating appliances 24a, 24b, and 24e are connected in parallel to the heating appliances 24c and 24d, respectively.
  • the heating terminal 12C shown in FIG. 6 includes five heating appliances 24a, 24b, 24c, 24d, and 24e, and the connecting method is the same as that of the heating terminal 12B in FIG. However, in the heating terminal 12C shown in FIG. 6, the length of the internal pipe connected to the heating appliance 24e is longer than that of the heating terminal 12B in FIG.
  • the heating terminal 12D includes four heating appliances 24a, 24b, 24c, and 24d.
  • the heating appliances 24a and 24b connected in series are connected in parallel to the heating appliances 24c and 24d connected in series.
  • the heating terminal 12E includes five heating appliances 24e, 24f, 24g, 24h, and 24i.
  • the heating appliances 24g and 24h are connected in series. Heating appliances 24e, 24f, and 24i are connected in parallel to the heating appliances 24g and 24h, respectively.
  • the pressure loss of the heating water circuit may be much higher than the pressure loss of the heat storage water circuit.
  • the pressure loss corresponds to an energy loss per unit time unit flow rate when the fluid flows.
  • pressure loss is defined as the difference between the total inlet pressure and the total outlet pressure.
  • the heat storage water circuit and the heating water circuit share one water pump 11. That is, a dedicated water pump is not required for the heating water circuit. Therefore, the number of water pumps can be reduced and the cost can be reduced.
  • the performance (lift) of the water pump 11 is such that the required flow rate in the heating water circuit with high pressure loss can be satisfied (lift). If the water pump 11 is used to circulate water in a heat storage water circuit having a low pressure loss, water having a flow rate exceeding an appropriate flow rate may be circulated. If the circulating flow rate of water during the heat storage operation exceeds an appropriate flow rate, the temperature of the hot water coming out of the water heater 100 is lowered, and the temperature of the hot water flowing into the hot water storage tank 2 cannot be sufficiently increased.
  • FIG. 8 is a vertical cross-sectional view of the upper pipe 4 provided in the hot water supply / heating system 1 of the first embodiment.
  • a narrowed portion 30 is provided inside the upper tube 4.
  • the cross-sectional area of the narrowed portion 30 is smaller than the cross-sectional areas of the first common pipe 9 and the second common pipe 3.
  • the flow path cross-sectional area of the narrowed portion 30 is smaller than the flow path cross-sectional areas of the first inner pipe 5 and the second inner pipe 7.
  • the narrowed portion 30 is a cylindrical member having an outer diameter substantially equal to the inner diameter of the upper tube 4.
  • the narrowed portion 30 is fixed inside the upper tube 4.
  • the pressure loss of the heat storage water path is reduced to the pressure loss of the heating water path with a simple configuration. Higher than that.
  • a high pressure loss occurs due to water passing through the constricted portion 30. Since water does not pass through the constriction 30 during heating operation, high pressure loss due to the constriction 30 does not occur.
  • a high pressure loss due to the constricted portion 30 is generated, so that the circulation flow rate of the heat storage water circuit can be suppressed.
  • the circulation flow rate of water during the heat storage operation can be suppressed to an appropriate flow rate, and the temperature of hot water coming out of the water heater 100 can be sufficiently increased.
  • the temperature of hot water stored in the hot water storage tank 2 can be sufficiently increased.
  • a high pressure loss due to the constriction 30 is not generated, so that a necessary flow rate in the heating water circuit can be sufficiently secured.
  • the constricted portion 30 is provided in the upper pipe 4.
  • the present invention is not limited to such a configuration, and the lower pipe 8 that forms a heat storage water path other than the overlapping part of the heat storage water path and the heating water path.
  • the constriction 30 may be provided in Even in that case, the above-described effect can be obtained.
  • the narrow tube 30 is provided in the upper tube 4 and the narrow tube 30 is not provided in the lower tube 8. This has the following effects.
  • the hot water supply / heating system 1 is repaired or when the use of the hot water supply / heating system 1 is stopped, the water in the hot water storage tank 2 may be drained and emptied.
  • a configuration in which a drain plug (not shown) for performing such drainage is connected to the first common pipe 9 or the second inner pipe 7 is conceivable.
  • the narrowed portion 30 is provided in the lower pipe 8, it takes a long time to drain water from the hot water storage tank 2.
  • the narrow pipe 30 is provided in the upper pipe 4 and the narrow pipe 30 is not provided in the lower pipe 8, so that it takes time to drain the water in the hot water storage tank 2. Will not be long.
  • the water pump 11 may have a variable rotation speed.
  • a pump provided with a pulse width modulation control (PWM control) type DC motor whose rotation speed can be changed by a speed command voltage from the control unit 10 can be preferably used.
  • PWM control pulse width modulation control
  • the pressure loss of the heat storage water path is equal to or less than the pressure loss of the heating water path, even if the rotation speed of the water pump 11 is controlled to the minimum speed, the circulation flow rate of water during the heat storage operation exceeds an appropriate flow rate.
  • the pressure loss of the heat storage water path is made higher than the pressure loss of the heating water path, so that the circulation flow rate of water during the heat storage operation is surely suppressed to an appropriate flow rate. Can do.
  • the value of P1 / P2 is preferably 2.0 or more, and is 2.4 or more. Is more preferable. Further, the value of P1 / P2 is preferably 6.0 or less, and more preferably 4.3 or less.
  • the pressure loss of the heating water circuit when the heating terminal 12 having various configurations as described above is used is actually measured or calculated, and the first The pressure loss of the heat storage water circuit that changes according to the lengths of the common pipe 9 and the second common pipe 3 is measured or calculated. Even in a configuration in which the pressure loss of the heating water circuit is assumed to be maximum in the actual measurement or the calculation, the maximum head is set so that the circulating flow rate of the water in the heating water circuit can be set to a predetermined value (for example, 10 liters per minute). A water pump 11 is selected.
  • the minimum head that can make the circulation flow rate of the water in the heat storage water circuit to an intended value for example, 1 liter per minute.
  • a water pump 11 is selected.
  • the size of the water pump 11 increases, and the installation space required for the water pump 11 increases.
  • FIG. 9 is a longitudinal sectional view of the upper pipe 4 provided in the hot water supply and heating system 1 according to the second embodiment.
  • the flow path cross-sectional area of the upper pipe 4 shown in FIG. 9 is smaller than the flow path cross-sectional areas of the first common pipe 9 and the second common pipe 3, and the flow breaks of the first internal pipe 5 and the second internal pipe 7 Smaller than the area.
  • the upper pipe 4 of the second embodiment is narrower than the first common pipe 9 and the second common pipe 3 and is thinner than the first inner pipe 5 and the second inner pipe 7.
  • the upper tube 4 itself forms a constricted portion.
  • another member like the constriction part 30 of Embodiment 1 becomes unnecessary, and cost can be reduced.
  • Hot water supply and heating system 1 of the second embodiment has the same effects as those of the first embodiment. Since the upper pipe 4 itself forms a constricted portion, the pressure loss of the heat storage water path can be made higher than the pressure loss of the heating water path with a simple configuration.
  • FIG. 10 is a cross-sectional view of the switching valve 6 provided in the hot water supply and heating system 1 of the third embodiment.
  • the switching valve 6 includes a movable element 32 and a storage element that stores the movable element 32.
  • the movable element 32 is, for example, a substantially spherical ball valve body.
  • the movable element 32 has an L-shaped through channel 34. Both ends of the through channel 34 open to the surface of the movable element 32.
  • the movable element 32 is rotatable around a rotation axis perpendicular to the paper surface of FIG. When the movable element 32 is configured to be rotated by a stepping motor (not shown), the rotation angle of the movable element 32 can be easily controlled.
  • the storage element of the switching valve 6 has a first port 6a, a second port 6b, a third port 6c, an O-ring 31, and a seal member 33.
  • the O-ring 31 and the seal member 33 are provided for each of the first port 6a, the second port 6b, and the third port 6c.
  • the seal member 33 prevents liquid leakage from the gap between the seal member 33 and the movable element 32 by contacting the surface of the movable element 32.
  • the O-ring 31 prevents liquid leakage from the gaps between the first port 6a, the second port 6b, the third port 6c, and the respective seal members 33.
  • FIG. 10 shows a state where the control unit 10 switches the switching valve 6 to the heat storage water path.
  • the first port 6 a and the third port 6 c communicate with each other through the through flow path 34.
  • the second port 6b is blocked by the surface of the movable element 32 coming into contact with the seal member 33 provided in the second port 6b.
  • a constriction 30 is provided inside the first port 6a of the switching valve 6.
  • the channel cross-sectional area of the constricted portion 30 is smaller than the channel cross-sectional area of the second port 6b.
  • the narrowed portion 30 is a cylindrical member having an outer diameter substantially equal to the inner diameter of the first port 6a.
  • the narrowed portion 30 is fixed inside the first port 6a.
  • the pressure loss of the first port 6a is made higher than the pressure loss of the second port 6b.
  • the pressure loss of the heat storage water path can be reduced with a simple configuration by making the pressure loss of the first port 6a connected to the heat storage water path higher than the pressure loss of the second port 6b connected to the heating water path. Higher than the pressure loss in the heating water path.
  • Hot water supply and heating system 1 of the third embodiment has the same effects as those of the first embodiment.
  • the narrowed portion 30 may be formed integrally with the first port 6a.
  • FIG. 11 is a cross-sectional view of the switching valve 6 provided in the hot water supply and heating system 1 of the fourth embodiment.
  • FIG. 11 shows a state where the control unit 10 switches the switching valve 6 to the heat storage water path.
  • the switching valve 6 includes a movable element 32 and a storage element that stores the movable element 32.
  • the movable element 32 is, for example, a substantially spherical ball valve body.
  • the movable element 32 has an L-shaped through channel 34. Both ends of the through channel 34 open to the surface of the movable element 32.
  • the movable element 32 is rotatable around a rotation axis perpendicular to the paper surface of FIG.
  • the storage element of the switching valve 6 includes a first port 6 a, a second port 6 b, a third port 6 c, an O-ring 31, and a seal member 33.
  • the O-ring 31 and the seal member 33 are provided for each of the first port 6a, the second port 6b, and the third port 6c.
  • the seal member 33 prevents liquid leakage from the gap between the seal member 33 and the movable element 32 by contacting the surface of the movable element 32.
  • the O-ring 31 prevents liquid leakage from the gaps between the first port 6a, the second port 6b, the third port 6c, and the respective seal members 33.
  • the hot water supply and heating system 1 of the fourth embodiment has the same effects as those of the first embodiment. According to the fourth embodiment, the same effect as in the first embodiment can be obtained by controlling the rotation angle of the movable element 32, so that it is not necessary to add a new part, and the cost can be reduced.
  • 1 hot water supply / heating system 2 hot water storage tank, 3rd common pipe, 4 upper pipe, 5 first internal pipe, 6 switching valve, 6a first port, 6b second port, 6c third port, 7 second internal pipe, 8 lower pipe, 9 first common pipe, 10 control unit, 11 water pump, 12, 12A, 12B, 12C, 12D, 12E heating terminal, 13 compressor, 14 refrigerant piping, 15 refrigerant heat exchanger, 16 decompression device, 17 Low temperature side heat exchanger, 18 water supply pipe, 19 hot water supply pipe, 21 remote controller, 22 first external pipe, 23 second external pipe, 24, 24a, 24b, 24c, 24d, 24e, 24f, 24g, 24h, 24i Heating appliance, 25 1st water outlet, 26 1st water inlet, 27 2nd water outlet, 28 2nd water inlet, 30 constricted part, 31 O-ring, 32 movable elements, 3 Sealing member, 34 through channel, 100 water heater, 200 tank unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Provided is a hot-water supply and heating system configured so that a single water pump is used in common for both heat storing operation and heating operation, wherein the temperature of hot water flowing into a hot-water storage tank can be increased during heat storing operation. A hot-water supply and heating system is provided with: a heat storing water passage by which a first water outlet 25 of a hot-water storage tank 2, a water pump 11, a water heater 100, and a first water inlet 26 of the hot-water storage tank 2 are connected in this order; a heating water passage by which a second water inlet 28 into which water returned from an external heating device enters, the water pump 11, the water heater 100, and a second water outlet 27 out of which water supplied to the heating device flows are connected in this order; and a switching valve 6 for switching between the heat storing water passage and the heating water passage. The heat storing water passage and the heating water passage have portions overlapping each other, and pressure loss in the heat storing water passage is higher than that in the heating water passage.

Description

給湯暖房システムHot water heating system
 本発明は、給湯暖房システムに関する。 The present invention relates to a hot water supply / heating system.
 下記特許文献1に開示された貯湯式暖房装置は、ヒートポンプ等の加熱手段と貯湯タンクとを水が循環可能に接続する加熱循環回路と、外部の暖房器具に供給される二次側の水を加熱する熱交換器と、熱交換器と加熱手段とを水が循環可能に接続する熱交換循環回路とを備える。この貯湯式暖房装置は、加熱循環回路と熱交換循環回路との分岐点に、貯湯タンクに循環する量と熱交換器に循環する量との分配比率を調整する分配比率調整手段を備える。 The hot water storage type heating device disclosed in Patent Document 1 below includes a heating circuit that connects heating means such as a heat pump and a hot water storage tank so that water can circulate, and water on the secondary side supplied to an external heater. A heat exchanger for heating, and a heat exchange circuit for connecting the heat exchanger and the heating means so that water can circulate are provided. This hot water storage type heating device includes distribution ratio adjusting means for adjusting the distribution ratio between the amount circulating in the hot water storage tank and the amount circulating in the heat exchanger at the branch point between the heating circulation circuit and the heat exchange circulation circuit.
日本特開2006-46800号公報Japanese Unexamined Patent Publication No. 2006-46800
 上述した従来の貯湯式暖房装置は、加熱手段から外部の暖房器具へ温水を直接供給するのではなく、熱交換器で加熱された二次側の温水を暖房器具へ供給するものである。この貯湯式暖房装置は、加熱手段に水を循環させる加熱循環ポンプのほかに、熱交換器の二次側の温水を暖房器具へ循環させるポンプを必要とする。 The above-mentioned conventional hot water storage type heating apparatus does not directly supply hot water from the heating means to the external heating appliance, but supplies secondary hot water heated by the heat exchanger to the heating appliance. This hot water storage type heating device requires a pump for circulating hot water on the secondary side of the heat exchanger to the heating appliance in addition to the heating circulation pump for circulating water through the heating means.
 水ヒーターと貯湯タンクとの間で水を循環させることで貯湯タンクに蓄熱する蓄熱運転を行う蓄熱水回路と、水ヒーターと外部の暖房器具との間で水を循環させる暖房運転を行う暖房水回路とが、一つの水ポンプを共用すれば、水ポンプの数を減らすことができ、コストを低減できる。しかしながら、そのようにした場合、以下のような問題がある。暖房水回路は、据付現場ごとに、内部配管及び暖房器具の長さ、数、つなぎ方などが様々に異なる。暖房水回路の圧力損失は、蓄熱水回路の圧力損失に比べて、はるかに高くなることがある。そのため、一つの水ポンプの性能は、圧力損失の高い暖房水回路での必要流量を満足できるような性能にする必要がある。そのような性能の水ポンプを用いて、圧力損失の低い蓄熱水回路に水を循環させると、適切な流量を超える流量の水が循環してしまい、水ヒーターから出る湯の温度が低下し、貯湯タンクに流入する湯の温度を十分に高くできない。 Heat storage water circuit that performs heat storage operation that stores heat in the hot water storage tank by circulating water between the water heater and the hot water storage tank, and heating water that performs heating operation that circulates water between the water heater and an external heater If the circuit shares one water pump, the number of water pumps can be reduced and the cost can be reduced. However, when doing so, there are the following problems. In the heating water circuit, the length, number, connection method, and the like of the internal pipes and the heating appliances vary depending on the installation site. The pressure loss in the heating water circuit can be much higher than the pressure loss in the heat storage water circuit. Therefore, the performance of one water pump needs to be a performance that can satisfy the required flow rate in the heating water circuit having a high pressure loss. When water is circulated in a heat storage water circuit with low pressure loss using a water pump with such performance, water with a flow rate exceeding the appropriate flow rate circulates, and the temperature of hot water coming out of the water heater decreases, The temperature of hot water flowing into the hot water storage tank cannot be raised sufficiently.
 本発明は、上述のような課題を解決するためになされたもので、一つの水ポンプを、蓄熱運転と暖房運転とに共通で使用する構成において、蓄熱運転のときに貯湯タンクに流入する湯の温度を高くすることのできる給湯暖房システムを提供することを目的とする。 The present invention has been made to solve the above-described problems. In a configuration in which one water pump is commonly used for a heat storage operation and a heating operation, the hot water flowing into the hot water storage tank during the heat storage operation is provided. An object of the present invention is to provide a hot water supply and heating system capable of increasing the temperature of the hot water.
 本発明の給湯暖房システムは、貯湯タンクと、貯湯タンクの内部の水が出る第一水出口と、貯湯タンクの内部へ水が入る第一水入口と、水を加熱する水ヒーターと、水ポンプと、第一水出口と、水ポンプと、水ヒーターと、第一水入口とをこの順に接続する蓄熱水経路と、外部の暖房器具へ供給される水が出る第二水出口と、暖房器具から戻った水が入る第二水入口と、第二水入口と、水ポンプと、水ヒーターと、第二水出口とをこの順に接続する暖房水経路と、蓄熱水経路と暖房水経路とを切り替える切替弁と、を備え、蓄熱水経路と暖房水経路とが重複する重複部分を有し、蓄熱水経路の圧力損失が暖房水経路の圧力損失より高いものである。 The hot water supply and heating system of the present invention includes a hot water storage tank, a first water outlet through which water inside the hot water storage tank is discharged, a first water inlet through which water enters the hot water storage tank, a water heater that heats the water, and a water pump A first water outlet, a water pump, a water heater, a heat storage water path connecting the first water inlet in this order, a second water outlet from which water supplied to an external heater is discharged, and a heater A heating water path that connects the second water inlet, the second water inlet, the water pump, the water heater, and the second water outlet in this order, a heat storage water path, and a heating water path. A switching valve for switching, the heat storage water path and the heating water path have overlapping portions, and the pressure loss of the heat storage water path is higher than the pressure loss of the heating water path.
 本発明の給湯暖房システムによれば、一つの水ポンプを、蓄熱運転と暖房運転とに共通で使用する構成において、蓄熱運転のときに貯湯タンクに流入する湯の温度を高くすることが可能となる。 According to the hot water supply and heating system of the present invention, it is possible to increase the temperature of hot water flowing into the hot water storage tank during the heat storage operation in a configuration in which one water pump is commonly used for the heat storage operation and the heating operation. Become.
本発明の実施の形態1の給湯暖房システムを示す構成図である。It is a block diagram which shows the hot-water supply heating system of Embodiment 1 of this invention. 本発明の実施の形態1の給湯暖房システムの蓄熱運転時の水の循環回路を示す図である。It is a figure which shows the circulation circuit of the water at the time of the heat storage driving | operation of the hot-water supply heating system of Embodiment 1 of this invention. 本発明の実施の形態1の給湯暖房システムの暖房運転時の水の循環回路を示す図である。It is a figure which shows the circulation circuit of the water at the time of the heating operation of the hot water supply heating system of Embodiment 1 of this invention. 暖房端末の構成例を示す図である。It is a figure which shows the structural example of a heating terminal. 暖房端末の構成例を示す図である。It is a figure which shows the structural example of a heating terminal. 暖房端末の構成例を示す図である。It is a figure which shows the structural example of a heating terminal. 暖房端末の構成例を示す図である。It is a figure which shows the structural example of a heating terminal. 本発明の実施の形態1の給湯暖房システムが備える上部管の縦断面図である。It is a longitudinal cross-sectional view of the upper pipe with which the hot-water supply heating system of Embodiment 1 of this invention is provided. 本発明の実施の形態2の給湯暖房システムが備える上部管の縦断面図である。It is a longitudinal cross-sectional view of the upper pipe with which the hot-water supply heating system of Embodiment 2 of this invention is provided. 本発明の実施の形態3の給湯暖房システムが備える切替弁の断面図である。It is sectional drawing of the switching valve with which the hot-water supply heating system of Embodiment 3 of this invention is provided. 本発明の実施の形態4の給湯暖房システムが備える切替弁の断面図である。It is sectional drawing of the switching valve with which the hot-water supply heating system of Embodiment 4 of this invention is provided.
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して、重複する説明を省略する。本明細書で「水」とは、低温の冷水から高温の湯まで、あらゆる温度の水を含む概念である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. In this specification, “water” is a concept including water of all temperatures from low-temperature cold water to high-temperature hot water.
実施の形態1.
 図1は、本発明の実施の形態1の給湯暖房システムを示す構成図である。図1に示すように、本実施の形態1の給湯暖房システム1は、水ヒーター100と、タンクユニット200とを備える。水ヒーター100とタンクユニット200との間は、第一共通管9、第二共通管3、及び電気配線(図示省略)を介して接続される。本実施の形態1の給湯暖房システム1は、水ヒーター100とタンクユニット200とが分かれた構成であるが、本発明では、水ヒーター100とタンクユニット200とが一体化していても良い。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram illustrating a hot water supply / heating system according to Embodiment 1 of the present invention. As shown in FIG. 1, the hot water supply and heating system 1 according to the first embodiment includes a water heater 100 and a tank unit 200. The water heater 100 and the tank unit 200 are connected via a first common pipe 9, a second common pipe 3, and electrical wiring (not shown). The hot water supply and heating system 1 according to the first embodiment has a configuration in which the water heater 100 and the tank unit 200 are separated, but in the present invention, the water heater 100 and the tank unit 200 may be integrated.
 本実施の形態1の水ヒーター100は、ヒートポンプ式の水ヒーターである。水ヒーター100は、冷媒を圧縮する圧縮機13と、水-冷媒熱交換器15と、冷媒を減圧させる減圧装置16と、低温熱源(例えば外気)の熱を冷媒に吸収させる低温側熱交換器17(蒸発器)と、これらの機器を環状に接続することで冷媒回路を形成する冷媒配管14とを備える。水ヒーター100は、この冷媒回路でヒートポンプサイクル(冷凍サイクル)の運転を行うことで、水を加熱する。水ヒーター100は、圧縮機13で圧縮された高温高圧の冷媒と、水とを、水-冷媒熱交換器15にて熱交換させることで、水を加熱する。 The water heater 100 according to the first embodiment is a heat pump type water heater. The water heater 100 includes a compressor 13 that compresses refrigerant, a water-refrigerant heat exchanger 15, a decompression device 16 that decompresses the refrigerant, and a low-temperature side heat exchanger that absorbs heat from a low-temperature heat source (for example, outside air). 17 (evaporator) and the refrigerant | coolant piping 14 which forms a refrigerant circuit by connecting these apparatuses cyclically | annularly. The water heater 100 heats water by operating a heat pump cycle (refrigeration cycle) with this refrigerant circuit. The water heater 100 heats water by exchanging heat between the high-temperature and high-pressure refrigerant compressed by the compressor 13 and water in the water-refrigerant heat exchanger 15.
 本発明における水ヒーターは、上述したようなヒートポンプ式の水ヒーターに限定されるものではなく、いかなる方式のものでも良い。例えば、本発明における水ヒーターは、太陽熱で水を加熱するソーラー水ヒーター、または、燃料(例えばガス、灯油、重油、石炭など)の燃焼熱で水を加熱する燃焼式水ヒーターでも良い。 The water heater in the present invention is not limited to the heat pump type water heater as described above, and may be of any type. For example, the water heater in the present invention may be a solar water heater that heats water with solar heat, or a combustion water heater that heats water with the combustion heat of fuel (eg, gas, kerosene, heavy oil, coal, etc.).
 タンクユニット200は、貯湯タンク2、切替弁6、及び水ポンプ11を内蔵する。貯湯タンク2内には、水が貯留される。貯湯タンク2内では、温度の違いによる水の密度の差により、上側が高温で下側が低温になる温度成層を形成できる。貯湯タンク2の下部には、給水管18が接続される。水道等の水源から供給される水が給水管18を通って貯湯タンク2内に供給される。貯湯タンク2の上部には、給湯管19が接続される。外部へ給湯する際には、貯湯タンク2に貯えられた湯が給湯管19へ送り出される。 The tank unit 200 includes a hot water storage tank 2, a switching valve 6, and a water pump 11. Water is stored in the hot water storage tank 2. In the hot water storage tank 2, a temperature stratification can be formed in which the upper side is high temperature and the lower side is low temperature due to the difference in water density due to the temperature difference. A water supply pipe 18 is connected to the lower part of the hot water storage tank 2. Water supplied from a water source such as water is supplied into the hot water storage tank 2 through the water supply pipe 18. A hot water supply pipe 19 is connected to the upper part of the hot water storage tank 2. When hot water is supplied to the outside, the hot water stored in the hot water storage tank 2 is sent out to the hot water supply pipe 19.
 貯湯タンク2は、第一水出口25及び第一水入口26を有する。貯湯タンク2の内部の水が第一水出口25から出る。水ヒーター100で加熱された湯が第一水入口26から貯湯タンク2の内部へ入る。第一水出口25は、貯湯タンク2の下部にある。第一水入口26は、貯湯タンク2の上部にある。切替弁6は、第一ポート6a、第二ポート6b、及び第三ポート6cを有する。切替弁6は、第三ポート6cを第一ポート6aに連通させて第二ポート6bを遮断する状態と、第三ポート6cを第二ポート6bに連通させて第一ポート6aを遮断する状態とに切り替え可能である。 The hot water storage tank 2 has a first water outlet 25 and a first water inlet 26. Water inside the hot water storage tank 2 comes out from the first water outlet 25. Hot water heated by the water heater 100 enters the hot water storage tank 2 from the first water inlet 26. The first water outlet 25 is in the lower part of the hot water storage tank 2. The first water inlet 26 is at the top of the hot water storage tank 2. The switching valve 6 has a first port 6a, a second port 6b, and a third port 6c. The switching valve 6 has a state in which the third port 6c is communicated with the first port 6a and the second port 6b is shut off, and a state in which the third port 6c is communicated with the second port 6b and the first port 6a is shut off. Can be switched to.
 下部管8は、貯湯タンク2の第一水出口25と、第一共通管9の上流端との間を接続する。第一共通管9の下流端は、水ヒーター100の水-冷媒熱交換器15の水入口に接続される。第一共通管9の途中に、水ポンプ11が接続される。本実施の形態1では、水ポンプ11をタンクユニット200に内蔵しているが、本発明では、水ポンプ11を水ヒーター100側に設置しても良い。第二共通管3は、水ヒーター100の水-冷媒熱交換器15の水出口と、切替弁6の第三ポート6cとの間を接続する。上部管4は、切替弁6の第一ポート6aと、貯湯タンク2の第一水入口26との間を接続する。 The lower pipe 8 connects between the first water outlet 25 of the hot water storage tank 2 and the upstream end of the first common pipe 9. The downstream end of the first common pipe 9 is connected to the water inlet of the water-refrigerant heat exchanger 15 of the water heater 100. A water pump 11 is connected in the middle of the first common pipe 9. In Embodiment 1, the water pump 11 is built in the tank unit 200. However, in the present invention, the water pump 11 may be installed on the water heater 100 side. The second common pipe 3 connects between the water outlet of the water-refrigerant heat exchanger 15 of the water heater 100 and the third port 6 c of the switching valve 6. The upper pipe 4 connects between the first port 6 a of the switching valve 6 and the first water inlet 26 of the hot water storage tank 2.
 暖房端末12は、水ヒーター100及びタンクユニット200の外部に設けられる。タンクユニット200と暖房端末12との間は、第一外部管22及び第二外部管23を介して接続される。タンクユニット200は、第二水出口27及び第二水入口28を有する。タンクユニット200から暖房端末12へ供給される水は、第二水出口27からタンクユニット200外へ出る。第一内部管5は、タンクユニット200の内部で、切替弁6の第二ポート6bと、第二水出口27との間を接続する。第一外部管22の上流端は、タンクユニット200の外側から第二水出口27に接続される。第一外部管22の下流端は、暖房端末12の入口側に接続される。第二外部管23の上流端は、暖房端末12の出口側に接続される。第二外部管23の下流端は、タンクユニット200の外側から第二水入口28に接続される。第二内部管7は、タンクユニット200の内部で、第二水入口28と、第一共通管9の上流端との間を接続する。暖房端末12からタンクユニット200へ戻る水は、第二水入口28からタンクユニット200内へ入る。 The heating terminal 12 is provided outside the water heater 100 and the tank unit 200. The tank unit 200 and the heating terminal 12 are connected via a first external pipe 22 and a second external pipe 23. The tank unit 200 has a second water outlet 27 and a second water inlet 28. The water supplied from the tank unit 200 to the heating terminal 12 goes out of the tank unit 200 through the second water outlet 27. The first internal pipe 5 connects between the second port 6 b of the switching valve 6 and the second water outlet 27 inside the tank unit 200. The upstream end of the first outer pipe 22 is connected to the second water outlet 27 from the outside of the tank unit 200. The downstream end of the first outer pipe 22 is connected to the entrance side of the heating terminal 12. The upstream end of the second external pipe 23 is connected to the outlet side of the heating terminal 12. The downstream end of the second outer pipe 23 is connected to the second water inlet 28 from the outside of the tank unit 200. The second inner pipe 7 connects between the second water inlet 28 and the upstream end of the first common pipe 9 inside the tank unit 200. Water returning from the heating terminal 12 to the tank unit 200 enters the tank unit 200 through the second water inlet 28.
 タンクユニット200は、制御部10を内蔵する。制御部10とリモートコントローラ21とは、相互通信可能に接続されている。使用者は、リモートコントローラ21から、給湯暖房システム1の運転に関する指令及び設定値の変更などを入力できる。図示を省略するが、制御部10は、ROM(リードオンリーメモリ)、RAM(ランダムアクセスメモリ)、及び不揮発性メモリ等を含む記憶部と、記憶部に記憶されたプログラムに基いて演算処理を実行するCPU(セントラルプロセッシングユニット)と、CPUに対して外部の信号を入出力する入出力ポートとを有する。給湯暖房システム1が備えるアクチュエータ類及びセンサ類は、制御部10に電気的に接続される。制御部10は、センサ類の検知値及びリモートコントローラ21からの信号などに基づいて、給湯暖房システム1の動作を制御する。図示を省略するが、リモートコントローラ21は、給湯暖房システム1の状態等の情報を表示する表示部、使用者が操作するスイッチ等の操作部、スピーカ、マイク等が搭載されている。 The tank unit 200 incorporates the control unit 10. The control unit 10 and the remote controller 21 are connected so that they can communicate with each other. A user can input commands relating to the operation of the hot water supply and heating system 1 and changes in set values from the remote controller 21. Although not shown, the control unit 10 executes arithmetic processing based on a storage unit including a ROM (Read Only Memory), a RAM (Random Access Memory), and a nonvolatile memory, and a program stored in the storage unit. CPU (Central Processing Unit) that performs and an input / output port for inputting / outputting external signals to / from the CPU. The actuators and sensors included in the hot water supply / heating system 1 are electrically connected to the control unit 10. The control unit 10 controls the operation of the hot water supply / heating system 1 based on detection values of sensors, a signal from the remote controller 21, and the like. Although illustration is omitted, the remote controller 21 is equipped with a display unit for displaying information such as the state of the hot water supply / heating system 1, an operation unit such as a switch operated by a user, a speaker, a microphone, and the like.
 貯湯タンク2の表面には、複数の温度センサが、鉛直方向に間隔をあけて、取り付けられている。制御部10は、これらの温度センサにより、貯湯タンク2内の鉛直方向の温度分布を検知することで、貯湯タンク2内の貯湯量、蓄熱量、残湯量等を算出できる。制御部10は、貯湯タンク2内の貯湯量、蓄熱量、または残湯量に基づいて、後述する蓄熱運転の開始及び停止のタイミングなどを制御する。 A plurality of temperature sensors are attached to the surface of the hot water storage tank 2 at intervals in the vertical direction. The controller 10 can calculate the amount of stored hot water, the amount of stored heat, the amount of remaining hot water, etc. in the hot water storage tank 2 by detecting the temperature distribution in the vertical direction in the hot water storage tank 2 using these temperature sensors. The control unit 10 controls the timing of starting and stopping a heat storage operation, which will be described later, based on the amount of stored hot water, the amount of stored heat, or the amount of remaining hot water in the hot water storage tank 2.
 次に、図2を参照して、給湯暖房システム1の蓄熱運転について説明する。図2は、本実施の形態1の給湯暖房システム1の蓄熱運転時の水の循環回路を示す図である。図2中の矢印は、水が流れる方向を示す。蓄熱運転では、切替弁6が、第三ポート6cを第一ポート6aに連通させて第二ポート6bを遮断する状態に制御され、水ポンプ11が駆動される。蓄熱運転では、貯湯タンク2の下部の低温水が、第一水出口25、下部管8、及び第一共通管9を通り、水ヒーター100の水-冷媒熱交換器15に送られる。そして、水-冷媒熱交換器15で加熱されることで高温になった水が、第二共通管3、切替弁6の第三ポート6c、第一ポート6a、上部管4、及び、第一水入口26を通り、貯湯タンク2の上部に流入する。蓄熱運転では、上記のように水が循環することで、貯湯タンク2の内部に上から下に向かって高温水が貯えられていき、貯湯タンク2の蓄熱量が増加する。 Next, the heat storage operation of the hot water supply / heating system 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a water circulation circuit during the heat storage operation of the hot water supply and heating system 1 according to the first embodiment. The arrows in FIG. 2 indicate the direction in which water flows. In the heat storage operation, the switching valve 6 is controlled so that the third port 6c communicates with the first port 6a and the second port 6b is shut off, and the water pump 11 is driven. In the heat storage operation, the low-temperature water in the lower part of the hot water storage tank 2 passes through the first water outlet 25, the lower pipe 8, and the first common pipe 9 and is sent to the water-refrigerant heat exchanger 15 of the water heater 100. Water heated to a high temperature by being heated by the water-refrigerant heat exchanger 15 is supplied to the second common pipe 3, the third port 6c of the switching valve 6, the first port 6a, the upper pipe 4, and the first It passes through the water inlet 26 and flows into the upper part of the hot water storage tank 2. In the heat storage operation, as the water circulates as described above, high temperature water is stored in the hot water storage tank 2 from the top to the bottom, and the amount of heat stored in the hot water storage tank 2 increases.
 上述した蓄熱運転時の水の循環回路を「蓄熱水回路」と称する。また、第一水出口25から、下部管8、第一共通管9、水-冷媒熱交換器15、第二共通管3、切替弁6の第三ポート6c、第一ポート6a、及び上部管4を通り、第一水入口26に至る経路を「蓄熱水経路」と称する。 The water circulation circuit during the heat storage operation described above is referred to as a “heat storage water circuit”. From the first water outlet 25, the lower pipe 8, the first common pipe 9, the water-refrigerant heat exchanger 15, the second common pipe 3, the third port 6c of the switching valve 6, the first port 6a, and the upper pipe A path that passes through 4 and reaches the first water inlet 26 is referred to as a “heat storage water path”.
 次に、図3を参照して、給湯暖房システム1の暖房運転について説明する。図3は、本実施の形態1の給湯暖房システム1の暖房運転時の水の循環回路を示す図である。図3中の矢印は、水が流れる方向を示す。暖房運転では、切替弁6が、第三ポート6cを第二ポート6bに連通させて第一ポート6aを遮断する状態に制御され、水ポンプ11が駆動される。暖房運転では、水ヒーター100の水-冷媒熱交換器15で加熱された水が、第二共通管3、切替弁6の第三ポート6c、第二ポート6b、第一内部管5、第二水出口27、及び、第一外部管22を通り、暖房端末12に送られる。そして、この水は、暖房端末12で、室内空気または床などに熱を奪われることで、温度低下する。この温度低下した水は、第二外部管23、第二水入口28、第二内部管7、及び、第一共通管9を通り、水ヒーター100の水-冷媒熱交換器15に戻る。水-冷媒熱交換器15に戻った水は、再加熱され、再循環する。 Next, the heating operation of the hot water supply / heating system 1 will be described with reference to FIG. FIG. 3 is a diagram illustrating a water circulation circuit during the heating operation of the hot water supply and heating system 1 according to the first embodiment. The arrows in FIG. 3 indicate the direction in which water flows. In the heating operation, the switching valve 6 is controlled so that the third port 6c communicates with the second port 6b and the first port 6a is shut off, and the water pump 11 is driven. In the heating operation, water heated by the water-refrigerant heat exchanger 15 of the water heater 100 is supplied from the second common pipe 3, the third port 6c of the switching valve 6, the second port 6b, the first inner pipe 5, the second It passes through the water outlet 27 and the first outer pipe 22 and is sent to the heating terminal 12. And this water falls in temperature by the heat terminal 12 being deprived of heat by indoor air or a floor. The water whose temperature has decreased is returned to the water-refrigerant heat exchanger 15 of the water heater 100 through the second outer pipe 23, the second water inlet 28, the second inner pipe 7, and the first common pipe 9. The water returned to the water-refrigerant heat exchanger 15 is reheated and recirculated.
 上述した暖房運転時の水の循環回路を「暖房水回路」と称する。また、第二水入口28から、第二内部管7、第一共通管9、水-冷媒熱交換器15、第二共通管3、切替弁6の第三ポート6c、第二ポート6b、及び第一内部管5を通り、第二水出口27に至る経路を「暖房水経路」と称する。切替弁6により、蓄熱水経路と暖房水経路とを切り替え可能である。 The water circulation circuit during the heating operation described above is referred to as a “heating water circuit”. Further, from the second water inlet 28, the second inner pipe 7, the first common pipe 9, the water-refrigerant heat exchanger 15, the second common pipe 3, the third port 6c of the switching valve 6, the second port 6b, A path that passes through the first inner pipe 5 and reaches the second water outlet 27 is referred to as a “heating water path”. The switching valve 6 can switch between the heat storage water path and the heating water path.
 第一共通管9、水-冷媒熱交換器15、第二共通管3、及び、第三ポート6cは、蓄熱水経路と暖房水経路とが重複する重複部分に相当する。第一共通管9及び第二共通管3は、この重複部分を形成する管に相当する。上部管4及び下部管8は、この重複部分以外の蓄熱水経路を形成する管に相当する。第一内部管5及び第二内部管7は、この重複部分以外の暖房水経路を形成する管に相当する。 The first common pipe 9, the water-refrigerant heat exchanger 15, the second common pipe 3, and the third port 6c correspond to overlapping portions where the heat storage water path and the heating water path overlap. The first common pipe 9 and the second common pipe 3 correspond to pipes that form this overlapping portion. The upper pipe 4 and the lower pipe 8 correspond to pipes forming a heat storage water path other than the overlapping part. The 1st internal pipe 5 and the 2nd internal pipe 7 are corresponded to the pipe | tube which forms the heating water path | routes other than this overlapping part.
 暖房端末12は、1または複数の暖房器具24を備える。水ヒーター100で加熱された水を暖房器具24に流すことで、室内の空気の温度を上昇させる。暖房器具24としては、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータまたはパネルヒーター、及び、ファンコンベクターのうち、少なくとも一種を用いることができる。ファンコンベクターは、室内空気循環用の送風機と、室内空気及び液体の熱を交換する熱交換器とを備え、強制対流により暖房を行う。暖房端末12が複数の暖房器具24を備える場合、それらの種類は同じでも良いし異なっていても良い。 The heating terminal 12 includes one or a plurality of heating appliances 24. By flowing water heated by the water heater 100 to the heater 24, the temperature of the indoor air is raised. As the heating appliance 24, for example, at least one of a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector can be used. The fan convector includes a blower for circulating indoor air and a heat exchanger for exchanging heat of indoor air and liquid, and performs heating by forced convection. When the heating terminal 12 includes a plurality of heating appliances 24, the types thereof may be the same or different.
 暖房端末12の種類によっては、暖房器具24を複数内蔵する場合がある。また、複数の暖房端末12が並列に接続されることがある。暖房端末12の据付現場ごとに、暖房端末12の内部配管の長さ、数、及びつなぎ方、暖房器具24の長さ、数、及びつなぎ方などが、様々に異なる。図4から図7は、暖房端末12の構成例を示す図である。図4から図7では、便宜上、暖房端末12の符号に大文字のアルファベットを付記することで、区別する。図4に示す暖房端末12Aは、単一の暖房器具24を備える。図5から図7の暖房端末12は、複数の暖房器具24を備える。図5から図7では、便宜上、暖房器具24の符号に小文字のアルファベットを付記することで、区別する。 Depending on the type of the heating terminal 12, a plurality of heating appliances 24 may be incorporated. Moreover, the some heating terminal 12 may be connected in parallel. For each installation site of the heating terminal 12, the length, number, and connection method of the internal piping of the heating terminal 12, the length, number, and connection method of the heating appliance 24 are variously different. 4-7 is a figure which shows the structural example of the heating terminal 12. As shown in FIG. In FIG. 4 to FIG. 7, for the sake of convenience, an uppercase alphabet is added to the reference numeral of the heating terminal 12 for distinction. A heating terminal 12 </ b> A shown in FIG. 4 includes a single heating appliance 24. The heating terminal 12 of FIGS. 5 to 7 includes a plurality of heating appliances 24. In FIG. 5 to FIG. 7, for the sake of convenience, a lowercase alphabet is added to the reference numerals of the heating appliances 24 to distinguish them.
 図5に示す暖房端末12Bは、5個の暖房器具24a,24b,24c,24d,24eを備える。暖房器具24c及び24dは、直列に接続される。暖房器具24c及び24dに対して、暖房器具24a,24b,24eがそれぞれ並列に接続される。 The heating terminal 12B shown in FIG. 5 includes five heating appliances 24a, 24b, 24c, 24d, and 24e. Heating appliances 24c and 24d are connected in series. Heating appliances 24a, 24b, and 24e are connected in parallel to the heating appliances 24c and 24d, respectively.
 図6に示す暖房端末12Cは、5個の暖房器具24a,24b,24c,24d,24eを備え、これらのつなぎ方は図5の暖房端末12Bと同様である。しかし、図6に示す暖房端末12Cは、図5の暖房端末12Bに比べて、暖房器具24eに接続される内部配管の長さが長くなっている。 The heating terminal 12C shown in FIG. 6 includes five heating appliances 24a, 24b, 24c, 24d, and 24e, and the connecting method is the same as that of the heating terminal 12B in FIG. However, in the heating terminal 12C shown in FIG. 6, the length of the internal pipe connected to the heating appliance 24e is longer than that of the heating terminal 12B in FIG.
 図7に示す構成例では、2個の暖房端末12D及び12Eが第一外部管22及び第二外部管23に対して並列に接続される。暖房端末12Dは、4個の暖房器具24a,24b,24c,24dを備える。直列に接続された暖房器具24a及び24bが、直列に接続された暖房器具24c及び24dに対して、並列に接続される。暖房端末12Eは、5個の暖房器具24e,24f,24g,24h,24iを備える。暖房器具24g及び24hは、直列に接続される。暖房器具24g及び24hに対して、暖房器具24e,24f,24iがそれぞれ並列に接続される。 In the configuration example shown in FIG. 7, two heating terminals 12D and 12E are connected in parallel to the first outer pipe 22 and the second outer pipe 23. The heating terminal 12D includes four heating appliances 24a, 24b, 24c, and 24d. The heating appliances 24a and 24b connected in series are connected in parallel to the heating appliances 24c and 24d connected in series. The heating terminal 12E includes five heating appliances 24e, 24f, 24g, 24h, and 24i. The heating appliances 24g and 24h are connected in series. Heating appliances 24e, 24f, and 24i are connected in parallel to the heating appliances 24g and 24h, respectively.
 図5から図7に示すような暖房端末12が接続された場合、暖房水回路の圧力損失は、蓄熱水回路の圧力損失に比べて、はるかに高くなる場合がある。なお、圧力損失とは、流体が流れる際の単位時間単位流量あたりのエネルギー損失に相当する。配管などの内部流れに対しては、圧力損失は、入口の全圧と出口の全圧との差として定義される。 When the heating terminal 12 as shown in FIG. 5 to FIG. 7 is connected, the pressure loss of the heating water circuit may be much higher than the pressure loss of the heat storage water circuit. The pressure loss corresponds to an energy loss per unit time unit flow rate when the fluid flows. For internal flows such as piping, pressure loss is defined as the difference between the total inlet pressure and the total outlet pressure.
 本実施の形態1の給湯暖房システム1は、蓄熱水回路と、暖房水回路とが、一つの水ポンプ11を共用する。すなわち、暖房水回路に専用の水ポンプが不要である。よって、水ポンプの数を減らすことができ、コストを低減できる。水ポンプ11の性能(揚程)は、圧力損失の高い暖房水回路での必要流量を満足できるような性能(揚程)になっている。この水ポンプ11を用いて、圧力損失の低い蓄熱水回路に水を循環させると、適切な流量を超える流量の水が循環してしまう可能性がある。蓄熱運転のときの水の循環流量が適切な流量を超えてしまうと、水ヒーター100から出る湯の温度が低下し、貯湯タンク2に流入する湯の温度を十分に高くできない。 In the hot water supply and heating system 1 of the first embodiment, the heat storage water circuit and the heating water circuit share one water pump 11. That is, a dedicated water pump is not required for the heating water circuit. Therefore, the number of water pumps can be reduced and the cost can be reduced. The performance (lift) of the water pump 11 is such that the required flow rate in the heating water circuit with high pressure loss can be satisfied (lift). If the water pump 11 is used to circulate water in a heat storage water circuit having a low pressure loss, water having a flow rate exceeding an appropriate flow rate may be circulated. If the circulating flow rate of water during the heat storage operation exceeds an appropriate flow rate, the temperature of the hot water coming out of the water heater 100 is lowered, and the temperature of the hot water flowing into the hot water storage tank 2 cannot be sufficiently increased.
 本実施の形態1の給湯暖房システム1では、第一水出口25から第一水入口26までの蓄熱水経路の圧力損失を、第二水入口28から第二水出口27までの暖房水経路の圧力損失に比べて、高くしている。図8は、本実施の形態1の給湯暖房システム1が備える上部管4の縦断面図である。図8に示すように、上部管4の内部には、狭窄部30が設けられている。狭窄部30の流路断面積は、第一共通管9及び第二共通管3の流路断面積より小さい。狭窄部30の流路断面積は、第一内部管5及び第二内部管7の流路断面積より小さい。狭窄部30は、上部管4の内径に実質的に等しい外径を有する筒状部材である。狭窄部30は、上部管4の内部で固定されている。 In the hot water supply and heating system 1 according to the first embodiment, the pressure loss in the heat storage water path from the first water outlet 25 to the first water inlet 26 is detected in the heating water path from the second water inlet 28 to the second water outlet 27. Higher than pressure loss. FIG. 8 is a vertical cross-sectional view of the upper pipe 4 provided in the hot water supply / heating system 1 of the first embodiment. As shown in FIG. 8, a narrowed portion 30 is provided inside the upper tube 4. The cross-sectional area of the narrowed portion 30 is smaller than the cross-sectional areas of the first common pipe 9 and the second common pipe 3. The flow path cross-sectional area of the narrowed portion 30 is smaller than the flow path cross-sectional areas of the first inner pipe 5 and the second inner pipe 7. The narrowed portion 30 is a cylindrical member having an outer diameter substantially equal to the inner diameter of the upper tube 4. The narrowed portion 30 is fixed inside the upper tube 4.
 蓄熱水経路と暖房水経路との重複部分以外の蓄熱水経路を形成する上部管4に狭窄部30を設けることにより、簡単な構成で、蓄熱水経路の圧力損失を暖房水経路の圧力損失に比べて高くできる。蓄熱運転のときには狭窄部30を水が通ることで高い圧力損失が発生する。暖房運転のときには狭窄部30を水が通らないので、狭窄部30による高い圧力損失は発生しない。蓄熱運転のときには、狭窄部30による高い圧力損失が発生することで、蓄熱水回路の循環流量を抑制できる。このため、蓄熱運転のときの水の循環流量を適切な流量に抑えることができ、水ヒーター100から出る湯の温度を十分に高くできる。その結果、貯湯タンク2に貯える湯の温度を十分に高くできる。暖房運転のときには、狭窄部30による高い圧力損失が発生しないことで、暖房水回路での必要流量を十分に確保できる。 By providing the constricted portion 30 in the upper pipe 4 that forms the heat storage water path other than the overlapping part of the heat storage water path and the heating water path, the pressure loss of the heat storage water path is reduced to the pressure loss of the heating water path with a simple configuration. Higher than that. During the heat storage operation, a high pressure loss occurs due to water passing through the constricted portion 30. Since water does not pass through the constriction 30 during heating operation, high pressure loss due to the constriction 30 does not occur. During the heat storage operation, a high pressure loss due to the constricted portion 30 is generated, so that the circulation flow rate of the heat storage water circuit can be suppressed. For this reason, the circulation flow rate of water during the heat storage operation can be suppressed to an appropriate flow rate, and the temperature of hot water coming out of the water heater 100 can be sufficiently increased. As a result, the temperature of hot water stored in the hot water storage tank 2 can be sufficiently increased. During heating operation, a high pressure loss due to the constriction 30 is not generated, so that a necessary flow rate in the heating water circuit can be sufficiently secured.
 本実施の形態1では、上部管4に狭窄部30を設けているが、このような構成に限らず、蓄熱水経路と暖房水経路との重複部分以外の蓄熱水経路を形成する下部管8に狭窄部30を設けても良い。その場合であっても、上記の効果が得られる。 In the first embodiment, the constricted portion 30 is provided in the upper pipe 4. However, the present invention is not limited to such a configuration, and the lower pipe 8 that forms a heat storage water path other than the overlapping part of the heat storage water path and the heating water path. The constriction 30 may be provided in Even in that case, the above-described effect can be obtained.
 本実施の形態1では、上部管4に狭窄部30を設けており、下部管8に狭窄部30を設けていない。これにより、以下のような効果がある。給湯暖房システム1の修理を行う場合、あるいは、給湯暖房システム1の使用を休止する場合などに、貯湯タンク2の内部の水を抜いて空にすることがある。そのような排水を行うための排水栓(図示省略)を、第一共通管9または第二内部管7に接続する構成が考えられる。そのような構成において、排水栓を開くと、貯湯タンク2の内部の水が下部管8を通って排水栓から排出される。下部管8に狭窄部30を設けた場合、貯湯タンク2の内部の水を抜くのにかかる時間が長くなる。これに対し、本実施の形態1では、上部管4に狭窄部30を設けており、下部管8に狭窄部30を設けていないことで、貯湯タンク2の内部の水を抜くのにかかる時間が長くなることがない。 In the first embodiment, the narrow tube 30 is provided in the upper tube 4 and the narrow tube 30 is not provided in the lower tube 8. This has the following effects. When the hot water supply / heating system 1 is repaired or when the use of the hot water supply / heating system 1 is stopped, the water in the hot water storage tank 2 may be drained and emptied. A configuration in which a drain plug (not shown) for performing such drainage is connected to the first common pipe 9 or the second inner pipe 7 is conceivable. In such a configuration, when the drain plug is opened, the water in the hot water storage tank 2 is discharged from the drain plug through the lower pipe 8. When the narrowed portion 30 is provided in the lower pipe 8, it takes a long time to drain water from the hot water storage tank 2. In contrast, in the first embodiment, the narrow pipe 30 is provided in the upper pipe 4 and the narrow pipe 30 is not provided in the lower pipe 8, so that it takes time to drain the water in the hot water storage tank 2. Will not be long.
 水ポンプ11は、回転速度が可変のものでも良い。その場合、水ポンプ11として、例えば、制御部10からの速度指令電圧により回転速度を変えられるパルス幅変調制御(PWM制御)型の直流モータを備えたものを好ましく用いることができる。蓄熱水経路の圧力損失が暖房水経路の圧力損失以下である場合、水ポンプ11の回転速度を最低速度に制御しても、蓄熱運転のときの水の循環流量が適切な流量を超えてしまうことがある。これに対し、本実施の形態1では、蓄熱水経路の圧力損失を暖房水経路の圧力損失に比べて高くしたことで、蓄熱運転のときの水の循環流量を適切な流量に確実に抑えることができる。 The water pump 11 may have a variable rotation speed. In that case, as the water pump 11, for example, a pump provided with a pulse width modulation control (PWM control) type DC motor whose rotation speed can be changed by a speed command voltage from the control unit 10 can be preferably used. When the pressure loss of the heat storage water path is equal to or less than the pressure loss of the heating water path, even if the rotation speed of the water pump 11 is controlled to the minimum speed, the circulation flow rate of water during the heat storage operation exceeds an appropriate flow rate. Sometimes. On the other hand, in this Embodiment 1, the pressure loss of the heat storage water path is made higher than the pressure loss of the heating water path, so that the circulation flow rate of water during the heat storage operation is surely suppressed to an appropriate flow rate. Can do.
 給湯暖房システム1では、蓄熱水経路の圧力損失の値をP1とし、暖房水経路の圧力損失の値をP2としたとき、P1/P2の値は、2.0以上が好ましく、2.4以上がより好ましい。また、P1/P2の値は、6.0以下が好ましく、4.3以下がより好ましい。P1/P2の値をこのような範囲内の値にすることで、蓄熱運転のときの水の循環流量を適切な流量に確実に抑えつつ、水ポンプ11の消費電力の増加を抑制できる。 In the hot water supply and heating system 1, when the pressure loss value of the heat storage water path is P1, and the pressure loss value of the heating water path is P2, the value of P1 / P2 is preferably 2.0 or more, and is 2.4 or more. Is more preferable. Further, the value of P1 / P2 is preferably 6.0 or less, and more preferably 4.3 or less. By setting the value of P1 / P2 within such a range, it is possible to suppress an increase in power consumption of the water pump 11 while reliably suppressing the circulating flow rate of water during the heat storage operation to an appropriate flow rate.
 給湯暖房システム1に使用する水ポンプ11を選定する際には、前述したような様々な構成の暖房端末12が使用される場合の暖房水回路の圧力損失が実測または試算され、かつ、第一共通管9及び第二共通管3の長さに応じて変化する蓄熱水回路の圧力損失が実測または試算される。その実測または試算において暖房水回路の圧力損失が最大になると想定される構成においても、暖房水回路の水の循環流量を所期の値(例えば毎分10リットル)にできるような最高揚程を有する水ポンプ11が選定される。また、上記の実測または試算において蓄熱水回路の圧力損失が最小なると想定される構成においても、蓄熱水回路の水の循環流量を所期の値(例えば毎分1リットル)にできるような最低揚程を有する水ポンプ11が選定される。一般に、水ポンプ11の揚程幅(最高揚程と最低揚程との差)を拡大するにつれ、水ポンプ11のサイズが大きくなり、水ポンプ11に必要な設置スペースが拡大するという問題がある。P1/P2の値を上述のような範囲内の値にすることで、蓄熱運転のときの水の循環流量を適切な流量に確実に抑えつつ、水ポンプ11のサイズが過大になることを確実に抑制できる。 When selecting the water pump 11 used in the hot water supply and heating system 1, the pressure loss of the heating water circuit when the heating terminal 12 having various configurations as described above is used is actually measured or calculated, and the first The pressure loss of the heat storage water circuit that changes according to the lengths of the common pipe 9 and the second common pipe 3 is measured or calculated. Even in a configuration in which the pressure loss of the heating water circuit is assumed to be maximum in the actual measurement or the calculation, the maximum head is set so that the circulating flow rate of the water in the heating water circuit can be set to a predetermined value (for example, 10 liters per minute). A water pump 11 is selected. Further, even in the configuration in which the pressure loss of the heat storage water circuit is assumed to be the minimum in the above actual measurement or trial calculation, the minimum head that can make the circulation flow rate of the water in the heat storage water circuit to an intended value (for example, 1 liter per minute). A water pump 11 is selected. In general, as the head width of the water pump 11 (difference between the maximum head and the minimum head) is increased, the size of the water pump 11 increases, and the installation space required for the water pump 11 increases. By making the value of P1 / P2 within the range as described above, it is ensured that the size of the water pump 11 becomes excessive while reliably suppressing the circulating flow rate of water during the heat storage operation to an appropriate flow rate. Can be suppressed.
実施の形態2.
 次に、図9を参照して、本発明の実施の形態2について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図9は、本実施の形態2の給湯暖房システム1が備える上部管4の縦断面図である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIG. 9. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be described with the same reference numerals. Omitted. FIG. 9 is a longitudinal sectional view of the upper pipe 4 provided in the hot water supply and heating system 1 according to the second embodiment.
 図9に示す上部管4の流路断面積は、第一共通管9及び第二共通管3の流路断面積より小さく、また、第一内部管5及び第二内部管7の流路断面積より小さい。本実施の形態2の上部管4は、第一共通管9及び第二共通管3より細く、また、第一内部管5及び第二内部管7より細い。本実施の形態1では、このような細い上部管4を用いることで、上部管4自体が狭窄部を形成する。このため、実施の形態1の狭窄部30のような別部材が不要となり、コストを低減できる。本実施の形態2の給湯暖房システム1は、実施の形態1と同様の効果を奏する。上部管4自体が狭窄部を形成することで、簡単な構成で、蓄熱水経路の圧力損失を暖房水経路の圧力損失に比べて高くできる。 The flow path cross-sectional area of the upper pipe 4 shown in FIG. 9 is smaller than the flow path cross-sectional areas of the first common pipe 9 and the second common pipe 3, and the flow breaks of the first internal pipe 5 and the second internal pipe 7 Smaller than the area. The upper pipe 4 of the second embodiment is narrower than the first common pipe 9 and the second common pipe 3 and is thinner than the first inner pipe 5 and the second inner pipe 7. In the first embodiment, by using such a thin upper tube 4, the upper tube 4 itself forms a constricted portion. For this reason, another member like the constriction part 30 of Embodiment 1 becomes unnecessary, and cost can be reduced. Hot water supply and heating system 1 of the second embodiment has the same effects as those of the first embodiment. Since the upper pipe 4 itself forms a constricted portion, the pressure loss of the heat storage water path can be made higher than the pressure loss of the heating water path with a simple configuration.
実施の形態3.
 次に、図10を参照して、本発明の実施の形態3について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図10は、本実施の形態3の給湯暖房システム1が備える切替弁6の断面図である。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to FIG. 10. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be described with the same reference numerals. Omitted. FIG. 10 is a cross-sectional view of the switching valve 6 provided in the hot water supply and heating system 1 of the third embodiment.
 図10に示すように、切替弁6は、可動要素32と、可動要素32を収納する収納要素とを有する。可動要素32は、例えば、略球形のボール弁体である。可動要素32は、L字型の貫通流路34を有する。貫通流路34の両端は、可動要素32の表面に開口する。可動要素32は、図10の紙面に垂直な回転軸を中心として回転可能である。可動要素32をステッピングモータ(図示省略)で回転させるように構成した場合、可動要素32の回転角度を容易に制御できる。 As shown in FIG. 10, the switching valve 6 includes a movable element 32 and a storage element that stores the movable element 32. The movable element 32 is, for example, a substantially spherical ball valve body. The movable element 32 has an L-shaped through channel 34. Both ends of the through channel 34 open to the surface of the movable element 32. The movable element 32 is rotatable around a rotation axis perpendicular to the paper surface of FIG. When the movable element 32 is configured to be rotated by a stepping motor (not shown), the rotation angle of the movable element 32 can be easily controlled.
 切替弁6の収納要素は、第一ポート6a、第二ポート6b、第三ポート6c、Oリング31、及びシール部材33を有する。Oリング31及びシール部材33は、第一ポート6a、第二ポート6b、及び第三ポート6cのそれぞれに対して設けられている。シール部材33は、可動要素32の表面に接触することで、シール部材33と可動要素32との隙間からの液漏れを防止する。Oリング31は、第一ポート6a、第二ポート6b、及び第三ポート6cと、それぞれのシール部材33との隙間からの液漏れを防止する。図10は、制御部10が切替弁6を蓄熱水経路に切り替えた状態を示す。この状態では、第一ポート6aと第三ポート6cとが貫通流路34を介して連通する。この状態では、第二ポート6bに設けられたシール部材33に可動要素32の表面が接触することで、第二ポート6bが遮断される。 The storage element of the switching valve 6 has a first port 6a, a second port 6b, a third port 6c, an O-ring 31, and a seal member 33. The O-ring 31 and the seal member 33 are provided for each of the first port 6a, the second port 6b, and the third port 6c. The seal member 33 prevents liquid leakage from the gap between the seal member 33 and the movable element 32 by contacting the surface of the movable element 32. The O-ring 31 prevents liquid leakage from the gaps between the first port 6a, the second port 6b, the third port 6c, and the respective seal members 33. FIG. 10 shows a state where the control unit 10 switches the switching valve 6 to the heat storage water path. In this state, the first port 6 a and the third port 6 c communicate with each other through the through flow path 34. In this state, the second port 6b is blocked by the surface of the movable element 32 coming into contact with the seal member 33 provided in the second port 6b.
 切替弁6の第一ポート6aの内部には、狭窄部30が設けられている。狭窄部30の流路断面積は、第二ポート6bの流路断面積より小さい。狭窄部30は、第一ポート6aの内径に実質的に等しい外径を有する筒状部材である。狭窄部30は、第一ポート6aの内部で固定されている。狭窄部30を設けることで、第一ポート6aの圧力損失が、第二ポート6bの圧力損失に比べて、高くされている。このように、蓄熱水経路に繋がる第一ポート6aの圧力損失を、暖房水経路に繋がる第二ポート6bの圧力損失に比べて高くすることで、簡単な構成で、蓄熱水経路の圧力損失を暖房水経路の圧力損失に比べて高くできる。本実施の形態3の給湯暖房システム1は、実施の形態1と同様の効果を奏する。狭窄部30は、第一ポート6aに一体的に形成しても良い。 A constriction 30 is provided inside the first port 6a of the switching valve 6. The channel cross-sectional area of the constricted portion 30 is smaller than the channel cross-sectional area of the second port 6b. The narrowed portion 30 is a cylindrical member having an outer diameter substantially equal to the inner diameter of the first port 6a. The narrowed portion 30 is fixed inside the first port 6a. By providing the narrowed portion 30, the pressure loss of the first port 6a is made higher than the pressure loss of the second port 6b. Thus, the pressure loss of the heat storage water path can be reduced with a simple configuration by making the pressure loss of the first port 6a connected to the heat storage water path higher than the pressure loss of the second port 6b connected to the heating water path. Higher than the pressure loss in the heating water path. Hot water supply and heating system 1 of the third embodiment has the same effects as those of the first embodiment. The narrowed portion 30 may be formed integrally with the first port 6a.
実施の形態4.
 次に、図11を参照して、本発明の実施の形態4について説明するが、上述した実施の形態との相違点を中心に説明し、同一部分または相当部分は同一符号を付し説明を省略する。図11は、本実施の形態4の給湯暖房システム1が備える切替弁6の断面図である。図11は、制御部10が切替弁6を蓄熱水経路に切り替えた状態を示す。
Embodiment 4 FIG.
Next, the fourth embodiment of the present invention will be described with reference to FIG. 11. The description will focus on the differences from the above-described embodiment, and the same or corresponding parts will be described with the same reference numerals. Omitted. FIG. 11 is a cross-sectional view of the switching valve 6 provided in the hot water supply and heating system 1 of the fourth embodiment. FIG. 11 shows a state where the control unit 10 switches the switching valve 6 to the heat storage water path.
 切替弁6は、可動要素32と、可動要素32を収納する収納要素とを有する。可動要素32は、例えば、略球形のボール弁体である。可動要素32は、L字型の貫通流路34を有する。貫通流路34の両端は、可動要素32の表面に開口する。可動要素32は、図11の紙面に垂直な回転軸を中心として回転可能である。切替弁6の収納要素は、第一ポート6a、第二ポート6b、第三ポート6c、Oリング31、及びシール部材33を有する。Oリング31及びシール部材33は、第一ポート6a、第二ポート6b、及び第三ポート6cのそれぞれに対して設けられている。シール部材33は、可動要素32の表面に接触することで、シール部材33と可動要素32との隙間からの液漏れを防止する。Oリング31は、第一ポート6a、第二ポート6b、及び第三ポート6cと、それぞれのシール部材33との隙間からの液漏れを防止する。 The switching valve 6 includes a movable element 32 and a storage element that stores the movable element 32. The movable element 32 is, for example, a substantially spherical ball valve body. The movable element 32 has an L-shaped through channel 34. Both ends of the through channel 34 open to the surface of the movable element 32. The movable element 32 is rotatable around a rotation axis perpendicular to the paper surface of FIG. The storage element of the switching valve 6 includes a first port 6 a, a second port 6 b, a third port 6 c, an O-ring 31, and a seal member 33. The O-ring 31 and the seal member 33 are provided for each of the first port 6a, the second port 6b, and the third port 6c. The seal member 33 prevents liquid leakage from the gap between the seal member 33 and the movable element 32 by contacting the surface of the movable element 32. The O-ring 31 prevents liquid leakage from the gaps between the first port 6a, the second port 6b, the third port 6c, and the respective seal members 33.
 切替弁6が蓄熱水経路に切り替えられたとき、図11に示すように、可動要素32の貫通流路34の両端の開口の一部分が、収納要素のシール部材33で塞がれる。貫通流路34の一端の開口の一部分は、第一ポート6aに設けられたシール部材33で塞がれる。貫通流路34の他端の開口の一部分は、第三ポート6cに設けられたシール部材33で塞がれる。 When the switching valve 6 is switched to the heat storage water path, as shown in FIG. 11, a part of the opening at both ends of the through channel 34 of the movable element 32 is blocked by the seal member 33 of the storage element. A part of the opening at one end of the through channel 34 is closed by a seal member 33 provided in the first port 6a. A part of the opening at the other end of the through channel 34 is closed by a seal member 33 provided in the third port 6c.
 本実施の形態4では、切替弁6が蓄熱水経路に切り替えられたときに、可動要素32の貫通流路34の両端の開口の一部分がシール部材33で塞がれることで、水の流路が絞られ、高い圧力損失が発生する。そのため、蓄熱水経路の圧力損失を暖房水経路の圧力損失に比べて高くできる。本実施の形態4の給湯暖房システム1は、実施の形態1と同様の効果を奏する。本実施の形態4によれば、可動要素32の回転角度を制御することで、実施の形態1と同様の効果が得られるので、新たな部品を追加する必要がなく、コストを低減できる。 In the fourth embodiment, when the switching valve 6 is switched to the heat storage water path, a part of the opening at both ends of the through channel 34 of the movable element 32 is blocked by the seal member 33, so that the water channel Is squeezed and high pressure loss occurs. Therefore, the pressure loss of the heat storage water path can be made higher than the pressure loss of the heating water path. The hot water supply and heating system 1 of the fourth embodiment has the same effects as those of the first embodiment. According to the fourth embodiment, the same effect as in the first embodiment can be obtained by controlling the rotation angle of the movable element 32, so that it is not necessary to add a new part, and the cost can be reduced.
 図示を省略するが、制御部10が切替弁6を暖房水経路に切り替えたときには、可動要素32の貫通流路34の両端の開口がシール部材33で塞がれないように、可動要素32の回転位置が制御される。すなわち、切替弁6が暖房水経路に切り替えられたとき、貫通流路34の一端の開口の全体が、第二ポート6bに設けられたシール部材33の中央の孔に重なり、貫通流路34の他端の開口の全体が、第三ポート6cに設けられたシール部材33の中央の孔に重なる。切替弁6が暖房水経路に切り替えられたときには、高い圧力損失は発生しない。 Although illustration is omitted, when the control unit 10 switches the switching valve 6 to the heating water path, the opening of both ends of the through channel 34 of the movable element 32 is not blocked by the seal member 33. The rotational position is controlled. That is, when the switching valve 6 is switched to the heating water path, the entire opening at one end of the through passage 34 overlaps the central hole of the seal member 33 provided in the second port 6b, and the through passage 34 The entire opening at the other end overlaps the central hole of the seal member 33 provided in the third port 6c. When the switching valve 6 is switched to the heating water path, no high pressure loss occurs.
 以上、本発明の実施の形態について説明したが、本発明では、上述した複数の実施の形態を任意に組み合わせて実施しても良い。 As mentioned above, although embodiment of this invention was described, in this invention, you may implement combining several embodiment mentioned above arbitrarily.
1 給湯暖房システム、2 貯湯タンク、3 第二共通管、4 上部管、5 第一内部管、6 切替弁、6a 第一ポート、6b 第二ポート、6c 第三ポート、7 第二内部管、8 下部管、9 第一共通管、10 制御部、11 水ポンプ、12,12A,12B,12C,12D,12E 暖房端末、13 圧縮機、14 冷媒配管、15 冷媒熱交換器、16 減圧装置、17 低温側熱交換器、18 給水管、19 給湯管、21 リモートコントローラ、22 第一外部管、23 第二外部管、24,24a,24b,24c,24d,24e,24f,24g,24h,24i 暖房器具、25 第一水出口、26 第一水入口、27 第二水出口、28 第二水入口、30 狭窄部、31 Oリング、32 可動要素、33 シール部材、34 貫通流路、100 水ヒーター、200 タンクユニット 1 hot water supply / heating system, 2 hot water storage tank, 3rd common pipe, 4 upper pipe, 5 first internal pipe, 6 switching valve, 6a first port, 6b second port, 6c third port, 7 second internal pipe, 8 lower pipe, 9 first common pipe, 10 control unit, 11 water pump, 12, 12A, 12B, 12C, 12D, 12E heating terminal, 13 compressor, 14 refrigerant piping, 15 refrigerant heat exchanger, 16 decompression device, 17 Low temperature side heat exchanger, 18 water supply pipe, 19 hot water supply pipe, 21 remote controller, 22 first external pipe, 23 second external pipe, 24, 24a, 24b, 24c, 24d, 24e, 24f, 24g, 24h, 24i Heating appliance, 25 1st water outlet, 26 1st water inlet, 27 2nd water outlet, 28 2nd water inlet, 30 constricted part, 31 O-ring, 32 movable elements, 3 Sealing member, 34 through channel, 100 water heater, 200 tank unit

Claims (5)

  1.  貯湯タンクと、
     前記貯湯タンクの内部の水が出る第一水出口と、
     前記貯湯タンクの内部へ水が入る第一水入口と、
     水を加熱する水ヒーターと、
     水ポンプと、
     前記第一水出口と、前記水ポンプと、前記水ヒーターと、前記第一水入口とをこの順に接続する蓄熱水経路と、
     外部の暖房器具へ供給される水が出る第二水出口と、
     前記暖房器具から戻った水が入る第二水入口と、
     前記第二水入口と、前記水ポンプと、前記水ヒーターと、前記第二水出口とをこの順に接続する暖房水経路と、
     前記蓄熱水経路と前記暖房水経路とを切り替える切替弁と、
     を備え、
     前記蓄熱水経路と前記暖房水経路とが重複する重複部分を有し、
     前記蓄熱水経路の圧力損失が前記暖房水経路の圧力損失より高い給湯暖房システム。
    A hot water storage tank,
    A first water outlet through which water inside the hot water storage tank comes out;
    A first water inlet through which water enters the hot water storage tank;
    A water heater to heat the water,
    A water pump,
    A heat storage water path connecting the first water outlet, the water pump, the water heater, and the first water inlet in this order;
    A second water outlet through which the water supplied to the external heating appliance comes out;
    A second water inlet into which water returned from the heating appliance enters;
    A heating water path connecting the second water inlet, the water pump, the water heater, and the second water outlet in this order;
    A switching valve for switching between the heat storage water path and the heating water path;
    With
    The heat storage water path and the heating water path have overlapping portions,
    The hot water supply and heating system in which the pressure loss of the heat storage water path is higher than the pressure loss of the heating water path.
  2.  前記重複部分以外の前記蓄熱水経路を形成する管に狭窄部を備え、前記狭窄部の流路断面積は、前記重複部分を形成する管の流路断面積より小さい請求項1に記載の給湯暖房システム。 2. The hot water supply according to claim 1, wherein a tube forming the heat storage water path other than the overlapping portion is provided with a narrowed portion, and a flow passage cross-sectional area of the narrowed portion is smaller than a flow passage cross-sectional area of the pipe forming the overlapping portion. Heating system.
  3.  前記第一水出口は、前記貯湯タンクの下部にあり、
     前記第一水入口は、前記貯湯タンクの上部にあり、
     前記重複部分以外の前記蓄熱水経路は、前記第一水出口に接続される下部管と、前記第一水入口に接続される上部管とを含み、
     前記狭窄部は、前記下部管になく、前記上部管にある請求項2に記載の給湯暖房システム。
    The first water outlet is at the bottom of the hot water storage tank,
    The first water inlet is at the top of the hot water storage tank;
    The heat storage water path other than the overlapping portion includes a lower pipe connected to the first water outlet and an upper pipe connected to the first water inlet,
    The hot water supply and heating system according to claim 2, wherein the narrowed portion is not in the lower pipe but in the upper pipe.
  4.  前記切替弁は、
     前記蓄熱水経路に繋がる第一ポートと、
     前記暖房水経路に繋がる第二ポートと、
     前記第一ポートの圧力損失を前記第二ポートの圧力損失に比べて高くする狭窄部と、
     を備える請求項1に記載の給湯暖房システム。
    The switching valve is
    A first port connected to the heat storage water path;
    A second port connected to the heating water path;
    A constriction that increases the pressure loss of the first port compared to the pressure loss of the second port;
    A hot water supply / heating system according to claim 1.
  5.  前記切替弁は、
     貫通流路を有し、前記貫通流路が表面に開口する可動要素と、
     複数のポートを有し、前記可動要素を収納する収納要素と、
     を備え、
     前記切替弁が前記蓄熱水経路に切り替えられたとき、前記可動要素の前記貫通流路の開口の一部分が前記収納要素で塞がれる請求項1に記載の給湯暖房システム。
    The switching valve is
    A movable element having a through channel, the through channel being open to the surface;
    A storage element having a plurality of ports and storing the movable element;
    With
    The hot water supply and heating system according to claim 1, wherein when the switching valve is switched to the heat storage water path, a part of the opening of the through passage of the movable element is blocked by the storage element.
PCT/JP2014/075703 2014-09-26 2014-09-26 Hot-water supply and heating system WO2016046978A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14902428.3A EP3199884B1 (en) 2014-09-26 2014-09-26 Hot-water supply and heating system
PCT/JP2014/075703 WO2016046978A1 (en) 2014-09-26 2014-09-26 Hot-water supply and heating system
JP2016549878A JP6252685B2 (en) 2014-09-26 2014-09-26 Hot water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/075703 WO2016046978A1 (en) 2014-09-26 2014-09-26 Hot-water supply and heating system

Publications (1)

Publication Number Publication Date
WO2016046978A1 true WO2016046978A1 (en) 2016-03-31

Family

ID=55580537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075703 WO2016046978A1 (en) 2014-09-26 2014-09-26 Hot-water supply and heating system

Country Status (3)

Country Link
EP (1) EP3199884B1 (en)
JP (1) JP6252685B2 (en)
WO (1) WO2016046978A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142473A1 (en) * 2017-01-31 2018-08-09 三菱電機株式会社 Heat medium circulation system
CN108488881A (en) * 2018-03-30 2018-09-04 河南三张节能环保工程有限公司 A kind of heat source storage control system of based on water double heat sources
JPWO2019198196A1 (en) * 2018-04-12 2020-10-22 三菱電機株式会社 Heating system
TWI710738B (en) * 2019-06-19 2020-11-21 建造金屬工業股份有限公司 Interval heating device for electric water heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108895514B (en) * 2018-04-28 2021-01-08 大连海心信息工程有限公司 Full-network distributed heat storage and supply system and method
CN110332595A (en) * 2019-06-05 2019-10-15 北京航天控制仪器研究所 A kind of automatic control hold over system of combination distributed optical fiber temperature measurement host

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153329A (en) * 1997-11-25 1999-06-08 Mitsubishi Electric Corp Electric water heater
JP2006010187A (en) * 2004-06-24 2006-01-12 Corona Corp Hot water storage type hot water supply heating device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4138712B2 (en) * 2004-08-04 2008-08-27 株式会社コロナ Hot water storage hot water system
JP4223468B2 (en) * 2004-12-01 2009-02-12 株式会社コロナ Hot water storage hot water heater
JP2008014585A (en) * 2006-07-06 2008-01-24 Denso Corp Brine heat radiation type heating apparatus
DE102007044023A1 (en) * 2007-09-14 2009-04-02 Robert Bosch Gmbh buffer memory
JP4750834B2 (en) * 2008-09-08 2011-08-17 株式会社デンソー Hot water storage hot water heater
DE102009037710A1 (en) * 2009-07-28 2011-02-03 Max Weishaupt Gmbh Loading device for layering a tempered medium in a stratified storage
JP5253582B2 (en) * 2009-09-29 2013-07-31 三菱電機株式会社 Thermal storage hot water supply air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153329A (en) * 1997-11-25 1999-06-08 Mitsubishi Electric Corp Electric water heater
JP2006010187A (en) * 2004-06-24 2006-01-12 Corona Corp Hot water storage type hot water supply heating device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199884A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142473A1 (en) * 2017-01-31 2018-08-09 三菱電機株式会社 Heat medium circulation system
JPWO2018142473A1 (en) * 2017-01-31 2019-06-27 三菱電機株式会社 Heat medium circulation system
CN108488881A (en) * 2018-03-30 2018-09-04 河南三张节能环保工程有限公司 A kind of heat source storage control system of based on water double heat sources
JPWO2019198196A1 (en) * 2018-04-12 2020-10-22 三菱電機株式会社 Heating system
TWI710738B (en) * 2019-06-19 2020-11-21 建造金屬工業股份有限公司 Interval heating device for electric water heater

Also Published As

Publication number Publication date
EP3199884A4 (en) 2018-06-20
JP6252685B2 (en) 2017-12-27
JPWO2016046978A1 (en) 2017-04-27
EP3199884B1 (en) 2022-07-27
EP3199884A1 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6252685B2 (en) Hot water heating system
US10077925B2 (en) Refrigeration apparatus
JP5996119B2 (en) Air conditioning system and controller
CN107429948B (en) heat pump system
JP4485406B2 (en) Hot water storage water heater
KR20070053057A (en) Device for preventing initial hot water supplying in concentric tube type heat exchanger and its control method
US20080156281A1 (en) Heating Control System
US20150052914A1 (en) System and Method for Using an Electronic Expansion Valve to Control a Discharge Pressure in a Multi-Purpose HVAC System
KR101425989B1 (en) Performance Test System for Heat Pump
JP6012530B2 (en) Hot water storage water heater
EP3540324B1 (en) Heating medium circulation system
JP6645593B2 (en) Heat medium circulation system
JP6217867B2 (en) Fluid circulation system
KR101548468B1 (en) cooling and heating system
JP2014142112A (en) Hot water storage type water heater
CN101660851A (en) Heat pump system and method of controlling the same
WO2017163305A1 (en) Heat medium circulation system
JP6421880B2 (en) Heat medium circulation system
JP6030039B2 (en) Air conditioner
JP5594277B2 (en) Hot water floor heater and method for determining pipe connection of hot water floor heater
JP6183562B2 (en) Fluid circulation system
JP6119672B2 (en) Hot water storage water heater
WO2017158685A1 (en) Heating medium circulation system
JP2019152373A (en) Hot water storage type water heater
KR20040098306A (en) Multiple heating possible boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016549878

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014902428

Country of ref document: EP