WO2016045614A1 - 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法 - Google Patents

一种单芯片差分自由层推挽式磁场传感器电桥及制备方法 Download PDF

Info

Publication number
WO2016045614A1
WO2016045614A1 PCT/CN2015/090721 CN2015090721W WO2016045614A1 WO 2016045614 A1 WO2016045614 A1 WO 2016045614A1 CN 2015090721 W CN2015090721 W CN 2015090721W WO 2016045614 A1 WO2016045614 A1 WO 2016045614A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing unit
push
magnetoresistive
magnetic field
magnetic flux
Prior art date
Application number
PCT/CN2015/090721
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US15/514,952 priority Critical patent/US10066940B2/en
Priority to EP15844302.8A priority patent/EP3199966B1/en
Priority to JP2017516713A priority patent/JP6649372B2/ja
Publication of WO2016045614A1 publication Critical patent/WO2016045614A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors

Definitions

  • the invention relates to the field of magnetic sensors, in particular to a single-chip differential free layer push-pull magnetic field sensor bridge and a preparation method thereof.
  • X-axis and Y-axis magnetic sensors In the design process of two-axis and three-axis magnetic compass chips, it is necessary to use both X-axis and Y-axis magnetic sensors.
  • magnetoresistance type sensing units there is generally a single sensitive magnetic field direction, for example, magnetic field sensitivity in the X direction.
  • the X-direction magnetic field sensitive sensing unit is generally rotated by 90 degrees to obtain the Y-direction magnetic field sensitive unit.
  • it is generally used.
  • FIG. 2a a schematic diagram of the magnetization state of the magnetoresistive sensing unit of the flying wire pinning layer is used, and then a flying wire is connected between the sliding arm and the slice of the wrist arm.
  • the Y-axis magnetoresistive sensor proposed above mainly has the following problems:
  • the present invention proposes a single-chip differential free layer push-pull magnetic field sensor bridge and a preparation method thereof, which uses a flux concentrator to achieve distortion of the direction of the Y magnetic field, and obtains -X and X directions.
  • the magnetic field component such that all of the magnetoresistive sensing units have the same pinning layer magnetization direction, the push arm and the arm are deflected by the opposite direction of the free layer
  • FIG. 2a is a type of differential free layer type magnetoresistive unit Schematic diagram of the magnetization state.
  • Each of the soft magnetic flux concentrators has sides parallel to the X-axis and the Y-axis, and four corners, which are sequentially labeled clockwise from the upper left position to A, B, C and D;
  • An array of magnetoresistive sensing elements on the substrate including a magnetoresistive sensing unit located at a gap between the soft magnetic flux concentrators;
  • the magnetoresistive sensing unit located near the A and C angular positions of any soft magnetic flux concentrator is referred to as a magneto-resistance sensing unit;
  • the magnetoresistive sensing unit located near the B and D angular positions of any soft magnetic flux concentrator is referred to as a magnetoresistive sensing unit;
  • All of the magnetoresistive sensing units are electrically connected to one or more push arms;
  • All of the magnetoresistive resistance sensing units are electrically connected to one or more arms;
  • All of the push arms and all of the pull arms are electrically connected into a push-pull sensor bridge.
  • the magnetoresistive sensing unit is a GMR spin valve or a TMR sensing unit.
  • the pinning layers of all the magnetoresistive sensing units have the same magnetization direction and are parallel to the Y-axis direction.
  • the free layer magnetization directions of the magnetoresistive sensing unit are the same and parallel to the X-axis direction.
  • the staggered array of soft magnetic flux concentrators comprises a first soft magnetic flux concentrator and a second soft magnetic flux concentrator, the first soft magnetic flux concentrator and the second soft magnetic flux concentrator are arranged in parallel a soft magnetic flux concentrator having a dimension of Ly in the Y-axis direction and a size of Lx in the X-axis direction in a row in the Y-axis direction and a row parallel to the X-axis direction, the first soft a gap between the adjacent rows of the magnetic flux concentrator and the second soft magnetic flux concentrator in the Y-axis direction is ygap, and a column of the second soft magnetic flux concentrator is opposite to the first soft magnetic flux
  • the distance by which the column of the concentrator relatively moves in the Y-axis direction is (Ly+ygap)/2.
  • the row direction of the magnetoresistive sensing cell array is parallel to the X-axis direction and the column direction is parallel to the Y-axis direction
  • the column of the magnetoresistive sensing cell array is located in the first soft magnetic flux concentration And a center of the gap between adjacent columns of the second soft magnetic flux concentrator, the push magnetoresistive sensing unit simultaneously corresponding to the angles A and C of the first and second soft magnetic flux concentrators, respectively, and the second soft magnetic flux concentrator Having a positive Y-axis displacement with respect to the first soft magnetic flux concentrator, the magnetizing resistance sensing unit simultaneously corresponding to the angle B and the angle D position of the first and second soft magnetic flux concentrators, respectively, and the second The soft magnetic flux concentrator has a negative Y-axis equivalent displacement relative to the first soft magnetic flux concentrator.
  • each column and each row of the magnetoresistive sensing cell array is composed of alternating magnetizing resistance sensing units and magnetic resistance sensing units.
  • each column of the magnetoresistive sensing cell array comprises alternating magnetizing resistance sensing units and magnetic reluctance sensing units, and the magnetoresistive sensing unit array comprises alternating magnetizing resistance sensing units.
  • Row and pull-resistance sensing unit rows The row of the magnetoresistive sensing unit is composed of a magneto-resistance sensing unit, and the row of the magnetizing resistor unit is composed of a magnetizing resistor unit.
  • each row of the magnetoresistive sensing cell array comprises alternating magnetizing resistance sensing units and magnetic reluctance sensing units, and the columns of the magnetoresistive unit arrays are alternately arranged magnetoresistive sensing units.
  • Column and magnetoresistive sensing unit columns The column of the magnetoresistive sensing unit is composed of a magneto-resistance sensing unit, and the column of the magnetizing resistor unit is composed of a magnetizing resistor unit.
  • the bias, ground and signal output terminals of the push-pull magnetic field sensor bridge are electrically connected to pads located on the front side of the substrate or pads connected to the back side of the substrate by TSVs.
  • the magnetoresistive sensing unit magnetizes the magnetic free layer of the magnetoresistive sensing unit by at least one of permanent magnet biasing, double switching, and shape anisotropy.
  • the direction is perpendicular to the magnetization direction of the magnetic pinning layer.
  • the number of magnetoresistive sensing units on the push arm and the arm is the same.
  • the rotation angles of the free layers of the magnetoresistive sensing unit on the push arm and the arm are opposite and opposite in direction with respect to the magnetization directions of the respective pinning layers.
  • the push-pull magnetic field sensor bridge is a half bridge, a full bridge or a quasi bridge.
  • the material of the substrate is glass or silicon wafer, and the substrate contains an ASIC chip or the substrate is connected to another ASIC chip.
  • the soft magnetic flux concentrator is an alloy soft magnetic material containing one or more of Fe, Ni or Co elements.
  • the single-chip differential free layer push-pull magnetic field sensor bridge further includes a test coil, which is respectively located directly above or directly below the magnetoresistive sensing unit, and the current direction of the test coil is parallel to the The Y-axis direction is described, and the currents flowing through the test coils corresponding to the push-magnetizing resistance sensing unit and the magnetizing resistance sensing unit respectively are opposite in direction and the same magnitude.
  • the single-chip differential free layer push-pull magnetic field sensor bridge further includes a reset coil, which is located directly below or directly above the magnetoresistive sensor, and the current direction of the reset coil is parallel to In the X-axis direction, the currents flowing through the reset coils corresponding to the push-type resistance sensing unit and the magnetizing resistance sensing unit respectively have the same magnitude and the same direction.
  • a reset coil which is located directly below or directly above the magnetoresistive sensor, and the current direction of the reset coil is parallel to In the X-axis direction, the currents flowing through the reset coils corresponding to the push-type resistance sensing unit and the magnetizing resistance sensing unit respectively have the same magnitude and the same direction.
  • the invention also provides a method for preparing a single-chip differential free layer push-pull magnetic field sensor bridge, the method comprising the following steps:
  • the method further comprises:
  • the step 1) is to deposit a stacked layer of the magnetoresistive sensing unit film material on the surface of the first insulating layer, and to set the magnetization direction of the magnetoresistive sensing unit film material pinning layer.
  • the step 5) further includes:
  • the step 7) is: depositing a passivation layer over the soft magnetic flux concentrator, and then speaking the position corresponding to the bottom electrode and the top electrode and the reset coil and the test coil electrode
  • the passivation layer is etched and through holes to form externally connected pads.
  • the invention also provides another single-chip differential free layer push-pull magnetic field sensor bridge preparation method, the method comprising the following steps:
  • the method further comprises depositing and patterning a reset coil conductor on the substrate such that an electrode output input thereof is connected to the Cu pillar, Depositing a layer of a first insulating layer on the surface of the reset coil conductor;
  • Step 4) is:
  • the Cu pillars are connected and the magnetization direction of the pinned layer of the magnetoresistive film material is set.
  • the step 8) is to deposit a third insulating layer over the top metal layer, open a third insulating layer window, and deposit and pattern the test coil conductor over the third insulating layer, so that Its input and output electrodes and the TSV The Cu columns are connected.
  • the material of the insulating layer is aluminum oxide, silicon nitride, silicon oxide, polyimide or photoresist.
  • the material of the passivation layer is diamond-like carbon, silicon nitride, aluminum oxide or gold.
  • the magnetization direction of the pinned layer in the magnetoresistive film material is set by high temperature annealing in a magnetic field.
  • the first related process includes photolithography, ion etching, reactive ion etching, wet etching, stripping or hard masking.
  • the second related process comprises photolithography, ion etching, reactive ion etching or wet etching.
  • the self-aligned contact hole is formed by performing a lift-off process on the magnetoresistive thin film material, by using an ion etching process or by a hard mask and a chemical mechanical polishing process.
  • Figure 1 shows the structure of the push-pull magnetoresistive sensor bridge
  • 2a and 2b are respectively a magnetization state diagram of a flip-flop layer and a differential free layer push-pull magnetoresistive sensor
  • Figure 3 is a magnetic flux distribution characteristic of the soft magnetic flux concentrator and a relative position diagram of the magnetic resistance sensing unit
  • Figure 4 is a single-chip differential free layer push-pull magnetoresistive sensor Y-direction magnetic field measurement chart
  • Figure 5 is a single-chip differential free-layer push-pull magnetoresistive sensor X-direction magnetic field measurement chart
  • Figure 6 is a diagram of a single-chip differential free-layer push-pull magnetoresistive sensor structure
  • Figure 7 is a second diagram of a single-chip differential free-layer push-pull magnetoresistive sensor structure
  • Figure 8 Single-chip differential free-layer push-pull magnetoresistive sensor structure-Y-direction magnetic field measurement diagram
  • Figure 10 Single-chip differential free-layer push-pull magnetoresistive sensor structure-sensor position Y-direction magnetic field distribution map
  • Figure 11 Single-chip differential free-layer push-pull magnetoresistive sensor structure-sensor position X-direction magnetic field distribution map
  • Figure 12 is a single-chip differential free-layer push-pull magnetoresistive sensor structure-bridge connection diagram
  • Figure 13 is a single-chip differential free-layer push-pull magnetoresistive sensor structure-test coil layout
  • Figure 14 is a single-chip differential free-layer push-pull magnetoresistive sensor structure-reset coil layout
  • Figure 15 is a structural diagram of each layer of a single-chip differential free-layer push-pull magnetoresistive sensor
  • Figure 16 is a structural diagram of each layer of a single-chip differential free-layer push-pull magnetoresistive sensor with a test and reset coil;
  • Figure 17 is a structural diagram of each layer of a TSV single-chip differential free-layer push-pull magnetoresistive sensor
  • Figure 18 shows the structure of each layer of the TSV strip test and reset coil single-chip differential free-layer push-pull magnetoresistive sensor
  • Figure 19 is a micro-fabrication process diagram of a single-chip differential free-layer push-pull magnetoresistive sensor
  • Figure 20 is a micro-fabrication process diagram of a TSV single-chip differential free-layer push-pull magnetoresistive sensor.
  • Figure 1 is a full-bridge structure diagram of a push-pull magnetoresistive sensor, including four arms R1, R2, R3 and R4, where R1 and R4 are push arms, R2 and R3 are pull arms, and for magnetoresistive sensors, push arms And the arm has the opposite magnetic field change under the action of the external magnetic field.
  • R1, R2, R3 and R4 are push arms
  • R2 and R3 are pull arms
  • magnetoresistive sensors push arms
  • the arm has the opposite magnetic field change under the action of the external magnetic field.
  • the angle between the magnetization direction of the free layer and the pinning layer is increased (decreased), respectively. And decrease (increase), and the magnitude of the change is the same.
  • FIG. 2a, 2b are two possible cases of the magnetization state in the GMR spin valve or the TMR type push-pull magnetoresistive sensor
  • FIG. 2b is the case of flipping the pinned layer, wherein the push arm magnetoresistive sensing unit and the pull The magnetization direction of the pinned layer in the arm magnetoresistive sensing unit is opposite, and the magnetization direction of the free layer is the same.
  • the flip-pin layer in Fig. 2b is the most common push-pull magnetoresistive sensor structure, which is realized by flipping the slice containing the push arm 180 to obtain the slice of the arm, and then connecting the two through the flying wire, and co-packaging in Within the same chip.
  • FIG. 2a shows the differential free layer of the present invention, wherein the pinning layer of the push arm magnetoresistive sensing unit and the arm magnetoresistive sensing unit have the same magnetization direction, but under the same external magnetic field, the magnetic circuit is utilized.
  • the role of the magnetic field of the free layer of the push arm and the arm is opposite, so that under the same external magnetic field, the angle between the magnetization direction of the free layer and the magnetization direction of the pinned layer also reverses, due to the push
  • the pinned layer and the free layer of the arm magnetoresistive sensing unit and the arm magnetoresistive sensing unit have the same magnetization state, and thus can be integrally fabricated on the same slice.
  • the soft magnetic flux concentrator 1 has sides parallel to the X and Y axes and has four corners, which are sequentially labeled as A, B, C and D in the clockwise direction from the upper left, and the external magnetic field H passes through the flux concentrator.
  • the magnetic field is distorted near the flux concentrator 1, and in addition to the Y magnetic field component, an X magnetic field component appears, wherein the magnetic field near the angular position D and the angular position B has a positive X magnetic field component at the angular position A.
  • the magnetic field near the angular position C has a negative X magnetic field component, and thus the magnetoresistive sensing units 31 and 33 located near the angle A and the angle C are defined as the magnetoresistive sensing unit, and the magnetic field located near the angle B and the angle D
  • the resistance sensing units 32 and 34 are defined as magnetoresistive sensing units, and the pinning layers of the four magnetoresistive sensing units 31, 32, 33 and 34 are in the X direction, and the free layer magnetization direction is in the Y direction.
  • the embodiment of the present application discloses a single-chip differential free layer push-pull magnetic field sensor bridge, including:
  • a substrate on the XY plane a staggered array of soft magnetic flux concentrators, each soft magnetic flux concentrator having sides parallel to the X and Y axes, and four corners, the four corners being sequentially labeled A, B, C and D; a magnetoresistive sensing cell array on a substrate comprising a magnetoresistive sensing unit located at a gap between the soft magnetic flux concentrators; A and C angles at any soft magnetic flux concentrator
  • the magnetoresistive sensing unit near the position is called a magneto-resistance sensing unit; the magnetoresistive sensing unit located near the B and D angular positions of any soft magnetic flux concentrator is called a magnetoresistive sensing unit.
  • the push magnetoresistive sensing unit is electrically connected to one or more push arms, and all of the magnetizing resistance sensing units are electrically connected to one or more arm; all of the push arms and all of the arm are electrically connected to one push Pull sensor bridge.
  • the above-mentioned staggered array of soft magnetic flux concentrators is composed of two soft magnetic flux concentrator arrays, and the soft magnetic flux concentrators of the two soft magnetic flux concentrator arrays are misaligned so that the soft magnetic flux concentrators of the two soft magnetic flux concentrator arrays A magnetic flux loop can be formed between them.
  • FIG. 4 and FIG. 5 are structural diagrams of a single-chip differential free-layer push-pull magnetoresistive sensor according to the present invention, and a schematic diagram of measurement of an external magnetic field in the X and Y directions, including a substrate on an XY plane, by 11 That is, the soft magnetic flux concentrator array in which the first and 12, that is, the second two soft magnetic flux concentrator arrays are staggered with each other, and the magnetoresistive sensor array 35 composed of the magnetoresistive resistance sensing unit and the magnetizing resistance sensing unit.
  • the soft magnetic concentrator array row direction is parallel to the X axis
  • the column direction is parallel to the Y axis
  • the Y direction gap is ygap
  • the X direction gap is xgap and rgap, that is, along the X positive direction
  • the first soft magnetic flux concentrator The X-direction gap of the first column and the first column of the adjacent second soft magnetic flux concentrator is xgap
  • the X-direction gap of the first column of the second soft magnetic flux concentrator and the second column of the first soft magnetic flux concentrator is Rgap
  • xgap and rgap have the same value
  • the soft magnetic flux concentrator has a Y-direction dimension of Ly
  • the X-direction dimension is Lx, wherein the 11 and 12 soft magnetic flux concentrator columns move relative to each other in the Y direction.
  • the magnetoresistive sensor array 35 is located at the gap of the 11 and 12 soft magnetic flux concentrators, the row direction is parallel to the X direction, and the column direction is parallel to the Y direction, wherein the magnetoresistive sensing unit is simultaneously Located near angle A and angle C, the magnetoresistive sensing unit is located near angle B and angle D, and the magnetoresistive sensing unit is electrically connected to one or more push arms, and the magnetizing resistor unit is electrically Connected into one or more arms, the push arm and the arm Electrically connected in push-pull magnetoresistive sensor bridge.
  • the B of the soft magnetic concentrator of the first row of the first column And C form a continuous magnetic flux path with D and A of the soft magnetic concentrators of the first and second rows of the second column.
  • Figure 4 also shows the direction of the magnetic field component of the sensitive direction at the position of the magnetoresistive sensor under the action of the magnetic field in the Y direction.
  • the free magnetic layer of the magnetoresistive sensing unit and the magnetoresistive sensing unit are The directions have opposite magnetic field directions relative to the direction of their pinned layers, indicating that an effective measurement of the Y-direction magnetic field is possible.
  • Figure 5 is the direction of the magnetic field component of the sensitive magnetic field at the position of the magnetoresistive sensor under the action of the magnetic field in the X direction.
  • FIG. 4 and FIG. 5 show that the single-chip differential free-layer push-pull magnetoresistive sensor has a magnetic field sensitive direction of the Y direction and is a Y-axis magnetic field sensor.
  • FIGS. 4 and 5 are structural diagram of a single-chip differential free layer push-pull magnetoresistive sensor, which is actually a special example in FIGS. 4 and 5, characterized in that each column of the magnetoresistive sensor in the Y direction is alternated.
  • the arranged magneto-resistance sensing unit and the magnetizing resistance sensing unit are arranged, and each row in the X direction is completely composed of a magnetoresistive sensing unit or a magnetoresistive sensing unit, and the magnetizing resistor row 35 and the magnetizing resistor are respectively Lines 36 are alternately arranged.
  • xgap and rgap may be different.
  • xgap is smaller than rgap to ensure that the magnetic field is concentrated as much as possible to the xgap where the magnetoresistive sensing unit is located.
  • FIG. 7 is a second structural diagram of a single-chip differential free-layer push-pull magnetoresistive sensor, which is actually another special case in FIGS. 4 and 5, characterized in that each row of the magnetoresistive sensor in the X direction is alternated.
  • the arranged magneto-resistance sensing unit and the magnetizing resistance sensing unit are arranged, and each column in the Y direction is completely composed of a magnetoresistive sensing unit or a magnetoresistive sensing unit, and the magnetoresistive sensing unit column 37 and The magnetoresistive sensing unit columns 38 are alternately arranged, at which point xgap is equal to rgap to ensure that the magnetoresistive sensor rows have the same magnetic field strength.
  • FIG. 8 and FIG. 10 are diagrams showing the X-direction magnetic field component distribution along the Y direction of each column of the magnetoresistive sensor array No. 1 to No. 5 when the single-chip differential free layer push-pull magnetic field sensor is tested for the Y magnetic field.
  • n1 ⁇ n8 correspond to 8 magnetoresistive sensing units in each row, including 4 push magnetoresistive sensing units and 4 magnetizing resistor sensing units.
  • the pushing magnets are shown.
  • the position of the resistance sensing unit and the magnetoresistive sensing unit have opposite X-direction magnetic field directions, and the amplitudes are similar, thereby forming a push-pull bridge.
  • FIG. 9 and FIG. 11 are diagrams showing the X-direction magnetic field component distribution along the Y direction of each row of the magnetoresistive sensor array in the X-magnetic field test of the single-chip differential free layer push-pull magnetic field sensor.
  • the m1 ⁇ m8 magnetoresistive sensing units in each row have the same X-direction magnetic field direction, indicating that the structure bridge does not respond to the X-direction magnetic field.
  • FIG. 12 is an electrical connection diagram of a single-chip differential free-layer push-pull magnetoresistive sensor corresponding to the structure 1. It can be seen that the magnetoresistive sensing unit and the magnetoresistive sensing unit are electrically connected into a push arm and a pull. The arm, the push arm and the arm are electrically connected by a conductor metal 41 into a bridge of a full-bridge push-pull magnetoresistive sensor, and are respectively connected to the bias electrode 8, the ground electrode 7, and the output input electrodes 5 and 6, In addition to the full bridge, the push-pull bridge can also be of the half bridge or quasi-bridge type.
  • test coil 13 is a distribution diagram of a test coil on a chip in the case where the single-chip differential free layer push-pull magnetic field sensor includes a test coil, wherein the test coil includes two segments 91 and 92, and is respectively located in the push magnetoresistive sensing unit and Above the magnetic resistance sensing unit, and the direction in which the current flows is in the Y direction, and the direction is opposite, the test coil adopts a meandering geometry to ensure that the test coil segments flowing over the magnetoresistive sensing unit are parallel and flow through the pull.
  • the test coil segments above the magnetoresistive sensing unit are also parallel to each other.
  • the 91 segment When the current is passed through the test coil, since the currents of the 91 and 92 segments are the same and the directions are opposite, the 91 segment generates the X-direction magnetic field H1 at the magnetoresistive sensing unit.
  • Section 92 produces a -X-direction magnetic field -H1 at the magnetoresistive resistance sensing unit, and the magnitude is the same, and the magnitude of the magnetic field is proportional to the current I flowing, so that the current I flowing through the test coil can simulate the external magnetic field along In the case of the Y direction, the external magnetic field passes through the magnetic field generated by the soft magnetic flux concentrator at the urging resistance sensing unit and the magnetizing resistance sensing unit, so that the test coil pair can be passed.
  • the differential differential layer push-pull magnetic field sensor is calibrated, that is, through a certain current, in this case, the change of the signal at the output end of the chip is directly measured. If the output voltage is within a certain range, the chip is a normally available chip, if not In the range, the chip is a defective chip.
  • the reset coil 93 is a distribution diagram of the reset coil 93 on the chip in the case where the single-chip differential free layer push-pull magnetic field sensor includes a reset coil 93, and it can be seen that the reset coil 93 has a meander shape, including A straight line segment above the column consisting of a magneto-resistance sensing unit and a magnetizing resistance sensing unit, respectively, and the straight line segments are parallel to the X direction, and the current directions are the same.
  • the purpose of resetting the coil 93 is to cause freedom when the single-chip differential free layer push-pull magnetic field sensor is placed in a strong magnetic field due to the irreversible movement of the domain wall during the magnetization process of the magnetic domain contained in the free layer.
  • the layer exhibits a large hysteresis under the action of an external magnetic field, deviating from the original standard test curve.
  • the direction of the current magnetic field generated by the reset coil 93 is at the location of the magnetoresistive sensing unit and the magnetizing resistance sensing unit.
  • the generated magnetic field is in the Y direction.
  • the magnetization direction of the pinning layer is the X direction and the magnetization direction of the free layer is the Y direction
  • the periodic variation of the generated Y magnetic field is Adjusting the magnetization direction and magnetization state of the free layer to a reasonable state, so that the single-chip differential free layer push-pull magnetic field sensor returns to normal operation.
  • FIG. 15 and FIG. 16 are respectively cross-sectional views of the chip in the case where the single-chip differential free layer push-pull magnetic field sensor does not include and include the test coil and the reset coil, and the substrate 4 is sequentially placed from the bottom to the top in FIG.
  • the magnetoresistive sensor 3 above 4 includes a seed layer and an underlying conductive electrode 310, a multilayer film material stack 311, and an insulating layer 600 for filling the multilayer film material stack 311, a top conductive electrode 312; An insulating layer 410 between the top conductive electrode 312 and the soft magnetic flux concentrator 1; in addition, a passivation layer 500 over the soft magnetic flux concentrator 1 above the top electrode 312, and over the top electrode layer 410 Pad 700.
  • the difference in FIG. 16 is that the reset coil 93 is located above the substrate 4, and the reset coil 93 and the bottom electrode 310 are separated by a 911 insulating layer. Further, the test coil includes the magnetoresistive sensing unit 3. The upper 91 and 92 have opposite current directions, respectively.
  • TSV Through Silicon
  • 19 is a manufacturing process diagram of a single-chip differential free layer push-pull magnetic field sensor corresponding to a pad on the front side of the chip: including the following steps
  • test coil conductors 91 and 92 depositing and constructing test coil conductors 91 and 92 over the third insulating layer
  • the passivation layer for forming the pad region is removed by a specific processing process, and the pad 700 is formed.
  • the insulating material for depositing the insulating layer may be aluminum oxide, silicon nitride, silicon oxide, polyimide, and photoresist.
  • the material forming the passivation layer is DLC, silicon nitride, aluminum oxide, and gold.
  • the related processes in the step include photolithography, ion etching, reactive ion etching, wet etching, stripping or hard masking;
  • the through hole in the step is a self-aligned contact hole formed by stripping the magnetoresistive film material by using an ion etching process or by hard mask and chemical mechanical polishing. Process to form.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种单芯片差分自由层推挽式磁场传感器电桥及制备方法,磁场传感器电桥包括衬底(4)、错列软磁通量集中器阵列(11,12)以及位于衬底(4)上具有X向磁敏感方向的GMR自旋阀或者TMR磁电阻传感单元阵列(35,36),软磁通量集中器(1)包含平行于X轴和Y轴的边以及四个角,从左上位置顺时针依次标记为A、B、C和D,磁电阻传感单元(31,32,33,34)位于软磁通量集中器(1)之间间隙处,同时对应软磁通量集中器(1)A、C角位置以及B、D角位置的磁电阻传感单元(3)分别定义为推磁电阻传感单元(31,33)和挽磁电阻传感单元(32,34),推磁电阻传感单元(31,33)电连接成一个或多个推臂,挽磁电阻传感单元(32,34)电连接成一个或多个挽臂,推臂和挽臂电连接成推挽式传感器电桥。其功耗低,磁场灵敏度高,可测量Y方向磁场。

Description

一种单芯片差分自由层推挽式磁场传感器电桥及制备方法 技术领域
本发明涉及磁性传感器领域,特别涉及一种单芯片差分自由层推挽式磁场传感器电桥及制备方法。
背景技术
在两轴和三轴磁性罗盘芯片设计过程中,需要同时用到X轴和Y轴磁敏传感器,对于磁电阻类型的传感单元,一般具有单一的敏感磁场方向,例如为X方向磁场敏感,对于Y方向磁场敏感的获得,一般采用将X方向磁场敏感传感单元旋转90度,以此来获得Y方向磁场敏感单元,其次,为了提高X或者Y轴磁电阻传感器的磁场灵敏度,通常采用推挽式电桥,其中推臂和腕臂采用分立制造的形式,即将其中的一个相对于另一个相对旋转180度,这样推臂和腕臂具有相反的钉扎层磁化方向,而自由层磁化方向相同,如图2a为这样飞线钉扎层的磁电阻传感单元的磁化状态示意图,而后在推臂和腕臂的切片之间采用飞线的形式进行连接。
以上提出的Y轴磁电阻传感器主要存在如下问题:
1)在同一平面上同时制备X和Y轴磁电阻传感器时,由于X和Y轴磁电阻传感器都为分立元件,因此无法实现集成制造,增加了工艺的复杂性,并影响了两轴或三轴传感器的测量精度。
2)推臂和腕臂无法实现集成制造的工艺,采用分立切片飞线连接的工艺,同样增加了工艺的复杂性,影响传感器的测量精度。
发明内容
为了解决以上存在的问题,本发明提出了一种单芯片差分自由层推挽式磁场传感器电桥及制备方法,采用通量集中器来实现对Y磁场的方向的扭曲,获得-X和X方向的磁场分量,这样所有的磁电阻传感单元具有相同的钉扎层磁化方向,推臂和挽臂通过自由层的相反方向的偏转来实现,图2a为这样类型差分自由层类型的磁电阻单元的磁化状态的示意图。
本发明所提出的一种单芯片差分自由层推挽式磁场传感器电桥包括:
位于X-Y平面上的衬底;
一个错列排列的软磁通量集中器阵列;
所述每个软磁通量集中器具有平行于X轴和Y轴的边,以及四个角,所述四个角从左上位置开始顺时针方向依次标记为A,B,C和D;
位于所述衬底上的磁电阻传感单元阵列,其包括位于所述软磁通量集中器之间的间隙处的磁电阻传感单元;
位于任意软磁通量集中器的A和C角位置附近的所述磁电阻传感单元称为推磁电阻传感单元;
位于任意软磁通量集中器的B和D角位置附近的所述磁电阻传感单元称为挽磁电阻传感单元;
所有所述推磁电阻传感单元电连接成一个或多个推臂;
所有所述挽磁电阻传感单元电连接成一个或多个挽臂;
所有所述推臂和所有所述挽臂电连接成一个推挽式传感器电桥。
优选的,所述磁电阻传感单元为GMR自旋阀或者TMR传感单元,无外磁场时,所有所述磁电阻传感单元的钉扎层磁化方向相同且平行于Y轴方向,所有所述磁电阻传感单元的自由层磁化方向相同且平行于X轴方向。
优选的,所述错列排列的软磁通量集中器阵列包括第一软磁通量集中器和第二软磁通量集中器,所述第一软磁通量集中器和所述第二软磁通量集中器均排列成平行于所述Y轴方向的列且平行于所述X轴方向的行,所述软磁通量集中器在所述Y轴方向尺度为Ly且在所述X轴方向尺度为Lx,所述第一软磁通量集中器和所述第二软磁通量集中器各自的相邻的行之间沿所述Y轴方向的间隙为ygap,且所述第二软磁通量集中器的列相对于所述第一软磁通量集中器的列沿所述Y轴方向相对移动的距离为(Ly+ygap)/2。
优选的,所述磁电阻传感单元阵列的行方向平行于所述X轴方向且列方向平行于所述Y轴方向,所述磁电阻传感单元阵列的列位于所述第一软磁通量集中器和第二软磁通量集中器相邻列的间隙中心,推磁电阻传感单元同时分别对应第一和第二软磁通量集中器的角A和角C位置,且所述第二软磁通量集中器相对于所述第一软磁通量集中器具有正Y轴向位移,所述挽磁电阻传感单元同时分别对应第一和第二软磁通量集中器的角B和角D位置,且所述第二软磁通量集中器相对于第一软磁通量集中器具有负Y轴向等值位移。
优选的,所述磁电阻传感单元阵列的每列和每行均由交替排列的推磁电阻传感单元和挽磁电阻传感单元组成。
优选的,所述磁电阻传感单元阵列的每列包括交替排列的推磁电阻传感单元和挽磁电阻传感单元,所述磁电阻传感单元阵列包括交替排列的推磁电阻传感单元行和挽磁电阻传感单元行, 所述推磁电阻传感单元行由推磁电阻传感单元组成,所述挽磁电阻传感单元行由挽磁电阻传感单元组成。
优选的,所述磁电阻传感单元阵列的每行包括交替排列的推磁电阻传感单元和挽磁电阻传感单元,所述磁电阻单元阵列的列为交替排列的推磁电阻传感单元列和挽磁电阻传感单元列, 所述推磁电阻传感单元列由推磁电阻传感单元组成,所述挽磁电阻传感单元列由挽磁电阻传感单元组成。
优选的,所述推挽式磁场传感器电桥的偏压,地和信号输出端电连接到位于所述衬底正面的焊盘或者通过TSV连接到所述衬底背面的焊盘。
优选的,无外磁场时,所述磁电阻传感单元通过永磁偏置,双交换作用、形状各向异性中的至少一种方式来使所述磁电阻传感单元的磁性自由层的磁化方向与磁性钉扎层的磁化方向垂直。
优选的,所述推臂和所述挽臂上的磁电阻传感单元的数量相同。
优选的,所述推臂和所述挽臂上的磁电阻传感单元的自由层相对于各自的钉扎层的磁化方向的旋转角度的幅度相同且方向相反。
优选的,所述推挽式磁场传感器电桥为半桥,全桥或者准桥。
优选的,所述衬底的材料为玻璃或硅片,且所述衬底上含有ASIC芯片或所述衬底与另外的ASIC芯片相连接。
优选的,所述软磁通量集中器为包含Fe,Ni或Co元素中的一种或多种的合金软磁材料。
优选的,单芯片差分自由层推挽式磁场传感器电桥还包括测试线圈,所述测试线圈分别位于所述磁电阻传感单元的正上方或者正下方,所述测试线圈的电流方向平行于所述Y轴方向,且测试时流经所述推磁电阻传感单元和所述挽磁电阻传感单元分别对应的所述测试线圈的电流方向相反且大小相同。
优选的,单芯片差分自由层推挽式磁场传感器电桥还包括重置线圈,所述重置线圈位于所述磁电阻传感器的正下方或者正上方,所述重置线圈的电流方向平行于所述X轴方向,流过所述推磁电阻传感单元和挽磁电阻传感单元分别对应的所述重置线圈的电流大小相同且方向相同。
本发明还提供了一种单芯片差分自由层推挽式磁场传感器电桥制备方法,该方法包括如下步骤:
1)在晶圆表面上沉积磁电阻传感单元薄膜材料的堆叠层,并设置所述薄膜材料钉扎层的磁化方向;
2)构建底层电极,并通过使用第一相关工艺来在所述磁电阻传感单元薄膜材料上构建磁电阻传感单元的图案;
3)在所述磁电阻传感单元上方沉积第二绝缘层,并通过第二相关工艺形成与所述磁电阻传感单元进行电连接的通孔;
4)在所述通孔的上方沉积一顶层金属层,通过第一相关工艺形成顶层电极,并在各所述磁电阻传感单元之间进行布线;
5)在所述顶部金属层上方沉积第三绝缘层;
6)在所述第三绝缘层上方沉积并图形化所述软磁通量集中器;
7)在所述软磁通量集中器上方沉积钝化层,再在对应所述底层电极和所述顶层电极位置的上方对所述钝化层进行刻蚀、通孔,在衬底正面形成对外连接的焊盘。
优选的,在所述步骤1)之前,所述方法还包括:
01)在晶圆表面上沉积并图形化重置线圈导体,在所述重置线圈导体表面沉积第一绝缘层;
所述步骤1)为在第一绝缘层表面上沉积磁电阻传感单元薄膜材料的堆叠层,并设置所述磁电阻传感单元薄膜材料钉扎层的磁化方向。
优选的,所述步骤5)还包括:
在所述第三绝缘层上方沉积并图形化测试线圈导体;
所述步骤7)为:在所述软磁通量集中器上方沉积钝化层,再在对应所述底部电极和所述顶部电极以及所述重置线圈和所述测试线圈电极位置的上方对所述钝化层进行刻蚀、通孔,形成对外连接的焊盘。
本发明还提供了另一种单芯片差分自由层推挽式磁场传感器电桥制备方法,所述方法包括如下步骤:
1)通过DRIE工艺在衬底上成型TSV深孔;
2)在所述深孔中电镀TSV Cu柱;
3)平整高出所述衬底表面的所述电镀TSV Cu柱;
4)在所述衬底上沉积磁电阻薄膜材料的堆叠层,使得所述电极位置与刻蚀窗口的所述TSV Cu柱相连,并设置所述磁电阻薄膜材料钉扎层的磁化方向;
5)构建底层电极,并通过使用第一相关工艺来在所述磁电阻薄膜材料上构建磁电阻传感单元的图案;
6)在所述磁电阻传感单元上方沉积一第二绝缘层,并通过第二相关工艺形成与所述磁电阻传感单元进行电连接的通孔;
7)在所述通孔的上方沉积一顶层金属层,通过第一相关工艺形成顶层电极,并在各所述磁电阻传感单元之间进行布线;
8)在所述顶层金属层上方沉积一第三绝缘层;
9)在所述第三绝缘层上方沉积软磁通量集中器;
10)在所述软磁通量集中器上方沉积钝化层;
11)将所述衬底背面减薄,使所述TSV Cu柱漏出;
12)所述衬底背面成型TSV焊盘,并使TSV焊盘和所述TSV Cu柱连接。
优选的,在所述步骤3)和4)之间,所述方法还包括在所述衬底上沉积并图形化重置线圈导体,并使得其电极输出输入端和Cu柱相连,在所述重置线圈导体表面沉积一层第一绝缘层;
步骤4)为:
刻蚀所述第一绝缘层窗口,并在所述第一绝缘层表面在所述衬底上沉积磁电阻薄膜材料的堆叠层,使得所述电极位置与刻蚀窗口的所述TSV Cu柱相连,并设置所述磁电阻薄膜材料钉扎层的磁化方向。
优选的,所述步骤8)为在所述顶层金属层上方沉积一第三绝缘层,开第三绝缘层窗口,再在所述第三绝缘层上方沉积并图形化所述测试线圈导体,使得其输入输出电极和所述TSV Cu柱相连。
优选的,所述绝缘层的材料为氧化铝,氮化硅,氧化硅,聚酰亚胺或光刻胶。
优选的,所述钝化层的材料为类金刚石炭,氮化硅,氧化铝或金。
优选的,通过磁场中进行高温退火来设置所述磁电阻薄膜材料中的钉扎层的磁化方向。
优选的,所述第一相关工艺包括光刻,离子刻蚀,反应离子刻蚀,湿法蚀刻,剥离或者硬掩膜。
优选的,所述第二相关工艺包括光刻,离子刻蚀,反应离子刻蚀或者湿法刻蚀。
优选的,所述自对准接触孔通过对所述磁电阻薄膜材料进行剥离处理来形成,通过使用离子刻蚀工艺或者通过硬掩模和化学机械抛光工艺来形成。
附图说明
图1 推挽式磁电阻传感器电桥结构图;
图2a、2b分别为翻转钉扎层、差分自由层推挽式磁电阻传感器磁化状态图;
图3 软磁通量集中器Y向磁场分布特征及磁电阻传感单元相对位置图;
图4 单芯片差分自由层推挽式磁电阻传感器Y向磁场测量图;
图5 单芯片差分自由层推挽式磁电阻传感器X向磁场测量图;
图6 单芯片差分自由层推挽式磁电阻传感器结构一图;
图7 单芯片差分自由层推挽式磁电阻传感器结构二图;
图8 单芯片差分自由层推挽式磁电阻传感器结构一Y向磁场测量图;
图9 单芯片差分自由层推挽式磁电阻传感器结构一X向磁场测量图;
图10 单芯片差分自由层推挽式磁电阻传感器结构一传感器位置Y向磁场分布图;
图11 单芯片差分自由层推挽式磁电阻传感器结构一传感器位置X向磁场分布图;
图12 单芯片差分自由层推挽式磁电阻传感器结构一电桥连接图;
图13 单芯片差分自由层推挽式磁电阻传感器结构一测试线圈排布图;
图14 单芯片差分自由层推挽式磁电阻传感器结构一重置线圈排布图;
图15 单芯片差分自由层推挽式磁电阻传感器各层结构图;
图16 带测试和重置线圈的单芯片差分自由层推挽式磁电阻传感器各层结构图;
图17 TSV单芯片差分自由层推挽式磁电阻传感器各层结构图;
图18 TSV带测试和重置线圈的单芯片差分自由层推挽式磁电阻传感器各层结构;
图19 单芯片差分自由层推挽式磁电阻传感器微制造工艺图;
图20 TSV单芯片差分自由层推挽式磁电阻传感器微制造工艺图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为推挽式磁电阻传感器的全桥结构图,包括R1,R2,R3和R4四个桥臂,其中R1和R4为推臂,R2和R3为挽臂,对于磁电阻传感器,推臂和挽臂随外磁场作用下,具有相反磁场变化特征,对于GMR自旋阀以及TMR类型的磁电阻传感单元,意味着自由层和钉扎层磁化方向的夹角分别发生增加(减小)和减小(增加),且变化的幅度相同。
图2a、2b为GMR自旋阀或者TMR类型的推挽式磁电阻传感器中的磁化状态的两种可能情况,图2b中为翻转钉扎层的情况,其中推臂磁电阻传感单元和挽臂磁电阻传感单元中钉扎层的磁化方向相反,而自由层磁化方向相同。这样,当外磁场作用时,尽管它们的自由层磁化方向发生相同的变化,但是由于钉扎层磁化方向相反,因而,两者相对于钉扎层的夹角变化相反。图2b中的翻转钉扎层为最常见的推挽式磁电阻传感器结构,其实现方式在于将包含推臂的切片翻转180得到挽臂的切片,而后将两者通过飞线连接,共同封装在同一芯片内。
图2a中为本发明提出的差分自由层的情况,其中推臂磁电阻传感单元和挽臂磁电阻传感单元中钉扎层的磁化方向相同,但是在同一外磁场作用下,利用磁路的作用,使得作用推臂和挽臂自由层的磁场方向相反,这样在同一外磁场作用下,从而使得自由层磁化方向和钉扎层磁化方向之间的夹角同样发生反向变化,由于推臂磁电阻传感单元以及挽臂磁电阻传感单元的钉扎层和自由层的磁化状态相同,因此可以集成制造在同一切片上。
实施例二
图3为本发明提出的利用软磁通量集中器将同一Y向测量外磁场H转变成具有相反两个X分量磁场的磁场分布以及对应的推磁电阻传感单元以及挽磁电阻传感单元的位置图。其中软磁通量集中器1具有平行于X和Y轴的边,且具有四个角,从左上开始沿顺时针方向依次标记为A,B,C和D,Y向外磁场H经过通量集中器1之后,磁场在通量集中器1附近产生扭曲,除了Y磁场分量之外,还出现了X磁场分量,其中在角位置D和角位置B附近的磁场具有正X磁场分量,位于角位置A和角位置C附近的磁场具有负X磁场分量,因此位于角A和角C位置附近的磁电阻传感单元31和33定义为推磁电阻传感单元,位于角B和角D位置附近的磁电阻传感单元32和34定义为挽磁电阻传感单元,31,32,33和34四个磁电阻传感单元的钉扎层方向为X方向,自由层磁化方向为Y方向。本申请实施例公开了一种单芯片差分自由层推挽式磁场传感器电桥,包括:
位于X-Y平面上的衬底;一个错列排列的软磁通量集中器阵列,其每个软磁通量集中器具有平行于X轴和Y轴的边,以及四个角,四个角依次标记为A,B,C和D;位于衬底上的磁电阻传感单元阵列,其包括位于所述软磁通量集中器之间的间隙处的磁电阻传感单元;位于任意软磁通量集中器的A和C角位置附近的所述磁电阻传感单元称为推磁电阻传感单元;位于任意软磁通量集中器的B和D角位置附近的所述磁电阻传感单元称为挽磁电阻传感单元所有所述推磁电阻传感单元电连接成一个或多个推臂,所有挽磁电阻传感单元电连接成一个或多个挽臂;所有所述推臂和所有所述挽臂电连接成一个推挽式传感器桥。
上述一个错列排列的软磁通量集中器阵列由两个软磁通量集中器阵列构成,两个软磁通量集中器阵列的软磁通量集中器错位排列,使得两个软磁通量集中器阵列的软磁通量集中器之间可以形成一个磁通回路。以下提供了几种具体结构。
实施例三
图4和图5为本发明所提出的单芯片差分自由层推挽式磁电阻传感器的结构图及其对X和Y方向外磁场的测量原理图,包括位于X-Y平面上的衬底,由11即第一和12即第二两个软磁通量集中器阵列相互错列构成的软磁通量集中器阵列,以及由推磁电阻传感单元单元和挽磁电阻传感单元组成的磁电阻传感器阵列35。所述软磁量集中器阵列行方向平行于X轴,列方向平行于Y轴,其Y方向间隙为ygap,X方向间隙为xgap和rgap,即沿X正方向,第一软磁通量集中器的第一列和相邻的第二软磁通量集中器第一列的X方向间隙为xgap,而第二软磁通量集中器的第一列和第一软磁通量集中器的第二列的X方向间隙为rgap,在本实施例中,xgap和rgap具有相同的数值,软磁通量集中器Y方向尺度为Ly,X方向尺度为Lx,其中11和12软磁通量集中器列之间沿Y方向相对移动正或负(Ly+ygap)/2距离,磁电阻传感器阵列35位于11和12软磁通量集中器的间隙处,其行方向平行于X方向,列方向平行于Y方向,其中推磁电阻传感单元同时位于角A和角C附近,挽磁电阻传感单元同时位于角B和角D附近,所述推磁电阻传感单元电连接成一个或多个推臂,所述挽磁电阻传感单元电连接成一个或多个挽臂,所述推臂和挽臂之间电连接成推挽式磁电阻传感器电桥。在上述结构中,第一列第一行的软磁量集中器的B 、C与第二列第一、第二行的软磁量集中器的D 、A形成一个连续的磁通路径。
图4还同时给出了在Y方向磁场作用下,所述磁电阻传感器位置处的敏感方向磁场分量的方向,根据图2a,所述推磁电阻传感单元和挽磁电阻传感单元自由层的方向相对于它们的钉扎层的方向具有相反的磁场方向,表明可以对Y方向磁场进行有效测量。
图5为在X方向磁场作用下,所述磁电阻传感器位置处的敏感磁场方向磁场分量的方向,根据图2a,可以看出,推磁电阻传感单元和挽磁电阻传感单元自由层的方向相对于它们的钉扎层的方向具有相同的磁场方向,此时推臂和挽臂具有相同的电阻变化,因此推挽式磁电阻传感器电桥输出为0。因此,图4和图5表明,所述单芯片差分自由层推挽式磁电阻传感器的磁场敏感方向为Y方向,为一种Y轴磁场传感器。
实施例四
图6为单芯片差分自由层推挽式磁电阻传感器的结构一图,其实际上是图4和图5中的一种特例,其特征在于,所述磁电阻传感器Y方向每列均由交替排列的推磁电阻传感单元和挽磁电阻传感单元组成,而X方向每行则完全由推磁电阻传感单元或者挽磁电阻传感单元组成,且推磁电阻行35和挽磁电阻行36交替排列,此时xgap和rgap可以不相同,在本实施例中,xgap小于rgap,以保证磁场尽可能的集中到磁电阻传感单元所在的xgap处。
实施例五
图7为单芯片差分自由层推挽式磁电阻传感器的结构二图,其实际也是图4和图5中的另一种特例,其特征在于,所述磁电阻传感器X方向每行均由交替排列的推磁电阻传感单元和挽磁电阻传感单元组成,而Y方向每列则完全由推磁电阻传感单元或者挽磁电阻传感单元组成,且推磁电阻传感单元列37和挽磁电阻传感单元列38交替排列,此时xgap等于rgap,以确保磁电阻传感器行具有相同的磁场强度。
实施例六
图8和图10为所述单芯片差分自由层推挽式磁场传感器对Y磁场测试时,所述磁电阻传感器阵列各列No.1~No.5沿Y方向的X向磁场分量分布图,图中n1~n8分别对应每行中的8个磁电阻传感单元,包括4个推磁电阻传感单元和4个挽磁电阻传感单元,从图10可以看出,所述的推磁电阻传感单元和挽磁电阻传感单元所在位置具有相反的X向磁场方向,此外,幅值也相差不多,从而构成推挽式电桥。
图9和图11为所述单芯片差分自由层推挽式磁场传感器对X磁场测试时,所述磁电阻传感器阵列各行No.1~No.5沿Y方向的X向磁场分量分布图,从图11中可以看出,对应每行中的m1~m8磁电阻传感单元,具有相同的X向磁场方向,表明,该结构电桥不会对X向磁场产生响应。
实施例七
图12为对应于结构一的单芯片差分自由层推挽式磁电阻传感器的电连接图,可以看出,所述推磁电阻传感单元和挽磁电阻传感单元电连接成推臂和挽臂,推臂和挽臂通过导体金属41电连接成一个全桥结构的推挽式磁电阻传感器电桥,并分别连接到偏压电极8,地电极7,输出输入电极5和6,所述推挽式电桥除了全桥之外,还可以为半桥或者准桥类型。
实施例八
图13为所述单芯片差分自由层推挽式磁场传感器包含测试线圈情况下,测试线圈在芯片上的分布图,其中测试线圈包括91和92两段,并且分别位于推磁电阻传感单元和挽磁电阻传感单元之上,且电流流过的方向为Y方向,且方向相反,测试线圈采用曲折几何形状,以保证流过推磁电阻传感单元上方的测试线圈段平行,流过挽磁电阻传感单元上方的测试线圈段也相互平行,当测试线圈中通过电流时,由于91和92段电流大小相同,方向相反,91段在推磁电阻传感单元处产生X向磁场H1,92段在挽磁电阻传感单元处产生-X向磁场-H1,且大小相同,且磁场大小正比于所流过的电流I,这样,采用流经测试线圈的电流I即可以仿真外磁场沿Y方向的情况下,外磁场通过软磁通量集中器在推磁电阻传感单元和挽磁电阻传感单元处所产生的磁场,这样,可以通过测试线圈对单芯片差分自由层推挽式磁场传感器进行校准,即通过一定的电流,在此情况下,直接测量芯片输出端信号的变化,如果输出电压在一定范围内,则该芯片为正常可用芯片,如果不在范围内,则该芯片为不合格芯片。
实施例九
图14为所述单芯片差分自由层推挽式磁场传感器包含重置(Reset)线圈93情况下,重置线圈93在芯片上的分布图,可以看出,重置线圈93为曲折形状,包含分别通过推磁电阻传感单元和挽磁电阻传感单元组成的列上方的直线段,且直线段平行于X方向,且电流方向一致。重置线圈93的目的在于,当单芯片差分自由层推挽式磁场传感器放置于强磁场中时,由于自由层中包含的磁畴在磁化过程中发生的不可逆的畴壁的移动过程,导致自由层在外磁场作用下出现大的磁滞,偏离了原来的标准的测试曲线,在这种情况下,重置线圈93产生的电流磁场方向在推磁电阻传感单元和挽磁电阻传感单元处所产生的磁场为Y方向,此时,由于钉扎层磁化方向为X方向,自由层磁化方向为Y方向,通过调整重置线圈中的电流的周期性变化,产生的Y磁场的周期性变化,将自由层的磁化方向和磁化状态调整调整到合理的状态,从而使得单芯片差分自由层推挽式磁场传感器恢复正常工作。
实施例十
图15和图16分别为单芯片差分自由层推挽式磁场传感器不包含和包含测试线圈和重置线圈情况下的芯片截面图,图15中从下到上依次为衬底4,位于衬底4之上的磁电阻传感器3,包括种子层及底层导电电极310,多层薄膜材料堆迭层311,以及填埋多层薄膜材料堆迭层311的绝缘层600,顶层导电电极312;此外,位于顶层导电电极312和软磁通量集中器1之间的绝缘层410;此外,还有位于顶层电极312之上软磁通量集中器1之上的钝化层500,以及位于顶层电极层410之上的焊盘700。
图16中不同之处在于,重置线圈93位于衬底4之上,且重置线圈93和底层电极310之间采用911绝缘层进行隔离,此外,测试线圈包括位于磁电阻传感单元3之上的91和92,分别具有相反的电流方向。
以上为采用芯片正面焊盘的形式,实际还还包括采用TSV(Through Silicon Vias,通过硅片通道)背面焊盘的情况,如图17和图18所示,不同之处在于,包括一个位于衬底4背面的TSV铜柱800以及焊盘900。
实施例十一
图19为对应于焊盘位于芯片正面的单芯片差分自由层推挽式磁场传感器的制造工艺图:包括如下步骤
1) 空白平滑晶圆4;
2) 在晶圆表面沉积并构建重置线圈导体93;
3) 在重置线圈导体表面沉积第一绝缘层911;
4) 在第一绝缘层表面沉积种子层及底层电极310磁电阻多层薄膜材料堆迭层311;
5) 磁退火以获得磁电阻多层薄膜材料钉扎层的磁化方向;
6) 采用相关工艺构建底层电极310以及磁电阻传感单元311的图案;
7) 在磁电阻传感单元上方沉积第二绝缘层600,并采用特定工艺对第二绝缘层600进行通孔,以漏出对应顶层电极的磁电阻多层薄膜材料堆叠层;
8) 构建顶层电极312并布线;
9) 在顶层电极上方沉积第三绝缘层410;
10) 在第三绝缘层上方沉积并构建测试线圈导体91和92;
11) 在第三绝缘层上方沉积并构建软磁通量集中器1;
12) 在软磁通量集中器上方沉积钝化层500;
13) 采用特定的加工工艺清除掉用于形成焊盘区域的钝化层,并形成焊盘700。
对于采用TSV工艺焊盘位于衬底背面时,则采用如图20所示加工步骤:
1)通过DRIE工艺在衬底4上成型TSV深孔;
2)在TSV深孔中电镀TSV Cu柱800;
3)平整高出所述衬底表面的所述电镀TSV Cu柱800;
4) 沉积并图形化重置线圈导体93,并使得其电极输出输入端和TSV Cu柱800相连(可选);
5)在所述重置线圈导体93表面沉积一层第一绝缘层911(可选);
6)刻蚀所述第一绝缘层911窗口,并在所述第一绝缘层911表面沉积磁电阻薄膜材料311的堆叠层,使得底层电极310位置与刻蚀窗口的Cu柱800相连,并设置磁电阻薄膜材料311钉扎层的磁化方向;
7)构建底层电极310,并通过使用相关工艺来在磁电阻薄膜材料311上构建磁电阻传感单元的图案;
8)在磁电阻传感单元上方沉积一第二绝缘层600,并通过相关工艺形成与磁电阻传感单元311进行电连接的通孔;
9)在通孔的上方沉积一顶层金属层312,通过相关工艺形成顶层电极,并在各磁电阻传感单元之间进行布线;
10)在所述顶层金属层312上方沉积一第三绝缘层410,开绝缘层窗口,再在第三绝缘层上方沉积并图形化测试线圈导体91和92,使得其输入输出电极和Cu柱800相连(可选);
11)在第三绝缘层410上方沉积软磁通量集中器1;
12)在软磁通量集中器1上方沉积钝化层500;
13)衬底4背面减薄,所述Cu柱800漏出;
14)成型TSV焊盘900,并使TSV焊盘和TSV Cu柱800连接;
所述沉积绝缘层的绝缘材料可为氧化铝,氮化硅,氧化硅,聚酰亚胺和光刻胶。
所述形成钝化层的材料为DLC,氮化硅,氧化铝以及金。
通过磁场中进行高温退火来设置所述磁电阻薄膜材料中的钉扎层的磁化方向;
步骤中的所述相关工艺包括光刻,离子刻蚀,反应离子刻蚀,湿法蚀刻,剥离或者硬掩膜;
步骤中的所述通孔为自对准接触孔,所述自对准接触孔通过对所述磁电阻薄膜材料进行剥离处理来形成,通过使用离子刻蚀工艺或者通过硬掩模和化学机械抛光工艺来形成。

Claims (28)

  1. 一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,包括:
    位于X-Y平面上的衬底;
    一个错列排列的软磁通量集中器阵列,其每个软磁通量集中器具有平行于X轴和Y轴的边,以及四个角,所述四个角从左上位置开始顺时针方向依次标记为A,B,C和D;
    位于所述衬底上的磁电阻传感单元阵列,其包括位于所述软磁通量集中器之间的间隙处的磁电阻传感单元;
    位于任意软磁通量集中器的A和C角位置附近的所述磁电阻传感单元称为推磁电阻传感单元;
    位于任意软磁通量集中器的B和D角位置附近的所述磁电阻传感单元称为挽磁电阻传感单元;
    所有所述推磁电阻传感单元电连接成一个或多个推臂;
    所有所述挽磁电阻传感单元电连接成一个或多个挽臂;
    所有所述推臂和所有所述挽臂电连接成一个推挽式传感器电桥。
  2. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述磁电阻传感单元为GMR自旋阀或者TMR传感单元,无外磁场时,所有所述磁电阻传感单元的钉扎层磁化方向相同且平行于Y轴方向,所有所述磁电阻传感单元的自由层磁化方向相同且平行于X轴方向。
  3. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述错列排列的软磁通量集中器阵列包括第一软磁通量集中器和第二软磁通量集中器,所述第一软磁通量集中器和所述第二软磁通量集中器均排列成平行于所述Y轴方向的列且平行于所述X轴方向的行,所述软磁通量集中器在所述Y轴方向尺度为Ly且在所述X轴方向尺度为Lx,所述第一软磁通量集中器和所述第二软磁通量集中器各自的相邻的行之间沿所述Y轴方向的间隙为ygap,且所述第二软磁通量集中器的列相对于所述第一软磁通量集中器的列沿所述Y轴方向相对移动的距离为(Ly+ygap)/2。
  4. 根据权利要求3所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述磁电阻传感单元阵列的行方向平行于所述X轴方向且列方向平行于所述Y轴方向,所述磁电阻传感单元阵列的列位于所述第一软磁通量集中器和第二软磁通量集中器相邻列的间隙中心,推磁电阻传感单元同时分别对应第一和第二软磁通量集中器的角A和角C位置,且所述第二软磁通量集中器相对于所述第一软磁通量集中器具有正Y轴向位移,所述挽磁电阻传感单元同时分别对应第一和第二软磁通量集中器的角B和角D位置,且所述第二软磁通量集中器相对于第一软磁通量集中器具有负Y轴向等值位移。
  5. 根据权利要求1,3或4所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述磁电阻传感单元阵列的每列和每行均由交替排列的推磁电阻传感单元和挽磁电阻传感单元组成。
  6. 根据权利要求1,3或4所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述磁电阻传感单元阵列的每列包括交替排列的推磁电阻传感单元和挽磁电阻传感单元,所述磁电阻传感单元阵列包括交替排列的推磁电阻传感单元行和挽磁电阻传感单元行,所述推磁电阻传感单元行由推磁电阻传感单元组成,所述挽磁电阻传感单元行由挽磁电阻传感单元组成。
  7. 根据权利要求1,3或4所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述磁电阻传感单元阵列的每行包括交替排列的推磁电阻传感单元和挽磁电阻传感单元,所述磁电阻单元阵列的列为交替排列的推磁电阻传感单元列和挽磁电阻传感单元列,所述推磁电阻传感单元列由推磁电阻传感单元组成,所述挽磁电阻传感单元列由挽磁电阻传感单元组成。
  8. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述推挽式磁场传感器电桥的偏压,地和信号输出端电连接到位于所述衬底正面的焊盘或者通过TSV连接到所述衬底背面的焊盘。
  9. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,无外磁场时,所述磁电阻传感单元通过永磁偏置、双交换作用、形状各向异性中的至少一种方式来使所述磁电阻传感单元的磁性自由层的磁化方向与磁性钉扎层的磁化方向垂直。
  10. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述推臂和所述挽臂上的磁电阻传感单元的数量相同。
  11. 根据权利要求1或2所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述推臂和所述挽臂上的磁电阻传感单元的自由层相对于各自的钉扎层的磁化方向的旋转角度的幅度相同且方向相反。
  12. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述推挽式磁场传感器电桥为半桥、全桥或者准桥。
  13. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述衬底的材料为玻璃或硅片,且所述衬底上含有ASIC芯片或所述衬底与另外的ASIC芯片相连接。
  14. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,所述软磁通量集中器为包含Fe,Ni或Co元素中的一种或多种的合金软磁材料。
  15. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,还包括测试线圈,所述测试线圈分别位于所述磁电阻传感单元的正上方或者正下方,所述测试线圈的电流方向平行于所述Y轴方向,且测试时流经所述推磁电阻传感单元和所述挽磁电阻传感单元分别对应的所述测试线圈的电流方向相反且大小相同。
  16. 根据权利要求1所述的一种单芯片差分自由层推挽式磁场传感器电桥,其特征在于,还包括重置线圈,所述重置线圈位于所述磁电阻传感器的正下方或者正上方,所述重置线圈的电流方向平行于所述X轴方向,流过所述推磁电阻传感单元和挽磁电阻传感单元分别对应的所述重置线圈的电流大小相同且方向相同。
  17. 一种单芯片差分自由层推挽式磁场传感器电桥的制备方法,其特征在于,该方法包括如下步骤:
    1)在晶圆表面上沉积磁电阻传感单元薄膜材料的堆叠层,并设置所述薄膜材料钉扎层的磁化方向;
    2)构建底层电极,并通过使用第一相关工艺来在所述磁电阻传感单元薄膜材料上构建磁电阻传感单元的图案;
    3)在所述磁电阻传感单元上方沉积第二绝缘层,并通过第二相关工艺形成与所述磁电阻传感单元进行电连接的通孔;
    4)在所述通孔的上方沉积一顶层金属层,通过第一相关工艺形成顶层电极,并在各所述磁电阻传感单元之间进行布线;
    5)在所述顶部金属层上方沉积第三绝缘层;
    6)在所述第三绝缘层上方沉积并图形化所述软磁通量集中器;
    7)在所述软磁通量集中器上方沉积钝化层,再在对应所述底层电极和所述顶层电极位置的上方对所述钝化层进行刻蚀、通孔,在衬底正面形成对外连接的焊盘。
  18. 如权利要求17所述的制备方法,其特征在于,在所述步骤1)之前,所述方法还包括:
    在晶圆表面上沉积并图形化重置线圈导体,在所述重置线圈导体表面沉积第一绝缘层;
    所述步骤1)为在第一绝缘层表面上沉积磁电阻传感单元薄膜材料的堆叠层,并设置所述磁电阻传感单元薄膜材料钉扎层的磁化方向。
  19. 如权利要求17或18所述的制备方法,其特征在于,所述步骤5)还包括:
    在所述第三绝缘层上方沉积并图形化测试线圈导体;
    所述步骤7)为:在所述软磁通量集中器上方沉积钝化层,再在对应所述底部电极和所述顶部电极以及所述重置线圈和所述测试线圈电极位置的上方对所述钝化层进行刻蚀、通孔,形成对外连接的焊盘。
  20. 一种单芯片差分自由层推挽式磁场传感器电桥的制备方法,其特征在于,所述方法包括如下步骤:
    1)通过DRIE工艺在衬底上成型TSV深孔;
    2)在所述深孔中电镀TSV Cu柱;
    3)平整高出所述衬底表面的所述电镀TSV Cu柱;
    4)在所述衬底上沉积磁电阻薄膜材料的堆叠层,使得所述电极位置与刻蚀窗口的所述TSV Cu柱相连,并设置所述磁电阻薄膜材料钉扎层的磁化方向;
    5)构建底层电极,并通过使用第一相关工艺来在所述磁电阻薄膜材料上构建磁电阻传感单元的图案;
    6)在所述磁电阻传感单元上方沉积一第二绝缘层,并通过第二相关工艺形成与所述磁电阻传感单元进行电连接的通孔;
    7)在所述通孔的上方沉积一顶层金属层,通过第一相关工艺形成顶层电极,并在各所述磁电阻传感单元之间进行布线;
    8)在所述顶层金属层上方沉积一第三绝缘层;
    9)在所述第三绝缘层上方沉积软磁通量集中器;
    10)在所述软磁通量集中器上方沉积钝化层;
    11)将所述衬底背面减薄,使所述TSV Cu柱漏出;
    12)所述衬底背面成型TSV焊盘,并使TSV焊盘和所述TSV Cu柱连接。
  21. 根据权利要求20所述的制备方法,其特征在于,在步骤3)和4)之间,所述方法还包括:在所述衬底上沉积并图形化重置线圈导体,并使得其电极输出输入端和Cu柱相连,在所述重置线圈导体表面沉积一层第一绝缘层;
    步骤4)为:
    刻蚀所述第一绝缘层窗口,并在所述第一绝缘层表面在所述衬底上沉积磁电阻薄膜材料的堆叠层,使得所述电极位置与刻蚀窗口的所述TSV Cu柱相连,并设置所述磁电阻薄膜材料钉扎层的磁化方向。
  22. 根据权利要求20或21所述的制备方法,其特征在于,所述步骤8)为在所述顶层金属层上方沉积一第三绝缘层,开第三绝缘层窗口,再在所述第三绝缘层上方沉积并图形化所述测试线圈导体,使得其输入输出电极和所述TSV Cu柱相连。
  23. 根据权利要求17或20所述的制备方法,其特征在于,所述绝缘层的材料为氧化铝,氮化硅,氧化硅,聚酰亚胺或光刻胶。
  24. 根据权利要求17或20所述的制备方法,其特征在于,所述钝化层的材料为类金刚石炭,氮化硅,氧化铝或金。
  25. 根据权利要求17或20所述的制备方法,其特征在于,通过磁场中进行高温退火来设置所述磁电阻薄膜材料中的钉扎层的磁化方向。
  26. 根据权利要求17或20所述的制备方法,其特征在于,所述第一相关工艺包括光刻,离子刻蚀,反应离子刻蚀,湿法蚀刻,剥离或者硬掩膜。
  27. 根据权利要求17或20所述的制备方法,其特征在于,所述第二相关工艺包括光刻,离子刻蚀,反应离子刻蚀或者湿法刻蚀。
  28. 根据权利要求17或20所述的制备方法,其特征在于,所述通孔为自对准接触孔,所述自对准接触孔通过对所述磁电阻薄膜材料进行剥离处理来形成,通过使用离子刻蚀工艺或者通过硬掩模和化学机械抛光工艺来形成。
PCT/CN2015/090721 2014-09-28 2015-09-25 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法 WO2016045614A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/514,952 US10066940B2 (en) 2014-09-28 2015-09-25 Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
EP15844302.8A EP3199966B1 (en) 2014-09-28 2015-09-25 Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
JP2017516713A JP6649372B2 (ja) 2014-09-28 2015-09-25 シングルチップ型差動自由層プッシュプル磁界センサブリッジおよび製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410508055.3 2014-09-28
CN201410508055.3A CN104280700B (zh) 2014-09-28 2014-09-28 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法

Publications (1)

Publication Number Publication Date
WO2016045614A1 true WO2016045614A1 (zh) 2016-03-31

Family

ID=52255771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090721 WO2016045614A1 (zh) 2014-09-28 2015-09-25 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法

Country Status (5)

Country Link
US (1) US10066940B2 (zh)
EP (1) EP3199966B1 (zh)
JP (1) JP6649372B2 (zh)
CN (1) CN104280700B (zh)
WO (1) WO2016045614A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066940B2 (en) 2014-09-28 2018-09-04 MultiDimension Technology Co., Ltd. Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
CN110320482A (zh) * 2019-07-23 2019-10-11 珠海多创科技有限公司 一种tmr全桥磁传感器及其制备方法
JP2020520088A (ja) * 2017-05-04 2020-07-02 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 単一チップ高感度磁気抵抗リニア・センサ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093139B (zh) * 2015-06-09 2017-11-24 江苏多维科技有限公司 一种推挽式x轴磁电阻传感器
CN104880682B (zh) * 2015-06-09 2018-01-26 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
US10074688B2 (en) * 2016-08-04 2018-09-11 Tdk Corporation Magnetoresistive effect device with first and second magnetoresistive effect elements having opposite current flows relative to the ordering of the layers of the elements
CN106871778B (zh) * 2017-02-23 2019-11-22 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器
CN107015171B (zh) * 2017-03-24 2023-10-24 江苏多维科技有限公司 一种具有磁滞线圈的磁传感器封装结构
CN107422283B (zh) * 2017-04-26 2023-05-30 江苏多维科技有限公司 一种具有多层磁性调制结构的低噪声磁电阻传感器
CN108413992A (zh) 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
WO2019242175A1 (en) * 2018-06-22 2019-12-26 Zhenghong Qian A three-axis magnetic sensor
US11193989B2 (en) * 2018-07-27 2021-12-07 Allegro Microsystems, Llc Magnetoresistance assembly having a TMR element disposed over or under a GMR element
US11009562B2 (en) 2018-08-03 2021-05-18 Isentek Inc. Magnetic field sensing apparatus
CN110837066B (zh) * 2018-08-17 2022-01-04 爱盛科技股份有限公司 磁场感测装置
CN115236391A (zh) * 2020-06-03 2022-10-25 珠海多创科技有限公司 磁传感芯片及闭环反馈电流传感器
CN113030804B (zh) * 2021-03-01 2022-12-23 歌尔微电子股份有限公司 传感器和电子设备
CN115856731B (zh) * 2022-11-25 2024-03-26 南方电网数字电网研究院有限公司 磁场传感器及电压测量方法
CN115825826B (zh) * 2022-12-22 2023-09-15 南方电网数字电网研究院有限公司 一种三轴全桥电路变换式线性磁场传感器
CN116243222B (zh) * 2023-03-16 2023-09-29 珠海多创科技有限公司 一种磁电阻器件及其制造方法、磁传感装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007598A1 (en) * 2010-07-09 2012-01-12 Invensense, Inc. Micromachined magnetic field sensors
JP2013224921A (ja) * 2012-03-22 2013-10-31 Asahi Kasei Electronics Co Ltd 磁場方向計測装置及び回転角度計測装置
CN103412269A (zh) * 2013-07-30 2013-11-27 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN203587785U (zh) * 2013-07-30 2014-05-07 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN104280700A (zh) * 2014-09-28 2015-01-14 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN204389663U (zh) * 2014-09-28 2015-06-10 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247278A (en) * 1991-11-26 1993-09-21 Honeywell Inc. Magnetic field sensing device
US5569544A (en) * 1992-11-16 1996-10-29 Nonvolatile Electronics, Incorporated Magnetoresistive structure comprising ferromagnetic thin films and intermediate layers of less than 30 angstroms formed of alloys having immiscible components
US5952825A (en) * 1997-08-14 1999-09-14 Honeywell Inc. Magnetic field sensing device having integral coils for producing magnetic fields
GB2372574B (en) * 2001-02-23 2004-07-21 Telcon Ltd Improved polarity sensitive magnetic sensors
JP3835447B2 (ja) * 2002-10-23 2006-10-18 ヤマハ株式会社 磁気センサ、同磁気センサの製造方法及び同製造方法に適したマグネットアレイ
DE102009008265B4 (de) * 2009-02-10 2011-02-03 Sensitec Gmbh Anordnung zur Messung mindestens einer Komponente eines Magnetfeldes
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
JP5297539B2 (ja) * 2010-01-20 2013-09-25 アルプス電気株式会社 磁気センサ
US8525514B2 (en) * 2010-03-19 2013-09-03 Memsic, Inc. Magnetometer
JP2012063232A (ja) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp 磁界検出装置の製造方法および磁界検出装置
CN102426344B (zh) * 2011-08-30 2013-08-21 江苏多维科技有限公司 三轴磁场传感器
JP5899012B2 (ja) * 2012-03-14 2016-04-06 アルプス電気株式会社 磁気センサ
US9217783B2 (en) * 2012-09-13 2015-12-22 Infineon Technologies Ag Hall effect device
US8941212B2 (en) * 2013-02-06 2015-01-27 Taiwan Semiconductor Manufacturing Co., Ltd. Helical spiral inductor between stacking die
CN104656045B (zh) * 2013-11-17 2018-01-09 爱盛科技股份有限公司 磁场感测模块、测量方法及磁场感测模块的制作方法
CN103645449B (zh) * 2013-12-24 2015-11-25 江苏多维科技有限公司 一种用于高强度磁场的单芯片参考桥式磁传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007598A1 (en) * 2010-07-09 2012-01-12 Invensense, Inc. Micromachined magnetic field sensors
JP2013224921A (ja) * 2012-03-22 2013-10-31 Asahi Kasei Electronics Co Ltd 磁場方向計測装置及び回転角度計測装置
CN103412269A (zh) * 2013-07-30 2013-11-27 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN203587785U (zh) * 2013-07-30 2014-05-07 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103630855A (zh) * 2013-12-24 2014-03-12 江苏多维科技有限公司 一种高灵敏度推挽桥式磁传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN104280700A (zh) * 2014-09-28 2015-01-14 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN204389663U (zh) * 2014-09-28 2015-06-10 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3199966A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066940B2 (en) 2014-09-28 2018-09-04 MultiDimension Technology Co., Ltd. Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
JP2020520088A (ja) * 2017-05-04 2020-07-02 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. 単一チップ高感度磁気抵抗リニア・センサ
JP7217975B2 (ja) 2017-05-04 2023-02-06 江▲蘇▼多▲維▼科技有限公司 単一チップ高感度磁気抵抗リニア・センサ
CN110320482A (zh) * 2019-07-23 2019-10-11 珠海多创科技有限公司 一种tmr全桥磁传感器及其制备方法

Also Published As

Publication number Publication date
CN104280700A (zh) 2015-01-14
US10066940B2 (en) 2018-09-04
EP3199966A4 (en) 2018-07-25
EP3199966A1 (en) 2017-08-02
JP2017534855A (ja) 2017-11-24
EP3199966B1 (en) 2019-12-25
JP6649372B2 (ja) 2020-02-19
CN104280700B (zh) 2017-09-08
US20170211935A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
WO2016045614A1 (zh) 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
WO2013123873A1 (zh) 用于测量磁场的磁电阻传感器
WO2016026419A1 (zh) 一种单芯片偏轴磁电阻z-x角度传感器和测量仪
JP6076345B2 (ja) 3軸磁場センサ
US9983271B2 (en) Measurement method for measuring an external magnetic field and manufacturing method of a magnetic field sensing module
WO2015158243A1 (zh) 一种单芯片三轴线性磁传感器及其制备方法
US8901924B2 (en) Apparatus and method for sequentially resetting elements of a magnetic sensor array
WO2018153335A1 (zh) 一种单芯片双轴磁电阻角度传感器
WO2016197841A1 (zh) 一种交叉指状y轴磁电阻传感器
WO2013182036A1 (zh) 一种磁电阻齿轮传感器
JP2008249406A (ja) 磁気インピーダンス効果素子及びその製造方法
JP6868963B2 (ja) 磁気センサおよびその製造方法
JP5641276B2 (ja) 電流センサ
TWI730063B (zh) 磁性感測器及其製造方法
JP2016223894A (ja) 磁気センサ
US9581661B2 (en) XMR-sensor and method for manufacturing the XMR-sensor
US5923162A (en) Non-inductive lead path hall effect electrical current sensor
US9523745B2 (en) Magnetic sensor and method of manufacturing the same
US7187168B2 (en) Direction sensor including first and second detecting circuits and first and second magnetic bias application parts
JP2003161770A (ja) 磁気検出素子
JP2021071488A (ja) 磁気センサ
WO2011148577A1 (ja) ホール素子回路
WO2015026167A1 (ko) 자계 센서 패키지
JPH02148637A (ja) 磁気応動スイッチ
JP2007057464A (ja) プローブカードとその製造方法及び検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844302

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017516713

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15514952

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015844302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015844302

Country of ref document: EP