WO2016046741A1 - Wafer-träger-anordnung, verfahren zu deren herstellung und verwendung der anordnung bei der bearbeitung des wafers - Google Patents

Wafer-träger-anordnung, verfahren zu deren herstellung und verwendung der anordnung bei der bearbeitung des wafers Download PDF

Info

Publication number
WO2016046741A1
WO2016046741A1 PCT/IB2015/057291 IB2015057291W WO2016046741A1 WO 2016046741 A1 WO2016046741 A1 WO 2016046741A1 IB 2015057291 W IB2015057291 W IB 2015057291W WO 2016046741 A1 WO2016046741 A1 WO 2016046741A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
layer
radical
wafer carrier
carrier
Prior art date
Application number
PCT/IB2015/057291
Other languages
English (en)
French (fr)
Inventor
Phillipp Lorenz
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to US15/513,369 priority Critical patent/US11193208B2/en
Priority to KR1020217042528A priority patent/KR102431990B1/ko
Priority to KR1020177004539A priority patent/KR102408677B1/ko
Priority to JP2017514852A priority patent/JP6587075B2/ja
Priority to CN201580050238.8A priority patent/CN106688089B/zh
Publication of WO2016046741A1 publication Critical patent/WO2016046741A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68728Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of separate clamping members, e.g. clamping fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Definitions

  • WAFER-CARRIER ARRANGEMENT METHOD FOR THE PRODUCTION AND USE OF THE ARRANGEMENT FOR MACHINING THE WAFERS
  • the present invention relates to a wafer carrier arrangement comprising a wafer, a carrier system comprising a carrier and an elastomer layer and a connecting layer, wherein the connecting layer is a sol-gel layer.
  • the invention further relates to a coated wafer for a wafer carrier arrangement according to the invention, to the use of a sol-gel layer as connection layer for a corresponding wafer carrier arrangement and to a method for processing the back side of a wafer.
  • wafers In the manufacture of such electronic components and circuits (diodes, transistors, ICs, sensors, etc.), structures and layers for generating the desired electronic functions are applied to wafers (optionally doped silicon wafers, gallium arsenide, etc.) by means of various technologies.
  • wafers optionally doped silicon wafers, gallium arsenide, etc.
  • these wafers are provided with a protective film or other protective layer on completion of the necessary manufacturing steps on the front side (that is, the active side or the side on which the applied structures are located).
  • This film or layer has the task of the wafer front side and in particular the applied thereon electrical and mechanical structures during the subsequent subsequent thinning and / or other processing of the backside of the wafer. Thinning is accomplished by techniques such as grinding, lapping, grinding, etching, or the like of the backside of the wafer.
  • the aim of this procedure is to reduce the original thickness of the wafer.
  • the extent of the reduction is decisively determined by the expected mechanical and thermal loads during the thinning and / or the subsequent subsequent process steps: Since the wafer, when it is thinned, has already undergone a large number of process steps, it already has a high economic Value. Therefore, the risk of breaking the wafer must be kept as low as possible. Accordingly, thinning to the extent that it would actually be desired, often not possible because otherwise occur too large losses due to breakage of the wafer.
  • the wafer is then placed backside down (active side up) on a sawing foil, an expansion foil or a frame. Subsequently, the separation of the wafer, d. H.
  • the wafer is separated into individual components (microplates, dies). This separation is often done by means of rotary cutting discs or other mechanical sawing devices. However, laser separation methods are also used. Alternatively, the wafers are also broken during separation, with some supportive methods such as scratches used.
  • methods are also used today in which the wafer on the front side is already structured prior to the thinning process by means of grinding scribing, scribing, chemical etching, plasma etching of trenches and / or structures such that these structures during the subsequent Thinning process by mechanical and / or chemical processes can be achieved from the back so that the wafer is separated.
  • the carrier layer proposed there is not optimally adapted: in particular in the case of three-dimensionally structured wafer surfaces (such as, for example, bumped wafers or wafers with an undercut on their surface), the proposed carrier plain (eg, polyimide or polyamide) too hard: Since the plasma polymer release layer substantially coats the surface structures of the wafer with a consistently thick layer, gaps such as undercuts or gaps between the bumps should be filled by the material for the backing layer. If this is the case, however, it is due to the hardness of the carrier layer that the carrier layer is not destructively removable from the wafer again.
  • the carrier plain eg, polyimide or polyamide
  • the carrier layer does not fill out the surface structures, cavities remain which adversely affect the adhesion between carrier layer and separating layer and can lead to undesired inclusions.
  • additional mechanical stress is generated for the wafer.
  • WO 2007/09946 A1 discloses a separation method in which thinned wafers can be mechanically separated after thinning. This is made possible by the use of a plasma polymer separating layer in combination with an elastomer layer.
  • a wafer carrier arrangement comprising a wafer
  • a carrier system comprising a carrier and an elastomeric layer, wherein the elastomeric layer is oriented towards the wafer and
  • tie layer wherein the tie layer is a sol-gel layer, preparable from the monomers
  • each R 1 is independently of the other H or a - C 8 alkyl radical
  • R 2, R 3, R 4, R 5, R 6 and R 7 are each independently of one another a - C 20 alkyl radical, a fluorinated - C 20 alkyl Radical, a - C 20 -aminoalkyl radical, a C 2 - C 20 - Alkenyl radical, an aryl radical, a fluorinated aryl radical, a mono-, di- or tri-C 4 -alkylated aryl radical, where the alkylations are independent of one another in terms of their C atom number and / or wherein the radical may also be fluorinated, or a C 3 -C 20 -epoxy radical.
  • a wafer preferably comprises electronic components on its front side, this front side being protected by the connection layer to be used according to the invention.
  • a wafer-carrier arrangement wherein in the connecting layer each represents independently of the other H or a - C 5 -alkyl radical and / or R 2, R 3, R 4, R 5, R 6 and R 7 in each case independently of one another - C 8- alkyl radical, a fluorinated-C 8 -alkyl radical, a - C 8 -aminoalkyl radical, a C 2 - C 8 -alkenyl radical, an aryl radical, a fluorinated aryl radical, a simple a double or triple C 4 -alkylated aryl radical, the alkylations being independent of one another in terms of their C atom number and / or the radical also being fluorinated, or a C 3 -C 8 -epoxy radical.
  • Preferred solvents in the preparation of the compound layer are selected from the group consisting of alcohols, in particular methanol, ethanol, propanol, butanol, pentanol, water, aprotic solvents, in particular PGMEA (1-methoxy-2-propyl acetate), acetone or ethyl acetate.
  • Particularly preferred solvents are selected from the group of the alcohols, in particular 2-propanol and 2-methyl-1-propanol.
  • Preferred activators for the sol-gel reaction in the preparation of the compound layer are selected from the group consisting of acids and bases, in particular TMAH (tetramethylammonium hydroxide), formic acid, hydrochloric acid and sulfuric acid.
  • Further preferred activators are Lewis acids or bases, organometallic compounds such as e.g. Tributyltin or fluoride-containing compounds, such. TBAF (tetrabutylammonium fluoride) or cesium fluoride.
  • Particularly preferred activators are TMAH, TBAF and sulfuric acid.
  • each R1 is independently of the other H or a - C 3 alkyl and / or R2, R3, R4, R5, R6 and R7 are each independently a - C 3 alkyl radical or a fluorinated Represent C 3 alkyl.
  • the wafer carrier arrangement according to the invention can be separated very easily and, above all, without much mechanical stress for the wafer. In this case, it is possible to chemically remove the sol-gel layer after separation, for example.
  • the sol-gel layer to be used according to the invention has the advantage that sol-gel layers can generally be adapted to the requirements in terms of their properties. Preference is given to sol-gel layers which are temperature resistant up to 450 ° C ⁇ without chemical change.
  • the sol-gel layer used according to the invention is silicon-based and thus readily compatible with elastomers, in particular with silicon-based elastomers.
  • the compound layer to be used according to the invention is inexpensive and non-toxic. After the polymerization, the sol-gel layer is chemically constant over a long period of time. Due to the monomers used, it is easy to introduce into typical wafer production processes, since it can be produced, for example, from a liquid.
  • molar ratio of the monomers (1) to the sum of the molar amounts of the monomers (2), (3) and (4) is 0.032 (1: 31, 25) to 1, 6 (1, 6: 1) is preferably 0.05 to 1 (1: 20 to 1: 1) and more preferably 0.064 to 0.5 (1: 15.63 to 0.5: 1).
  • the layer thickness of the connecting layer is 10 to 200 nm, preferably 20 to 150 nm and particularly preferably 30 to 100 nm.
  • the preferred layer thicknesses allow a particularly stress-free separation of the carrier system from the wafer.
  • elastomer layer is an organosilicon layer.
  • the elastomer layer (that is to say a layer consisting of elastomer) is preferably a layer consisting of a material selected from the group consisting of Methyl, phenyl, epoxyalkyl, epoxyarylalkylsilicone or mixed functional silicone, eg methylphenylsilicone; (Catalytically) via silicone-crosslinked silicone elastomer having at least one of the aforementioned functionalities and their mixtures with silicone resins, all with or without fillers.
  • the elastomer layer has a Shore A hardness of 40 to 100, preferably 45 to 90, more preferably 50 to 80 and particularly preferably 55 to 75. The Shore hardness is determined according to DIN 53505-A-87.
  • the adhesive force (adhesion) between the respective layers can be determined by the person skilled in the art according to DIN EN ISO 4618: 2007-03, and is defined as "the total of the binding forces between a coating and its substrate.”
  • the adhesive force between the layers which is preferred the surface of the lowest adhesive force (as an interface) determined according to measurement example 1 determined.
  • this particularly preferred wafer carrier arrangement is that, owing to the properties of the elastomer material (flexibility, extensibility), it is possible to produce an ideal connection between the elastomer layer and the bonding layer on the wafer.
  • the adhesive strength between the bonding layer and the elastomer layer can be produced such that when the wafer carrier arrangement according to the invention is separated, the elastomer material is completely detached from the bonding layer. In this case, this separation is preferably mechanical.
  • the wafer comprises electronic components on the side facing the connection layer (front side).
  • a wafer carrier arrangement according to the invention is preferred, wherein the carrier is a glass plate or a second wafer.
  • Part of the invention is also a coated wafer of a wafer carrier arrangement according to the invention, wherein the coating is a bonding layer, as defined above.
  • This coated wafer can be used as a precursor to the wafer carrier assembly of the present invention by applying a carrier system as defined above to the tie layer.
  • the connecting layer has a static water edge angle of> 80 °, preferably> 83 °, and / or a surface energy of 15-25 mJ / m 2 on the side facing away from the wafer
  • Part of the invention is also the use of a bonding layer as defined above for producing a wafer carrier arrangement according to the invention or a coated wafer according to the invention.
  • a further aspect of the invention is a method for processing the back side of a wafer, comprising the steps: a) providing a wafer carrier arrangement according to the invention, b) processing the back side of the wafer, and c) mechanically separating the wafer carrier arrangement along the interface between the elastomeric layer and the tie layer.
  • Processing of the backside of the wafer may be in particular: metallization, thinning TSV: through silicon via-contacting, lithography techniques.
  • the mechanical separation for the process according to the invention is preferably carried out as follows:
  • the wafer-carrier assembly is fixed by vacuum or mechanically on both sides, the flexible fixation on the support side is raised starting from one side, whereby the carrier detaches from the wafer.
  • This process is carried out as described in WO 002010072826 A2, in particular as described in FIG. 3 and the accompanying text.
  • step c) the bonding layer is chemically removed from the wafer.
  • This chemical removal can in principle be effected by any suitable means. It is important to ensure that the bonding layer is reliably removed, while the wafer and in particular the electronic components possibly present on the wafer are not affected.
  • Suitable means for the chemical removal of the tie layer are strong acids and alkalis, as well as compounds which provide fluoride ions, e.g. TBAF, CsF, HF or KHF2 Particularly preferred for the chemical removal of the compound layer is tetrabutylammonium fluoride (TBAF).
  • TBAF tetrabutylammonium fluoride
  • TBAF is known for a variety of applications, but so far not for the specific one proposed here.
  • TBAF is known, for example, as a means for the removal of silyl-containing protective groups, in the preparation of sol-gel systems as activator / catalyst, as a remover for silicones and as a phase transfer catalyst. Applicability to sol-gel layers has not previously been known in particular in connection with the present invention.
  • TEOS tetraethyoxysilane
  • modifier alkyl-modified silane
  • Silanes with large alkyl radicals such as Hexadecyltrimethoxysilane or fluorinated alkyl radicals
  • both the times until activation of the mixture, as well as the storage stability can be influenced.
  • the lower the activator content the longer the mixture takes to activate, but also the storage stability is significantly increased.
  • the resulting surface energies can also be influenced: If less activator is added, the surface energies are reduced.
  • the choice of activator also influences the resulting adhesive forces, which increase by up to 35% for acid-based activators, such as sulfuric acid, compared to TMAH-based activators. The adhesive forces with equimolar replacement of TMAH by TBAF hardly change.
  • FIG. 2 schematically illustrates the separation of a wafer carrier arrangement according to the invention.
  • the reference numerals have the same meaning as in FIG. 1.
  • the reference numerals have the same meaning as in FIG. 1.
  • the reference numerals have the same meaning as in FIG. 1.
  • the reference numerals have the same meaning as in FIG. 1.
  • the reference numerals have the same meaning as in FIG. 1.
  • the wafer 1 is first coated on its front with liquid monomers 2 for the bonding layer 3 (sol-gel layer).
  • the material 4 for the elastomer layer 5 is initially still liquid.
  • FIG. 1 c) represents the wafer carrier arrangement 1, 3, 5 according to the invention in a finished form, in which material for the elastomer layer 4 was first applied starting from FIG. 1 b). Subsequently, the carrier 7 was placed on the not yet (fully) cured elastomer layer and subsequently cured in the material for the elastomer layer 4 to the elastomer layer 5.
  • FIG. 2 a) the already thinned wafer 1 is applied to a second carrier 9.
  • the carrier 7 and the elastomer layer are mechanically separated from the connecting layer according to FIG. 2b).
  • Fig. 2c) is shown schematically that the bonding layer 3 is chemically removed from the wafer (cleaning). At the same time, the carrier 7 can also be freed chemically from the residues of the elastomer layer 5. Examples
  • the upper holding plate has a flexible design and consists of polycarbonate, trade name Makroion®, Bayer AG with an E-modulus of 2.2-2.4 GPa.
  • the plate is 5 mm thick, has a width of 340 mm and is 400 mm long.
  • the holding plate is mounted so that the force is applied to the longer side, which projects beyond the wafer (diameter 300 mm). Before the force measurement, the wafer stack is separated by lifting this free end of the upper support plate in the direction of the arrow to the wafer half, so that the separation front, which now extends across the wafer, has its maximum length.
  • the effective free lever arm length is lengthened, and thus also the force measured at the measuring point along the direction of the arrow.
  • the maximum measured tensile force is used as the measured value, which experience has shown to result in an effectively effective lever arm length of about 245 mm.
  • the force application point on the lever arm is 95 mm away from the edge of the wafer.
  • the adhesion force determination is converted to a 300 mm diameter wafer, with the skilled person taking into account both the changed lever length and the changed length of the separation front.
  • the static water edge angle is determined according to DIN 55660-2: 201 1 -12.
  • the surface energy (free surface energy) is determined according to DIN 55660-2: 201 1 -12.
  • Measuring example 4 Determination of the water roll-off angle
  • the wafer is fixed on a tilt plate.
  • a drop of water deionized and particle-filtered (0.22 ⁇ m), Waters-Millipore, Milli-Q), either 50 ⁇ _, 25 ⁇ _ or 10 ⁇ _ applied to the wafer.
  • the angle at which the water droplet begins to move slowly is determined.
  • three measurement runs are performed per drop size. Preferred values range from 10-13 ° for 50 ⁇ _ drops of water, and / or 18-25 ° for 25 ⁇ _ drops and / or 28-55 ° for 10 ⁇ _ drops on the cured tie layers.
  • the water roll-off angle is determined, as described in this measurement example, in particular for 25 ⁇ _.
  • IPA IPA, 99.8% Carl Roth
  • TMAH tetramethyl ammonium hydroxide
  • the activity is checked before use by a dip-coat.
  • an elongated (about 1x5 cm) part of a new untreated silicon wafer is immersed briefly in the solution. If a layer forms during drying of the precursor, the solution is suitable for spin coating.
  • the time to activation is a few minutes to several days, depending on concentration and activator content.
  • the wafer to be treated is completely covered with precursor (about 10 mL for a 200mm wafer, about 20 mL for a 300mm wafer) and spun after about 30 seconds of life for 20 seconds at 1000 rpm.
  • the still moist layer is annealed at 165 ° C for 10 minutes, whereby the layer thickness of initial 60-80 nm drops to 40-60 nm, and the layer is solid.
  • the water discharge angle (50 ⁇ drops) is now 10-13 °, the water contact angle (10 ⁇ tropical, static) 95-105 °.
  • a second silicon wafer is coated with addition-crosslinking silicone adhesive, and in the bond chamber at reduced pressure (about 0.3 mbar) by force-free bonding (as described in WO 2010/061004 A1), both wafers are bonded.
  • the wafer stack After 10 minutes of curing of the silicone adhesive, the wafer stack can be subjected to further processes.
  • the wafer stack is initiated at one location, i. a small part of the wafer is detached from the other. Subsequently, the lower wafer fixed on a vacuum plate is separated with a second vacuum plate. The sol-gel layer remains on the device wafer, the separation between sol-gel release layer and silicone adhesives.
  • the wafer is placed under agitated dipping for 10-20 minutes in a solution of 2.5% by weight tetrabutylammonium fluoride (TBAF, 97%, Sigma-Aldrich) in methyl isobuthyl ketone (MIBK) followed by isopropanol washed.
  • TBAF tetrabutylammonium fluoride
  • MIBK methyl isobuthyl ketone
  • a sol-gel coated wafer is cut into 4 by 4 centimeter pieces, and the pieces are placed in the etch solution (static dipping).
  • the static dipping values are lower than the values for agitated dipping and can not be directly compared.
  • the layer is resistant to organic solvents such as acetone, isopropanol, MIBK, gasoline; but also against water, aromatic hydrocarbons and chlorinated hydrocarbons. Only the combination of organic solvent and etchant dissolved in it (TBAF) leads to a removal.
  • organic solvents such as acetone, isopropanol, MIBK, gasoline
  • TBAF etchant dissolved in it
  • hydrochloric acid HCl aq , 0.95% by weight diluted from 1 M standard solution, Carl Roth
  • HDTMS 1 volume% hexadecanetrimethoxysilane
  • Example 5 agitated dipping:
  • the 300 mm (diameter) wafer provided with a sol-gel layer is fixed on a vibratory plate and incubated with 300 ml of cleaning solution.
  • the cleaning solutions used are shown in FIG. 4 to remove.
  • the layer thickness of the sol-gel layer is determined with an interferometer, from the reaction time and the layer thickness decrease, the etching rate is after
  • Etching rate coating thickness decrease / time determined. It has been found that TBAF-containing solutions are generally to be preferred as cleaning agents.
  • a four-by-four-inch piece of sol-gel coated wafer is placed in 50 mL of etching solution. It is dispensed with movement of the solution.
  • the etch rate is determined by the equation given in Example 5. Due to the lack of permission of the solution, lower etch rates result than with agitated dipping (Example 5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Wafer-Träger-Anordnung, umfassend einen Wafer (1), ein Trägersystem (7, 4, 5), umfassend einen Träger (7) und eine Elastomerschicht (4, 5) und eine Verbindungsschicht (3), wobei die Verbindungsschicht eine Sol-Gel-Schicht ist. Die Erfindung betrifft ferner einen beschichteten Wafer für eine erfindungsgemäße Wafer-Träger-Anordnung, unter Verwendung einer Sol-Gel-Schicht als Verbindungsschicht für eine entsprechende Wafer-Träger-Anordnung sowie ein Verfahren zur Bearbeitung der Rückseite eines Wafers.

Description

WAFER-TRÄGER-ANORDNUNG, VERFAHREN ZU DEREN HERSTELLUNG UND VERWENDUNG DER ANORDNUNG BEI DER BEARBEITUNG DES WAFERS
Die vorliegende Erfindung betrifft eine Wafer-Träger-Anordnung, umfassend einen Wafer, ein Trägersystem, umfassend einen Träger und eine Elastomerschicht und eine Verbin- dungsschicht, wobei die Verbindungsschicht eine Sol-Gel-Schicht ist. Die Erfindung betrifft ferner einen beschichteten Wafer für eine erfindungsgemäße Wafer-Träger- Anordnung, die Verwendung einer Sol-Gel-Schicht als Verbindungsschicht für eine entsprechende Wafer-Träger-Anordnung sowie ein Verfahren zur Bearbeitung der Rückseite eines Wafers. Derzeit besteht hoher Bedarf an möglichst dünnen elektronischen Bauelementen und Schaltungen. Bei der Herstellung von solchen elektronischen Bauelementen und Schaltungen (Dioden, Transistoren, IC's, Sensoren etc.) werden auf Wafern (gegebenenfalls dotierten Scheiben aus Silizium, Galliumarsenid etc.) mittels verschiedener Technologieren Strukturen und Schichten zum Erzeugen der gewünschten elektronischen Funktionen aufgebracht. Gegenwärtig werden diese Wafer nach Abschluss der hierzu notwendigen Fertigungsschritte auf der Vorderseite (das ist die aktive Seite bzw. die Seite, auf der sich die aufgebrachten Strukturen befinden) mit einer Schutzfolie oder einer sonstigen Schutzschicht versehen. Diese Folie bzw. Schicht hat die Aufgabe, die Wafervorderseite und insbesondere die darauf aufgebrachten elektrischen und mechanischen Strukturen während des anschließend folgenden Dünnens und/oder anderer Bearbeitung der Rückseite des Wafers zu schützen. Das Dünnen erfolgt durch Techniken wie Grinden, Läppen, Schleifen, Ätzen oder Vergleichbares der Rückseite des Wafers.
Ziel dieses Vorgehens ist es, die ursprüngliche Dicke des Wafers zu reduzieren. Dabei wird das Ausmaß der Reduktion entscheidend von den zu erwartenden mechanischen und thermischen Belastungen während des Abdünnens und/oder der weiteren nachfolgenden Prozessschritte bestimmt: Da der Wafer, wenn er gedünnt wird, schon eine Vielzahl von Prozessschritten durchlaufen hat, stellt er bereits einen hohen wirtschaftlichen Wert dar. Daher muss das Risiko des Zerbrechens des Wafers möglichst gering gehalten werden. Dementsprechend ist eine Abdünnung in dem Maße, wie sie eigentlich gewünscht wäre, oft nicht möglich, da anderenfalls zu große Verluste durch Brechen der Wafer auftreten.
Gemäß dem Stand der Technik wird nach dem Abdünnen zur Verbesserung der Brucheigenschaften des Wafers häufig eine chemische Behandlung der Waferrückseite vorge- nommen. Nach eventuellen Reinigungsschritten wird die Schutzfolie von der Waferoberseite abgezogen oder anderweitig entfernt. Es können sich nun weitere Fertigungsschritte und/oder Maßnahmen zur Verbesserung der Eigenschaften des Wafers sowie Untersuchungen wie z. B. zur Qualitätskontrolle anschließen. Vielfach wird die Rückseite des gedünnten Wafers mit einer metallischen Schicht überzogen. Dieses Beschichtungsverfahren erfolgt meist mittels Sputtern oder ähnlichen Abscheideverfahren im Vakuum und bedingt vielfach thermische Belastung.
Danach wird der Wafer mit der Rückseite nach unten (aktive Seite nach oben) auf eine Sägefolie, eine Expansionsfolie bzw. einen Rahmen aufgelegt. Anschließend erfolgt das Vereinzeln des Wafers, d. h. der Wafer wird in vereinzelte Bauteile (Mikroplättchen, Dies) aufgetrennt. Dieses Vereinzeln erfolgt häufig mittels Rotationstrennscheiben oder anderen mechanischen Sägevorrichtungen. Es kommen aber auch Lasertrennverfahren zur Anwendung. Alternativ werden die Wafer beim Vereinzeln auch gebrochen, wobei zum Teil unterstützende Verfahren wie Ritzen zur Anwendung kommen.
Aus den genannten Gründen ist es mit den herkömmlichen Verfahren sehr schwierig, sehr dünne Wafer zu behandeln bzw. herzustellen. Diese Schwierigkeiten ergeben sich unter anderem daraus, dass der Wafer beim und nach dem Abdünnen mechanischen Belastungen ausgesetzt werden muss. Diese Belastungen treten unter anderem auf: während des Dünnens des Wafers, wobei der Wafer wenn er sehr stark abgedünnt wird, dazu neigt, sich zu wellen, während des Abziehens der Schutzfolie bzw. der Schutzschicht, die während des Abdünnens die Wafervorderseite schützt, - während des Auflegens des Wafers auf die Sägefolie und während des Transportes zwischen den einzelnen Fertigungsschritten, insbesondere aber bei der Beschichtung der Rückseite, wobei wenigstens thermische Belastungen auch dann auftreten, wenn die Rückseitenbeschichtung bereits nach dem Vereinzeln des Wafers stattfindet. Alternativ zu den genannten Verfahren werden heute auch Verfahren angewendet, bei denen der Wafer auf der Vorderseite bereits vor dem Dünnungsprozess mittels Schleifens von Ritzstrukturen, Ritzens, chemischen Ätzens, Plasmaätzens von Gräben und/oder Strukturen so strukturiert wird, dass diese Strukturen während des sich anschließenden Dünnungsprozesses mittels mechanischer und/oder chemischer Verfahren von der Rückseite so erreicht werden, dass der Wafer vereinzelt wird.
Eine Alternative bei den vorgenannten Techniken beim Dünnen und weiteren Bearbeiten des Wafers wird in der Offenlegungsschrift DE 103 53 530 und der WO 2004/051708 offenbart: In diesen Schriften wird vorgeschlagen, für das Dünnen und nachfolgende Bearbeiten des Wafers eine Trennschicht und eine Trägerschicht einzusetzen, wobei die Trennschicht eine plasmapolymere Schicht ist, die an der Trägerschicht fester haftet als am Wafer. Durch die aufgrund des Plasmapolymerisationsverfahrens durch den Fachmann einstellbaren Adhäsions- bzw. Dehäsionseigenschaften der plasmapolymeren Schicht, ist es möglich, die Schicht so auszugestalten, dass diese eine größere Haftfestigkeit mit der Trägerschicht als mit dem Wafer aufweist. Dabei kann die Haftfestigkeit zum Wafer so eingestellt werden, dass auch ein sehr dünner Wafer von der Trennschicht (und der Trägerschicht) gelöst werden kann ohne dass zu hohe mechanische Belastungen auftreten.
Nachteilig an den in den genannten Dokumenten offenbarten Verfahren ist, dass die dort vorgeschlagene Trägerschicht nicht optimal angepasst ist: Insbesondere bei dreidimensionalstrukturierten Waferoberflächen (wie z. B. mit Bumps versehene Wafer oder Wafer mit Hinterschneidung an ihrer Oberfläche) ist die vorgeschlagene Träger- schlicht (z. B. Polyimid oder Polyamid) zu hart: Da die plasmapolymere Trennschicht die Oberflächenstrukturen des Wafers im Wesentlichen mit einer gleichbleibend dicken Schicht belegt, sollten Zwischenräume wie Hinterschneidungen oder Zwischenräume zwischen den Bumps von dem Material für die Trägerschicht ausgefüllt werden. Ist dies der Fall, kommt es aufgrund der Härte der Trägerschicht allerdings dazu, dass die Trägerschicht nicht zerstörungsfrei vom Wafer wieder ablösbar ist. Füllt die Trägerschicht die Oberflächenstrukturen nicht aus, verbleiben Hohlräume, die die Haftung zwischen Träger- und Trennschicht negativ beeinflussen und zu unerwünschten Einschlüssen führen können. Hinzu tritt, dass aufgrund unterschiedlicher Wärmeausdehnungskoeffizienten von Trägerschicht und Wafer zusätzlicher mechanischer Stress für den Wafer erzeugt wird.
In der WO 2007/09946 A1 wird ein Trennverfahren offenbart, bei dem gedünnte Wafer nach dem Dünnen mechanisch getrennt werden können. Dies wird ermöglicht durch den Einsatz einer plasmapolymeren Trennschicht in Kombination mit einer Elastomerschicht. Vor dem Hintergrund des Standes der Technik war es Aufgabe der vorliegenden Erfindung, eine verbesserte Wafer-Träger-Anordnung anzugeben, die ein mechanisches Trennen eines bearbeiteten Wafers, insbesondere nach einer Dünnung, ermöglicht, ohne dass dabei der Wafer beschädigt wird. Hierbei war es wünschenswert, für die Erstellung der Wafer-Träger-Anordnung einen möglichst geringen technischen Aufwand zu benöti- gen, insbesondere was die eingesetzten Geräte betrifft.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Wafer-Träger-Anordnung umfassend einen Wafer,
ein Trägersystem, umfassend einen Träger und eine Elastomerschicht, wobei die Elastomerschicht zum Wafer hin ausgerichtet ist und
eine Verbindungsschicht, wobei die Verbindungsschicht eine Sol-Gel-Schicht ist, herstellbar aus den Monomeren
(1) Si(OR1 )4,
und einem zwei oder allen der folgenden Monomere
(2) Si(OR1 )3R2,
(3) Si(OR1 )2R3R4 und
(4) Si(OR1)R5R6R7
wobei jedes R1 unabhängig von den anderen H oder einen - C8 -Alkyl-Rest darstellt, R2, R3, R4, R5, R6 und R7 jeweils unabhängig voneinander einen - C20 -Alkyl-Rest, einen fluorierten - C20 -Alkyl-Rest, einen - C20 -Aminoalkyl-Rest, einen C2 - C20 - Alkenyl-Rest, einen Aryl-Rest, einen fluorierten Aryl-Rest, einen einfach, zweifach oder dreifach - C4— alkylierten Arylrest, wobei die Alkylierungen hinsichtlich ihrer C- Atomzahl unabhängig voneinander sind und/oder wobei der Rest auch fluoriert sein kann, oder einen C3 - C20 -Epoxy-Rest darstellen. Bevorzugt umfasst ein Wafer dabei auf seiner Vorderseite elektronische Bauelemente, wobei diese Vorderseite durch die erfindungsgemäß einzusetzende Verbindungsschicht geschützt wird.
Erfindungsgemäß bevorzugt ist eine Wafer-Träger-Anordnung, wobei in der Verbindungsschicht jedes unabhängig von den anderen H oder einen - C5 -Alkyl-Rest darstellt und/oder R2, R3, R4, R5, R6 und R7 jeweils unabhängig voneinander einen - C8 -Alkyl-Rest, einen fluorierten - C8 -Alkyl-Rest, einen - C8 -Aminoalkyl-Rest, einen C2 - C8 -Alkenyl-Rest, einen Aryl-Rest, einen fluorierten Aryl-Rest, einen einfach, zweifach oder dreifach - C4 -alkylierten Arylrest, wobei die Alkylierungen hinsichtlich ihrer C-Atomzahl unabhängig voneinander sind und/oder wobei der Rest auch fluoriert sein kann, oder einen C3 - C8 -Epoxy-Rest darstellen.
Bevorzugte Lösungsmittel bei der Herstellung der Verbindungsschicht sind ausgewählt aus der Gruppe bestehend aus Alkoholen, insbesondere Methanol, Ethanol, Propanol, Butanol, Pentanol, Wasser, aprotischen Lösungsmitteln insbesondere PGMEA (1 - Methoxy-2-propylacetat), Aceton oder Ethylacetat. Besonders bevorzugte Lösungsmittel sind ausgewählt aus der Gruppe der Alkohole, insbesondere 2-Propanol und 2-Methyl-1 - Propanol.
Bevorzugte Aktivatoren für die Sol-Gel-Reaktion bei der Herstellung der Verbindungsschicht sind ausgewählt aus der Gruppe bestehend aus Säuren und Basen, insbesondere TMAH (Tetramethylammoniumhydroxid), Ameisensäure, Salzsäure und Schwefelsäu- re. Weiterhin bevorzugte Aktivatoren sind Lewis-Säuren oder -Basen, metallorganische Verbindungen wie z.B. Tributylzinn oder auch Fluorid-haltige Verbindungen, wie z.B. TBAF (Tetrabuthylammoniumfluorid) oder Cäsiumfluorid. Besonders bevorzugte Aktivatoren sind hierbei TMAH, TBAF und Schwefelsäure.
Besonders bevorzugt ist, dass in der erfindungsgemäßen Verbindungsschicht jedes R1 unabhängig von den anderen H oder einen - C3 -Alkylrest darstellt und/oder R2, R3, R4, R5, R6 und R7 jeweils unabhängig voneinander einen - C3 -Alkylrest oder einen fluorierten C3 -Alkylrest darstellen. Überraschenderweise lässt sich die erfindungsgemäße Wafer-Träger-Anordnung sehr leicht und vor allem ohne großen mechanischen Stress für den Wafer wieder trennen. Hierbei ist es möglich, die Sol-Gel-Schicht nach dem Trennen zum Beispiel chemisch zu entfernen.
Die erfindungsgemäß einzusetzende Sol-Gel-Schicht besitzt den Vorteil, dass Sol-Gel- Schichten allgemein hinsichtlich ihrer Eigenschaften an die Anforderungen angepasst werden können. Bevorzugt sind hierbei Sol-Gel-Schichten, die bis zu 450°C< ohne chemische Veränderung temperaturwiderstandsfähig sind. Die erfindungsgemäß eingesetzte Sol-Gel-Schicht ist siliziumbasiert und somit mit Elastomeren gut kompatibel, insbesondere mit siliziumbasierten Elastomeren. Ferner ist die erfindungsgemäß einzusetzende Verbindungsschicht kostengünstig und nicht toxisch. Nach dem Auspolymerisieren ist die Sol-Gel-Schicht chemisch über einen langen Zeitraum konstant. Aufgrund der eingesetzten Monomere ist sie in typische Wafer-Fertigungsprozesse gut einführbar, da sie zum Beispiel aus einer Flüssigkeit herstellbar ist.
Bevorzugt ist eine erfindungsgemäße Wafer-Träger-Anordnung, wobei das Stoffmengenverhältnis der Monomeren (1) zur Summe der Stoffmengen der Monomeren (2), (3) und (4) 0,032 (1 : 31 ,25) bis 1 ,6 (1 ,6 : 1) bevorzugt 0,05 bis 1 (1 : 20 bis 1 : 1 ) und besonders bevorzugt 0,064 bis 0,5 (1 : 15,63 bis 0,5 : 1) beträgt.
Mit diesen Stoffmengenverhältnissen, insbesondere den bevorzugten Varianten, lassen sich besonders geeignete Verbindungsschichten für die erfindungsgemäßen Wafer- Träger-Anordnungen erstellen.
Bevorzugt ist eine erfindungsgemäße Wafer-Träger-Anordnung, bei der die Schichtdicke der Verbindungsschicht 10 bis 200 nm, bevorzugt 20 bis 150 nm und besonders bevorzugt 30 bis 100 nm beträgt.
Die bevorzugten Schichtdicken ermöglichen eine besonders stressfreie Trennung des Trägersystems vom Wafer.
Bevorzugt ist eine erfindungsgemäße Wafer-Träger-Anordnung, wobei die Elastomerschicht eine siliziumorganische Schicht ist.
Bevorzugt ist die Elastomerschicht (also eine aus Elastomer bestehende Schicht) eine Schicht, bestehend aus einem Material ausgewählt aus der Gruppe bestehend aus Methyl-, Phenyl-, Epoxyalkyl-, Epoxyarylalkylsilikon oder Silikon mit gemischten Funktionalitäten, z.B. Methylphenylsilikon; (katalytisch) über Alkylgruppen vernetztes Silikonelastomer mit wenigstens einer der vorgenannten Funktionalitäten und deren Mischungen mit Silikonharzen alle jeweils mit oder ohne Füllstoffe. Bevorzugt besitzt die Elastomerschicht eine Shore-A-Härte von 40 bis 100, bevorzugt 45 bis 90, weiter bevorzugt 50 bis 80 und besonders bevorzugt 55 bis 75. Die Shore-Härte wird dabei bestimmt nach DIN 53505-A-87.
Bevorzugt ist eine erfindungsgemäße Wafer-Träger-Anordnung, wobei die Fläche mit der geringsten Haftkraft in der Anordnung die Grenzfläche zwischen der Verbindungsschicht und der Elastomerschicht ist. Dies ist auch die bevorzugte Fläche entlang derer eine Trennung bei einer Haftkraftbestimmung gemäß Messbeispiel 1 erfolgt.
Die Haftkraft (Haftfestigkeit) zwischen den jeweiligen Schichten kann der Fachmann nach der DIN EN ISO 4618:2007-03 bestimmen, und sie wird definiert als„Gesamtheit der Bindekräfte zwischen einer Beschichtung und ihrem Untergrund". Bevorzugt wird die Haftkraft zwischen den Schichten, die die Fläche der geringsten Haftkraft (als Grenzfläche) bewirken gemäß Messbeispiel 1 bestimmt.
Der Vorteil dieser besonders bevorzugten erfindungsgemäßen Wafer-Träger-Anordnung besteht darin, dass sich aufgrund der Eigenschaften des Elastomermaterials (Flexibilität, Dehnbarkeit) eine ideale Verbindung zwischen der Elastomerschicht und der Verbin- dungsschicht auf dem Wafer herstellen lässt. Insbesondere kann die Haftfestigkeit zwischen der Verbindungsschicht und der Elastomerschicht so hergestellt werden, dass bei einer Trennung der erfindungsgemäßen Wafer-Träger-Anordnung das Elastomermaterial komplett von der Verbindungsschicht gelöst wird. Dabei erfolgt diese Trennung bevorzugt mechanisch. Bevorzugt ist eine erfindungsgemäße Wafer-Träger-Anordnung, wobei der Wafer auf der zur Verbindungsschicht gerichteten Seite (Vorderseite) elektronische Bauteile umfasst.
Bevorzugt ist eine erfindungsgemäße Wafer-Träger-Anordnung, wobei der Träger eine Glasplatte oder ein zweiter Wafer ist.
Bei Auswahl einer geeigneten Glasplatte oder eines geeigneten Wafers ist es möglich, die Wärmeausdehnungskoeffizienten des Trägers und des zu prozessierenden Wafers (des ersten Wafers) so aneinander anzupassen, dass in der erfindungsgemäßen Wafer- Träger-Anordnung keine Spannungen oder nur sehr geringe Spannungen entstehen, selbst dann, wenn das System erwärmt wird oder aufgrund mechanischer Belastungen Hitzeentwicklungen ausgesetzt ist.
Teil der Erfindung ist auch ein beschichteter Wafer einer erfindungsgemäßen Wafer- Träger-Anordnung, wobei die Beschichtung eine Verbindungsschicht ist, wie oben definiert.
Dieser beschichtete Wafer kann als Vorstufe für die erfindungsgemäße Wafer-Träger- Anordnung verwendet werden, indem ein Trägersystem, wie es oben definiert ist, auf die Verbindungsschicht aufgebracht wird.
Bevorzugt ist ein erfindungsgemäßer beschichteter Wafer, wobei die Verbindungsschicht auf der dem Wafer abgewandten Seite einen statischen Wasserrandwinkel von > 80° bevorzugt > 83°und/oder eine Oberflächenenergie von 15 - 25 mJ/m2 aufweist
Teil der Erfindung ist auch die Verwendung einer wie oben definierten Verbindungsschicht zur Herstellung einer erfindungsgemäßen Wafer-Träger-Anordnung oder eines erfindungsgemäßen beschichteten Wafers.
Teil der Erfindung ist ferner ein Verfahren zum Bearbeiten der Rückseite eines Wafers umfassend die Schritte: a) Bereitstellen einer erfindungsgemäßen Wafer-Träger-Anordnung, b) Bearbeiten der Rückseite des Wafers und c) mechanisches Trennen der Wafer-Träger-Anordnung entlang der Grenzfläche zwischen der Elastomerschicht und der Verbindungsschicht.
Bearbeiten der Rückseite des Wafers kann insbesondere sein: Metallisieren, Dünnen TSV: Through Silicon via-Kontaktierung, Lithographietechniken.
Das mechanische Trennen für das erfindungsgemäße Verfahren erfolgt bevorzugt wie folgt: Die Wafer-Träger-Anordnung wird mittels Vakuum oder mechanisch auf beiden Seiten fixiert, die flexible Fixierung an der Trägerseite wird von einer Seite beginnend angehoben, wodurch sich der Träger vom Wafer löst. Dieser Vorgang wird wie in der WO 002010072826 A2 beschrieben durchgeführt, insbesondere wie in der Fig. 3 und dem zugehörigen Text beschrieben.
Bevorzugt ist ein erfindungsgemäßes Verfahren, wobei nach Schritt c) die Verbindungsschicht chemisch vom Wafer entfernt wird.
Diese chemische Entfernung kann grundsätzlich mit jedem geeigneten Mittel erfolgen. Hierbei ist darauf zu achten, dass die Verbindungsschicht zuverlässig entfernt wird, während der Wafer und insbesondere die auf dem Wafer sich gegebenenfalls befindenden elektronischen Bauteile nicht in Mitleidenschaft gezogen werden.
Geeignete Mittel zur chemischen Entfernung der Verbindungsschicht sind dabei starke Säuren und Laugen sowie Verbindungen die Fluoridionen bereitstellen, wie z.B. TBAF, CsF, HF oder KHF2 Besonders bevorzugt ist für das chemische Entfernen der Verbindungsschicht Tetrabutylammoniumfluorid (TBAF).
TBAF ist für eine Vielzahl von Anwendungen bekannt, bislang aber nicht für die spezifische hier vorgeschlagene. So ist TBAF zum Beispiel als Mittel für die Entfernung silylhaltiger Schutzgruppen, bei der Herstellung von Sol-Gel-Systemen als Aktiva- tor/Katalysator, als Entferner für Silikone und als Phasen-Transfer-Katalysator bekannt. Eine Anwendbarkeit auf Sol-Gel-Schichten ist insbesondere im Zusammenhang mit der vorliegenden Erfindung bislang nicht bekannt gewesen.
Um eine geeignete Oberflächenenergie für die Verbindungsschicht einzustellen, wird der Fachmann eine oder mehrere der folgenden Maßnahmen treffen Das Verhältnis aus reinem Strukturbildner wie z.B. Tetraethyoxysilan (TEOS) zu dem mit Alkylresten modifizierten Silan (Modifikator), wie z.B. Methyltrimethoxysilan oder Phenyltrimethoxisilan bestimmt in hohem Maße die Oberflächenenergie und damit die resultierenden Haftkräfte der Zwischenschicht und des Elastomers. Je höher der Anteil an Modifikator, desto geringere Oberflächenenergien lassen sich erreichen. Ersetzt oder ergänzt man die Modifikatoren durch Silane mit großen Alkylresten wie Hexadecyltrimethoxysilan oder fluorierten Alkylresten, kann man die Oberflächenenergien noch weiter senken.
Durch die Wahl eines geeigneten Aktivators und dessen Menge lassen sich sowohl die Zeiten bis zur Aktivierung der Mischung, als auch die Lagerstabilität beeinflussen. Dabei gilt, je geringer der Aktivatorgehalt, desto länger benötigt die Mischung zur Aktivierung, aber auch die Lagerstabilität wird deutlich erhöht. Mit der Verringerung der Aktivatormenge lassen sich auch die resultierenden Oberflächenenergien beeinflussen: Setzt man weniger Aktivator zu, verringern sich die Oberflächenenergien. So beeinflusst auch die Wahl des Aktivators die resultierenden Haftkräfte, diese steigen für säurebasier- te Aktivatoren, wie Schwefelsäure um bis zu 35% im Vergleich zu TMAH-basierten Aktivatoren. Die Haftkräfte bei äquimolaren Ersatz von TMAH durch TBAF ändern sich hingegen kaum. Als Aktivatoren können mineralische und organische Säuren, mineralische und organische Basen, Lewis Säuren und Basen, und Fluoridionen-abspaltende Verbindungen eingesetzt werden. Auch die Temperatur während des Aushärtens der Verbindungsschicht spielt hier eine Rolle. Wählt man eine zu niedrige Temperatur, erfolgt keine ausreichende Vernetzung, die resultierenden Haftkräfte sind für ein sanftes Trennen von Träger und Device Wafer zu hoch. Bei etwa 165°C durchläuft die Haftkraft ein Minimum, um dann bei über 200°C wieder leicht anzusteigen. Die Fig. 1 stellt schematisch die Erstellung einer erfindungsgemäßen Wafer-Träger- Anordnung dar: Dabei bedeuten die Bezugszeichen:
1 Wafer (gegebenenfalls mit elektronischen Bauteilen)
2 Verbindungsschicht Precursor (flüssig)
3 Verbindungsschicht 4 Elastomer (noch nicht ausgehärtet)
5 Elastomerschicht
7 Träger Die Fig. 2 stellt schematisch die Trennung einer erfindungsgemäßen Wafer-Träger- Anordnung dar. Dabei haben die Bezugszeichen die gleiche Bedeutung wie in Fig. 1 . Zusätzlich bedeutet das Bezugszeichen
9 Zweiter Träger. In Fig. 1 a) wird zunächst der Wafer 1 auf seiner Vorderseite mit flüssigen Monomeren 2 für die Verbindungsschicht 3 (Sol-Gel-Schicht) beschichtet. Das Material 4 für die Elastomerschicht 5 ist zunächst noch flüssig.
In Schritt b) von Fig. 1 wird die Sol-Gel-Schicht 3 durch Vernetzung erstellt. Dies passiert im Regelfall durch Hitzeeinwirkung. Fig. 1 c) stellt die erfindungsgemäße Wafer-Träger-Anordnung 1 , 3, 5 in fertiger Form dar, bei der ausgehend von Fig. 1 b) zunächst Material für die Elastomerschicht 4 aufgetragen wurde. Nachfolgend wurde der Träger 7 auf die noch nicht (vollständig) ausgehärtete Elastomerschicht gebracht und nachfolgend in das Material für die Elastomerschicht 4 zur Elastomerschicht 5 ausgehärtet. In Fig. 2a) ist der bereits gedünnte Wafer 1 auf einen zweiten Träger 9 aufgebracht. Der Träger 7 und die Elastomerschicht werden gemäß Fig. 2b) mechanisch von der Verbindungsschicht getrennt. In Fig. 2c) wird schematisch dargestellt, dass die Verbindungsschicht 3 chemisch vom Wafer entfernt wird (Reinigen). Gleichzeitig kann auch der Träger 7 ebenfalls chemisch von den Resten der Elastomerschicht 5 befreit werden. Beispiele
Messbeispiele
Messbeispiel 1 : Ermittlung der Haftkraft zwischen der Verbindungsschicht und der
Elastomerschicht
Die gemäß Fig. 1 c) verbundenen Wafer werden in eine Apparatur und Anordnung gemäß Fig. 3 eingebracht und mittels Vakuum an den oberen und unteren Halteplatten fixiert. In Fig. 3 bedeutet: 1 Obere Halteplatte
2 Obere Vakuumversorgung
3 Träger
4 Elastomer
5 Device Wafer mit Verbindungsschicht (Durchmesser 300 mm)
6 Untere Vakuumplatte
7 Untere Halteplatte
8 Endpunkt
9 Vakuumversorgung Die obere Halteplatte ist flexibel ausgelegt und besteht aus Polycarbonat, Handelsname Makroion®, Bayer AG mit einem E-Modul von 2,2-2,4 GPa. Die Platte ist 5 mm dick, hat eine Breite von 340 mm und ist 400 mm lang. Die Halteplatte ist so angebracht, dass die Krafteinleitung an der längeren Seite, die den Wafer (Durchmesser 300 mm) überragt, erfolgt. Vor der Kraftmessung wird der Wafer-Stapel durch Anheben dieses freien Endes der oberen Halteplatte in Pfeilrichtung bis zur Wafer-Hälfte getrennt, so dass die Trennfront, die nun quer über den Wafer verläuft, ihre maximale Länge hat. Mit der weiteren Bewegung der Trennfront verlängert sich die wirksame freie Hebelarmlänge, und damit auch die am Messpunkt entlang der Pfeilrichtung gemessene Kraft. Die maximal gemessene Zugkraft wird als Messwert verwendet, die sich erfahrungsgemäß bei einer effektiv wirksamen Hebelarmlänge von etwa 245 mm ergibt. Dabei ist der Kraftansatzpunkt am Hebelarm 95 mm vom Waferrand entfernt. Bei Wafern, die einen anderen Durchmesser als 300 mm besitzen, wird bei der Haftkraftermittlung auf einen 300 mm-Durchmesser- Wafer umgerechnet, wobei der Fachmann sowohl die veränderte Hebellänge als auch die veränderte Länge der Trennfront mit einberechnet.
Messbeispiel 2: Bestimmung des Wasserrandwinkels
Der statische Wasserrandwinkel wird gemäß DIN 55660-2:201 1 -12 bestimmt. Messbeispiel 3: Bestimmung der Oberflächenenergie
Die Oberflächenenergie (freie Oberflächenenergie) wird gemäß DIN 55660-2:201 1 -12 bestimmt.
Messbeispiel 4: Bestimmung der Wasserabrollwinkels Auf einer Neigeplatte wird der Wafer fixiert. Anschließend wird ein Wassertropfen (deionisiert und partikelgefiltert (0,22 μηι), Waters-Millipore, Milli-Q), entweder 50μΙ_, 25 μΙ_ oder 10 μΙ_ auf den Wafer aufgebracht. Der Winkel, bei dem sich der Wassertropfen beginnt langsam zu bewegen wird ermittelt. Insgesamt werden pro Tropfengröße drei Messdurchläufe durchgeführt. Bevorzugte Werte erstrecken sich von 10-13° für 50 μΙ_ Wassertropfen, und/oder 18-25° für 25 μΙ_ Tropfen und/oder 28-55° für 10 μΙ_ Tropfen auf den ausgehärteten Verbindungsschichten.
Im Zweifelsfall wird der Wasserabrollwinkel, wie in diesem Messbeispiel insbesondere für 25 μΙ_ beschrieben, bestimmt.
Ausführunqsbeispiele Beispiel 1 :
- Isopropanol (IPA, 99,8% Carl Roth) (97,75 Vol.-%), Tetraethoxysilan (TEOS, >99,0%, Sigma-Aldrich) (0,5 Vol.-%) und Methyltrimethoxysilan (MTMS, >98,0%, Sigma- Aldrich) (1 ,5 Vol.-%) werden gemischt. Anschließend wird der Aktivator (Brönsted- oder Lewis-Säure, -Base oder Fluoridionendonor), hier 0,25 Vol.-% Tetramethyl- ammoniumhydroxid (TMAH 2,38 Gew.-% in H20, Micro Chemicals) zugegeben.
- Die Aktivität wird vor Verwendung durch einen Dip-coat überprüft. Dazu wird ein länglicher (ca. 1x5 cm) Teil eines neuen unbehandelten Silicium-Wafers kurz in die Lösung getaucht. Bildet sich beim Trocknen des Precursors eine Schicht, ist die Lösung zum Spin-coaten geeignet. Die Zeit bis zur Aktivierung beträgt wenige Minuten bis zu mehreren Tagen, abhängig von Konzentration und Aktivatorgehalt. Der zu behandelnde Wafer wird mit Precursor vollständig bedeckt (ca. 10 mL für einen 200mm Wafer, ca. 20 mL für einen 300mm Wafer) und nach etwa 30 Sekunden Standzeit für 20 Sekunden bei 1000 rpm geschleudert.
Anschließend wird die noch feuchte Schicht bei 165°C für 10 Minuten getempert, wodurch die Schichtdicke von initial 60-80 nm auf 40-60 nm sinkt, und die Schicht fest wird. Der Wasserabrollwinkel (50μί Tropfen) beträgt nun 10-13°, der Wasserkontaktwinkel (10 μΐ Tropen, statisch) 95-105°.
Ein zweiter Siliciumwafer wird mit additionsvernetzendem Silikon-Adhesive beschichtet, und in der Bond-Kammer bei vermindertem Druck (etwa 0,3 mbar) durch„force- free bonding" (wie in WO 2010/061004 A1 beschrieben) werden beide Wafer verbunden.
Nach 10 Minuten aushärten des Silikon-Adhesives kann der Waferstapel weiteren Prozessen unterworfen werden.
Zum Trennen des Waferstapels wird an einer Stelle initiiert, d.h. ein kleiner Teil des Wafers vom anderen gelöst. Anschließend wird der auf einer Vakuum-Platte fixierte untere Wafer mit einer zweiten Vakuum-Platte separiert. Dabei verbleibt die Sol-Gel Schicht auf dem Device Wafer, die Trennung erfolgt zwischen Sol-Gel release Layer und Silikon-Adhesive.
Zum Entfernen dieser Schicht wird der Wafer unter einer Rüttelbewegung (agitated dipping) 10-20 Minuten in eine Lösung aus 2,5 Gew.-% Tetrabuthylammoniumfluorid (TBAF, 97%, Sigma-Aldrich) in Methylisobuthylketon (MIBK) gelegt und anschließend mit Isopropanol gewaschen.
Alternativ wird ein mit einer Sol-Gel-Schicht versehener Wafer in 4 mal 4 Zentimeter große Stücke zerteilt, und die Stücke werden in die Ätzlösung gelegt (static dipping). Die Werte für static dipping sind geringer als die Werte für agitated dipping und können nicht direkt verglichen werden.
Die Schicht ist dabei beständig gegen organische Lösemittel wie Aceton, Isopropanol, MIBK, Benzin; aber auch gegen Wasser, aromatische Kohlenwasserstoffe und chlorierte Kohlenwasserstoffe. Erst die Kombination aus organischem Lösemittel und darin gelöstem Ätzmittel (TBAF) führt zu einer Entfernung. Beispiel 2: Alternative Mischung für die Verbindungsschicht
- 94,15 Vol.-% IPA
- 2,5 Vol.-% TEOS
- 2,5 Vol.-% MTMS
- 0,6 Vol.-% Wasser (H20)
- 0,25 Vol.-% Salzsäure (HCIaq, 0,95 Gew% verdünnt aus 1 M Maßlösung, Carl Roth)
Beispiel 3: Alternative Mischung für die Verbindungsschicht
- 97,25 Vol.-% Isopropanol
- 0,5 Vol.-% TEOS
- 1 Vol.-% MTMS
- 1 Vol.-% Hexadecantrimethoxysilan (HDTMS, ABCR Research Chemicals) [16415- 12-6] oder
1 H,1 H,2H,2H-Perfluorooctyltriethoxysilan (FAS, ABCR Research Chemicals) 0 [51851 -37-7]
- 0,25 Vol.-% TMAH
Die Chemikalien in den Beispielen 2 und 3 entsprechen denen aus Beispiel 1 , sofern nicht weiter spezifiziert.
Beispiel 4: Wasserrandwinkel
Gemäß Messbeispielen 2 und 3 wurden für die Schichten aus den Beispielen 1 bis 3 nach Aushärtung folgende Werte gemessen (Tabelle 1) Wasserrollwinkel [°]
Wasserrandwinkel [°]
50 [iL 25 [iL 10 [iL
Beispiel 1 84 12 21 40
Beispiel 2 80 13 25 52
Beispiel 3 91 1 1 22 48
Beispiel 5: agitated dipping :
Der mit einer Sol-Gel Schicht versehene 300 mm (Durchmesser) große Wafer wird auf einer Rüttelplatte fixiert, und 300 mL Reinigungslösung inkubiert. Die eingesetzten Reini- 5 gungslösungen sind der Fig . 4 zu entnehmen . Vor und nach der Reinigungsprozedur wird die Schichtdicke der Sol-Gel-Schicht mit einem Interferometer bestimmt, aus Einwirkzeit und Schichtdickenabnahme wird die Ätzrate nach
Ätzrate = Schichtdickenabnahme/Zeit bestimmt. Es hat sich herausgestellt, dass allgemein TBAF-haltige Lösungen als Reini- 10 gungsmitteln zu bevorzugen sind.
Beispiel 6: static dipping
Ein vier mal vier Zentimeter großes, mit Sol-Gel-Schicht versehenes Waferstück wird in 50 mL Ätzlösung gelegt. Dabei wird auf Bewegung der Lösung verzichtet. Die Ätzrate bestimmt sich nach der in Beispiel 5 angegeben Gleichung . Durch die fehlende Bewei s gung der Lösung ergeben sich niedrigere Ätzraten als bei agitated dipping (Beispiel 5).

Claims

Ansprüche:
1 . Wafer-Träger-Anordnung, umfassend:
einen Wafer,
ein Trägersystem, umfassend einen Träger und eine Elastomerschicht,
wobei die Elastomerschicht zum Wafer hin ausgerichtet ist und eine Verbindungsschicht,
wobei die Verbindungsschicht eine Sol-Gel-Schicht ist, herstellbar aus den Monomeren (1 ) Si(OR1)4, und einem, zwei oder allen der folgenden Monomere (2) Si(OR1)3R2, (3) Si(OR1)2R3R4 und (4) Si(OR1)R5R6R7.
wobei jedes R1 unabhängig von den anderen H oder einen - C8 -Alkyl- Rest darstellt, R2, R3, R4, R5, R6 und R7 jeweils unabhängig voneinander einen - C20 -Alkyl-Rest, einen fluorierten - C20 -Alkyl-Rest, einen - C20 -Aminoalkyl-Rest, einen C2 - C20 -Alkenyl-Rest, einen Aryl-Rest, einen fluorierten Aryl-Rest, einen einfach, zweifach oder dreifach - C4 - alkylierten Arylrest, wobei die Alkylierungen hinsichtlich ihrer C-Atomzahl unabhängig voneinander sind und/oder wobei der Rest auch fluoriert sein kann, oder einen C3 - C20 -Epoxy-Rest darstellen.
2. Wafer-Träger-Anordnung nach Anspruch 1 , wobei das Stoffmengenverhältnis der Monomeren (1 ) zur Summe der Stoffmengen der Monomeren (2), (3) und (4) 0,032 (1 : 31 ,25) bis 1 ,6 (1 ,6 : 1 ) bevorzugt 0,05 bis 1 (1 : 20 bis 1 : 1) und besonders bevorzugt 0,064 bis 0,5 (1 : 15,63 bis 0,5 : 1) beträgt.
3. Wafer-Träger-Anordnung nach Anspruch 1 oder 2, wobei die Schichtdicke der Verbindungsschicht 10 bis 200 nm, bevorzugt 20 bis 150 nm und besonders bevorzugt 30 bis 100 nm beträgt.
4. Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche,
wobei jedes R1 unabhängig von den anderen einen - C3 -Alkyl-Rest darstellt und/oder
R2, R3, R4, R5, R6 und R7 jeweils unabhängig voneinander einen - C3 - Alkyl-Rest, einen fluorierten - C3 -Alkyl-Rest, einen C2 - C3 -Alkenyl- Rest oder Phenyl-Rest darstellen.
5. Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche, wobei die Elastomerschicht eine siliziumorganische Schicht ist.
6. Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche, wobei die Fläche mit der geringsten Haftkraft in der Anordnung die Grenzfläche zwischen der Verbindungsschicht und der Elastomerschicht ist.
7. Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche, wobei der Wafer auf der zur Verbindungsschicht gerichteten Seite elektronische Bauteile umfasst.
Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche, wobei der Träger eine Glasplatte oder ein zweiter Wafer ist.
Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche, wobei die Haftkraft zwischen der Verbindungsschicht und der Elastomerschicht < 300 N/m, bevorzugt < 100 N/m bei einer Zuggeschwindigkeit von jeweils 0,1 mm/s ist.
Beschichteter Wafer für eine Wafer-Träger-Anordnung nach einem der vorangehenden Ansprüche, wobei die Beschichtung eine Verbindungsschicht ist wie in einem der vorangehenden Ansprüche definiert.
Beschichteter Wafer nach Anspruch 10, wobei die Verbindungsschicht auf der dem Wafer abgewandten Seite einen statischen Wasserrandwinkel von > 80° bevorzugt > 83° und/oder eine Oberflächenenergie von 15 - 25 mJ/m2 aufweist
12. Verwendung einer Verbindungsschicht wie in einem der vorangehenden Ansprüche definiert zur Herstellung einer Wafer-Träger-Anordnung nach einem der Ansprüche 1 - 9 oder eines Beschichteten Wafers nach einem der Ansprüche 10 oder 1 1 .
13. Verfahren zum Bearbeiten der Rückseite eines Wafers, umfassend die Schritte: a) Bereitstellen einer Wafer-Träger-Anordnung nach einem der Ansprüche 1 -9, b) Bearbeiten der Rückseite des Wafers und c) mechanisches Trennen der Wafer-Träger-Anordnung entlang der Grenzfläche zwischen der Elastomerschicht und der Verbindungsschicht.
Verfahren nach Anspruch 13, wobei nach Schritt c) die Verbindungsschicht chemisch vom Wafer entfernt wird.
PCT/IB2015/057291 2014-09-22 2015-09-22 Wafer-träger-anordnung, verfahren zu deren herstellung und verwendung der anordnung bei der bearbeitung des wafers WO2016046741A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/513,369 US11193208B2 (en) 2014-09-22 2015-09-22 Wafer/support arrangement, method for producing the arrangement, and use of the arrangement in the processing of the wafer
KR1020217042528A KR102431990B1 (ko) 2014-09-22 2015-09-22 웨이퍼/지지부 구조체, 상기 구조체의 제조 방법, 및 웨이퍼 제조 공정에서의 상기 구조체의 사용 방법
KR1020177004539A KR102408677B1 (ko) 2014-09-22 2015-09-22 웨이퍼/지지부 구조체, 상기 구조체의 제조 방법, 및 웨이퍼 제조 공정에서의 상기 구조체의 사용 방법
JP2017514852A JP6587075B2 (ja) 2014-09-22 2015-09-22 ウエハー支持構造体、その製造方法、および、ウエハーの加工におけるその構造体の使用
CN201580050238.8A CN106688089B (zh) 2014-09-22 2015-09-22 晶片载体结构及其制备方法和该结构在晶片加工中的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014219095.9 2014-09-22
DE102014219095.9A DE102014219095A1 (de) 2014-09-22 2014-09-22 Wafer-Träger-Anordnung

Publications (1)

Publication Number Publication Date
WO2016046741A1 true WO2016046741A1 (de) 2016-03-31

Family

ID=54292855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/057291 WO2016046741A1 (de) 2014-09-22 2015-09-22 Wafer-träger-anordnung, verfahren zu deren herstellung und verwendung der anordnung bei der bearbeitung des wafers

Country Status (7)

Country Link
US (1) US11193208B2 (de)
JP (1) JP6587075B2 (de)
KR (2) KR102431990B1 (de)
CN (1) CN106688089B (de)
DE (1) DE102014219095A1 (de)
TW (1) TWI677556B (de)
WO (1) WO2016046741A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102228537B1 (ko) 2018-03-23 2021-03-15 주식회사 엘지화학 백 그라인딩 테이프
JP7100825B2 (ja) * 2018-10-12 2022-07-14 東洋紡株式会社 離型フィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051708A2 (de) 2002-11-29 2004-06-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum bearbeiten eines wafers sowie wafer mit trennschicht und trägerschicht
DE10353530A1 (de) 2003-11-14 2005-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wafer mit Deckschicht und Trennschicht, Verfahren zur Herstellung eines solchen Wafers sowie Verfahren zum Dünnen bzw. Rückseitenmetallisieren eines Wafers
WO2007009946A2 (en) 2005-07-15 2007-01-25 Solvay (Société Anonyme) Process for the manufacture of eptifibatide
US20100043608A1 (en) * 2006-03-01 2010-02-25 Jakob + Richter Ip-Verwertungs- Gesellschaft Mbh Method for processing, in particular, thin rear sides of a wafer, wafer-carrier arrangement and method for producing said type of wafer-carrier arrangement
WO2010061004A1 (de) 2008-11-28 2010-06-03 Thin Materials Ag Bonding-verfahren

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019933A (ja) * 1999-07-09 2001-01-23 Dow Corning Toray Silicone Co Ltd シリコーン系接着性シート、およびその製造方法
JP2004043814A (ja) * 2002-07-15 2004-02-12 Dow Corning Toray Silicone Co Ltd シリコーン系接着性シート、半導体チップと該チップ取付部の接着方法、および半導体装置
US7153759B2 (en) * 2004-04-20 2006-12-26 Agency For Science Technology And Research Method of fabricating microelectromechanical system structures
DE102006009394A1 (de) * 2006-03-01 2007-09-06 Andreas Jakob Mehrlagenschichtsystem mit einer Schicht als Trennschicht zum Trägern von dünnen Wafern bei der Halbleiterherstellung
HUP0600668A2 (en) * 2006-08-22 2008-02-28 Avicor Kft Active carrier, process for producing thereof and the use of thereof
DE102008055155A1 (de) 2008-12-23 2010-07-01 Thin Materials Ag Trennverfahren für ein Schichtsystem umfassend einen Wafer
JP5671265B2 (ja) * 2010-06-10 2015-02-18 東京応化工業株式会社 基板の加工方法
JP5783714B2 (ja) * 2010-12-17 2015-09-24 キヤノン株式会社 光学素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051708A2 (de) 2002-11-29 2004-06-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und vorrichtung zum bearbeiten eines wafers sowie wafer mit trennschicht und trägerschicht
DE10353530A1 (de) 2003-11-14 2005-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wafer mit Deckschicht und Trennschicht, Verfahren zur Herstellung eines solchen Wafers sowie Verfahren zum Dünnen bzw. Rückseitenmetallisieren eines Wafers
WO2007009946A2 (en) 2005-07-15 2007-01-25 Solvay (Société Anonyme) Process for the manufacture of eptifibatide
US20100043608A1 (en) * 2006-03-01 2010-02-25 Jakob + Richter Ip-Verwertungs- Gesellschaft Mbh Method for processing, in particular, thin rear sides of a wafer, wafer-carrier arrangement and method for producing said type of wafer-carrier arrangement
WO2010061004A1 (de) 2008-11-28 2010-06-03 Thin Materials Ag Bonding-verfahren

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATANACIO A J ET AL: "Mechanical properties and adhesion characteristics of hybrid sol-gel thin films", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 192, no. 2-3, 21 March 2005 (2005-03-21), pages 354 - 364, XP027609382, ISSN: 0257-8972, [retrieved on 20050321] *
KOHEI WATANUKI ET AL: "Evaluation of Narrow Gap Filling Ability in Shallow Trench Isolation by Organosiloxane Sol-Gel Precursor", ECS TRANSACTIONS, 1 January 2010 (2010-01-01), US, pages 135 - 143, XP055228638, ISSN: 1938-5862, DOI: 10.1149/1.3481600 *

Also Published As

Publication number Publication date
DE102014219095A1 (de) 2016-03-24
KR20220001517A (ko) 2022-01-05
TWI677556B (zh) 2019-11-21
JP2017536690A (ja) 2017-12-07
CN106688089B (zh) 2019-09-17
TW201623506A (zh) 2016-07-01
KR102431990B1 (ko) 2022-08-12
US20170298506A1 (en) 2017-10-19
KR20170061127A (ko) 2017-06-02
US11193208B2 (en) 2021-12-07
JP6587075B2 (ja) 2019-10-09
KR102408677B1 (ko) 2022-06-14
CN106688089A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
DE102010027703B4 (de) Verfahren und Vorrichtung zum Entfernen eines reversibel angebrachten Vorrichtungswafers von einem Trägersubstrat
DE112009000140B4 (de) Verfahren zum reversiblen Anbringen eines Vorrichtungswafers an einem Trägersubstrat und ein daraus erhaltener Gegenstand
EP1994554B1 (de) Verfahren zum bearbeiten insbesondere dünnen der rückseite eines wafers, wafer-träger-anordnung hierfür und verfahren zur herstellung einer solchen wafer-träger-anordnung
EP1568071B1 (de) Wafer mit trennschicht und trägerschicht und dessen herstellungsverfahren
EP2382656B1 (de) Trennverfahren für ein schichtsystem umfassend einen wafer
WO2010124179A2 (en) Dicing before grinding process for preparation of semiconductor
WO2016046741A1 (de) Wafer-träger-anordnung, verfahren zu deren herstellung und verwendung der anordnung bei der bearbeitung des wafers
DE102007030957A1 (de) Verfahren zum Reinigen einer Halbleiterscheibe mit einer Reinigungslösung
EP1532071B1 (de) Schichtsystem mit einer siliziumschicht und einer passivierschicht, verfahren zur erzeugung einer passivierschicht auf einer siliziumschicht und deren verwendung
EP2666185A1 (de) Verfahren zum ablösen eines produktsubstrats von einem trägersubstrat
DE102015208967A1 (de) Verfahren zum Herstellen einer Siliziumkarbid-Halbleitervorrichtung
DE112013006244B4 (de) Verfahren zur Herstellung einer Verbundstruktur
DE102007021991B4 (de) Verfahren zum Herstellen eines Halbleiterbauelements durch Ausbilden einer porösen Zwischenschicht
WO2019243064A1 (de) Verfahren zum lokalen entfernen und/oder modifizieren eines polymermaterials auf einer oberfläche
EP3123503B1 (de) Verfahren zur beschichtung von kavitäten eines halbleitersubstrats
DE102006048800B4 (de) Mehrlagenschichtsystem mit hartem Träger zum Trägern von dünnen Wafern bei der Halbleiterherstellung
EP4051728A1 (de) Verfahren zur herstellung von silikon-substraten oder silikonkomposit-substraten, mit dem verfahren herstellbares silikon-substrat oder silikonkomposit-substrat sowie dessen verwendung
DE102005032454A1 (de) Verfahren zum Ablösen bzw. zum Transfer einer Transferschicht, Halbleitervorrichtung und Transferschicht
DE112008000478T5 (de) Verfahren zum Herstellen selbsttragender Membranen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15778742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177004539

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017514852

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15513369

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15778742

Country of ref document: EP

Kind code of ref document: A1