WO2017158685A1 - Heating medium circulation system - Google Patents

Heating medium circulation system Download PDF

Info

Publication number
WO2017158685A1
WO2017158685A1 PCT/JP2016/057982 JP2016057982W WO2017158685A1 WO 2017158685 A1 WO2017158685 A1 WO 2017158685A1 JP 2016057982 W JP2016057982 W JP 2016057982W WO 2017158685 A1 WO2017158685 A1 WO 2017158685A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
heat medium
heating
heat
temperature
Prior art date
Application number
PCT/JP2016/057982
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 田沼
智史 栗田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/057982 priority Critical patent/WO2017158685A1/en
Publication of WO2017158685A1 publication Critical patent/WO2017158685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps

Definitions

  • the present invention relates to a heat medium circulation system.
  • Patent Document 1 discloses a first technique for controlling the output of a circulating pump of a hot water circulation circuit to be increased by a predetermined value for a predetermined time at the beginning of operation in a hot water heating apparatus.
  • the first technique is aimed at warming up quickly in the early stages of heating.
  • Patent Document 1 further discloses a second technique for controlling the circulating pump output to be lower than the normal value by a predetermined value when the operation switch is set to “ON”.
  • the second technology aims to keep the noise caused by the operation of the pump low and to save energy.
  • the hot water heater of Patent Document 1 includes a gas combustion unit that heats heating water that is a heat medium.
  • the heating capacity of the gas combustion section is high, the heat medium can be heated to a sufficiently high temperature even when the heat medium is low in the initial stage of operation.
  • the heating capacity of the heat pump is lower than the heating capacity of the gas combustion section. For this reason, in the heating system which heats a heat medium with a heat pump, there exists a subject that time until the temperature of a heat medium rises at the beginning of an operation
  • Patent Document 1 When the first technique of Patent Document 1 is applied to a heating system that does not have a high heating capacity, for example, a heating system that heats a heat medium with a heat pump, there are the following problems. If the output of the circulation pump is increased when the heat medium is low in the initial stage of operation, the flow rate of the heat medium increases and the temperature of the heat medium flowing out of the heat pump decreases. As a result, there is a possibility that the time from when the heating operation is started until the heating effect is obtained may be longer.
  • Patent Document 1 when the second technique of Patent Document 1 is applied to a heating system that heats a heat medium with a heating means that does not have a high heating capacity, there are the following problems.
  • the circulating pump output is lower than the normal value, the flow rate of the heat medium becomes slower.
  • the distance from the heat pump to the heating appliance is long, it may take a long time for the heat medium heated by the heat pump to reach the heating appliance. As a result, there is a possibility that the time from when the heating operation is started until the heating effect is obtained may be longer.
  • the present invention has been made to solve the above-described problems, and provides a heat medium circulation system that can prevent the time from when the heating operation is started until the heating effect is obtained from becoming long. Objective.
  • the heat medium circulation system of the present invention is an operation that circulates the heat medium in a circuit including a heating means for heating the heat medium, a means for setting a target flow rate of the heat medium according to a user operation, and the heating means and the heating appliance.
  • the actual flow rate of the heat medium is limited to a flow rate lower than the target flow rate, and the target flow rate is not higher than the reference, the actual flow rate of the heat medium in the initial heating operation is made equal to the target flow rate. It is something to control.
  • the heat medium circulation system of the present invention it is possible to prevent an increase in time from the start of heating operation until the heating effect is obtained.
  • FIG. 1 is a diagram illustrating a heat medium circulation system according to a first embodiment.
  • FIG. 3 is a diagram illustrating a heat medium circulation circuit during heating operation of the heat medium circulation system according to the first embodiment.
  • 3 is an external view of a remote controller provided in the heat medium circulation system according to Embodiment 1.
  • FIG. It is a figure which shows the example of the relationship between a flow volume level, the target flow volume of a heat carrier, and an initial flow volume. It is a figure which shows the example which calculated the time until a heating effect is acquired after starting a heating operation.
  • 3 is a flowchart showing a control routine in the first embodiment.
  • FIG. 1 is a diagram illustrating a heat medium circulation system according to the first embodiment.
  • the heat medium circulation system 1 of Embodiment 1 shown in FIG. 1 is a heat pump hot water supply / heating system.
  • the heat medium circulation system 1 includes a heat pump device 100, a tank unit 200, and a control device 10.
  • the heat pump device 100 and the tank unit 200 are connected via an outlet conduit 3, an inlet conduit 9, and electrical wiring (not shown).
  • the heat pump apparatus 100 may be installed outdoors.
  • the tank unit 200 may be installed outdoors or indoors.
  • the heat medium circulation system 1 of Embodiment 1 has a configuration in which the heat pump device 100 and the tank unit 200 are separated. Not only such a configuration, the heat pump device 100 and the tank unit 200 may be integrated.
  • the heat pump device 100 is an example of a heating unit that heats a liquid heat medium.
  • the heat pump device 100 includes a compressor 13 that compresses a refrigerant, a heat exchanger 15, a decompression device 16 that decompresses the refrigerant, an evaporator 17 that evaporates the refrigerant, and a refrigerant pipe 14 that cyclically connects these devices. Including a refrigerant circuit.
  • the heat pump device 100 operates a heat pump cycle, that is, a refrigeration cycle with this refrigerant circuit.
  • the heat exchanger 15 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 13 and the heat medium.
  • the evaporator 17 exchanges heat between the refrigerant and the fluid.
  • the fluid may be, for example, outside air, groundwater, drainage, or solar hot water.
  • the heat pump apparatus 100 may include a blower, a pump, and the like (not shown) that send the fluid to the evaporator 17.
  • the heat medium in the present embodiment is water.
  • the heat medium in the present invention may be a brine other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or an alcohol.
  • the tank unit 200 includes a heat storage tank 2, a switching valve 6, and a circulation pump 11. Water is stored in the heat storage tank 2.
  • a temperature stratification in which the upper side is a high temperature and the lower side is a low temperature can be formed due to a difference in water density due to a difference in temperature.
  • a water supply pipe 18 is connected to the lower part of the heat storage tank 2. Water supplied from a water source such as water is supplied into the heat storage tank 2 through the water supply pipe 18.
  • a hot water supply pipe 19 is connected to the upper part of the heat storage tank 2. When hot water is supplied to a hot water tap, a bathtub, a shower, etc., the hot water in the heat storage tank 2 is sent out to the hot water supply pipe 19 by the water source water pressure acting on the water supply pipe 18.
  • the heat storage tank 2 has an outlet 25 and an inlet 26. Water inside the heat storage tank 2 comes out from the outlet 25. Hot water heated by the heat pump device 100 enters the heat storage tank 2 from the inlet 26.
  • the outlet 25 is in the lower part of the heat storage tank 2.
  • the inlet 26 is at the top of the heat storage tank 2.
  • the switching valve 6 has a first port 6a, a second port 6b, and a third port 6c.
  • the switching valve 6 has a state in which the third port 6c is communicated with the first port 6a and the second port 6b is blocked, and a state in which the third port 6c is communicated with the second port 6b and the first port 6a is blocked. Can be switched.
  • the lower pipe 8 connects between the outlet 25 of the heat storage tank 2 and the upstream end of the inlet conduit 9.
  • the downstream end of the inlet conduit 9 is connected to the water inlet of the heat exchanger 15 of the heat pump apparatus 100.
  • a circulation pump 11 is connected in the middle of the inlet conduit 9.
  • the output or rotation speed of the circulation pump 11 is variable.
  • the circulation pump 11 may include a pulse width modulation control type DC motor that can change an output or a rotation speed by a speed command voltage from the control device 10.
  • the circulation pump 11 is installed in the tank unit 200. Instead of this configuration, the circulation pump 11 may be installed in the heat pump device 100.
  • the outlet conduit 3 connects between the water outlet of the heat exchanger 15 of the heat pump device 100 and the third port 6 c of the switching valve 6.
  • the upper pipe 4 connects between the first port 6 a of the switching valve 6 and the inlet 26 of the heat storage tank 2.
  • the circulation pump 11 is connected in the middle of the inlet conduit 9.
  • the circulation pump 11 may be connected in the middle of the outlet conduit 3.
  • the heating facility 12 is provided outside the heat pump device 100 and the tank unit 200.
  • the heating facility 12 includes one or more heating appliances 24.
  • a heat medium heated by the heat pump device 100 that is, hot water
  • the heating appliance 24 for example, at least one of a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector can be used.
  • the heating facility 12 includes a plurality of heating appliances 24, the types thereof may be the same or different.
  • the connection method of the plurality of heating appliances 24 may be any of a series, a parallel, a combination of series and parallel.
  • the tank unit 200 and the heating facility 12 are connected via a first external pipe 22 and a second external pipe 23.
  • the tank unit 200 has an outlet 27 and an inlet 28.
  • the heat medium supplied from the tank unit 200 to the heating facility 12 goes out of the tank unit 200 through the outlet 27.
  • the first internal pipe 5 connects between the second port 6 b of the switching valve 6 and the outlet 27 inside the tank unit 200.
  • the upstream end of the first outer pipe 22 is connected to the outlet 27 from the outside of the tank unit 200.
  • the downstream end of the first outer pipe 22 is connected to the entrance of the heating facility 12.
  • the upstream end of the second external pipe 23 is connected to the outlet of the heating facility 12.
  • the downstream end of the second outer pipe 23 is connected to the inlet 28 from the outside of the tank unit 200.
  • the second inner pipe 7 connects between the inlet 28 and the upstream end of the inlet conduit 9 inside the tank unit 200.
  • the heat medium returning from the heating facility 12 to the tank unit 200 enters the tank unit 200 through the in
  • the control device 10 is installed in the tank unit 200.
  • the control device 10 and the remote controller 21 are connected so as to be able to perform data communication in both directions wirelessly or by wire.
  • the remote controller 21 is an example of a user interface device provided in the heat medium circulation system 1.
  • the remote controller 21 may be installed in a room provided with the heating appliance 24.
  • the remote controller 21 may be installed in other locations.
  • the user can input commands relating to the operation of the heat medium circulation system 1 and changes in set values from the remote controller 21.
  • Actuators and sensors included in the heat medium circulation system 1 are electrically connected to the control device 10.
  • the control device 10 controls the operation of the heat medium circulation system 1 based on information detected by sensors and information received from the remote controller 21.
  • a plurality of temperature sensors may be attached to the surface of the heat storage tank 2 at intervals in the vertical direction.
  • the control device 10 can calculate the hot water storage amount and the heat storage amount in the heat storage tank 2 by detecting the temperature distribution in the vertical direction in the heat storage tank 2 by these temperature sensors.
  • a flow sensor 30 and a supply temperature sensor 31 are installed in the middle of the outlet conduit 3.
  • the flow sensor 30 detects the flow rate of the heat medium, that is, water passing through the outlet conduit 3.
  • the temperature of the heat medium after being heated by the heat pump apparatus 100 is referred to as “supply temperature”.
  • the supply temperature sensor 31 can detect the supply temperature.
  • the flow rate sensor 30 and the supply temperature sensor 31 are installed in the tank unit 200. Instead of this configuration, the flow sensor 30 and the supply temperature sensor 31 may be installed in the heat pump device 100.
  • a return temperature sensor 32 is provided in the inlet conduit 9.
  • the return temperature sensor 32 detects the temperature of water flowing into the heat pump apparatus 100.
  • the temperature of the water flowing into the heat pump apparatus 100 is also referred to as “return temperature”.
  • the return temperature sensor 32 is installed in the tank unit 200. Instead of this configuration, the return temperature sensor 32 may be installed in the heat pump apparatus 100.
  • the heating capacity [W] of the heat pump device 100 may be variable.
  • the heating capacity is the amount of heat given to the heat medium by the heat pump device 100 per unit time.
  • the control device 10 may control the heating capacity of the heat pump device 100 by changing the capacity of the compressor 13 of the heat pump device 100.
  • the control device 10 may control the capacity of the compressor 13 by changing the rotation speed of the compressor 13.
  • the control apparatus 10 may change the rotational speed of the compressor 13 by inverter control, for example.
  • the switching valve 6 is in a state where the third port 6c communicates with the first port 6a and the second port 6b is shut off.
  • the heat pump device 100 and the circulation pump 11 are operated.
  • Low-temperature water at the bottom of the heat storage tank 2 passes through the outlet 25, the lower pipe 8, and the inlet conduit 9 and is sent to the heat exchanger 15 of the heat pump device 100.
  • Hot water heated by the heat exchanger 15 flows into the upper part of the heat storage tank 2 through the outlet conduit 3, the third port 6 c of the switching valve 6, the first port 6 a, the upper pipe 4, and the inlet 26. .
  • the water circulates as described above, whereby high-temperature water accumulates in the heat storage tank 2 from top to bottom. Thereby, the heat storage amount of the heat storage tank 2 increases.
  • the heat medium that is, the water circulation circuit in the heat storage operation described above is referred to as a “heat storage circuit”.
  • the control device 10 may start the heat storage operation when the amount of stored hot water or the amount of heat stored in the heat storage tank 2 is equal to or lower than a preset low level. When the amount of stored hot water and the amount of heat stored in the heat storage tank 2 are increased by the heat storage operation and reach a preset high level, the control device 10 may end the heat storage operation.
  • the control device 10 may control the supply temperature detected by the supply temperature sensor 31 to be equal to the target value as follows.
  • the control device 10 can control the supply temperature by increasing / decreasing the output or rotation speed of the circulation pump 11, that is, increasing / decreasing the circulation flow rate of water.
  • the control device 10 can reduce the supply temperature to the target value by increasing the circulating flow rate of water.
  • the control device 10 can raise the supply temperature to the target value by reducing the circulating flow rate of water.
  • the control device 10 may control the supply temperature by adjusting the operation of the refrigerant circuit of the heat pump device 100.
  • the target value of the supply temperature during the heat storage operation may be, for example, a value in the range of about 60 ° C to 80 ° C.
  • FIG. 2 is a diagram illustrating a heat medium circulation circuit during the heating operation of the heat medium circulation system 1 according to the first embodiment.
  • the arrows in FIG. 2 indicate the direction in which the heat medium flows.
  • the switching valve 6 is in a state where the third port 6c communicates with the second port 6b and the first port 6a is shut off.
  • the heat pump device 100 and the circulation pump 11 are operated.
  • the heat medium heated by the heat exchanger 15 of the heat pump device 100 is the outlet conduit 3, the third port 6c, the second port 6b, the first inner pipe 5, the outlet 27, and the first outer pipe 22 of the switching valve 6. And is sent to the heating facility 12.
  • the heat medium passes through the heating appliance 24 of the heating facility 12, the temperature of the heat medium is lowered due to heat being taken away by indoor air or a floor.
  • the heat medium whose temperature has decreased passes through the second outer pipe 23, the inlet 28, the second inner pipe 7, and the inlet conduit 9, and returns to the heat exchanger 15 of the heat pump apparatus 100.
  • the heat medium returned to the heat exchanger 15 is reheated and recirculated.
  • the heat medium circulation circuit during the heating operation described above is referred to as a “heating circuit”.
  • the heat storage circuit and the heating circuit can be switched by the switching valve 6.
  • An indoor remote controller (not shown) provided with a room temperature sensor may be installed in the room provided with the heating appliance 24.
  • the indoor remote controller and the control device 10 are connected so as to be able to perform data communication in both directions by wire or wirelessly.
  • the indoor remote controller can transmit the room temperature information detected by the room temperature sensor to the control device 10.
  • the remote controller 21 When the remote controller 21 is installed in a room where the heating appliance 24 is provided, the remote controller 21 may include a room temperature sensor, and the remote controller 21 may transmit room temperature information to the control device 10. Based on the information received from the indoor remote controller or the remote controller 21, the control device 10 may end the heating operation when the room temperature reaches the target temperature.
  • FIG. 3 is a diagram illustrating an external appearance of the remote controller 21 provided in the heat medium circulation system 1 of the first embodiment.
  • the remote controller 21 includes a display 21a and an operation unit 21b.
  • the operation unit 21b may include a plurality of buttons or keys for a user to operate.
  • the display 21a may display one of a screen representing information related to the state of the heat medium circulation system 1, a screen representing information related to setting contents of the heat medium circulation system 1, and a screen for receiving a user operation.
  • the display 21a may be a touch screen having the function of the operation unit.
  • the remote controller 21 may further include a speaker and a microphone (not shown).
  • the remote controller 21 may output voice guidance from a speaker.
  • a configuration is also possible in which a user can talk to another user near another remote controller (not shown) using the speaker and microphone of the remote controller 21.
  • the screen of the display 21a in FIG. 3 shows an example of the screen when the user makes settings related to the flow rate of the heat medium.
  • the screen of the display 21a in FIG. 3 shows an example of the screen when the user makes settings related to the heating capacity.
  • the user can set the flow rate of the heat medium during the heating operation in six stages from the flow level 1 to the flow level 6.
  • the heating capacity increases as the flow rate of the heat medium increases.
  • the user selects one of the flow level 1 to the flow level 6 according to the required heating capacity.
  • the bar graph on the screen of the display 21a in FIG. 3 represents the flow level.
  • the example of FIG. 3 represents a state where the flow level 5 is set.
  • the user can select and change the flow level by operating the software key 21c displayed on the display 21a or the operation unit 21b.
  • the remote controller 21 transmits information on the flow level selected by the user to the control device 10.
  • the control device 10 sets the target flow rate of the heat medium during the heating operation according to the flow rate level selected by the user. Depending on the flow rate level selected by the user, the remote controller 21 may set the target flow rate and transmit information on the target flow rate to the control device 10.
  • FIG. 4 is a diagram showing an example of the relationship between the flow level, the target flow rate of the heat medium, and the initial flow rate.
  • the present embodiment is as follows.
  • the target flow rate is set as 3 L / min.
  • the target flow rate is set as 4 L / min.
  • the target flow rate is set as 5 L / min.
  • the target flow rate is set as 6 L / min.
  • the target flow rate is set as 7 L / min.
  • the target flow rate is set as 8 L / min.
  • the initial flow rate will be described later.
  • the target flow rate can be changed stepwise, that is, six steps.
  • the present invention is not limited to such an example.
  • the target flow rate may be continuously changeable.
  • the target flow rate value of the heat medium during the heating operation is set according to the flow level selected by the user.
  • the present invention is not limited to such an example.
  • the following may be used.
  • the user may input the numerical value of the flow rate directly into the remote controller 21.
  • the control device 10 may set the value of the target flow rate of the heat medium during the heating operation.
  • the control device 10 may set the value of the target flow rate of the heat medium during the heating operation.
  • the target flow rate value may be set to increase as the difference between the target room temperature set by the user and the current room temperature increases.
  • the heating appliance 24 When the heating operation is started by the user operating the remote controller 21 or the indoor remote controller, the user expects that the heating effect is quickly obtained, that is, the heating appliance 24 is quickly warmed. For example, if a heating medium of 40 ° C. or higher flows into the heating appliance 24, it is considered that a heating effect is obtained. If the time from the start of the heating operation until the heat medium having a temperature of 40 ° C. or higher flows into the heating appliance 24 can be shortened, it is considered that the user's expectation can be met.
  • FIG. 5 is a diagram illustrating an example in which the time from when the heating operation is started until the heating effect is obtained is calculated.
  • the “heat pump” in FIG. 5 means the heat pump device 100.
  • “Radiator” in FIG. 5 means the heater 24. In the example shown in FIG. 5, it is assumed as follows.
  • the heating capacity of the heat pump device 100 is 4 kW.
  • the total volume of the heat medium in the heating circuit is 8L. At the start of the heating operation, both the temperature of the heat medium and the room temperature are set to 7 ° C.
  • the upper part in FIG. 5 shows an example calculated with the flow rate of the heat medium as 4 L / min.
  • it is as follows. It takes 2 minutes for the heat medium to go around the heating circuit. The difference between the temperature of the heat medium after being heated by the heat pump apparatus 100, that is, the supply temperature, and the temperature of the heat medium before being heated by the heat pump apparatus 100, that is, the return temperature, is given by heating capacity ⁇ 860 / flow rate ⁇ 60. Therefore, it is about 14.3 degrees.
  • the initial temperature of the heat medium is 7 ° C.
  • the heat medium at 7 ° C. is heated to 21.3 ° C. by the heat pump device 100. This 21.3 ° C. heat medium flows into the heater 24.
  • the temperature drop of the heat medium while passing through the heater 24 is given by 0.2 ⁇ (supply temperature ⁇ room temperature). If 21.3 ° C. is substituted for the supply temperature and 7 ° C. is substituted for the room temperature, the temperature drop of the heat medium becomes 2.86 degrees.
  • the temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 18.44 ° C. obtained by subtracting 2.86 degrees from 21.3 ° C.
  • the 18.44 ° C. heat medium returns to the heat pump apparatus 100. Up to this point, the heat medium has gone around the heating circuit, so two minutes have passed.
  • the 18.44 ° C. heat medium is heated to 32.74 ° C. by the heat pump device 100. This 32.74 ° C.
  • the temperature drop of the heat medium while passing through the heating appliance 24 is 5.15 degrees.
  • the temperature of the heat medium that has passed through the heater 24, that is, the return temperature is 27.59 ° C. obtained by subtracting 5.15 degrees from 32.74 ° C.
  • This 27.59 ° C. heat medium returns to the heat pump apparatus 100. Up to this point, since the heat medium has made a further round of the heating circuit, two more minutes have passed.
  • This 27.59 ° C. heat medium is heated to 41.89 ° C. by the heat pump device 100. It takes one minute for the 41.89 ° C. heat medium to reach the heating appliance 24 from the heat pump device 100. As described above, in this example, it takes 5 minutes from the start of the heating operation until the heat medium of 40 ° C. or higher flows into the heating appliance 24.
  • the lower part of FIG. 5 shows an example in which the flow rate of the heat medium is calculated as 5 L / min.
  • it is as follows. It takes 1.6 minutes, that is 1 minute 36 seconds, for the heat medium to go around the heating circuit. The difference between the temperature of the heat medium after being heated by the heat pump apparatus 100, that is, the supply temperature, and the temperature of the heat medium before being heated by the heat pump apparatus 100, that is, the return temperature, is approximately 11.46 degrees. A heat medium having an initial temperature of 7 ° C. is heated to 18.46 ° C. by the heat pump device 100. This 18.46 ° C. heat medium flows into the heater 24. The temperature drop of the heat medium while passing through the heater 24 is 2.29 degrees.
  • the temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 16.17 ° C. obtained by subtracting 2.29 degrees from 18.46 ° C.
  • the 16.17 ° C. heat medium returns to the heat pump apparatus 100. Since the heat medium goes around the heating circuit so far, 1.6 minutes have passed.
  • the heat medium at 16.17 ° C. is heated to 27.63 ° C. by the heat pump device 100. This 27.63 ° C. heat medium flows into the heater 24.
  • the temperature drop of the heat medium while passing through the heating appliance 24 is 4.13 degrees.
  • the temperature of the heat medium that has passed through the heater 24, that is, the return temperature is 23.5 ° C. obtained by subtracting 4.13 degrees from 27.63 ° C. The 23.5 ° C.
  • the heat medium returns to the heat pump apparatus 100. Since the heat medium has made a further round of the heating circuit so far, another 1.6 minutes have passed.
  • the 23.5 ° C. heat medium is heated to 34.96 ° C. by the heat pump apparatus 100.
  • the 34.96 ° C. heat medium flows into the heater 24.
  • the temperature drop of the heat medium while passing through the heating appliance 24 is 5.59 degrees.
  • the temperature of the heat medium that has passed through the heater 24, that is, the return temperature is 29.37 ° C. obtained by subtracting 5.59 degrees from 34.96 ° C.
  • the 29.37 ° C. heat medium returns to the heat pump apparatus 100. Since the heat medium has made a further round of the heating circuit so far, another 1.6 minutes have passed. This 29.37 ° C.
  • heat medium is heated to 40.83 ° C. by the heat pump device 100. It takes 0.8 minutes, that is, 48 seconds for the 40.83 ° C. heat medium to reach the heating appliance 24 from the heat pump apparatus 100. As described above, in this example, it takes 5.6 minutes, that is, 5 minutes and 36 seconds, from the start of the heating operation until the heat medium of 40 ° C. or more flows into the heating appliance 24.
  • the time required from the start of the heating operation until the heat medium of 40 ° C. or higher flows into the heating appliance 24 is 5 minutes when the heat medium flow rate is 4 L / min. In the case of 5 L / min, the time is 5 minutes and 36 seconds. Therefore, if the flow rate of the heat medium is too high, it is considered that the time from when the heating operation is started until the heating effect is obtained becomes longer.
  • the control device 10 performs the following control in order to prevent an increase in the time from when the heating operation is started until the heating effect is obtained.
  • the target flow rate set according to the user operation is higher than the reference
  • the actual flow rate of the heat medium at the initial stage of the heating operation is limited to a flow rate lower than the target flow rate.
  • the control device 10 controls the actual flow rate of the heat medium at the initial stage of the heating operation to be equal to the target flow rate.
  • the following effects can be obtained. Assuming that the actual flow rate of the heat medium at the initial stage of heating operation is controlled to be equal to the target flow rate when the target flow rate is higher than the reference, the heating effect is obtained after the heating operation is started. Time can be long. On the other hand, when the target flow rate is higher than the standard, the heating effect is obtained after the heating operation is started by limiting the actual flow rate of the heat medium at the initial stage of the heating operation to a flow rate lower than the target flow rate. It is possible to prevent the time until it is increased.
  • the actual flow rate of the heat medium at the initial stage of heating operation is limited to a flow rate lower than the target flow rate until the target flow rate is not higher than the reference, the heating effect is started after the heating operation is started.
  • the time until it is obtained becomes longer. The reason is that it takes a long time for the heat medium to reach the heating appliance 24 from the heat pump device 100 because the flow velocity of the heat medium becomes too slow.
  • the actual flow rate of the heat medium at the initial stage of the heating operation is controlled to be equal to the target flow rate. For this reason, since the flow rate of the heat medium does not become too slow, it is possible to prevent the time from when the heating operation is started until the heating effect is obtained from becoming long.
  • the control device 10 controls the actual flow rate of the heat medium in the initial heating operation to be equal to the initial flow rate that is lower than the target flow rate.
  • the flow rate level 3, the flow rate level 4, the flow rate level 5, and the flow rate level 6 correspond to the case where the target flow rate is higher than the reference.
  • a target flow rate exceeding 4 L / min corresponds to a higher target flow rate than the reference.
  • the initial flow rate is 4 L / min in any of the flow level 3, the flow level 4, the flow level 5, and the flow level 6.
  • the flow rate level 1 and the flow rate level 2 correspond to the case where the target flow rate is not higher than the reference. That is, a target flow rate of 4 L / min or less corresponds to a target flow rate that is not higher than the reference.
  • the initial flow rate is 3 L / min.
  • the initial flow rate is 4 L / min. That is, at the flow level 1 and the flow level 2, the initial flow is equal to the target flow.
  • FIG. 6 is a flowchart showing a control routine in the first embodiment.
  • the control device 10 starts the heating operation. The process proceeds from step S1 to step S2.
  • the control device 10 determines whether or not the target flow rate set according to the user operation is higher than the reference. When the target flow rate is not higher than the reference, that is, when the target flow rate is 4 L / min or less, the processing of this routine is terminated. In this case, the control device 10 controls the actual flow rate of the heat medium, that is, the flow rate detected by the flow rate sensor 30 to be equal to the target flow rate.
  • control device 10 may control the output or rotational speed of the circulation pump 11 so that the flow rate detected by the flow rate sensor 30 becomes equal to the target flow rate.
  • control apparatus 10 may control the opening degree of the flow control valve (illustration omitted) connected in the middle of the heating circuit so that the flow volume detected with the flow sensor 30 may become equal to the target flow volume.
  • step S3 the control device 10 performs control so that the actual flow rate of the heat medium, that is, the flow rate detected by the flow rate sensor 30, is equal to the initial flow rate, that is, 4 L / min.
  • the control device 10 may control the output or rotation speed of the circulation pump 11 so that the flow rate detected by the flow rate sensor 30 is equal to the initial flow rate, that is, 4 L / min.
  • the control device 10 controls the opening of a flow rate control valve (not shown) connected in the middle of the heating circuit so that the flow rate detected by the flow rate sensor 30 is equal to the initial flow rate, that is, 4 L / min. Also good.
  • step S3 the control device 10 further waits for the first time to elapse from the start of the heating operation. After the first time has elapsed from the start of the heating operation, the process proceeds from step S3 to step S4.
  • the first time is a preset time. For example, the first time may be 5 minutes.
  • step S4 the control device 10 compares the supply temperature detected by the supply temperature sensor 31 with the reference temperature.
  • the reference temperature is a preset temperature.
  • the reference temperature may be 40 ° C.
  • the reference temperature may be a temperature of a heat medium that can provide a heating effect in the heating appliance 24.
  • step S6 the control device 10 releases the restriction on the flow rate of the heat medium, that is, the restriction that the flow rate is lower than the target flow rate.
  • the control device 10 starts control so that the actual flow rate of the heat medium becomes equal to the target flow rate. That is, in step S6, the control device 10 may control the output or rotational speed of the circulation pump 11 so that the flow rate detected by the flow rate sensor 30 becomes equal to the target flow rate. Or the control apparatus 10 may control the opening degree of the flow control valve (illustration omitted) connected in the middle of the heating circuit so that the flow volume detected with the flow sensor 30 may become equal to the target flow volume.
  • step S3 that is, the restriction on the flow rate of the heat medium is continued for at least the first time after the heating operation is started.
  • an increase in supply temperature can be promoted.
  • the first time for example, 5 minutes elapses after the start of the heating operation
  • the user can feel that the heating appliance 24 has been warmed.
  • the user can easily notice that the heating operation has started without any abnormality.
  • control is started so that the actual flow rate of the heat medium becomes equal to the target flow rate. Therefore, the heat medium flow rate desired by the user can be achieved at an early stage.
  • step S5 the control device 10 waits for the second time to elapse from that point.
  • the second time is shorter than the first time.
  • the second time is a preset time. For example, the second time may be 3 minutes.
  • step S4 the control device 10 compares the supply temperature with the reference temperature again. If the supply temperature has reached the reference temperature, the process proceeds from step S4 to step S6. If the supply temperature has not reached the reference temperature, the process proceeds from step S4 to step S5.
  • the second time shorter than the first time further elapses.
  • the actual flow rate of the heat medium is limited to a flow rate lower than the target flow rate.
  • the following effects are acquired.
  • an increase in the supply temperature can be promoted. That is, it can be prevented that the time from the start of the heating operation until the heating effect is obtained becomes long.
  • the second time is shorter than the first time. For this reason, the transition time to the control for achieving the heat medium flow rate desired by the user is not too late.
  • the reference temperature value is 40 ° C.
  • the value of the reference temperature is not limited to this.
  • the user may be able to change the value of the reference temperature.
  • the reference temperature value may be changed by the user operating the remote controller 21.
  • the reference temperature can be set to a more appropriate value according to the preference or use environment of each user.
  • the controller 10 may change at least one of the initial flow rate, the reference temperature, the first time, and the second time according to the value of the total volume of the heat medium in the heating circuit.
  • the value of the total volume of the heat medium in the heating circuit may be stored in the control device 10 at the initial setting after the heat medium circulation system 1 is installed. You may enable it to input the value of the total volume of the heat medium in a heating circuit by operating the remote controller 21.
  • FIG. The longer the flow path length of the first outer pipe 22, the second outer pipe 23, and the heating appliance 24, the greater the total volume of the heat medium in the heating circuit.
  • the value of the flow path length may be input to the control device 10 via the remote controller 21.
  • the control apparatus 10 may calculate the total volume of the heat medium in the heating circuit using the value of the flow path length.
  • Each function of the control device 10 provided in the heat medium circulation system 1 of the first embodiment may be realized by a processing circuit.
  • the processing circuit of the control device 10 includes at least one processor 10a and at least one memory 10b.
  • each function of the control device 10 may be realized by software, firmware, or a combination of software and firmware.
  • At least one of software and firmware may be described as a program.
  • At least one of software and firmware may be stored in at least one memory 10b.
  • the at least one processor 10a may realize each function of the control device 10 by reading and executing a program stored in the at least one memory 10b.
  • the at least one memory 10b may include a nonvolatile or volatile semiconductor memory, a magnetic disk, or the like.
  • the processing circuit of the control device 10 may include at least one dedicated hardware.
  • the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field- Programmable Gate Array) or a combination thereof.
  • the function of each unit of the control device 10 may be realized by a processing circuit. Further, the functions of the respective units of the control device 10 may be collectively realized by a processing circuit. Some of the functions of the control device 10 may be realized by dedicated hardware, and the other part may be realized by software or firmware.
  • the processing circuit may realize each function of the control device 10 by hardware, software, firmware, or a combination thereof.
  • the configuration is not limited to the configuration in which the operation of the heat medium circulation system 1 is controlled by a single control device, and the operation of the heat medium circulation system 1 may be controlled by cooperation of a plurality of control devices. .
  • 1 heat medium circulation system 2 heat storage tank, 3 outlet conduit, 4 upper pipe, 5 first internal pipe, 6 switching valve, 6a first port, 6b second port, 6c third port, 7 second internal pipe, 8 Lower pipe, 9 inlet conduit, 10 control device, 10a processor, 10b memory, 11 circulation pump, 12 heating equipment, 13 compressor, 14 refrigerant piping, 15 heat exchanger, 16 decompression device, 17 evaporator, 18 water supply pipe, 19 hot water supply pipe, 21 remote controller, 21a display, 21b operation unit, 21c software key, 22 first external pipe, 23 second external pipe, 24 heater, 25 outlet, 26 inlet, 27 outlet, 28 inlet, 30 flow sensor , 31 Temperature sensor, 32 return temperature sensor, 100 a heat pump device, 200 tank unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

A heating medium circulation system comprises a heating means for heating a heating medium, a means for setting a target flow rate for the heating medium in accordance with user operation, and a flow rate controlling means for controlling the flow rate of the heating medium in accordance with the target flow rate during heating operation, which is an operation to circulate the heating medium in a circuit that includes the heating means and a heating device. The flow rate controlling means restricts the actual flow rate of the heating medium at the start of heating operation to a flow rate lower than the target flow rate when the target flow rate is high compared to a reference (step S3). The actual flow rate of the heating medium at the start of heating operation is controlled to be equal to the target flow rate when the target flow rate is not high compared to the reference.

Description

熱媒体循環システムHeat medium circulation system
 本発明は、熱媒体循環システムに関する。 The present invention relates to a heat medium circulation system.
 下記特許文献1には、温水暖房装置において、運転開始初期に、所定時間、温水循環回路の循環ポンプの出力を所定値だけ高くなるように制御する第一の技術が開示されている。第一の技術は、暖房の初期にすばやく暖めることを目的としている。特許文献1には、さらに、操作スイッチを「入」にしたとき、循環ポンプ出力を通常値より所定値だけ低く制御する第二の技術が開示されている。第二の技術は、ポンプの運転による騒音を低く抑えることと省エネを目的としている。 Patent Document 1 below discloses a first technique for controlling the output of a circulating pump of a hot water circulation circuit to be increased by a predetermined value for a predetermined time at the beginning of operation in a hot water heating apparatus. The first technique is aimed at warming up quickly in the early stages of heating. Patent Document 1 further discloses a second technique for controlling the circulating pump output to be lower than the normal value by a predetermined value when the operation switch is set to “ON”. The second technology aims to keep the noise caused by the operation of the pump low and to save energy.
日本特開2000-121076号公報Japanese Unexamined Patent Publication No. 2000-121076
 特許文献1の温水暖房装置は、熱媒体である暖房用水を加熱するガス燃焼部を備える。一般に、ガス燃焼部の加熱能力は高いので、運転開始初期の、熱媒体が低温のときにも、熱媒体を十分高い温度まで加熱できる。これに対し、ヒートポンプの加熱能力は、ガス燃焼部の加熱能力に比べて低い。このため、熱媒体をヒートポンプで加熱する暖房システムにおいては、運転開始初期に熱媒体の温度が上昇するまでの時間が長くなりやすいという課題がある。すなわち、暖房運転を開始してから暖房効果を得られるまでの時間が長くなりやすいという課題がある。 The hot water heater of Patent Document 1 includes a gas combustion unit that heats heating water that is a heat medium. In general, since the heating capacity of the gas combustion section is high, the heat medium can be heated to a sufficiently high temperature even when the heat medium is low in the initial stage of operation. On the other hand, the heating capacity of the heat pump is lower than the heating capacity of the gas combustion section. For this reason, in the heating system which heats a heat medium with a heat pump, there exists a subject that time until the temperature of a heat medium rises at the beginning of an operation | movement starts tends to become long. That is, there is a problem that it takes a long time until the heating effect is obtained after the heating operation is started.
 加熱能力の高くない加熱手段、例えばヒートポンプで熱媒体を加熱する暖房システムに特許文献1の第一の技術を適用した場合、以下のような問題がある。運転開始初期の、熱媒体が低温のときに、循環ポンプの出力を高くすると、熱媒体の流量が高くなり、ヒートポンプから流出する熱媒体の温度が低くなる。その結果、暖房運転を開始してから暖房効果を得られるまでの時間が長くなる可能性がある。 When the first technique of Patent Document 1 is applied to a heating system that does not have a high heating capacity, for example, a heating system that heats a heat medium with a heat pump, there are the following problems. If the output of the circulation pump is increased when the heat medium is low in the initial stage of operation, the flow rate of the heat medium increases and the temperature of the heat medium flowing out of the heat pump decreases. As a result, there is a possibility that the time from when the heating operation is started until the heating effect is obtained may be longer.
 また、加熱能力の高くない加熱手段で熱媒体を加熱する暖房システムに特許文献1の第二の技術を適用した場合、以下のような問題がある。循環ポンプ出力を通常値より低くすると、熱媒体の流速が遅くなる。ヒートポンプから暖房器具までの距離が長い場合には、ヒートポンプで加熱された熱媒体が暖房器具に到達するまでに長い時間がかかる可能性がある。その結果、暖房運転を開始してから暖房効果を得られるまでの時間が長くなる可能性がある。 Further, when the second technique of Patent Document 1 is applied to a heating system that heats a heat medium with a heating means that does not have a high heating capacity, there are the following problems. When the circulating pump output is lower than the normal value, the flow rate of the heat medium becomes slower. When the distance from the heat pump to the heating appliance is long, it may take a long time for the heat medium heated by the heat pump to reach the heating appliance. As a result, there is a possibility that the time from when the heating operation is started until the heating effect is obtained may be longer.
 本発明は、上述のような課題を解決するためになされたもので、暖房運転を開始してから暖房効果を得られるまでの時間が長くなることを防止できる熱媒体循環システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and provides a heat medium circulation system that can prevent the time from when the heating operation is started until the heating effect is obtained from becoming long. Objective.
 本発明の熱媒体循環システムは、熱媒体を加熱する加熱手段と、ユーザー操作に応じて熱媒体の目標流量を設定する手段と、加熱手段及び暖房器具を含む回路に熱媒体を循環させる運転である暖房運転のときに、目標流量に応じて、熱媒体の流量を制御する流量制御手段と、を備え、流量制御手段は、目標流量が基準に比べて高い場合には、暖房運転の初期の熱媒体の実際の流量を、目標流量より低い流量に制限し、目標流量が基準に比べて高くない場合には、暖房運転の初期の熱媒体の実際の流量を、目標流量に等しくなるように制御するものである。 The heat medium circulation system of the present invention is an operation that circulates the heat medium in a circuit including a heating means for heating the heat medium, a means for setting a target flow rate of the heat medium according to a user operation, and the heating means and the heating appliance. A flow control means for controlling the flow rate of the heat medium according to the target flow rate during a certain heating operation, and the flow rate control means, when the target flow rate is higher than the reference, When the actual flow rate of the heat medium is limited to a flow rate lower than the target flow rate, and the target flow rate is not higher than the reference, the actual flow rate of the heat medium in the initial heating operation is made equal to the target flow rate. It is something to control.
 本発明の熱媒体循環システムによれば、暖房運転を開始してから暖房効果を得られるまでの時間が長くなることを防止することが可能となる。 According to the heat medium circulation system of the present invention, it is possible to prevent an increase in time from the start of heating operation until the heating effect is obtained.
実施の形態1の熱媒体循環システムを示す図である。1 is a diagram illustrating a heat medium circulation system according to a first embodiment. 実施の形態1の熱媒体循環システムの暖房運転のときの熱媒体の循環回路を示す図である。FIG. 3 is a diagram illustrating a heat medium circulation circuit during heating operation of the heat medium circulation system according to the first embodiment. 実施の形態1の熱媒体循環システムが備えるリモートコントローラの外観を示す図である。3 is an external view of a remote controller provided in the heat medium circulation system according to Embodiment 1. FIG. 流量レベルと熱媒体の目標流量及び初期流量との関係の例を示す図である。It is a figure which shows the example of the relationship between a flow volume level, the target flow volume of a heat carrier, and an initial flow volume. 暖房運転を開始してから暖房効果が得られるまでの時間を計算した例を示す図である。It is a figure which shows the example which calculated the time until a heating effect is acquired after starting a heating operation. 実施の形態1における制御ルーチンを示すフローチャートである。3 is a flowchart showing a control routine in the first embodiment.
 以下、図面を参照して実施の形態について説明する。各図において共通する要素には、同一の符号を付して、重複する説明を簡略化または省略する。 Hereinafter, embodiments will be described with reference to the drawings. Elements common to the drawings are denoted by the same reference numerals, and redundant description is simplified or omitted.
実施の形態1.
 図1は、実施の形態1の熱媒体循環システムを示す図である。図1に示す実施の形態1の熱媒体循環システム1は、ヒートポンプ式給湯暖房システムである。熱媒体循環システム1は、ヒートポンプ装置100と、タンクユニット200と、制御装置10とを備える。ヒートポンプ装置100とタンクユニット200との間は、出口導管3、入口導管9、及び電気配線(図示省略)を介して接続される。ヒートポンプ装置100は、屋外に設置されてもよい。タンクユニット200は、屋外に設置されてもよいし、屋内に設置されてもよい。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a heat medium circulation system according to the first embodiment. The heat medium circulation system 1 of Embodiment 1 shown in FIG. 1 is a heat pump hot water supply / heating system. The heat medium circulation system 1 includes a heat pump device 100, a tank unit 200, and a control device 10. The heat pump device 100 and the tank unit 200 are connected via an outlet conduit 3, an inlet conduit 9, and electrical wiring (not shown). The heat pump apparatus 100 may be installed outdoors. The tank unit 200 may be installed outdoors or indoors.
 実施の形態1の熱媒体循環システム1は、ヒートポンプ装置100とタンクユニット200とが分かれた構成である。このような構成に限らず、ヒートポンプ装置100とタンクユニット200とが一体化していてもよい。 The heat medium circulation system 1 of Embodiment 1 has a configuration in which the heat pump device 100 and the tank unit 200 are separated. Not only such a configuration, the heat pump device 100 and the tank unit 200 may be integrated.
 実施の形態1のヒートポンプ装置100は、液状の熱媒体を加熱する加熱手段の例である。ヒートポンプ装置100は、冷媒を圧縮する圧縮機13と、熱交換器15と、冷媒を減圧させる減圧装置16と、冷媒を蒸発させる蒸発器17と、これらの機器を環状に接続する冷媒配管14とを含む冷媒回路を備える。ヒートポンプ装置100は、この冷媒回路でヒートポンプサイクルすなわち冷凍サイクルの運転を行う。熱交換器15は、圧縮機13で圧縮された高温高圧の冷媒と、熱媒体との間で、熱を交換させる。蒸発器17は、冷媒と流体との間で熱を交換させる。当該流体は、例えば、外気、地下水、排水、太陽熱温水のいずれかでもよい。ヒートポンプ装置100は、当該流体を蒸発器17へ送る図示しない送風機、ポンプ等を備えてもよい。 The heat pump device 100 according to Embodiment 1 is an example of a heating unit that heats a liquid heat medium. The heat pump device 100 includes a compressor 13 that compresses a refrigerant, a heat exchanger 15, a decompression device 16 that decompresses the refrigerant, an evaporator 17 that evaporates the refrigerant, and a refrigerant pipe 14 that cyclically connects these devices. Including a refrigerant circuit. The heat pump device 100 operates a heat pump cycle, that is, a refrigeration cycle with this refrigerant circuit. The heat exchanger 15 exchanges heat between the high-temperature and high-pressure refrigerant compressed by the compressor 13 and the heat medium. The evaporator 17 exchanges heat between the refrigerant and the fluid. The fluid may be, for example, outside air, groundwater, drainage, or solar hot water. The heat pump apparatus 100 may include a blower, a pump, and the like (not shown) that send the fluid to the evaporator 17.
 本実施の形態における熱媒体は、水である。本発明における熱媒体は、例えば塩化カルシウム水溶液、エチレングリコール水溶液、アルコール、などの、水以外のブラインでもよい。 The heat medium in the present embodiment is water. The heat medium in the present invention may be a brine other than water, such as a calcium chloride aqueous solution, an ethylene glycol aqueous solution, or an alcohol.
 タンクユニット200は、蓄熱槽2、切替弁6、及び循環ポンプ11を備える。蓄熱槽2内には、水が貯留される。蓄熱槽2内では、温度の違いによる水の密度の差により、上側が高温で下側が低温になる温度成層を形成できる。蓄熱槽2の下部には、給水管18が接続される。水道等の水源から供給される水が給水管18を通って蓄熱槽2内に供給される。蓄熱槽2の上部には、給湯管19が接続される。給湯栓、浴槽、シャワーなどへ給湯する際には、給水管18に作用する水源水圧により、蓄熱槽2内の湯が給湯管19へ送り出される。 The tank unit 200 includes a heat storage tank 2, a switching valve 6, and a circulation pump 11. Water is stored in the heat storage tank 2. In the heat storage tank 2, a temperature stratification in which the upper side is a high temperature and the lower side is a low temperature can be formed due to a difference in water density due to a difference in temperature. A water supply pipe 18 is connected to the lower part of the heat storage tank 2. Water supplied from a water source such as water is supplied into the heat storage tank 2 through the water supply pipe 18. A hot water supply pipe 19 is connected to the upper part of the heat storage tank 2. When hot water is supplied to a hot water tap, a bathtub, a shower, etc., the hot water in the heat storage tank 2 is sent out to the hot water supply pipe 19 by the water source water pressure acting on the water supply pipe 18.
 蓄熱槽2は、出口25及び入口26を有する。蓄熱槽2の内部の水が出口25から出る。ヒートポンプ装置100で加熱された湯が入口26から蓄熱槽2の内部へ入る。出口25は、蓄熱槽2の下部にある。入口26は、蓄熱槽2の上部にある。切替弁6は、第一ポート6a、第二ポート6b、及び第三ポート6cを有する。切替弁6は、第三ポート6cを第一ポート6aに連通させて第二ポート6bを遮断する状態と、第三ポート6cを第二ポート6bに連通させて第一ポート6aを遮断する状態とを切り替え可能である。 The heat storage tank 2 has an outlet 25 and an inlet 26. Water inside the heat storage tank 2 comes out from the outlet 25. Hot water heated by the heat pump device 100 enters the heat storage tank 2 from the inlet 26. The outlet 25 is in the lower part of the heat storage tank 2. The inlet 26 is at the top of the heat storage tank 2. The switching valve 6 has a first port 6a, a second port 6b, and a third port 6c. The switching valve 6 has a state in which the third port 6c is communicated with the first port 6a and the second port 6b is blocked, and a state in which the third port 6c is communicated with the second port 6b and the first port 6a is blocked. Can be switched.
 下部管8は、蓄熱槽2の出口25と、入口導管9の上流端との間を接続する。入口導管9の下流端は、ヒートポンプ装置100の熱交換器15の水入口に接続される。入口導管9の途中に、循環ポンプ11が接続されている。循環ポンプ11は、その出力あるいは回転速度が可変である。循環ポンプ11は、制御装置10からの速度指令電圧により出力あるいは回転速度を変えられるパルス幅変調制御型の直流モータを備えたものでもよい。実施の形態1では、循環ポンプ11をタンクユニット200に設置している。この構成に代えて、循環ポンプ11は、ヒートポンプ装置100に設置されてもよい。出口導管3は、ヒートポンプ装置100の熱交換器15の水出口と、切替弁6の第三ポート6cとの間を接続する。上部管4は、切替弁6の第一ポート6aと、蓄熱槽2の入口26との間を接続する。実施の形態1では、循環ポンプ11を入口導管9の途中に接続している。この構成に代えて、循環ポンプ11は、出口導管3の途中に接続されてもよい。 The lower pipe 8 connects between the outlet 25 of the heat storage tank 2 and the upstream end of the inlet conduit 9. The downstream end of the inlet conduit 9 is connected to the water inlet of the heat exchanger 15 of the heat pump apparatus 100. A circulation pump 11 is connected in the middle of the inlet conduit 9. The output or rotation speed of the circulation pump 11 is variable. The circulation pump 11 may include a pulse width modulation control type DC motor that can change an output or a rotation speed by a speed command voltage from the control device 10. In the first embodiment, the circulation pump 11 is installed in the tank unit 200. Instead of this configuration, the circulation pump 11 may be installed in the heat pump device 100. The outlet conduit 3 connects between the water outlet of the heat exchanger 15 of the heat pump device 100 and the third port 6 c of the switching valve 6. The upper pipe 4 connects between the first port 6 a of the switching valve 6 and the inlet 26 of the heat storage tank 2. In the first embodiment, the circulation pump 11 is connected in the middle of the inlet conduit 9. Instead of this configuration, the circulation pump 11 may be connected in the middle of the outlet conduit 3.
 暖房設備12は、ヒートポンプ装置100及びタンクユニット200の外部に備えられる。暖房設備12は、1または複数の暖房器具24を備える。ヒートポンプ装置100で加熱された熱媒体すなわち温水を暖房器具24に流すことで、室内の空気の温度を上昇させる。暖房器具24としては、例えば、床下に設置される床暖房パネル、室内壁面に設置されるラジエータまたはパネルヒーター、及び、ファンコンベクターのうち、少なくとも一種を用いることができる。暖房設備12が複数の暖房器具24を備える場合、それらの種類は同じでもよいし異なっていてもよい。暖房設備12が複数の暖房器具24を有する場合、複数の暖房器具24の接続方法は、直列、並列、直列及び並列の組み合わせ、のいずれでもよい。 The heating facility 12 is provided outside the heat pump device 100 and the tank unit 200. The heating facility 12 includes one or more heating appliances 24. By flowing a heat medium heated by the heat pump device 100, that is, hot water, to the heating appliance 24, the temperature of indoor air is raised. As the heating appliance 24, for example, at least one of a floor heating panel installed under the floor, a radiator or panel heater installed on an indoor wall surface, and a fan convector can be used. When the heating facility 12 includes a plurality of heating appliances 24, the types thereof may be the same or different. When the heating facility 12 includes a plurality of heating appliances 24, the connection method of the plurality of heating appliances 24 may be any of a series, a parallel, a combination of series and parallel.
 タンクユニット200と暖房設備12との間は、第一外部管22及び第二外部管23を介して接続される。タンクユニット200は、出口27及び入口28を有する。タンクユニット200から暖房設備12へ供給される熱媒体は、出口27からタンクユニット200外へ出る。第一内部管5は、タンクユニット200の内部で、切替弁6の第二ポート6bと、出口27との間を接続する。第一外部管22の上流端は、タンクユニット200の外側から出口27に接続される。第一外部管22の下流端は、暖房設備12の入口に接続される。第二外部管23の上流端は、暖房設備12の出口に接続される。第二外部管23の下流端は、タンクユニット200の外側から入口28に接続される。第二内部管7は、タンクユニット200の内部で、入口28と、入口導管9の上流端との間を接続する。暖房設備12からタンクユニット200へ戻る熱媒体は、入口28からタンクユニット200内へ入る。 The tank unit 200 and the heating facility 12 are connected via a first external pipe 22 and a second external pipe 23. The tank unit 200 has an outlet 27 and an inlet 28. The heat medium supplied from the tank unit 200 to the heating facility 12 goes out of the tank unit 200 through the outlet 27. The first internal pipe 5 connects between the second port 6 b of the switching valve 6 and the outlet 27 inside the tank unit 200. The upstream end of the first outer pipe 22 is connected to the outlet 27 from the outside of the tank unit 200. The downstream end of the first outer pipe 22 is connected to the entrance of the heating facility 12. The upstream end of the second external pipe 23 is connected to the outlet of the heating facility 12. The downstream end of the second outer pipe 23 is connected to the inlet 28 from the outside of the tank unit 200. The second inner pipe 7 connects between the inlet 28 and the upstream end of the inlet conduit 9 inside the tank unit 200. The heat medium returning from the heating facility 12 to the tank unit 200 enters the tank unit 200 through the inlet 28.
 制御装置10は、タンクユニット200内に設置されている。制御装置10とリモートコントローラ21との間は、無線または有線により、双方向にデータ通信可能に接続されている。リモートコントローラ21は、熱媒体循環システム1が備えるユーザーインターフェース装置の例である。リモートコントローラ21は、暖房器具24が備えられた室内に設置されてもよい。リモートコントローラ21は、それ以外の場所に設置されてもよい。ユーザーは、リモートコントローラ21から、熱媒体循環システム1の運転に関する指令及び設定値の変更などを入力できる。熱媒体循環システム1が備えるアクチュエータ類及びセンサ類は、制御装置10に電気的に接続される。制御装置10は、センサ類により検知される情報及びリモートコントローラ21から受信する情報に基づいて、熱媒体循環システム1の動作を制御する。 The control device 10 is installed in the tank unit 200. The control device 10 and the remote controller 21 are connected so as to be able to perform data communication in both directions wirelessly or by wire. The remote controller 21 is an example of a user interface device provided in the heat medium circulation system 1. The remote controller 21 may be installed in a room provided with the heating appliance 24. The remote controller 21 may be installed in other locations. The user can input commands relating to the operation of the heat medium circulation system 1 and changes in set values from the remote controller 21. Actuators and sensors included in the heat medium circulation system 1 are electrically connected to the control device 10. The control device 10 controls the operation of the heat medium circulation system 1 based on information detected by sensors and information received from the remote controller 21.
 蓄熱槽2の表面には、複数の温度センサ(図示省略)が、鉛直方向に間隔をあけて、取り付けられていてもよい。制御装置10は、これらの温度センサにより、蓄熱槽2内の鉛直方向の温度分布を検知することで、蓄熱槽2内の貯湯量及び蓄熱量を算出できる。 A plurality of temperature sensors (not shown) may be attached to the surface of the heat storage tank 2 at intervals in the vertical direction. The control device 10 can calculate the hot water storage amount and the heat storage amount in the heat storage tank 2 by detecting the temperature distribution in the vertical direction in the heat storage tank 2 by these temperature sensors.
 出口導管3の途中に、流量センサ30及び供給温度センサ31が設置されている。流量センサ30は、出口導管3を通る熱媒体すなわち水の流量を検知する。以下の説明では、ヒートポンプ装置100で加熱された後の熱媒体の温度を「供給温度」と称する。供給温度センサ31は、供給温度を検知できる。実施の形態1では、流量センサ30及び供給温度センサ31をタンクユニット200に設置している。この構成に代えて、流量センサ30及び供給温度センサ31をヒートポンプ装置100に設置してもよい。 A flow sensor 30 and a supply temperature sensor 31 are installed in the middle of the outlet conduit 3. The flow sensor 30 detects the flow rate of the heat medium, that is, water passing through the outlet conduit 3. In the following description, the temperature of the heat medium after being heated by the heat pump apparatus 100 is referred to as “supply temperature”. The supply temperature sensor 31 can detect the supply temperature. In the first embodiment, the flow rate sensor 30 and the supply temperature sensor 31 are installed in the tank unit 200. Instead of this configuration, the flow sensor 30 and the supply temperature sensor 31 may be installed in the heat pump device 100.
 入口導管9には、戻り温度センサ32が設けられている。戻り温度センサ32は、ヒートポンプ装置100に流入する水の温度を検知する。ヒートポンプ装置100に流入する水の温度を以下「戻り温度」とも呼ぶ。実施の形態1では、戻り温度センサ32をタンクユニット200に設置している。この構成に代えて、戻り温度センサ32をヒートポンプ装置100に設置してもよい。 A return temperature sensor 32 is provided in the inlet conduit 9. The return temperature sensor 32 detects the temperature of water flowing into the heat pump apparatus 100. Hereinafter, the temperature of the water flowing into the heat pump apparatus 100 is also referred to as “return temperature”. In the first embodiment, the return temperature sensor 32 is installed in the tank unit 200. Instead of this configuration, the return temperature sensor 32 may be installed in the heat pump apparatus 100.
 ヒートポンプ装置100の加熱能力[W]は、可変でもよい。加熱能力とは、単位時間当たりにヒートポンプ装置100が熱媒体に与える熱量である。制御装置10は、例えば、ヒートポンプ装置100の圧縮機13の容量を変えることで、ヒートポンプ装置100の加熱能力を制御してもよい。制御装置10は、例えば、圧縮機13の回転速度を変えることで、圧縮機13の容量を制御してもよい。制御装置10は、例えば、インバータ制御により、圧縮機13の回転速度を変えてもよい。 The heating capacity [W] of the heat pump device 100 may be variable. The heating capacity is the amount of heat given to the heat medium by the heat pump device 100 per unit time. For example, the control device 10 may control the heating capacity of the heat pump device 100 by changing the capacity of the compressor 13 of the heat pump device 100. For example, the control device 10 may control the capacity of the compressor 13 by changing the rotation speed of the compressor 13. The control apparatus 10 may change the rotational speed of the compressor 13 by inverter control, for example.
 次に、熱媒体循環システム1の蓄熱運転について説明する。蓄熱運転では、以下のようになる。切替弁6は、第三ポート6cを第一ポート6aに連通させ、かつ、第二ポート6bを遮断する状態になる。ヒートポンプ装置100及び循環ポンプ11が運転される。蓄熱槽2の下部の低温の水が、出口25、下部管8、及び入口導管9を通り、ヒートポンプ装置100の熱交換器15に送られる。熱交換器15で加熱された高温の水が、出口導管3、切替弁6の第三ポート6c、第一ポート6a、上部管4、及び、入口26を通り、蓄熱槽2の上部に流入する。蓄熱運転では、上記のように水が循環することで、蓄熱槽2の内部に上から下に向かって高温水が蓄積していく。これにより、蓄熱槽2の蓄熱量が増加する。上述した蓄熱運転のときの熱媒体すなわち水の循環回路を「蓄熱回路」と称する。 Next, the heat storage operation of the heat medium circulation system 1 will be described. In the heat storage operation, it is as follows. The switching valve 6 is in a state where the third port 6c communicates with the first port 6a and the second port 6b is shut off. The heat pump device 100 and the circulation pump 11 are operated. Low-temperature water at the bottom of the heat storage tank 2 passes through the outlet 25, the lower pipe 8, and the inlet conduit 9 and is sent to the heat exchanger 15 of the heat pump device 100. Hot water heated by the heat exchanger 15 flows into the upper part of the heat storage tank 2 through the outlet conduit 3, the third port 6 c of the switching valve 6, the first port 6 a, the upper pipe 4, and the inlet 26. . In the heat storage operation, the water circulates as described above, whereby high-temperature water accumulates in the heat storage tank 2 from top to bottom. Thereby, the heat storage amount of the heat storage tank 2 increases. The heat medium, that is, the water circulation circuit in the heat storage operation described above is referred to as a “heat storage circuit”.
 制御装置10は、蓄熱槽2内の貯湯量または蓄熱量が、予め設定された低レベル以下になった場合に、蓄熱運転を開始してもよい。蓄熱運転により、蓄熱槽2内の貯湯量及び蓄熱量が増加して、予め設定された高レベルに達した場合に、制御装置10は、蓄熱運転を終了してもよい。 The control device 10 may start the heat storage operation when the amount of stored hot water or the amount of heat stored in the heat storage tank 2 is equal to or lower than a preset low level. When the amount of stored hot water and the amount of heat stored in the heat storage tank 2 are increased by the heat storage operation and reach a preset high level, the control device 10 may end the heat storage operation.
 蓄熱運転のとき、制御装置10は、以下のようにして、供給温度センサ31で検知される供給温度が、目標値に等しくなるように制御してもよい。制御装置10は、循環ポンプ11の出力または回転速度を増減すること、すなわち水の循環流量を増減することで、供給温度を制御できる。供給温度が目標値より高い場合には、制御装置10は、水の循環流量を増加させることで、供給温度を目標値まで低下させることができる。供給温度が目標値より低い場合には、制御装置10は、水の循環流量を低下させることで、供給温度を目標値まで上昇させることができる。制御装置10は、ヒートポンプ装置100の冷媒回路の動作を調整することで、供給温度を制御してもよい。蓄熱運転のときの供給温度の目標値は、例えば、60℃から80℃程度の範囲の値でもよい。 During the heat storage operation, the control device 10 may control the supply temperature detected by the supply temperature sensor 31 to be equal to the target value as follows. The control device 10 can control the supply temperature by increasing / decreasing the output or rotation speed of the circulation pump 11, that is, increasing / decreasing the circulation flow rate of water. When the supply temperature is higher than the target value, the control device 10 can reduce the supply temperature to the target value by increasing the circulating flow rate of water. When the supply temperature is lower than the target value, the control device 10 can raise the supply temperature to the target value by reducing the circulating flow rate of water. The control device 10 may control the supply temperature by adjusting the operation of the refrigerant circuit of the heat pump device 100. The target value of the supply temperature during the heat storage operation may be, for example, a value in the range of about 60 ° C to 80 ° C.
 次に、図2を参照して、熱媒体循環システム1の暖房運転について説明する。図2は、実施の形態1の熱媒体循環システム1の暖房運転のときの熱媒体の循環回路を示す図である。図2中の矢印は、熱媒体が流れる方向を示す。暖房運転では、以下のようになる。切替弁6は、第三ポート6cを第二ポート6bに連通させ、かつ、第一ポート6aを遮断する状態になる。ヒートポンプ装置100及び循環ポンプ11が運転される。ヒートポンプ装置100の熱交換器15で加熱された熱媒体が、出口導管3、切替弁6の第三ポート6c、第二ポート6b、第一内部管5、出口27、及び、第一外部管22を通り、暖房設備12へ送られる。この熱媒体は、暖房設備12の暖房器具24を通過する間に、室内空気または床などに熱を奪われることで、温度低下する。この温度低下した熱媒体は、第二外部管23、入口28、第二内部管7、及び、入口導管9を通り、ヒートポンプ装置100の熱交換器15に戻る。熱交換器15に戻った熱媒体は、再加熱され、再循環する。上述した暖房運転のときの熱媒体の循環回路を「暖房回路」と称する。実施の形態1では、切替弁6により、蓄熱回路と暖房回路とを切り替え可能である。 Next, the heating operation of the heat medium circulation system 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a heat medium circulation circuit during the heating operation of the heat medium circulation system 1 according to the first embodiment. The arrows in FIG. 2 indicate the direction in which the heat medium flows. In heating operation, it is as follows. The switching valve 6 is in a state where the third port 6c communicates with the second port 6b and the first port 6a is shut off. The heat pump device 100 and the circulation pump 11 are operated. The heat medium heated by the heat exchanger 15 of the heat pump device 100 is the outlet conduit 3, the third port 6c, the second port 6b, the first inner pipe 5, the outlet 27, and the first outer pipe 22 of the switching valve 6. And is sent to the heating facility 12. While the heat medium passes through the heating appliance 24 of the heating facility 12, the temperature of the heat medium is lowered due to heat being taken away by indoor air or a floor. The heat medium whose temperature has decreased passes through the second outer pipe 23, the inlet 28, the second inner pipe 7, and the inlet conduit 9, and returns to the heat exchanger 15 of the heat pump apparatus 100. The heat medium returned to the heat exchanger 15 is reheated and recirculated. The heat medium circulation circuit during the heating operation described above is referred to as a “heating circuit”. In Embodiment 1, the heat storage circuit and the heating circuit can be switched by the switching valve 6.
 暖房器具24が備えられた室内には、室温センサを備えた室内リモートコントローラ(図示省略)が設置されてもよい。室内リモートコントローラと、制御装置10とは、有線または無線により、双方向にデータ通信可能に接続される。室内リモートコントローラは、室温センサで検知された室温の情報を制御装置10へ送信できる。暖房器具24が備えられた室内にリモートコントローラ21が設置される場合には、リモートコントローラ21が室温センサを備え、リモートコントローラ21が室温情報を制御装置10へ送信してもよい。制御装置10は、室内リモートコントローラまたはリモートコントローラ21から受信した情報に基づき、室温が目標温度に達したときに、暖房運転を終了してもよい。 An indoor remote controller (not shown) provided with a room temperature sensor may be installed in the room provided with the heating appliance 24. The indoor remote controller and the control device 10 are connected so as to be able to perform data communication in both directions by wire or wirelessly. The indoor remote controller can transmit the room temperature information detected by the room temperature sensor to the control device 10. When the remote controller 21 is installed in a room where the heating appliance 24 is provided, the remote controller 21 may include a room temperature sensor, and the remote controller 21 may transmit room temperature information to the control device 10. Based on the information received from the indoor remote controller or the remote controller 21, the control device 10 may end the heating operation when the room temperature reaches the target temperature.
 図3は、実施の形態1の熱媒体循環システム1が備えるリモートコントローラ21の外観を示す図である。図3に示すように、リモートコントローラ21は、ディスプレイ21a及び操作部21bを備える。操作部21bは、ユーザーが操作するための複数のボタンまたはキーを含んでもよい。ディスプレイ21aは、熱媒体循環システム1の状態に関する情報を表す画面、熱媒体循環システム1の設定内容に関する情報を表す画面、ユーザー操作を受け付けるための画面、のいずれかを表示してもよい。ディスプレイ21aは、操作部の機能を兼ね備えるタッチスクリーンでもよい。 FIG. 3 is a diagram illustrating an external appearance of the remote controller 21 provided in the heat medium circulation system 1 of the first embodiment. As shown in FIG. 3, the remote controller 21 includes a display 21a and an operation unit 21b. The operation unit 21b may include a plurality of buttons or keys for a user to operate. The display 21a may display one of a screen representing information related to the state of the heat medium circulation system 1, a screen representing information related to setting contents of the heat medium circulation system 1, and a screen for receiving a user operation. The display 21a may be a touch screen having the function of the operation unit.
 リモートコントローラ21は、図示しないスピーカ及びマイクを更に備えてもよい。リモートコントローラ21は、スピーカから音声案内を出力してもよい。リモートコントローラ21のスピーカ及びマイクを用いてユーザーが他のリモコン(図示省略)の近くにいる別のユーザーと通話可能な構成でもよい。 The remote controller 21 may further include a speaker and a microphone (not shown). The remote controller 21 may output voice guidance from a speaker. A configuration is also possible in which a user can talk to another user near another remote controller (not shown) using the speaker and microphone of the remote controller 21.
 図3のディスプレイ21aの画面は、ユーザーが熱媒体の流量に関する設定を行うときの画面の例を示す。図3のディスプレイ21aの画面は、ユーザーが暖房能力に関する設定を行うときの画面の例を示す。本実施の形態では、ユーザーは、暖房運転のときの熱媒体の流量を、流量レベル1から流量レベル6までの6段階に設定できる。ヒートポンプ装置100から暖房器具24へ供給される熱媒体の供給温度が等しい場合には、熱媒体の流量が高いほど、暖房能力が高くなる。ユーザーは、必要としている暖房能力などに応じて、流量レベル1から流量レベル6のうちの一つを選択する。図3のディスプレイ21aの画面にある棒グラフが、当該流量レベルを表す。図3の例は、流量レベル5が設定されている状態を表す。ユーザーは、ディスプレイ21aに表示されたソフトウェアキー21c、または操作部21bを操作することで、流量レベルを選択及び変更できる。 The screen of the display 21a in FIG. 3 shows an example of the screen when the user makes settings related to the flow rate of the heat medium. The screen of the display 21a in FIG. 3 shows an example of the screen when the user makes settings related to the heating capacity. In the present embodiment, the user can set the flow rate of the heat medium during the heating operation in six stages from the flow level 1 to the flow level 6. When the supply temperature of the heat medium supplied from the heat pump apparatus 100 to the heating appliance 24 is equal, the heating capacity increases as the flow rate of the heat medium increases. The user selects one of the flow level 1 to the flow level 6 according to the required heating capacity. The bar graph on the screen of the display 21a in FIG. 3 represents the flow level. The example of FIG. 3 represents a state where the flow level 5 is set. The user can select and change the flow level by operating the software key 21c displayed on the display 21a or the operation unit 21b.
 リモートコントローラ21は、ユーザーにより選択された流量レベルの情報を制御装置10へ送信する。制御装置10は、ユーザーにより選択された流量レベルに応じて、暖房運転のときの熱媒体の目標流量を設定する。ユーザーにより選択された流量レベルに応じて、リモートコントローラ21が当該目標流量を設定し、その目標流量の情報を制御装置10へ送信してもよい。 The remote controller 21 transmits information on the flow level selected by the user to the control device 10. The control device 10 sets the target flow rate of the heat medium during the heating operation according to the flow rate level selected by the user. Depending on the flow rate level selected by the user, the remote controller 21 may set the target flow rate and transmit information on the target flow rate to the control device 10.
 図4は、流量レベルと熱媒体の目標流量及び初期流量との関係の例を示す図である。図4に示すように、本実施の形態では、以下のようになる。流量レベル1が選択されているときには、目標流量=3L/分として設定される。流量レベル2が選択されているときには、目標流量=4L/分として設定される。流量レベル3が選択されているときには、目標流量=5L/分として設定される。流量レベル4が選択されているときには、目標流量=6L/分として設定される。流量レベル5が選択されているときには、目標流量=7L/分として設定される。流量レベル6が選択されているときには、目標流量=8L/分として設定される。初期流量については後述する。 FIG. 4 is a diagram showing an example of the relationship between the flow level, the target flow rate of the heat medium, and the initial flow rate. As shown in FIG. 4, the present embodiment is as follows. When the flow rate level 1 is selected, the target flow rate is set as 3 L / min. When the flow rate level 2 is selected, the target flow rate is set as 4 L / min. When the flow rate level 3 is selected, the target flow rate is set as 5 L / min. When the flow rate level 4 is selected, the target flow rate is set as 6 L / min. When the flow rate level 5 is selected, the target flow rate is set as 7 L / min. When the flow level 6 is selected, the target flow rate is set as 8 L / min. The initial flow rate will be described later.
 上述した例では、目標流量を段階的すなわち6段階に変更可能にしている。本発明は、このような例に限定されない。目標流量を連続的に変更可能であってもよい。 In the above example, the target flow rate can be changed stepwise, that is, six steps. The present invention is not limited to such an example. The target flow rate may be continuously changeable.
 上述した例では、ユーザーが選択した流量レベルに応じて、暖房運転のときの熱媒体の目標流量の値が設定される。本発明は、このような例に限定されない。例えば、以下のようにしてもよい。ユーザーが流量の数値を直接リモートコントローラ21に入力してもよい。その入力された数値に基づいて、制御装置10が、暖房運転のときの熱媒体の目標流量の値を設定してもよい。または、ユーザーが設定した目標室温と、現在の室温との差に応じて、制御装置10が、暖房運転のときの熱媒体の目標流量の値を設定してもよい。その場合、ユーザーが設定した目標室温と、現在の室温との差が大きいほど、目標流量の値が大きくなるように設定されてもよい。 In the above-described example, the target flow rate value of the heat medium during the heating operation is set according to the flow level selected by the user. The present invention is not limited to such an example. For example, the following may be used. The user may input the numerical value of the flow rate directly into the remote controller 21. Based on the input numerical value, the control device 10 may set the value of the target flow rate of the heat medium during the heating operation. Or according to the difference between the target room temperature set by the user and the current room temperature, the control device 10 may set the value of the target flow rate of the heat medium during the heating operation. In this case, the target flow rate value may be set to increase as the difference between the target room temperature set by the user and the current room temperature increases.
 ユーザーがリモートコントローラ21または室内リモートコントローラを操作することで暖房運転が開始した場合には、ユーザーは、速やかに暖房効果が得られること、すなわち暖房器具24が速やかに暖まること、を期待する。例えば、40℃以上の熱媒体が暖房器具24へ流入すれば、暖房効果が得られると考えられる。暖房運転を開始してから、40℃以上の熱媒体が暖房器具24へ流入するまでの時間を短くできれば、ユーザーの期待に応えることができると考えられる。 When the heating operation is started by the user operating the remote controller 21 or the indoor remote controller, the user expects that the heating effect is quickly obtained, that is, the heating appliance 24 is quickly warmed. For example, if a heating medium of 40 ° C. or higher flows into the heating appliance 24, it is considered that a heating effect is obtained. If the time from the start of the heating operation until the heat medium having a temperature of 40 ° C. or higher flows into the heating appliance 24 can be shortened, it is considered that the user's expectation can be met.
 図5は、暖房運転を開始してから暖房効果が得られるまでの時間を計算した例を示す図である。図5中の「ヒートポンプ」は、ヒートポンプ装置100を意味する。図5中の「ラジエータ」は、暖房器具24を意味する。図5に示す例では、以下のように仮定する。ヒートポンプ装置100の加熱能力を4kWとする。暖房回路内の熱媒体の総体積を8Lとする。暖房運転の開始時点において、熱媒体の温度及び室温が共に7℃とする。 FIG. 5 is a diagram illustrating an example in which the time from when the heating operation is started until the heating effect is obtained is calculated. The “heat pump” in FIG. 5 means the heat pump device 100. “Radiator” in FIG. 5 means the heater 24. In the example shown in FIG. 5, it is assumed as follows. The heating capacity of the heat pump device 100 is 4 kW. The total volume of the heat medium in the heating circuit is 8L. At the start of the heating operation, both the temperature of the heat medium and the room temperature are set to 7 ° C.
 図5中の上段は、熱媒体の流量を4L/分として計算した例を示す。本例では、以下のようになる。熱媒体が暖房回路を一周するのに2分間かかる。ヒートポンプ装置100で加熱された後の熱媒体の温度すなわち供給温度と、ヒートポンプ装置100で加熱される前の熱媒体の温度すなわち戻り温度との差は、加熱能力×860/流量×60で与えられるので、およそ14.3度となる。熱媒体の初期温度は、7℃である。7℃の熱媒体がヒートポンプ装置100で21.3℃に加熱される。この21.3℃の熱媒体が暖房器具24に流入する。暖房器具24を通過する間の熱媒体の温度低下が、0.2×(供給温度-室温)で与えられると仮定する。供給温度に21.3℃を代入し、室温に7℃を代入すると、熱媒体の温度低下は、2.86度となる。暖房器具24を通過した熱媒体の温度、すなわち戻り温度は、21.3℃から2.86度を差し引いた18.44℃となる。この18.44℃の熱媒体がヒートポンプ装置100へ戻る。ここまでで熱媒体が暖房回路を一周しているので、2分間が経過している。この18.44℃の熱媒体がヒートポンプ装置100で32.74℃に加熱される。この32.74℃の熱媒体が暖房器具24に流入する。暖房器具24を通過する間の熱媒体の温度低下は、5.15度となる。暖房器具24を通過した熱媒体の温度、すなわち戻り温度は、32.74℃から5.15度を差し引いた27.59℃となる。この27.59℃の熱媒体がヒートポンプ装置100へ戻る。ここまでで熱媒体が暖房回路をさらに一周しているので、さらに2分間が経過している。この27.59℃の熱媒体がヒートポンプ装置100で41.89℃に加熱される。この41.89℃の熱媒体がヒートポンプ装置100から暖房器具24に到達するまでに1分間かかる。このように、本例では、暖房運転を開始してから、40℃以上の熱媒体が暖房器具24へ流入するまでに、5分間かかる。 The upper part in FIG. 5 shows an example calculated with the flow rate of the heat medium as 4 L / min. In this example, it is as follows. It takes 2 minutes for the heat medium to go around the heating circuit. The difference between the temperature of the heat medium after being heated by the heat pump apparatus 100, that is, the supply temperature, and the temperature of the heat medium before being heated by the heat pump apparatus 100, that is, the return temperature, is given by heating capacity × 860 / flow rate × 60. Therefore, it is about 14.3 degrees. The initial temperature of the heat medium is 7 ° C. The heat medium at 7 ° C. is heated to 21.3 ° C. by the heat pump device 100. This 21.3 ° C. heat medium flows into the heater 24. Assume that the temperature drop of the heat medium while passing through the heater 24 is given by 0.2 × (supply temperature−room temperature). If 21.3 ° C. is substituted for the supply temperature and 7 ° C. is substituted for the room temperature, the temperature drop of the heat medium becomes 2.86 degrees. The temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 18.44 ° C. obtained by subtracting 2.86 degrees from 21.3 ° C. The 18.44 ° C. heat medium returns to the heat pump apparatus 100. Up to this point, the heat medium has gone around the heating circuit, so two minutes have passed. The 18.44 ° C. heat medium is heated to 32.74 ° C. by the heat pump device 100. This 32.74 ° C. heat medium flows into the heater 24. The temperature drop of the heat medium while passing through the heating appliance 24 is 5.15 degrees. The temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 27.59 ° C. obtained by subtracting 5.15 degrees from 32.74 ° C. This 27.59 ° C. heat medium returns to the heat pump apparatus 100. Up to this point, since the heat medium has made a further round of the heating circuit, two more minutes have passed. This 27.59 ° C. heat medium is heated to 41.89 ° C. by the heat pump device 100. It takes one minute for the 41.89 ° C. heat medium to reach the heating appliance 24 from the heat pump device 100. As described above, in this example, it takes 5 minutes from the start of the heating operation until the heat medium of 40 ° C. or higher flows into the heating appliance 24.
 図5中の下段は、熱媒体の流量を5L/分として計算した例を示す。本例では、以下のようになる。熱媒体が暖房回路を一周するのに1.6分間、すなわち1分36秒間かかる。ヒートポンプ装置100で加熱された後の熱媒体の温度すなわち供給温度と、ヒートポンプ装置100で加熱される前の熱媒体の温度すなわち戻り温度との差は、およそ11.46度となる。初期温度7℃の熱媒体がヒートポンプ装置100で18.46℃に加熱される。この18.46℃の熱媒体が暖房器具24に流入する。暖房器具24を通過する間の熱媒体の温度低下は、2.29度となる。暖房器具24を通過した熱媒体の温度、すなわち戻り温度は、18.46℃から2.29度を差し引いた16.17℃となる。この16.17℃の熱媒体がヒートポンプ装置100へ戻る。ここまでで熱媒体が暖房回路を一周しているので、1.6分間が経過している。この16.17℃の熱媒体がヒートポンプ装置100で27.63℃に加熱される。この27.63℃の熱媒体が暖房器具24に流入する。暖房器具24を通過する間の熱媒体の温度低下は、4.13度となる。暖房器具24を通過した熱媒体の温度、すなわち戻り温度は、27.63℃から4.13度を差し引いた23.5℃となる。この23.5℃の熱媒体がヒートポンプ装置100へ戻る。ここまでで熱媒体が暖房回路をさらに一周しているので、さらに1.6分間が経過している。この23.5℃の熱媒体がヒートポンプ装置100で34.96℃に加熱される。この34.96℃の熱媒体が暖房器具24に流入する。暖房器具24を通過する間の熱媒体の温度低下は、5.59度となる。暖房器具24を通過した熱媒体の温度、すなわち戻り温度は、34.96℃から5.59度を差し引いた29.37℃となる。この29.37℃の熱媒体がヒートポンプ装置100へ戻る。ここまでで熱媒体が暖房回路をさらに一周しているので、さらに1.6分間が経過している。この29.37℃の熱媒体がヒートポンプ装置100で40.83℃に加熱される。この40.83℃の熱媒体がヒートポンプ装置100から暖房器具24に到達するまでに0.8分間すなわち48秒間かかる。このように、本例では、暖房運転を開始してから、40℃以上の熱媒体が暖房器具24へ流入するまでに、5.6分間すなわち5分36秒間かかる。 The lower part of FIG. 5 shows an example in which the flow rate of the heat medium is calculated as 5 L / min. In this example, it is as follows. It takes 1.6 minutes, that is 1 minute 36 seconds, for the heat medium to go around the heating circuit. The difference between the temperature of the heat medium after being heated by the heat pump apparatus 100, that is, the supply temperature, and the temperature of the heat medium before being heated by the heat pump apparatus 100, that is, the return temperature, is approximately 11.46 degrees. A heat medium having an initial temperature of 7 ° C. is heated to 18.46 ° C. by the heat pump device 100. This 18.46 ° C. heat medium flows into the heater 24. The temperature drop of the heat medium while passing through the heater 24 is 2.29 degrees. The temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 16.17 ° C. obtained by subtracting 2.29 degrees from 18.46 ° C. The 16.17 ° C. heat medium returns to the heat pump apparatus 100. Since the heat medium goes around the heating circuit so far, 1.6 minutes have passed. The heat medium at 16.17 ° C. is heated to 27.63 ° C. by the heat pump device 100. This 27.63 ° C. heat medium flows into the heater 24. The temperature drop of the heat medium while passing through the heating appliance 24 is 4.13 degrees. The temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 23.5 ° C. obtained by subtracting 4.13 degrees from 27.63 ° C. The 23.5 ° C. heat medium returns to the heat pump apparatus 100. Since the heat medium has made a further round of the heating circuit so far, another 1.6 minutes have passed. The 23.5 ° C. heat medium is heated to 34.96 ° C. by the heat pump apparatus 100. The 34.96 ° C. heat medium flows into the heater 24. The temperature drop of the heat medium while passing through the heating appliance 24 is 5.59 degrees. The temperature of the heat medium that has passed through the heater 24, that is, the return temperature, is 29.37 ° C. obtained by subtracting 5.59 degrees from 34.96 ° C. The 29.37 ° C. heat medium returns to the heat pump apparatus 100. Since the heat medium has made a further round of the heating circuit so far, another 1.6 minutes have passed. This 29.37 ° C. heat medium is heated to 40.83 ° C. by the heat pump device 100. It takes 0.8 minutes, that is, 48 seconds for the 40.83 ° C. heat medium to reach the heating appliance 24 from the heat pump apparatus 100. As described above, in this example, it takes 5.6 minutes, that is, 5 minutes and 36 seconds, from the start of the heating operation until the heat medium of 40 ° C. or more flows into the heating appliance 24.
 上述した計算例では、暖房運転を開始してから、40℃以上の熱媒体が暖房器具24へ流入するまでに要する時間が、熱媒体流量4L/分の場合には5分間となり、熱媒体流量5L/分の場合には5分36秒間となる。したがって、熱媒体の流量が高すぎると、暖房運転を開始してから暖房効果が得られるまでの時間が長くなると考えられる。 In the calculation example described above, the time required from the start of the heating operation until the heat medium of 40 ° C. or higher flows into the heating appliance 24 is 5 minutes when the heat medium flow rate is 4 L / min. In the case of 5 L / min, the time is 5 minutes and 36 seconds. Therefore, if the flow rate of the heat medium is too high, it is considered that the time from when the heating operation is started until the heating effect is obtained becomes longer.
 本実施の形態では、暖房運転を開始してから暖房効果が得られるまでの時間が長くなることを防止するために、制御装置10は、以下のように制御する。ユーザー操作に応じて設定された目標流量が基準に比べて高い場合には、暖房運転の初期の熱媒体の実際の流量を、目標流量より低い流量に制限する。これに対し、目標流量が基準に比べて高くない場合には、制御装置10は、暖房運転の初期の熱媒体の実際の流量を、目標流量に等しくなるように制御する。 In the present embodiment, the control device 10 performs the following control in order to prevent an increase in the time from when the heating operation is started until the heating effect is obtained. When the target flow rate set according to the user operation is higher than the reference, the actual flow rate of the heat medium at the initial stage of the heating operation is limited to a flow rate lower than the target flow rate. On the other hand, when the target flow rate is not higher than the reference, the control device 10 controls the actual flow rate of the heat medium at the initial stage of the heating operation to be equal to the target flow rate.
 本実施の形態であれば、以下の効果が得られる。目標流量が基準に比べて高い場合に、暖房運転の初期の熱媒体の実際の流量を、目標流量に等しくなるように制御すると仮定すると、暖房運転を開始してから暖房効果が得られるまでの時間が長くなる可能性がある。これに対し、目標流量が基準に比べて高い場合に、暖房運転の初期の熱媒体の実際の流量を、目標流量より低い流量に制限することで、暖房運転を開始してから暖房効果が得られるまでの時間が長くなることを防止できる。その一方で、目標流量が基準に比べて高くない場合にまで、暖房運転の初期の熱媒体の実際の流量を、目標流量より低い流量に制限すると仮定すると、暖房運転を開始してから暖房効果が得られるまでの時間が長くなる可能性がある。その理由は、熱媒体の流速が遅くなりすぎるために、熱媒体がヒートポンプ装置100から暖房器具24に到達するまでに長い時間を要するためである。本実施の形態であれば、目標流量が基準に比べて高くない場合には、暖房運転の初期の熱媒体の実際の流量を、目標流量に等しくなるように制御する。このため、熱媒体の流速が遅くなりすぎることがないので、暖房運転を開始してから暖房効果が得られるまでの時間が長くなることを防止できる。 In the present embodiment, the following effects can be obtained. Assuming that the actual flow rate of the heat medium at the initial stage of heating operation is controlled to be equal to the target flow rate when the target flow rate is higher than the reference, the heating effect is obtained after the heating operation is started. Time can be long. On the other hand, when the target flow rate is higher than the standard, the heating effect is obtained after the heating operation is started by limiting the actual flow rate of the heat medium at the initial stage of the heating operation to a flow rate lower than the target flow rate. It is possible to prevent the time until it is increased. On the other hand, assuming that the actual flow rate of the heat medium at the initial stage of heating operation is limited to a flow rate lower than the target flow rate until the target flow rate is not higher than the reference, the heating effect is started after the heating operation is started. There is a possibility that the time until it is obtained becomes longer. The reason is that it takes a long time for the heat medium to reach the heating appliance 24 from the heat pump device 100 because the flow velocity of the heat medium becomes too slow. In the present embodiment, when the target flow rate is not higher than the reference, the actual flow rate of the heat medium at the initial stage of the heating operation is controlled to be equal to the target flow rate. For this reason, since the flow rate of the heat medium does not become too slow, it is possible to prevent the time from when the heating operation is started until the heating effect is obtained from becoming long.
 本実施の形態では、制御装置10は、目標流量が基準に比べて高い場合には、暖房運転の初期の熱媒体の実際の流量を、目標流量より低い初期流量に等しくなるように制御する。図4に示す例では、流量レベル3、流量レベル4、流量レベル5、及び流量レベル6が、目標流量が基準に比べて高い場合に該当する。図4に示す例では、4L/分を超える目標流量は、基準に比べて高い目標流量に該当する。図4に示す例では、流量レベル3、流量レベル4、流量レベル5、及び流量レベル6のいずれの場合でも、初期流量を4L/分とする。 In the present embodiment, when the target flow rate is higher than the reference, the control device 10 controls the actual flow rate of the heat medium in the initial heating operation to be equal to the initial flow rate that is lower than the target flow rate. In the example shown in FIG. 4, the flow rate level 3, the flow rate level 4, the flow rate level 5, and the flow rate level 6 correspond to the case where the target flow rate is higher than the reference. In the example shown in FIG. 4, a target flow rate exceeding 4 L / min corresponds to a higher target flow rate than the reference. In the example shown in FIG. 4, the initial flow rate is 4 L / min in any of the flow level 3, the flow level 4, the flow level 5, and the flow level 6.
 図4に示す例では、流量レベル1及び流量レベル2は、目標流量が基準に比べて高くない場合に該当する。すなわち、4L/分以下の目標流量は、基準に比べて高くない目標流量に該当する。流量レベル1の場合には、初期流量を3L/分とする。流量レベル2の場合には、初期流量を4L/分とする。すなわち、流量レベル1及び流量レベル2では、初期流量が目標流量に等しい。 In the example shown in FIG. 4, the flow rate level 1 and the flow rate level 2 correspond to the case where the target flow rate is not higher than the reference. That is, a target flow rate of 4 L / min or less corresponds to a target flow rate that is not higher than the reference. In the case of the flow level 1, the initial flow rate is 3 L / min. In the case of flow rate level 2, the initial flow rate is 4 L / min. That is, at the flow level 1 and the flow level 2, the initial flow is equal to the target flow.
 図6は、実施の形態1における制御ルーチンを示すフローチャートである。図6のステップS1で、制御装置10は、暖房運転を開始する。ステップS1からステップS2へ移行する。ステップS2で、制御装置10は、ユーザー操作に応じて設定された目標流量が基準に比べて高いか否かを判断する。目標流量が基準に比べて高くない場合、すなわち目標流量が4L/分以下である場合には、本ルーチンの処理を終了する。この場合には、制御装置10は、熱媒体の実際の流量、すなわち流量センサ30で検知される流量が、目標流量に等しくなるように制御する。この場合、制御装置10は、流量センサ30で検知される流量が目標流量に等しくなるように、循環ポンプ11の出力または回転速度を制御してもよい。または、制御装置10は、流量センサ30で検知される流量が目標流量に等しくなるように、暖房回路の途中に接続された流量調節弁(図示省略)の開度を制御してもよい。 FIG. 6 is a flowchart showing a control routine in the first embodiment. In step S1 of FIG. 6, the control device 10 starts the heating operation. The process proceeds from step S1 to step S2. In step S2, the control device 10 determines whether or not the target flow rate set according to the user operation is higher than the reference. When the target flow rate is not higher than the reference, that is, when the target flow rate is 4 L / min or less, the processing of this routine is terminated. In this case, the control device 10 controls the actual flow rate of the heat medium, that is, the flow rate detected by the flow rate sensor 30 to be equal to the target flow rate. In this case, the control device 10 may control the output or rotational speed of the circulation pump 11 so that the flow rate detected by the flow rate sensor 30 becomes equal to the target flow rate. Or the control apparatus 10 may control the opening degree of the flow control valve (illustration omitted) connected in the middle of the heating circuit so that the flow volume detected with the flow sensor 30 may become equal to the target flow volume.
 これに対し、ステップS2で目標流量が基準に比べて高い場合、すなわち目標流量が4L/分を超える場合には、ステップS3へ移行する。ステップS3で、制御装置10は、熱媒体の実際の流量、すなわち流量センサ30で検知される流量が、初期流量すなわち4L/分に等しくなるように制御する。ステップS3で、制御装置10は、流量センサ30で検知される流量が初期流量すなわち4L/分に等しくなるように、循環ポンプ11の出力または回転速度を制御してもよい。または、制御装置10は、流量センサ30で検知される流量が初期流量すなわち4L/分に等しくなるように、暖房回路の途中に接続された流量調節弁(図示省略)の開度を制御してもよい。 On the other hand, if the target flow rate is higher than the reference in step S2, that is, if the target flow rate exceeds 4 L / min, the process proceeds to step S3. In step S3, the control device 10 performs control so that the actual flow rate of the heat medium, that is, the flow rate detected by the flow rate sensor 30, is equal to the initial flow rate, that is, 4 L / min. In step S3, the control device 10 may control the output or rotation speed of the circulation pump 11 so that the flow rate detected by the flow rate sensor 30 is equal to the initial flow rate, that is, 4 L / min. Alternatively, the control device 10 controls the opening of a flow rate control valve (not shown) connected in the middle of the heating circuit so that the flow rate detected by the flow rate sensor 30 is equal to the initial flow rate, that is, 4 L / min. Also good.
 ステップS3で、さらに、制御装置10は、暖房運転の開始から第一の時間が経過するのを待つ。暖房運転の開始から第一の時間が経過した後、ステップS3からステップS4へ移行する。第一の時間は、予め設定された時間である。例えば、第一の時間は、5分間でもよい。 In step S3, the control device 10 further waits for the first time to elapse from the start of the heating operation. After the first time has elapsed from the start of the heating operation, the process proceeds from step S3 to step S4. The first time is a preset time. For example, the first time may be 5 minutes.
 ステップS4で、制御装置10は、供給温度センサ31で検知された供給温度を基準温度と比較する。基準温度は、予め設定された温度である。例えば、基準温度は、40℃でもよい。基準温度は、暖房器具24にて暖房効果が得られるような熱媒体の温度でもよい。 In step S4, the control device 10 compares the supply temperature detected by the supply temperature sensor 31 with the reference temperature. The reference temperature is a preset temperature. For example, the reference temperature may be 40 ° C. The reference temperature may be a temperature of a heat medium that can provide a heating effect in the heating appliance 24.
 ステップS4で供給温度が基準温度に達している場合には、ステップS6へ移行する。ステップS6で、制御装置10は、熱媒体の流量に対する制限、すなわち目標流量より低い流量にするという制限を解除する。ステップS6で、制御装置10は、熱媒体の実際の流量が目標流量に等しくなるようにする制御を開始する。すなわち、ステップS6で、制御装置10は、流量センサ30で検知される流量が目標流量に等しくなるように、循環ポンプ11の出力または回転速度を制御してもよい。または、制御装置10は、流量センサ30で検知される流量が目標流量に等しくなるように、暖房回路の途中に接続された流量調節弁(図示省略)の開度を制御してもよい。 If the supply temperature has reached the reference temperature in step S4, the process proceeds to step S6. In step S6, the control device 10 releases the restriction on the flow rate of the heat medium, that is, the restriction that the flow rate is lower than the target flow rate. In step S6, the control device 10 starts control so that the actual flow rate of the heat medium becomes equal to the target flow rate. That is, in step S6, the control device 10 may control the output or rotational speed of the circulation pump 11 so that the flow rate detected by the flow rate sensor 30 becomes equal to the target flow rate. Or the control apparatus 10 may control the opening degree of the flow control valve (illustration omitted) connected in the middle of the heating circuit so that the flow volume detected with the flow sensor 30 may become equal to the target flow volume.
 本実施の形態であれば、上記のようにすることで、以下の効果が得られる。ステップS3の処理、すなわち熱媒体の流量に対する制限が、暖房運転開始後、少なくとも第一の時間の間は継続される。その結果、供給温度の上昇を促すことができる。暖房運転開始後、第一の時間、例えば5分間、が経過した時点で、ユーザーは、暖房器具24が温まってきていることを実感できる。ユーザーは、異常なく暖房運転が開始していることに容易に気づくことができる。加えて、熱媒体の流量に対する制限を、必要以上に長い時間継続することを防止できる。供給温度が基準温度に達したこと、すなわち暖房効果が得られ始めたこと、を確認できた場合には、熱媒体の実際の流量が目標流量に等しくなるようにする制御が開始される。このため、ユーザーが望む熱媒体流量を早期に達成できる。 In the present embodiment, the following effects can be obtained by performing the above. The process of step S3, that is, the restriction on the flow rate of the heat medium is continued for at least the first time after the heating operation is started. As a result, an increase in supply temperature can be promoted. When the first time, for example, 5 minutes elapses after the start of the heating operation, the user can feel that the heating appliance 24 has been warmed. The user can easily notice that the heating operation has started without any abnormality. In addition, it is possible to prevent the restriction on the flow rate of the heat medium from continuing for a time longer than necessary. When it is confirmed that the supply temperature has reached the reference temperature, that is, that the heating effect has started to be obtained, control is started so that the actual flow rate of the heat medium becomes equal to the target flow rate. Therefore, the heat medium flow rate desired by the user can be achieved at an early stage.
 ステップS4で供給温度が基準温度に達していない場合には、ステップS5へ移行する。ステップS5で、制御装置10は、その時点からさらに第二の時間が経過するのを待つ。第二の時間は、第一の時間より短い時間である。第二の時間は、予め設定された時間である。例えば、第二の時間は、3分間でもよい。第二の時間が経過した後、ステップS5からステップS4へ戻る。ステップS4で、制御装置10は、再び、供給温度を基準温度と比較する。供給温度が基準温度に達している場合には、ステップS4からステップS6へ移行する。供給温度が基準温度に達していない場合には、ステップS4からステップS5へ移行する。 If the supply temperature does not reach the reference temperature in step S4, the process proceeds to step S5. In step S5, the control device 10 waits for the second time to elapse from that point. The second time is shorter than the first time. The second time is a preset time. For example, the second time may be 3 minutes. After the second time has elapsed, the process returns from step S5 to step S4. In step S4, the control device 10 compares the supply temperature with the reference temperature again. If the supply temperature has reached the reference temperature, the process proceeds from step S4 to step S6. If the supply temperature has not reached the reference temperature, the process proceeds from step S4 to step S5.
 このように、本実施の形態では、暖房運転の開始から第一の時間が経過したときに供給温度が基準温度に達していない場合には、第一の時間より短い第二の時間がさらに経過するまで、熱媒体の実際の流量を、目標流量より低い流量に制限する。これにより、以下の効果が得られる。熱媒体の流量を制限した状態で第二の時間がさらに経過することを待つことで、供給温度の上昇を促すことができる。すなわち、暖房運転を開始してから暖房効果が得られるまでの時間が長くなることを防止できる。第二の時間は、第一の時間より短い時間である。このため、ユーザーが望む熱媒体流量を達成するための制御への移行時期が遅くなりすぎない。 As described above, in the present embodiment, if the supply temperature does not reach the reference temperature when the first time has elapsed from the start of the heating operation, the second time shorter than the first time further elapses. Until then, the actual flow rate of the heat medium is limited to a flow rate lower than the target flow rate. Thereby, the following effects are acquired. By waiting for the second time to elapse while the flow rate of the heat medium is limited, an increase in the supply temperature can be promoted. That is, it can be prevented that the time from the start of the heating operation until the heating effect is obtained becomes long. The second time is shorter than the first time. For this reason, the transition time to the control for achieving the heat medium flow rate desired by the user is not too late.
 上述した例では、基準温度の値を40℃としている。基準温度の値は、これに限定されない。ユーザーが基準温度の値を変更可能にしてもよい。例えば、ユーザーがリモートコントローラ21を操作することで、基準温度の値を変更できるように構成してもよい。ユーザーが基準温度の値を変更可能にすることで、ユーザー毎の好みまたは使用環境に応じて、基準温度をより適切な値に設定できる。 In the above example, the reference temperature value is 40 ° C. The value of the reference temperature is not limited to this. The user may be able to change the value of the reference temperature. For example, the reference temperature value may be changed by the user operating the remote controller 21. By enabling the user to change the value of the reference temperature, the reference temperature can be set to a more appropriate value according to the preference or use environment of each user.
 制御装置10は、暖房回路内の熱媒体の総体積の値に応じて、初期流量、基準温度、第一の時間、及び第二の時間のうちの少なくとも一つの値を変更してもよい。熱媒体循環システム1の設置後の初期設定時に、暖房回路内の熱媒体の総体積の値を制御装置10に記憶させるようにしてもよい。リモートコントローラ21を操作することで、暖房回路内の熱媒体の総体積の値を入力できるようにしてもよい。第一外部管22、第二外部管23、及び暖房器具24の流路長が長いほど、暖房回路内の熱媒体の総体積が大きくなる。当該流路長の値を、リモートコントローラ21を介して、制御装置10に入力してもよい。制御装置10は、当該流路長の値を用いて、暖房回路内の熱媒体の総体積を計算してもよい。 The controller 10 may change at least one of the initial flow rate, the reference temperature, the first time, and the second time according to the value of the total volume of the heat medium in the heating circuit. The value of the total volume of the heat medium in the heating circuit may be stored in the control device 10 at the initial setting after the heat medium circulation system 1 is installed. You may enable it to input the value of the total volume of the heat medium in a heating circuit by operating the remote controller 21. FIG. The longer the flow path length of the first outer pipe 22, the second outer pipe 23, and the heating appliance 24, the greater the total volume of the heat medium in the heating circuit. The value of the flow path length may be input to the control device 10 via the remote controller 21. The control apparatus 10 may calculate the total volume of the heat medium in the heating circuit using the value of the flow path length.
 実施の形態1の熱媒体循環システム1が備える制御装置10の各機能は、処理回路により実現されてもよい。図1及び図2に示す例では、制御装置10の処理回路は、少なくとも1つのプロセッサ10aと少なくとも1つのメモリ10bとを備える。処理回路が少なくとも1つのプロセッサ10aと少なくとも1つのメモリ10bとを備える場合、制御装置10の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現されてもよい。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述されてもよい。ソフトウェアおよびファームウェアの少なくとも一方は、少なくとも1つのメモリ10bに格納されてもよい。少なくとも1つのプロセッサ10aは、少なくとも1つのメモリ10bに記憶されたプログラムを読み出して実行することにより、制御装置10の各機能を実現してもよい。少なくとも1つのメモリ10bは、不揮発性または揮発性の半導体メモリ、磁気ディスク等を含んでもよい。 Each function of the control device 10 provided in the heat medium circulation system 1 of the first embodiment may be realized by a processing circuit. In the example shown in FIGS. 1 and 2, the processing circuit of the control device 10 includes at least one processor 10a and at least one memory 10b. When the processing circuit includes at least one processor 10a and at least one memory 10b, each function of the control device 10 may be realized by software, firmware, or a combination of software and firmware. At least one of software and firmware may be described as a program. At least one of software and firmware may be stored in at least one memory 10b. The at least one processor 10a may realize each function of the control device 10 by reading and executing a program stored in the at least one memory 10b. The at least one memory 10b may include a nonvolatile or volatile semiconductor memory, a magnetic disk, or the like.
 制御装置10の処理回路は、少なくとも1つの専用のハードウェアを備えてもよい。処理回路が少なくとも1つの専用のハードウェアを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものでもよい。制御装置10の各部の機能がそれぞれ処理回路で実現されても良い。また、制御装置10の各部の機能がまとめて処理回路で実現されても良い。制御装置10の各機能について、一部を専用のハードウェアで実現し、他の一部をソフトウェアまたはファームウェアで実現してもよい。処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、制御装置10の各機能を実現しても良い。 The processing circuit of the control device 10 may include at least one dedicated hardware. When the processing circuit includes at least one dedicated hardware, the processing circuit may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field- Programmable Gate Array) or a combination thereof. The function of each unit of the control device 10 may be realized by a processing circuit. Further, the functions of the respective units of the control device 10 may be collectively realized by a processing circuit. Some of the functions of the control device 10 may be realized by dedicated hardware, and the other part may be realized by software or firmware. The processing circuit may realize each function of the control device 10 by hardware, software, firmware, or a combination thereof.
 単一の制御装置により熱媒体循環システム1の動作が制御される構成に限定されるものではなく、複数の制御装置が連携することで熱媒体循環システム1の動作を制御する構成にしてもよい。 The configuration is not limited to the configuration in which the operation of the heat medium circulation system 1 is controlled by a single control device, and the operation of the heat medium circulation system 1 may be controlled by cooperation of a plurality of control devices. .
1 熱媒体循環システム、 2 蓄熱槽、 3 出口導管、 4 上部管、 5 第一内部管、 6 切替弁、 6a 第一ポート、 6b 第二ポート、 6c 第三ポート、 7 第二内部管、 8 下部管、 9 入口導管、 10 制御装置、 10a プロセッサ、 10b メモリ、 11 循環ポンプ、 12 暖房設備、 13 圧縮機、 14 冷媒配管、 15 熱交換器、 16 減圧装置、 17 蒸発器、 18 給水管、 19 給湯管、 21 リモートコントローラ、 21a ディスプレイ、 21b 操作部、 21c ソフトウェアキー、 22 第一外部管、 23 第二外部管、 24 暖房器具、 25 出口、 26 入口、 27 出口、 28 入口、 30 流量センサ、 31 供給温度センサ、 32 戻り温度センサ、 100 ヒートポンプ装置、 200 タンクユニット 1 heat medium circulation system, 2 heat storage tank, 3 outlet conduit, 4 upper pipe, 5 first internal pipe, 6 switching valve, 6a first port, 6b second port, 6c third port, 7 second internal pipe, 8 Lower pipe, 9 inlet conduit, 10 control device, 10a processor, 10b memory, 11 circulation pump, 12 heating equipment, 13 compressor, 14 refrigerant piping, 15 heat exchanger, 16 decompression device, 17 evaporator, 18 water supply pipe, 19 hot water supply pipe, 21 remote controller, 21a display, 21b operation unit, 21c software key, 22 first external pipe, 23 second external pipe, 24 heater, 25 outlet, 26 inlet, 27 outlet, 28 inlet, 30 flow sensor , 31 Temperature sensor, 32 return temperature sensor, 100 a heat pump device, 200 tank unit

Claims (4)

  1.  熱媒体を加熱する加熱手段と、
     ユーザー操作に応じて前記熱媒体の目標流量を設定する手段と、
     前記加熱手段及び暖房器具を含む回路に前記熱媒体を循環させる運転である暖房運転のときに、前記目標流量に応じて、前記熱媒体の流量を制御する流量制御手段と、
     を備え、
     前記流量制御手段は、前記目標流量が基準に比べて高い場合には、前記暖房運転の初期の前記熱媒体の実際の流量を、前記目標流量より低い流量に制限し、前記目標流量が前記基準に比べて高くない場合には、前記暖房運転の初期の前記熱媒体の実際の流量を、前記目標流量に等しくなるように制御する熱媒体循環システム。
    Heating means for heating the heat medium;
    Means for setting a target flow rate of the heat medium according to a user operation;
    A flow rate control means for controlling the flow rate of the heat medium in accordance with the target flow rate during a heating operation in which the heat medium is circulated in a circuit including the heating means and a heating appliance;
    With
    When the target flow rate is higher than the reference, the flow rate control means limits the actual flow rate of the heat medium at the initial stage of the heating operation to a flow rate lower than the target flow rate, and the target flow rate is the reference flow rate. If not higher than the above, the heat medium circulation system for controlling the actual flow rate of the heat medium at the initial stage of the heating operation to be equal to the target flow rate.
  2.  前記暖房運転のときに前記加熱手段から前記暖房器具へ供給される前記熱媒体の温度である供給温度を検知する手段を備え、
     前記流量制御手段は、前記暖房運転の開始から第一の時間が経過したときに前記供給温度が基準温度に達している場合には、前記熱媒体の流量の制限を解除し、前記熱媒体の実際の流量が前記目標流量に等しくなるようにする制御を開始する請求項1に記載の熱媒体循環システム。
    Means for detecting a supply temperature that is a temperature of the heat medium supplied from the heating means to the heating appliance during the heating operation;
    When the supply temperature has reached a reference temperature when a first time has elapsed since the start of the heating operation, the flow rate control means releases the restriction on the flow rate of the heat medium, The heat medium circulation system according to claim 1, wherein control is started so that an actual flow rate becomes equal to the target flow rate.
  3.  前記流量制御手段は、前記暖房運転の開始から前記第一の時間が経過したときに前記供給温度が前記基準温度に達していない場合には、前記第一の時間より短い第二の時間がさらに経過するまで、前記熱媒体の実際の流量を、前記目標流量より低い流量に制限する請求項2に記載の熱媒体循環システム。 If the supply temperature has not reached the reference temperature when the first time has elapsed from the start of the heating operation, the flow rate control means further includes a second time shorter than the first time. The heat medium circulation system according to claim 2, wherein an actual flow rate of the heat medium is limited to a flow rate lower than the target flow rate until a lapse of time.
  4.  前記基準温度の値をユーザーが変更可能にする手段を備える請求項2または請求項3に記載の熱媒体循環システム。 The heat medium circulation system according to claim 2 or 3, further comprising means for allowing a user to change the value of the reference temperature.
PCT/JP2016/057982 2016-03-14 2016-03-14 Heating medium circulation system WO2017158685A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057982 WO2017158685A1 (en) 2016-03-14 2016-03-14 Heating medium circulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/057982 WO2017158685A1 (en) 2016-03-14 2016-03-14 Heating medium circulation system

Publications (1)

Publication Number Publication Date
WO2017158685A1 true WO2017158685A1 (en) 2017-09-21

Family

ID=59851867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057982 WO2017158685A1 (en) 2016-03-14 2016-03-14 Heating medium circulation system

Country Status (1)

Country Link
WO (1) WO2017158685A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170764A (en) * 1995-12-19 1997-06-30 Rinnai Corp Control apparatus for hot water heating system
JPH11248174A (en) * 1998-03-06 1999-09-14 Osaka Gas Co Ltd Heat supply system
JP2005257268A (en) * 2005-04-21 2005-09-22 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006266665A (en) * 2005-12-02 2006-10-05 Hitachi Home & Life Solutions Inc Heat pump type heating device
JP2006284141A (en) * 2005-04-04 2006-10-19 Tokyo Gas Co Ltd Heating device and cooling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09170764A (en) * 1995-12-19 1997-06-30 Rinnai Corp Control apparatus for hot water heating system
JPH11248174A (en) * 1998-03-06 1999-09-14 Osaka Gas Co Ltd Heat supply system
JP2006284141A (en) * 2005-04-04 2006-10-19 Tokyo Gas Co Ltd Heating device and cooling device
JP2005257268A (en) * 2005-04-21 2005-09-22 Matsushita Electric Ind Co Ltd Heat pump water heater
JP2006266665A (en) * 2005-12-02 2006-10-05 Hitachi Home & Life Solutions Inc Heat pump type heating device

Similar Documents

Publication Publication Date Title
JP5305714B2 (en) Hot water heating system
KR101997043B1 (en) Apparatus and method for heating temperature control of each control system using boiler return temperature
JP6721116B2 (en) Heat medium circulation system
JP3518350B2 (en) Heat pump heating system
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP6645593B2 (en) Heat medium circulation system
WO2017158685A1 (en) Heating medium circulation system
JP3518353B2 (en) Heat pump heating system
JP6421880B2 (en) Heat medium circulation system
WO2018087867A1 (en) Heating medium circulation system
EP3995753B1 (en) Hot water supply system
JP5097054B2 (en) Heat pump water heater
JP4368295B2 (en) Hot water heater
WO2017163305A1 (en) Heat medium circulation system
JP6217867B2 (en) Fluid circulation system
JP2018169100A (en) Double chamber heating system
JP6240515B2 (en) Water heater
JP5603146B2 (en) Heat pump water heater
JP7494752B2 (en) Hot water system
JP7413782B2 (en) Hot water storage type water heater
JP4368294B2 (en) Hot water heater
JP2023071457A (en) heating system
JP2016176622A (en) Air conditioner and its control method
JP2016121853A (en) Temperature control system
JP2023131421A (en) heat pump water heater

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894309

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP