WO2016043374A1 - 가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법 - Google Patents

가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법 Download PDF

Info

Publication number
WO2016043374A1
WO2016043374A1 PCT/KR2014/010291 KR2014010291W WO2016043374A1 WO 2016043374 A1 WO2016043374 A1 WO 2016043374A1 KR 2014010291 W KR2014010291 W KR 2014010291W WO 2016043374 A1 WO2016043374 A1 WO 2016043374A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
conductive
contact
tool tip
precision tool
Prior art date
Application number
PCT/KR2014/010291
Other languages
English (en)
French (fr)
Inventor
최영재
송기형
최헌종
김보현
이동윤
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US15/511,771 priority Critical patent/US20170282320A1/en
Publication of WO2016043374A1 publication Critical patent/WO2016043374A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • B23Q17/2241Detection of contact between tool and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/08Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning axles, bars, rods, tubes, rolls, i.e. shaft-turning lathes, roll lathes; Centreless turning
    • B23B5/12Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning axles, bars, rods, tubes, rolls, i.e. shaft-turning lathes, roll lathes; Centreless turning for peeling bars or tubes by making use of cutting bits arranged around the workpiece

Definitions

  • the present invention relates to a contact sensing module for detecting a contact between a workpiece and a precision tool tip and a contact sensing method using the same.
  • the present invention relates to a touch sensing module and a touch sensing method using the same for determining whether a workpiece is in contact with a precision tool tip by sensing an electrical signal that changes depending on whether the object is in contact.
  • Lathes are widely used in the processing of roll molds for producing prism sheets, which are one of the components of the BLU (Back Light Unit) for display products.
  • BLU Back Light Unit
  • precise processing is necessary because the pattern formed on the outer circumferential surface is fine.
  • Precision tool tips for forming fine patterns in nano units are used in lathes that form precise patterns on such roll molds.
  • An object of the present invention is to solve the problem of the conventional sensing object and the contact sensing module of the precision tool tip, applying a conductive layer to the precision tool tip and connecting the conductive line to each of the object and the conductive layer, the conductive By providing an electrical signal along a line, to provide a contact sensing module of the workpiece and the precision tool tip to detect the contact of the workpiece and the precision tool tip through the change of the detected electrical signal and a contact sensing method using the same.
  • a touch sensing module for detecting the contact of the precision tool tip and the workpiece in the lathe for cutting the workpiece using a precision tool tip
  • the first conductive layer is applied to the reverse processing at least in contact with the workpiece from the precision tool tip, the first conductive line and the first conductive layer connected to the workpiece to allow an electrical signal to flow
  • a conductive unit including a second conductive line connected to the second conductive line, the signal generating unit supplying an electrical signal to at least one of the first conductive line or the second conductive line
  • the sensing unit detects Includes a detection unit for determining whether or not the contact of the object to be processed with the precision tool tip in accordance with the change of the electric signal.
  • the method may further include a second conductive layer coated on one surface or the entire surface of the object to be processed in the processing object to allow an electrical signal to flow when contacted with the first conductive layer.
  • the second conductive layer may be formed only in a region in contact with the precision tool tip in the workpiece.
  • the second conductive layer may be made of the same material as the first conductive layer.
  • first conductive layer and the second conductive layer may be characterized in that the cutting tool tip is removed by mutual friction during the cutting of the workpiece.
  • the first conductive layer may be applied only to an area in contact with the object to be processed in the precision tool tip.
  • the contact detection method in order to solve the above problems, the contact for detecting the contact of the precision tool tip and the workpiece in the lathe for cutting the workpiece using a precision tool tip Regarding the detection method,
  • the first conductive layer may be applied only to an area in contact with the object to be processed in the precision tool tip.
  • the conductive unit may include a first conductive line connected to the processing object to allow an electrical signal to flow, and a second conductive line connected to the first conductive layer to allow an electrical signal to flow. Can be.
  • the method may further include coating a second conductive layer on which the electrical signal flows.
  • the first conductive layer is coated on the tip of the precision tool tip which cuts in contact with the object, and the electrical signal is received by transmitting an electrical signal with the conductive unit connected to the first conductive layer and the object, respectively.
  • the electrical signal is generated when the object is in contact with the precision tool tip, there is an advantage that can be performed automatically by the contact of the precision tool tip and the object using the electrical signal generated without the user's adjustment as a trigger.
  • FIG. 1 is a perspective view showing a state in which the contact sensing module of the present invention is installed on a cutting shelf;
  • Figure 2 is a side view showing a state in which the precision tool tip and the workpiece in contact with the lathe of Figure 1;
  • FIG. 3 is a view showing a state in which a first conductive layer is formed at the end of the precision tool tip in the lathe of FIG.
  • FIG. 4 is a view showing a state in which the processing object and the precision tool tip spaced apart from the shelf of Figure 1;
  • FIG. 5 is a view showing a state in which the precision tool tip is moved in the direction of the object to be processed by a separate transfer means in the lathe of FIG.
  • FIG. 6 is a view showing a state in which an electrical signal is changed by the contact of the precision tool tip and the workpiece in the lathe of FIG.
  • FIG. 7 is a view illustrating a state in which the first conductive layer and the second conductive layer are peeled off as the cutting tool tip of FIG. 1 processes the object;
  • FIG. 8 is a view showing a process of detecting the contact of the precision tool tip and the workpiece by using a touch sensing module installed on the shelf of FIG.
  • FIG. 1 is a perspective view showing a state in which the touch sensing module of the present invention is installed on a cutting shelf
  • Figure 2 is a side view showing a state in which the precision tool tip and the workpiece in contact with the shelf of Figure 1
  • Figure 3 is a shelf of Figure 2 Is a view showing a state in which the first conductive layer is formed at the end of the precision tool tip.
  • the contact sensing module is applied to a general cutting lathe 100, and the object to be processed 10 is formed in a roll mold shape so that the precision tool tip 124 contacts the outer surface. It is configured to be processed.
  • the shelf 100 used in the present invention is a device using the precision tool tip 124 to form a fine pattern of nano units on the object 10, the end of the precision tool tip 124 visually It is not possible to determine whether the processing object 10 and the contact.
  • the shelf 100 is fixed by contacting the precision tool tip 124 with the processing object 10 in the form of a general roll mold.
  • the object 10 in the form of a roll mold is provided on the shelf body 110 and the shelf body 110 having a pair of chucks 112 to be seated and rotated It includes a processing module 120 for cutting in contact with the processing object (10).
  • the shelf main body 110 is configured such that both ends of the object to be processed 10 is coupled to selectively rotate the object 10, the precision tool tip 124 by cutting the object 10 pattern Support to form a.
  • the object to be processed 10 is formed in the shape of a roller having a cylindrical shape, the processing area is formed on the outer peripheral surface is configured to cut by contacting the precision tool tip 124.
  • the shelf body 110 is configured to support the processing object 10 formed in the form of a roller and to selectively rotate it.
  • the processing module 120 is cut by one side is coupled to the body 122 and the other end is in contact with the processing area located on the outer peripheral surface of the processing object (10).
  • the processing module 120 is processed in contact with the object to be processed 10
  • the part in contact with the processing area is made of a material having a higher strength than the outer circumferential surface of the object 10 and has a high wear resistance. It is composed.
  • the processing module 120 includes a body 122 and a precision tool tip 124.
  • the body 122 is coupled to the shelf 100 and formed to protrude in the direction of the object to be processed 10.
  • the body 122 is configured to support the precision tool tip 124, the precision tool tip 124 is supported so as to stably contact with the processing object 10 and maintain a contact state.
  • the body 122 is adjusted in the front and rear direction in the transverse direction toward the object to be processed 10, and thus is configured to be adjusted together with the position of the precision tool tip 124.
  • the precision tool tip 124 is selectively detachably coupled to the body 122 and is fixedly coupled to one end portion protruding in the direction of the processing object 10 from the processing module 120 and the processing object 10 In contact with the processing zone.
  • the precision tool tip 124 may be made of a material different from the body 122, and the part in contact with the workpiece 10 is made of a material having a greater strength than the workpiece 10.
  • the processing module 120 is composed of the body 122 and the precision tool tip 124, the body 122 is not in contact with the object 10, the precision tool tip 124 is It protrudes from the body 122 in the direction of the object 10 and contacts the object 10.
  • the precision tool tip 124 may be replaced when the precision tool tip 124 is worn or damaged.
  • the processing region is a portion of the outer circumferential surface of the object to be processed 10 is a region in which the object 10 is cut by the precision tool tip 124 as the object 10 is rotated.
  • the lathe main body 110 fixes and rotates the processing object 10 and at the same time adjusts the position of the precision tool tip 124 to cut the processing area of the processing object 10. Do it.
  • the touch sensing module includes a first conductive layer 200, a conductive unit 400, and a sensing unit 500.
  • the first conductive layer 200 is applied to at least a region of the precision tool tip 124 in contact with the object to be processed 10 and is configured to flow an electrical signal S (see FIG. 4).
  • the precision tool tip 124 is composed of a diamond wear resistant tip is a low conductivity material. Since the tip of the precision tool tip 124 is made of a material having low conductivity, the first conductive layer 200 is formed at the tip.
  • the first conductive layer 200 is applied to the end of the precision tool tip 124 in the form of a thin film, it is configured to be peeled off by friction at the start of processing in contact with the workpiece 10.
  • the first conductive layer 200 is made of platinum and is applied to form an entire layer at the end of the precision tool tip 124.
  • the conductive unit 400 is composed of a general wire that is configured to flow the electrical signal (S) in a pair.
  • the conductive unit 400 is connected to the first object conductive line 410 and the first conductive layer 200 which are connected to the processing object 10 so that the electrical signal S can flow.
  • the second conductive line 420 allows the electrical signal S to flow.
  • the first conductive line 410 and the second conductive line 420 are respectively coupled to the processing object 10 and the first conductive layer 200, and the sensing unit 500 to be described later. Are each connected to.
  • the first conductive line 410 is connected to the object to be processed 10
  • the second conductive line 420 is connected to the first conductive layer 200 to sense the detection.
  • the electrical signal S generated by the unit 500 may flow.
  • one side of the first conductive line 410 and the second conductive line 420 is connected to the processing object 10 and the first conductive layer 200, respectively, and the other side of the sensing unit 500, respectively. It is configured to connect to).
  • the detection unit 500 generates an electrical signal (S) to the signal generating unit (not shown) for transmitting to the conductive unit 400 and the electrical signal (S) transmitted through the conductive unit 400. It includes a detector (not shown) for measuring and detecting a change thereto.
  • the signal generator is connected to at least one of the first conductive line 410 or the second conductive line 420 to supply an electrical signal (S).
  • the signal generator is connected to the second conductive line 420 and is configured to transfer a current to the first conductive layer 200.
  • the detection unit connected to the other side of the first conductive line 410 measures the electrical signal (S) transmitted from the object to be processed 10 and detects whether there is a change.
  • the sensing unit 500 supplies current to the first conductive layer 200 connected to the second conductive line 420 through the signal generator and is transmitted through the first conductive line 410. Configured to measure the current.
  • the current delivered to the first conductive layer 200 along the second conductive line 420 is the workpiece 10 And flows to the first conductive line 410.
  • the sensing unit detects the current and determines whether the processing object 10 is in contact with the precision tool tip 124.
  • a current may flow through the entire conductive unit 400. Accordingly, the first conductive line 410 is detected by the sensing unit. By sensing the current transmitted through the), it is determined whether the processing object 10 is in contact with the precision tool tip 124.
  • the sensing unit 500 may be integrally formed with the signal generator and the sensing unit, or may be separately configured, and in the present embodiment, the sensing unit 500 may be an oscilloscope or the like. It is composed of a mechanism that the detection unit 500 is composed of the signal generation unit and the detection unit integrally configured.
  • the signal generator and the detector may be configured separately.
  • the conductive unit 400 is connected to the object 10 and the precision tool tip 124, respectively.
  • a state in which a current can flow through the conductive unit 400 may be provided.
  • the object 10 and the precision tool tip 124 may be in contact with each other. To determine whether the contact.
  • the contact sensing module according to the present invention may further include a separate second conductive layer 300.
  • the object 10 is made of a non-conductive material, and thus the second conductive layer 300 is further included as shown.
  • the second conductive layer 300 is applied to one surface or the entire surface to be processed in the object to be processed 10 is configured to allow the electrical signal (S) to flow when in contact with the first conductive layer (200).
  • the second conductive layer 300 is applied to only a part of the processing area to be processed in contact with the precision tool tip 124 in the object 10, and later processed in contact with the precision tool tip 124 It may be formed in a thin film form so that it can be easily peeled off.
  • the first conductive line 410 is configured to be connected to the second conductive layer 300.
  • the first conductive line 410 is connected to the second conductive layer 300, and the second conductive line 420 is connected to the first conductive layer 200. .
  • the conductive unit 400 when the conductive unit 400 is connected to each of the first conductive layer 200 and the second conductive layer 300, the workpiece 10 and the precision tool tip 124 are in contact with each other.
  • the first conductive layer 200 and the second conductive layer 300 are in contact with each other so that an electrical signal S may flow through the entire conductive unit 400.
  • the second conductive layer 300 may be applied only to the contact area with the precision tool tip 124 in the object 10, otherwise the entire surface of the object 10 to be applied It may be.
  • the contact sensing module further includes the second conductive layer 300 so that the workpiece 10 and the precision can be stably even when the workpiece 10 is made of a non-conductive material. It may be determined whether the tool tip 124 is in contact.
  • the second conductive layer 300 may be provided to reduce the difference in electrical conductivity with the first conductive layer 200.
  • the second conductive layer 300 is formed of the same material as the first conductive layer 200 described above, so that the first conductive layer 200 receives the electrical signal S generated from the signal generator. It can be received through, thereby preventing the electrical signal (S) strength is reduced by the material difference with the first conductive layer (200).
  • the second conductive layer 300 and the first conductive layer 200 may be formed of different materials.
  • first conductive layer (@ 00) and the second conductive layer (300) may be removed during machining by contacting the precision tool tip (124) and the object (10), respectively, and energized so that electrical signals can be transmitted. If possible, any material may be used.
  • the touch sensing module includes the first conductive layer 200, the second conductive layer 300, the conductive unit 400, and the sensing unit 500.
  • the sensing unit 500 detects whether an electrical signal S flows through the conductive unit 400, and then, It is determined whether the precision tool tip 124 is in contact.
  • the position of the precision tool tip 124 is later determined. By adjusting it can process a fine pattern on the object to be processed (10).
  • the state in which the touch sensing module according to the present invention determines whether or not the processing object 10 and the precision tool tip 124 are in contact with reference to FIGS. 4 to 6 is as follows.
  • FIG. 4 is a view illustrating a state in which the processing object 10 and the precision tool tip 124 are spaced apart from each other on the shelf 100 of FIG. 1, and FIG. 5 illustrates the precision tool tip of the shelf 100 of FIG. 4.
  • 124 is a view showing a state in which a separate transfer means (not shown) by moving in the direction of the object to be processed 10
  • Figure 6 is a precision tool tip 124 and the on the shelf 100 of FIG. It is a figure which shows the state in which the electrical signal S changes by the contact of the to-be-processed object 10.
  • FIG. 4 is a view illustrating a state in which the processing object 10 and the precision tool tip 124 are spaced apart from each other on the shelf 100 of FIG. 1
  • FIG. 5 illustrates the precision tool tip of the shelf 100 of FIG. 4.
  • 124 is a view showing a state in which a separate transfer means (not shown) by moving in the direction of the object to be processed 10
  • Figure 6 is a precision tool tip 124 and the
  • the processing object 10 and the precision tool tip 124 are disposed in a spaced apart state from the shelf 100, and the second conductive line 420 is disposed on the first conductive layer 200.
  • One side of the first conductive line 410 is connected, and the second conductive layer 300 applied to the precision tool tip 124 is connected to one side of the first conductive line 410.
  • the other side of the second conductive line 420 is connected to the signal generator, and the other side of the first conductive line 410 is connected to the detection unit.
  • the signal generator transmits the electrical signal S to the first conductive layer 200 through the second conductive line 420, the first conductive layer 200 and the second Since the conductive layer 300 is spaced apart from each other, the electrical signal S may not be transmitted to the second conductive layer 300.
  • the signal detected by the sensing unit appears as the A region.
  • the sensing unit 500 is configured as an oscilloscope to supply a current to the second conductive line 420, and receives the current transmitted through the first conductive line 410 voltage It shows that measured.
  • the object 10 and the precision tool tip 124 are spaced apart from each other, even when the electrical signal S is supplied to the first conductive layer 200, the object 10 may not be transmitted to the second conductive layer 300. Therefore, the change of the electrical signal S detected by the detector does not occur.
  • the electrical signal S supplied from the signal generator is the second conductive line 420.
  • the first conductive layer 200 and the second conductive layer 300 pass through the first conductive line 410 in order and are transferred to the sensing unit.
  • the sensing unit receives the electrical signal S supplied from the signal generator along the second conductive line 420 after passing through the entire conductive unit 400.
  • the sensing unit uses the electrical signal supplied from the signal generator.
  • S) receives the first conductive layer 200, the second conductive layer 300, and the conductive unit 400 via the first conductive layer 200.
  • the electrical signal S detected by the detector is shown as region B shown in FIG. 6.
  • the first conductive layer 200 and the second conductive layer 300 according to the present invention are separated from each other during the cutting process.
  • FIG. 7 is a diagram illustrating a state in which the first conductive layer 200 and the second conductive layer 300 are peeled off as the cutting tool tip of FIG. 1 processes the object 10.
  • the first conductive layer 200 and the second conductive layer 300 each have a thin film form in the region in contact with each other in the precision tool tip 124 and the workpiece 10.
  • the precision tool tip 124 comes into contact with the object 10 and is easily peeled off due to mutual friction during processing.
  • the first conductive layer 200 and the second conductive layer 300 are peeled off, thereby not affecting the cutting pattern processed on the object to be processed 10.
  • the first conductive layer 200 and the second conductive layer 300 are thinly applied to the workpiece 10 and the precision tool tip 124, respectively, and are cut during the cutting of the workpiece 10. Because it is peeled off immediately, the precision tool tip 124 does not substantially cause interference in processing the object 10.
  • FIG. 8 is a view illustrating a process of detecting contact between the precision tool tip 124 and the processing object 10 by using the touch sensing module installed in the shelf 100 of FIG. 1.
  • an electrical signal (surface) of the precision tool tip 124 may be used. S) is subjected to the step (S01) of coating the first conductive layer 200 that can flow.
  • the first conductive layer 200 is a conductive material, is applied only to the region in contact with the object 10 in the precision tool tip 124, platinum is used in this embodiment.
  • the second conductive layer 300 may also be applied to the surface of the object 10 as a conductive material, and may be applied only to a partial region in contact with the precision tool tip 124.
  • the second conductive layer 300 may be the same material as the first conductive layer 200 described above, and different materials may be used.
  • the step of installing the conductive unit 400 in each of the first conductive layer 200 and the second conductive layer 300 is performed (S03).
  • the conductive unit 400 includes the second conductive line 420 connected to the first conductive layer 200 and the first conductive line 410 connected to the second conductive layer 300. And, each is configured so that the electrical signal (S) can be transmitted.
  • the first conductive line 410 and the second conductive line 420 are composed of wires, one side of which is connected to the second conductive layer 300 and the first conductive layer 200, respectively. The other side is connected to the sensing unit and the signal generator, respectively.
  • an electrical signal S is transmitted to the second conductive layer 300 through the conductive unit 400 (S04).
  • the conductive unit 400 is the other side of the first conductive line 410 and the second conductive line 420 are each connected to an oscilloscope, the electrical signal (S) to the entire conductive unit 400 through the oscilloscope It will be judged if it flows.
  • the object 10 and the precision tool tip 124 are spaced apart from each other, the first conductive layer 200 and the second conductive layer 300 are in a state in which mutual current cannot flow. .
  • the precision tool tip 124 passes through the processing object 10 (S05).
  • step S6 of detecting the electrical signal S transmitted through the conductive unit 400 connected to the second conductive layer 300 is performed.
  • the contact between the processing object 10 and the precision tool tip 124 is determined (S07).
  • the precision tool tip 124 is continuously in contact with the object because the precision tool tip 124 and the object 10 are not in contact with each other. Move in the direction of (10).
  • the precision tool tip 124 is stopped from approaching the object 10 (S09).
  • the contact detection module can detect whether the precision tool tip 124 is in contact with the processing object 10.
  • the electrical signal is generated when the object 10 is contacted with the precision tool tip 124 as in the present invention, using the electrical signal generated without the user's adjustment as a trigger to process the precision tool tip 124.
  • the contact of the object 10 can be performed automatically.
  • first conductive layer 300 second conductive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

본 발명은 정밀공구 팁을 이용하여 가공대상물을 절삭가공하는 선반에서 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 감지하는 접촉감지모듈에 관한 것으로, 상기 정밀공구 팁에서 적어도 상기 가공대상물과 접촉하여 가공하는 역에 도포되는 제1도전층, 상기 가공대상물에 연결되어 전기적 신호가 흐를 수 있도록 하는 제1도전라인 및 상기 제1도전층에 연결되어 전기적 신호가 흐를 수 있도록 하는 제2도전라인을 포함하는 도전유닛 및 상기 제1도전라인 또는 상기 제2도전라인 중 적어도 어느 하나에 전기적 신호를 공급하는 신호발생부 및 상기 도전유닛상에 구비되어 상기 도전유닛 전체에 전기적 신호가 흐르는지 여부를 감지하는 감지부를 포함하며, 상기 감지부에서 감지되는 전기적 신호의 변화에 따라 상기 가공대상물과 상기 정밀공구 팁의 접촉여부를 판단하는 감지유닛을 포함하는 접촉감지모듈이 개시된다.

Description

가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법
본 발명은 가공대상물과 정밀공구 팁의 접촉을 감지하는 접촉감지모듈 및 이를 이용한 접촉감지방법에 관한 것으로서, 가공대상물을 가공하는 정밀공구 팁의 끝단부에 별도의 도전층을 구비하여 도전층과 가공대상물의 접촉 여부에 다라 변화하는 전기적 신호를 감지함으로써 가공대상물과 정밀공구 팁의 접촉 여부를 판단하는 접촉감지모듈 및 이를 이용한 접촉감지방법에 관한 것이다.
디스플레이용 제품에 들어가는 BLU(Back Light Unit)의 구성 중 하나인 프리즘시트를 생산하기 위한 롤금형을 가공하는데 있어서 선반이 많이 사용되고 있다. 특히, 프리즘시트의 가공에 사용되는 롤금형의 경우, 외주면에 형성된 패턴이 미세하기 때문에 정밀한 가공이 필요하다.
이러한 롤금형에 정밀한 패턴을 형성하는 선반에는 나노 단위의 미세한 패턴을 형성하기 위한 정밀공구 팁이 사용된다.
하지만 이와 같이 미세한 정밀가공에 사용되는 팁의 경우 실제로 사용자의 시야를 통한 관찰이 어려우며, 이에 따라 가공대상이 되는 금형과 정밀공구 팁의 접촉 여부를 판단하기 어려운 문제점이 있었다.
이에 따라, 종래에는 단순히 광이나 현미경을 이용하여 팁의 끝단부 위치를 판단하거나, 팁에 별도의 압전센서를 구비하여 팁과 금형의 접촉에 의해 발생되는 부하의 측정을 통해 정밀공구 팁의 접촉 여부를 판단하는 기술이 개발되었다.
하지만, 현미경을 이용하여 팁과 금형의 접촉여부를 판단하기 위해서는 팁이 가공대상물을 가공해야 판단이 가능하였으며, 이에 따라 가공된 깊이만큼의 오차가 발생하므로 정밀공구 팁의 정확한 영점 위치 세팅에 오차가 발생하게 된다.
또한, 압전센서를 통해 팁에 작용하는 부하를 이용하여 금형과 팁의 접촉여부를 판단하는 경우, 팁과 금형의 접촉 시 매우 미세한 절삭 부하 감지가 실질적으로 어려워 초정밀 미세가공에는 적용할 수 없는 문제점이 있었다.
즉, 종래에 개발된 금형과 팁의 접촉을 감지하여 팁의 초기 위치를 세팅하는 방법으로는 초정밀 미세가공에 적용하더라도 많은 오차가 발생하는 문제가 있으며, 이를 해결하기 위한 기술의 개발이 필요하였다.
본 발명의 목적은 종래에 사용되던 가공대상물과 정밀공구 팁의 접촉감지모듈의 문제점을 해결하기 위한 것으로, 정밀공구 팁에 도전층을 도포하고 가공대상물과 도전층 각각에 도전라인을 연결하며, 도전라인을 따라 전기적 신호를 송신함으로써, 감지되는 전기적 신호의 변화 여부를 통해 가공대상물과 정밀공구 팁의 접촉을 감지하는 가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법을 제공함에 있다.
상기한 과제를 해결하기 위하여 본 발명의 일 측면에 따른 접촉감지모듈은, 정밀공구 팁을 이용하여 가공대상물을 절삭가공하는 선반에서 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 감지하는 접촉감지모듈에 관한 것으로, 상기 정밀공구 팁에서 적어도 상기 가공대상물과 접촉하여 가공하는 역에 도포되는 제1도전층, 상기 가공대상물에 연결되어 전기적 신호가 흐를 수 있도록 하는 제1도전라인 및 상기 제1도전층에 연결되어 전기적 신호가 흐를 수 있도록 하는 제2도전라인을 포함하는 도전유닛 및 상기 제1도전라인 또는 상기 제2도전라인 중 적어도 어느 하나에 전기적 신호를 공급하는 신호발생부 및 상기 도전유닛상에 구비되어 상기 도전유닛 전체에 전기적 신호가 흐르는지 여부를 감지하는 감지부를 포함하며, 상기 감지부에서 감지되는 전기적 신호의 변화에 따라 상기 가공대상물과 상기 정밀공구 팁의 접촉여부를 판단하는 감지유닛을 포함한다.
또한, 상기 가공대상물에서 가공 대상이 되는 일면 또는 표면 전체에 도포되어 상기 제1도전층과 접촉 시 전기적 신호가 흐를 수 있도록 하는 제2도전층을 더 포함하는 것을 특징으로 할 수 있다.
또한, 상기 제2도전층은 상기 가공대상물에서 상기 정밀공구 팁과 접촉하는 영역에만 형성되는 것을 특징으로 할 수 있다.
또한, 상기 제2도전층은 상기 제1도전층과 동일한 소재로 구성되는 것을 특징으로 할 수 있다.
또한, 상기 제1도전층 및 상기 제2도전층은 상기 절삭공구 팁이 상기 가공대상물의 절삭가공 시 상호 마찰에 의해 각각 제거되는 것을 특징으로 할 수 있다.
또한, 상기 제1도전층은 상기 정밀공구 팁에서 상기 가공대상물과 접촉하는 영역에만 도포되는 것을 특징으로 할 수 있다.
한편, 상기한 과제를 해결하기 위하여 본 발명의 다른 측면에 따른 접촉감지방법은, 정밀공구 팁을 이용하여 가공대상물을 절삭 가공하는 선반에서 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 감지하는 접촉감지방법에 관한 것으로,
상기 정밀공구 팁의 표면에 전기적 신호가 흐를 수 있는 제1도전층을 코팅하는 단계, 상기 제1도전층 및 상기 가공대상물에 각각 연결하여 전기적 신호를 전달할 수 있도록 별도의 도전유닛을 설치하는 단계, 상기 가공대상물 또는 상기 제1도전층 중 적어도 어느 하나에 전기적 신호를 전달하는 단계, 상기 정밀공구 팁이 상기 가공대상물로 접근하는 단계, 상기 도전유닛에서 상기 제1도전층과 상기 가공대상물을 연속적으로 통과하여 감지되는 전기적 신호의 변화를 감지하는 단계 및 상기 도전유닛에서 감지된 전기적 신호의 변화에 따라 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 판단하는 단계를 포함한다.
또한, 상기 제1도전층은 상기 정밀공구 팁에서 상기 가공대상물과 접촉하는 영역에만 도포되는 것을 특징으로 할 수 있다.
또한, 상기 도전유닛은 상기 가공대상물에 연결되어 전기적 신호가 흐를 수 있도록 하는 제1도전라인 및 상기 제1도전층에 연결되어 전기적 신호가 흐를 수 있도록 하는 제2도전라인을 포함하는 것을 특징으로 할 수 있다.
또한, 상기 가공대상물에 전기적 신호가 흐를 수 있는 제2도전층을 코팅하는 단계를 더 포함할 수 있다.
상기 문제점을 해결하기 위해 본 발명에 따르면 다음과 같은 효과가 있다.
첫째, 가공대상물과 접촉하여 절삭하는 정밀공구 팁의 끝단부에 제1도전층을 코팅하고, 제1도전층과 가공대상물에 각각 도전유닛을 연결한 상태로 전기적 신호를 송신하여 수신되는 전기적 신호의 변화 여부를 측정함으로써, 시각적으로 관찰하지 않더라도 가공대상물과 정밀공구 팁의 접촉여부를 확인할 수 있는 이점이 있다.
둘째, 가공대상물에서 정밀공구 팁과 접촉하는 가공영역에 제2도전층을 코팅함으로써 가공대상물이 전도성 소재가 아니더라도 정밀공구 팁과 가공대상물의 접촉 여부를 감지할 수 있는 이점이 있다.
셋째, 가공대상물과 정밀공구 팁의 접촉 시 전기적 신호가 발생하도록 함으로써, 사용자의 조정 없이 발생하는 전기적 신호를 트리거로 이용하여 정밀공구 팁과 가공대상물의 접촉을 자동으로 실행할 수 있는 이점이 있다.
본 발명의 효과들은 상기 언급한 효과에 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1 본 발명의 접촉감지모듈이 절삭가공용 선반에 설치된 상태를 나타낸 사시도;
도 2는 도 1의 선반에서 정밀공구 팁과 가공대상물이 접촉한 상태를 나타낸 측면도;
도 3은 도 2의 선반에서 정밀공구 팁의 끝단부에 제1도전층이 형성된 상태를 나타낸 도면;
도 4는 도 1의 선반에서 가공대상물과 정밀공구 팁이 이격되어 배치된 상태를 나타낸 도면;
도 5는 도 4의 선반에서 정밀공구 팁이 별도의 이송수단에 의해 가공대상물 방향으로 이동하여 접촉한 상태를 나타낸 도면;
도 6은 도 1의 선반에서 정밀공구 팁과 가공대상물의 접촉에 의해 전기적 신호가 변화는 상태를 나타낸 도면;
도 7은 도 1의 절삭공구 팁이 가공대상물을 가공함에 따라 제1도전층 및 제2도전층이 벗겨지는 상태를 나타낸 도면; 및
도 8은 도 1의 선반에 설치된 접촉감지모듈을 이용하여 정밀공구 팁과 가공대상물의 접촉을 감지하는 과정을 나타낸 도면.
이와 같이 구성된 본 발명에 의한 가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법의 바람직한 실시예를 첨부된 도면을 통하여 설명한다. 그러나, 이는 본 발명을 특정형태로 한정하려는 것이 아니라 본 실시예를 통해서 좀더 명확한 이해를 돕기 위함이다.
또한, 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
먼저, 도 1 내지 도 3을 참조하여 본 발명의 실시예에 따른 가공대상물과 정밀공구 팁의 접촉감지모듈의 구성에 대해서 개략적으로 살펴보면 다음과 같다.
도 1 본 발명의 접촉감지모듈이 절삭가공용 선반에 설치된 상태를 나타낸 사시도이고, 도 2는 도 1의 선반에서 정밀공구 팁과 가공대상물이 접촉한 상태를 나타낸 측면도이며, 도 3은 도 2의 선반에서 정밀공구 팁의 끝단부에 제1도전층이 형성된 상태를 나타낸 도면이다.
도시된 바와 같이 본 발명의 실시예에 따른 접촉감지모듈은 일반적인 절삭가공용 선반(100)에 적용된 상태로써, 가공대상물(10)은 롤금형 형태로 구성되어 외측면에 정밀공구 팁(124)이 접촉하여 가공되도록 구성된다.
여기서, 본 발명에서 사용되는 선반(100)은 상기 가공대상물(10)에 나노 단위의 미세한 패턴을 형성하도록 하는 정밀공구 팁(124)을 이용하는 장치로서, 시각적으로 정밀공구 팁(124)의 끝단부와 상기 가공대상물(10)의 접촉 여부를 판단할 수 없다.
이에 따라 본 발명의 실시예를 설명함에 있어, 상기 가공대상물(10)과 정밀공구 팁(124)의 접촉감지모듈이 설치된 정밀가공 선반(100)을 기준으로 하여 설명한다.
먼저, 본 발명의 접촉감지모듈이 적용되는 선반(100)의 일 실시예에 대해서 살펴보면, 선반(100)은 일반적인 롤금형 형태의 상기 가공대상물(10)에 정밀공구 팁(124)이 접촉하여 일정한 패턴을 형성할 수 있도록 하는 것으로, 롤금형 형태의 상기 가공대상물(10)이 안착되어 회전시키는 한 쌍의 척(112)을 구비한 선반본체(110) 및 상기 선반본체(110)상에 구비되어 상기 가공대상물(10)에 접촉하여 절삭 가공하는 가공모듈(120)을 포함한다.
여기서, 상기 선반본체(110)는 상기 가공대상물(10)의 양단이 결합되도록 구성되며 선택적으로 상기 가공대상물(10)을 회전시켜 정밀공구 팁(124)이 상기 가공대상물(10)을 절삭함으로써 패턴을 형성할 수 있도록 지지한다.
그리고 상기 가공대상물(10)은 원통 형상을 가지는 롤러 형태로 형성되며, 외주면에 가공영역이 형성되어 상기 정밀공구 팁(124)이 접촉함으로써 절삭 가공하도록 구성된다.
이와 같이 상기 선반본체(110)는 롤러 형태로 형성된 상기 가공대상물(10)을 지지하며 이를 선택적으로 회전 시키도록 구성된다.
한편, 상기 가공모듈(120)는 일측이 상기 몸체(122)에 결합되고 타측 끝단부가 상기 가공대상물(10)의 외주면에 위치한 상기 가공영역에 접촉하여 절삭가공을 한다. 여기서, 상기 가공모듈(120)는 상기 가공대상물(10)과 접촉하여 가공하기 때문에 상기 가공영역에 접촉하는 부분이 상기 가공대상물(10)의 외주면 보다 강도가 큰 재질로 구성되며 내마모성도 높은 재질로 구성된다.
상기 가공모듈(120)는 몸체(122) 및 정밀공구 팁(124)을 포함하여 구성된다. 상기 몸체(122)는 상기 선반(100)에 결합되며 상기 가공대상물(10) 방향으로 돌출되도록 형성된다.
이때, 상기 몸체(122)는 상기 정밀공구 팁(124)을 지지하는 구성으로써, 상기 정밀공구 팁(124)이 안정적으로 상기 가공대상물(10)과 접촉하며 접촉상태를 유지할 수 있도록 지지한다.
본 실시예에서 상기 몸체(122)는 상기 가공대상물(10)을 향하여 전후방향 횡 방향으로 위치가 조절되며, 이에 따라 상기 정밀공구 팁(124)의 위치도 함께 조절될 수 있도록 구성된다.
상기 정밀공구 팁(124)은 상기 몸체(122)에 선택적으로 탈착 가능하게 결합되며 상기 가공모듈(120)에서 상기 가공대상물(10)방향으로 돌출된 일측 끝단부에 고정 결합되어 상기 가공대상물(10)의 상기 가공영역에 접촉한다. 여기서, 상기 정밀공구 팁(124)은 상기 몸체(122)와 다른 재질로 구성될 수 있으며 상기 가공대상물(10)과 접촉하는 부분은 상기 가공대상물(10)보다 강도가 더 큰 재질로 구성된다.
즉, 상기 가공모듈(120)는 상기 몸체(122) 및 상기 정밀공구 팁(124)으로 구성됨으로써, 상기 몸체(122)는 상기 가공대상물(10)에 접촉하지 않고 상기 정밀공구 팁(124)이 상기 몸체(122)로부터 상기 가공대상물(10) 방향으로 돌출되어 상기 가공대상물(10)에 접촉한다.
상기 몸체(122)와 상기 정밀공구 팁(124)이 결합됨에 있어서 다양한 구성이 적용될 수 있으며, 상기 정밀공구 팁(124)이 마모되거나 파손되는 경우 상기 정밀공구 팁(124)을 교체할 수 있다.
상기 가공영역은 상기 가공대상물(10)의 외주면 중에서 일부를 나타낸 것으로 상기 가공대상물(10)이 회전함에 따라서 상기 가공대상물(10)이 상기 정밀공구 팁(124)에 의해서 절삭되는 영역이다.
이와 같이 본 발명에 따른 상기 선반본체(110)는 상기 가공대상물(10)을 고정하여 회전시킴과 동시에 상기 정밀공구 팁(124)의 위치를 조절함으로써 상기 가공대상물(10)의 가공영역을 절삭가공 할 수 있도록 한다.
한편, 본 발명에 따른 접촉감지모듈에 대해서 살펴보면 크게 제1도전층(200), 도전유닛(400) 및 감지유닛(500)을 포함한다.
상기 제1도전층(200)은, 정밀공구 팁(124)에서 적어도 상기 가공대상물(10)과 접촉하여 가공하는 영역에 도포되며, 전기적 신호(S: 도 4참조)가 흐를 수 있도록 구성된다.
일반적으로 정밀공구 팁(124)은 끝단부가 내마모성이 강한 다이아몬드로 구성되며, 이는 도전성이 낮은 물질이다. 그리고 이와 같이 정밀공구 팁(124)의 끝단부가 도전성이 낮은 물질로 구성되어 있기 때문에 끝단부에 상기 제1도전층(200)이 형성된다.
여기서, 상기 제1도전층(200)은 얇은 막 형태로 상기 정밀공구 팁(124)의 끝단부에 도포되며, 상기 가공대상물(10)과 접촉하여 가공의 시작 시 마찰에 의해 벗겨지도록 구성된다.
본 실시예에서 상기 제1도전층(200)은 백금으로 구성되어 상기 정밀공구 팁(124)의 끝단부에 전층층을 형성하도록 도포된다.
한편, 상기 도전유닛(400)은 한 쌍으로 전기적 신호(S)가 흐를 수 있도록 구성되는 일반적인 전선으로 구성된다. 본 실시예에서 상기 도전유닛(400)은 상기 가공대상물(10)에 연결되어 전기적 신호(S)가 흐를 수 있도록 구성되는 제1도전라인(410) 및 상기 제1도전층(200)에 연결되어 전기적 신호(S)가 흐를 수 있도록 하는 제2도전라인(420)을 포함한다.
본 실시예에서 상기 제1도전라인(410) 및 상기 제2도전라인(420)은 각각 상기 가공대상물(10) 및 상기 제1도전층(200)에 결합되며, 후술하는 상기 감지유닛(500)에 각각이 연결된다.
즉, 상기 도전유닛(400)은 상기 제1도전라인(410)이 상기 가공대상물(10)에 연결되고, 상기 제2도전라인(420)이 상기 제1도전층(200)에 연결되어 상기 감지유닛(500)에서 발생된 전기적 신호(S)가 흐를 수 있도록 한다.
이와 같이 상기 제1도전라인(410) 및 상기 제2도전라인(420)은 일측이 각각 상기 가공대상물(10)과 상기 제1도전층(200)에 연결되고, 타측은 각각 상기 감지유닛(500)에 연결되도록 구성된다.
한편, 상기 감지유닛(500)은 전기적 신호(S)를 발생시켜 상기 도전유닛(400)으로 전달하는 신호발생부(미도시) 및 상기 도전유닛(400)을 통해 전달되는 전기적 신호(S)를 측정하고 이에 대한 변화를 감지하는 감지부(미도시)를 포함한다.
그리고 상기 감지부에서 감지된 전기적 신호(S)의 변화 여부에 따라 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉 여부를 판단한다.
구체적으로 상기 신호발생부는 상기 제1도전라인(410) 또는 상기 제2도전라인(420) 중 적어도 어느 하나의 타측에 연결되어 전기적 신호(S)를 공급한다. 본 실시예에서 상기 신호발생부는 상기 제2도전라인(420)에 연결되어 전류를 상기 제1도전층(200)으로 전달하도록 구성된다.
한편, 상기 감지부는, 상기 제1도전라인(410)의 타측에 연결되어 상기 가공대상물(10)로부터 전달되는 전기적 신호(S)를 측정하고 이의 변화 여부를 감지한다.
즉, 상기 감지유닛(500)은 상기 신호발생부를 통해 상기 제2도전라인(420)과 연결된 상기 제1도전층(200)으로 전류를 공급함과 동시에 상기 제1도전라인(410)을 통해 전달되는 전류를 측정하도록 구성된다.
이에 따라, 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 접촉하는 경우, 상기 제2도전라인(420)을 따라 상기 제1도전층(200)으로 전달된 전류는 상기 가공대상물(10)로 이동하여 상기 제1도전라인(410)으로 흐르게 된다.
그리고 이와 같이 상기 제1도전라인(410)으로 전류가 흐르면 상기 감지부에서 이를 감지하여 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉 여부를 알 수 있다.
즉, 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 접촉함에 따라 상기 도전유닛(400) 전체에 전류가 흐를 수 있는 상태가 되고, 이에 따라 상기 감지부에서 상기 제1도전라인(410)을 통해 전달되는 전류를 감지함으로써, 상기 가공대상물(10) 상기 정밀공구 팁(124)의 접촉여부를 판단하게 된다.
본 발명에서 상기 감지유닛(500)은 상기 신호발생부 및 상기 감지부가 일체로 구성되거나, 각각이 분리되어 구성될 수 있으며, 본 실시예에서는 도시된 바와 같이 상기 감지유닛(500)이 오실로스코프 등과 같은 기구로 구성되어 상기 감지유닛(500)이 상기 신호발생부와 상기 감지부가 일체로 구성된 상태로 이루어진다.
물론, 이와 달리 상기 신호발생부와 상기 감지부가 각각 별도로 구성될 수도 있다.
이와 같이 본 발명에 따른 상기 가공대상물(10)과 정밀공구 팁(124)의 접촉감지모듈은, 상기 도전유닛(400)이 각각 상기 가공대상물(10)과 상기 정밀공구 팁(124)에 연결되며, 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉에 의해 상기 도전유닛(400) 전체에 전류가 흐를 수 있는 상태가 됨으로써, 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉 여부를 판단한다.
한편, 본 실시예에서 상기 가공대상물(10)이 전도성 소재가 아닌 경우 본 발명에 따른 접촉감지모듈은 별도의 제2도전층(300)을 더 포함할 수 있다.
본 실시예에서 상기 가공대상물(10)은 비 전도성 소재로 구성되며, 이에 따라 도시된 바와 같이 상기 제2도전층(300)이 더 포함된다.
상기 제2도전층(300)은 상기 가공대상물(10)에서 가공 대상이 되는 일면 또는 표면 전체에 도포되어 상기 제1도전층(200)과 접촉 시 전기적 신호(S)가 흐를 수 있도록 구성된다.
이때, 상기 제2도전층(300)은 상기 가공대상물(10)에서 상기 정밀공구 팁(124)과 접촉하여 가공되는 가공영역상에서 일부에만 도포되며, 추후 상기 정밀공구 팁(124)과 접촉하여 가공되는 경우 쉽게 벗겨질 수 있도록 얇은 막 형태로 형성될 수 있다.
이와 같이 상기 가공대상물(10)에 상기 제2도전층(300)이 더 구비되는 경우 상기 제1도전라인(410)은 상기 제2도전층(300)에 연결되도록 구성된다.
즉, 상기 도전유닛(400)에서 상기 제1도전라인(410)은 상기 제2도전층(300)에 연결되고, 상기 제2도전라인(420)은 상기 제1도전층(200)에 연결된다.
이와 같이 상기 제1도전층(200)과 상기 제2도전층(300) 각각에 상기 도전유닛(400)이 연결됨으로써, 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 접촉하는 경우 상기 제1도전층(200)과 상기 제2도전층(300)이 접촉하여 상기 도전유닛(400) 전체에 전기적 신호(S)가 흐를 수 있다.
한편, 상기 제2도전층(300)은 상기 가공대상물(10)에서 상기 정밀공구 팁(124)과 접촉화는 영역에만 도포될 수 있으며, 이와 달리 상기 가공대상물(10)의 표면 전체에 도포될 수도 있다.
이와 같이 본 발명에 따른 접촉감지모듈이 상기 제2도전층(300)을 더 포함하여 구성됨으로써 상기 가공대상물(10)이 비 전도성 소재로 구성되는 경우에도 안정적으로 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉 여부를 판단할 수 있다.
물론, 상기 가공대상물(10)이 전도성 소재인 경우에도 상기 제1도전층(200)과의 전기 전도도 차이를 줄이기 위해 상기 제2도전층(300)이 구비될 수도 있다.
본 실시예에서 상기 제2도전층(300)은 상술한 상기 제1도전층(200)과 동일한 소재로 구성되어 상기 신호발생부로부터 발생된 전기적 신호(S)를 상기 제1도전층(200)을 통해 전달받을 수 있으며, 이에 따라 상기 제1도전층(200)과의 소재 차이에 의해 전기적 신호(S) 세기가 감소되는 것을 방지할 수 있다.
물론 이와 달리 제2도전층(300)과 제1도전층(200)이 서로 다른 소재로 구성될 수 있다
즉, 제1도전층(@00) 및 제2도전층(300)은 각각 정밀공구 팁(124)와 가공대상물(10)이 접촉하여 가공 시 제거될 수 있으며, 전기적 신호가 전달될 수 있도록 통전 가능하다면 어떠한 소재라도 사용될 수 있다.
이와 같이 본 발명에 따른 접촉감지모듈은 상술한 상기 제1도전층(200), 상기 제2도전층(300), 상기 도전유닛(400) 및 상기 감지유닛(500)을 포함하며, 상기 제1도전층(200)과 상기 제2도전층(300)의 접촉에 따라 상기 감지유닛(500)이 상기 도전유닛(400) 전체에 전기적 신호(S)가 흐르는지 감지하여 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 접촉하였는지를 판단한다.
그리고 이와 같이 접촉감지모듈을 통해 정밀공구 팁(124)과 상기 가공대상물(10)의 접촉이 감지된 상태에서 정밀공구 팁(124)의 영점을 세팅함으로써, 추후 정밀공구 팁(124)의 위치를 조절하여 상기 가공대상물(10)에 미세한 패턴을 가공할 수 있다.
이어서, 도 4 내지 도 6을 참조하여 본 발명에 따른 접촉감지모듈이 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉 감지 여부를 판단하는 상태에 대해서 살펴보면 다음과 같다.
도 4는 도 1의 선반(100)에서 상기 가공대상물(10)과 정밀공구 팁(124)이 이격되어 배치된 상태를 나타낸 도면이고, 도 5는 도 4의 선반(100)에서 정밀공구 팁(124)이 별도의 이송수단(미도시)에 의해 상기 가공대상물(10) 방향으로 이동하여 접촉한 상태를 나타낸 도면이며, 도 6은 도 1의 선반(100)에서 정밀공구 팁(124)과 상기 가공대상물(10)의 접촉에 의해 전기적 신호(S)가 변화는 상태를 나타낸 도면이다.
먼저, 도 4를 살펴보면 선반(100)에서 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 이격된 상태로 배치되며, 상기 제1도전층(200)에는 상기 제2도전라인(420)의 일측이 연결되고, 상기 정밀공구 팁(124)에 도포된 상기 제2도전층(300)에는 상기 제1도전라인(410)의 일측이 연결된 상태이다.
그리고 상기 제2도전라인(420)의 타측은 상기 신호발생부가 연결되고, 상기 제1도전라인(410)의 타측은 상기 감지부와 연결된다.
이와 같이 구성된 상태에서 상기 신호발생부에서 전기적 신호(S)를 상기 제2도전라인(420)을 통해 상기 제1도전층(200)으로 전달하더라도, 상기 제1도전층(200)과 상기 제2도전층(300)이 이격된 상태이기 때문에 상기 전기적 신호(S)는 상기 제2도전층(300)으로 전달되지 못하게 된다.
이와 같은 경우, 도 6에 도시된 바와 같이 상기 감지부에서 감지되는 신호는 A영역과 같이 나타나게 된다.
여기서 도 6에 나타난 신호는, 상기 감지유닛(500)이 오실로스코프로 구성되어 상기 제2도전라인(420)으로 전류를 공급하고, 상기 제1도전라인(410)을 통해 전달되는 전류를 수신하여 전압을 측정한 것을 나타낸 것이다.
이와 같이 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 이격된 상태에서는 상기 제1도전층(200)으로 전기적 신호(S)를 공급하더라도 상기 제2도전층(300)으로 전달되지 못하기 때문에 상기 감지부에서 감지되는 전기적 신호(S)의 변화가 발생되지 않는다.
하지만, 도 5에 도시된 바와 같이 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 접촉하는 경우, 상기 신호발생부에서 공급된 전기적 신호(S)는 상기 제2도전라인(420), 상기 제1도전층(200), 상기 제2도전층(300) 상기 제1도전라인(410) 순으로 경유하며 상기 감지부로 전달된다.
이와 같은 경우 상기 감지부는 상기 신호발생부에서 상기 제2도전라인(420)을 따라 공급된 전기적 신호(S)가 상기 도전유닛(400) 전체를 경유한 후 이를 수신 받게 된다.
즉, 상기 제1도전층(200)과 상기 제2도전층(300)이 접촉함으로써 상기 도전유닛(400)이 통전상태가 되고, 이에 따라 상기 감지부에서는 상기 신호발생부에서 공급된 전기적 신호(S)가 상기 제1도전층(200), 상기 제2도전층(300) 및 상기 도전유닛(400)을 경유한 후 이를 수신받는다.
이에 따라 상기 감지부에서 감지되는 전기적 신호(S)는 도 6에 도시된 B영역과 같이 나타나게 된다.
이와 같이 본 발명에 따른 접촉감지모듈은 상기 가공대상물(10)과 정밀공구 팁(124)의 접촉 여부에 따라 상기 도전유닛(400) 전체에 전기적 신호(S)가 흐르는지 여부가 조절되고, 이에 따라 상기 감지부에서 감지되는 전기적 신호(S)가 도 6에 도시된 바와 같이 변화하게 된다.
이를 통해 사용자가 시각적으로 관찰할 수 없더라도, 정밀공구 팁(124)이 상기 가공대상물(10)에 접촉했는지 여부를 알 수 있다.
이어서, 도 7을 살펴보면, 본 발명에 따른 상기 제1도전층(200) 및 상기 제2도전층(300)이 절삭 가공 시 이탈되는 상태를 나타낸 도면이다.
도 7은 도 1의 절삭공구 팁이 상기 가공대상물(10)을 가공함에 따라 상기 제1도전층(200) 및 상기 제2도전층(300)이 벗겨지는 상태를 나타낸 도면이다.
도시된 바와 같이 본 발명에 따른 상기 제1도전층(200) 및 상기 제2도전층(300)은 각각 정밀공구 팁(124)과 상기 가공대상물(10)에서 상호 접촉하는 영역에 얇은 막 형태로 도포되며, 이에 따라 상기 정밀공구 팁(124)이 상기 가공대상물(10)에 접촉하여 가공 시 상호 마찰에 의해 쉽게 벗겨지게 된다.
이와 같이 상기 제1도전층(200) 및 상기 제2도전층(300)이 벗겨짐으로써, 상기 가공대상물(10)에 가공되는 절삭 패턴에 영향을 미치지 않게 된다.
즉, 상기 제1도전층(200) 및 상기 제2도전층(300)은 상기 가공대상물(10)과 상기 정밀공구 팁(124)에 각각 얇게 도포되며, 상기 가공대상물(10)의 절삭 가공 시 바로 벗겨지며 이탈되기 때문에, 실질적으로 상기 정밀공구 팁(124)이 상기 가공대상물(10)의 가공을 하는데 있어 간섭을 일으키지 않는다.
이어서, 도 8을 참조하여 상술한 접촉감지모듈을 이용하여 상기 가공대상물(10)과 정밀공구 팁(124)의 접촉을 감지하는 방법에 대해서 살펴보면 다음과 같다.
도 8은 도 1의 선반(100)에 설치된 접촉감지모듈을 이용하여 정밀공구 팁(124)과 상기 가공대상물(10)의 접촉을 감지하는 과정을 나타낸 도면이다.
먼저, 본 발명에 따른 접촉감지모듈을 이용하여 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉 여부를 감지하는 방법에 대해서 살펴보면, 상기 정밀공구 팁(124)의 표면에 전기적 신호(S)가 흐를 수 있는 상기 제1도전층(200)을 코팅하는 단계(S01)을 거친다.
여기서 상기 제1도전층(200)은 도전성 소재로서, 상기 정밀공구 팁(124)에서 상기 가공대상물(10)과 접촉하는 영역에만 도포되며, 본 실시예에서는 백금이 사용된다.
그리고, 상기 가공대상물(10)에 전기적 신호(S)가 흐를 수 있는 상기 제2도전층(300)을 코팅하는 단계(S02)를 거친다.
마찬가지로 상기 제2도전층(300) 역시 도전성 소재로서 상기 가공대상물(10)의 표면에 도포되며, 상기 정밀공구 팁(124)과 접촉하는 일부 영역에만 도포될 수도 있다.
본 실시예에서 상기 제2도전층(300)은 상술한 상기 제1도전층(200)과 마찬가지로 동일한 소재가 사용될 수 있으며, 이와 달라 서로 상이한 소재가 사용될 수도 있다.
이후, 상기 제1도전층(200) 및 상기 제2도전층(300) 각각에 상기 도전유닛(400)을 설치하는 단계(S03)를 거치게 된다. 여기서, 상기 도전유닛(400)은 상기 제1도전층(200)에 연결되는 상기 제2도전라인(420) 및 상기 제2도전층(300)에 연결되는 상기 제1도전라인(410)을 포함하며, 각각이 전기적 신호(S)가 전달될 수 있도록 구성된다.
본 실시예에서 상기 제1도전라인(410) 및 상기 제2도전라인(420)은 전선으로 구성되어 일측이 각각 상기 제2도전층(300) 및 상기 제1도전층(200)에 연결되고, 타측이 각각 상기 감지부 및 상기 신호발생부에 연결된다.
이후, 상기 제2도전층(300)에 상기 도전유닛(400)을 통해 전기적 신호(S)를 송신하는 단계(S04)를 거친다.
이때, 상기 도전유닛(400)은 상기 제1도전라인(410) 및 상기 제2도전라인(420)의 타측이 각각 오실로스코프에 연결되어 오실로스코프를 통해 상기 도전유닛(400) 전체에 전기적 신호(S)가 흐르는 지를 판단하게 된다.
이에 따라 상기 가공대상물(10)과 상기 정밀공구 팁(124)이 이격되어 배치되어 있기 때문에 상기 제1도전층(200)과 상기 제2도전층(300)은 상호 전류가 흐를 수 없는 상태가 된다.
이어서, 상기 정밀공구 팁(124)이 상기 가공대상물(10)로 접근하는 단계를 를 거친다(S05)
그리고 상기 제2도전층(300)에 연결된 상기 도전유닛(400)을 통해 전달되는 전기적 신호(S)를 감지하는 단계를 거친다(S06)
이는 상기 오실로스코프에서 상기 제1도전층(200)과 상기 가공대상물(10)을 연속적으로 통과하여 감지되는 전기적 신호(S)의 변화를 감지하는 것으로, 감지되는 전기적 신호(S)의 세기 변화를 통해서 상기 가공대상물(10)과 상기 정밀공구 팁(124)의 접촉을 판단한다(S07)
상기 오실로스코프에서 감지되는 전기적 신호(S)의 변화가 발생하지 않는 경우 정밀공구 팁(124)과 상기 가공대상물(10)이 접촉하지 않은 상태이기 때문에 지속적으로 상기 정밀공구 팁(124)이 상기 가공대상물(10) 방향으로 이동한다.
하지만 상기 오실로스코프에서 수신된 전기적 신호(S)의 변화가 감지되는 경우 상기 정밀공구 팁(124)과 상기 가공대상물(10)이 접촉한 것으로 판단한다(S08)
이와 같이 상기 정밀공구 팁(124)과 상기 가공대상물(10)의 접촉이 인식되면, 상기 정밀공구 팁(124)이 상기 가공대상물(10)에 접근하는 것이 중지된다(S09).
이와 같은 과정을 통해 본 발명에 따른 접촉감지모듈을 통해 상기 정밀공구 팁(124)과 상기 가공대상물(10)의 접촉 여부를 감지할 수 있다.
이에 따라, 본 발명과 같이 가공대상물(10)과 정밀공구 팁(124)의 접촉 시 전기적 신호가 발생하도록 함으로써, 사용자의 조정 없이 발생하는 전기적 신호를 트리거로 이용하여 정밀공구 팁(124)과 가공대상물(10)의 접촉을 자동으로 실행할 수 있는 이점이 있다.
이상과 같이 본 발명에 의한 바람직한 실시예를 살펴보았으며, 앞서 설명한 실시예 외에도 본 발명의 취지나 범주에서 벗어남이 없이 다른 형태로 구체화될 수 있다. 그러므로 본 실시예는 특정형태로 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.
(부호의 설명)
10: 가공대상물 100: 선반
110: 선반본체 120: 가공모듈
200: 제1도전층 300: 제2도전층
400: 도전유닛 500: 감지유닛

Claims (10)

  1. 정밀공구 팁을 이용하여 가공대상물을 절삭가공하는 선반에서 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 감지하는 접촉감지모듈에 관한 것으로,
    상기 정밀공구 팁에서 적어도 상기 가공대상물과 접촉하여 가공하는 역에 도포되는 제1도전층;
    상기 가공대상물에 연결되어 전기적 신호가 흐를 수 있도록 하는 제1도전라인 및 상기 제1도전층에 연결되어 전기적 신호가 흐를 수 있도록 하는 제2도전라인을 포함하는 도전유닛; 및
    상기 제1도전라인 또는 상기 제2도전라인 중 적어도 어느 하나에 전기적 신호를 공급하는 신호발생부 및 상기 도전유닛상에 구비되어 상기 도전유닛 전체에 전기적 신호가 흐르는지 여부를 감지하는 감지부를 포함하며, 상기 감지부에서 감지되는 전기적 신호의 변화에 따라 상기 가공대상물과 상기 정밀공구 팁의 접촉여부를 판단하는 감지유닛;
    을 포함하는 접촉감지모듈.
  2. 제1항에 있어서,
    상기 가공대상물에서 가공 대상이 되는 일면 또는 표면 전체에 도포되어 상기 제1도전층과 접촉 시 전기적 신호가 흐를 수 있도록 하는 제2도전층을 더 포함하는 것을 특징으로 하는 접촉감지모듈.
  3. 제2항에 있어서,
    상기 제2도전층은,
    상기 가공대상물에서 상기 정밀공구 팁과 접촉하는 영역에만 형성되는 것을 특징으로 하는 접촉감지모듈.
  4. 제2항에 있어서,
    상기 제2도전층은,
    상기 제1도전층과 동일한 소재로 구성되는 것을 특징으로 하는 접촉감지모듈.
  5. 제2항에 있어서,
    상기 제1도전층 및 상기 제2도전층은,
    상기 절삭공구 팁이 상기 가공대상물의 절삭가공 시 상호 마찰에 의해 각각 제거되는 것을 특징으로 하는 접촉감지모듈.
  6. 제1항에 있어서,
    상기 제1도전층은,
    상기 정밀공구 팁에서 상기 가공대상물과 접촉하는 영역에만 도포되는 것을 특징으로 하는 접촉감지모듈.
  7. 정밀공구 팁을 이용하여 가공대상물을 절삭 가공하는 선반에서 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 감지하는 접촉감지방법에 관한 것으로,
    상기 정밀공구 팁의 표면에 전기적 신호가 흐를 수 있는 제1도전층을 코팅하는 단계;
    상기 제1도전층 및 상기 가공대상물에 각각 연결하여 전기적 신호를 전달할 수 있도록 별도의 도전유닛을 설치하는 단계;
    상기 가공대상물 또는 상기 제1도전층 중 적어도 어느 하나에 전기적 신호를 전달하는 단계;
    상기 정밀공구 팁이 상기 가공대상물로 접근하는 단계;
    상기 도전유닛에서 상기 제1도전층과 상기 가공대상물을 연속적으로 통과하여 감지되는 전기적 신호의 변화를 감지하는 단계; 및
    상기 도전유닛에서 감지된 전기적 신호의 변화에 따라 상기 정밀공구 팁과 상기 가공대상물의 접촉 여부를 판단하는 단계;
    를 포함하는 접촉감지방법.
  8. 제1항에 있어서,
    상기 제1도전층은,
    상기 정밀공구 팁에서 상기 가공대상물과 접촉하는 영역에만 도포되는 것을 특징으로 하는 접촉감지방법.
  9. 제1항에 있어서,
    상기 도전유닛은,
    상기 가공대상물에 연결되어 전기적 신호가 흐를 수 있도록 하는 제1도전라인; 및
    상기 제1도전층에 연결되어 전기적 신호가 흐를 수 있도록 하는 제2도전라인;
    을 포함하는 것을 특징으로 하는 접촉감지방법.
  10. 제7항에 있어서,
    상기 가공대상물에 전기적 신호가 흐를 수 있는 제2도전층을 코팅하는 단계를 더 포함하는 접촉감지방법.
PCT/KR2014/010291 2014-09-18 2014-10-30 가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법 WO2016043374A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/511,771 US20170282320A1 (en) 2014-09-18 2014-10-30 Module for detecting contact between object to be processed and precision tool tip and method for detecting contact using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140124445 2014-09-18
KR10-2014-0124445 2014-09-18

Publications (1)

Publication Number Publication Date
WO2016043374A1 true WO2016043374A1 (ko) 2016-03-24

Family

ID=55533404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010291 WO2016043374A1 (ko) 2014-09-18 2014-10-30 가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법

Country Status (2)

Country Link
US (1) US20170282320A1 (ko)
WO (1) WO2016043374A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233791B1 (ja) * 2022-03-24 2023-03-07 国立大学法人東海国立大学機構 切削装置および位置関係特定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141804A (ja) * 1994-11-22 1996-06-04 Hitachi Zosen Corp 切削工具およびその寿命検出装置
JP2002120129A (ja) * 2000-10-11 2002-04-23 Fuji Seiko Ltd 導電膜付切削工具およびその使用方法
JP2008100305A (ja) * 2006-10-18 2008-05-01 Sumitomo Bakelite Co Ltd 接点位置検出方法及び接点位置検出装置
JP2009056551A (ja) * 2007-08-31 2009-03-19 Toyama Univ 工具位置決め方法および工具位置決め装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2256120A (en) * 1940-05-20 1941-09-16 Gear Grinding Mach Co Electric indicator for grinding machines
US3476013A (en) * 1967-05-23 1969-11-04 United States Steel Corp Contact sensing system for machine tool
JPS569149A (en) * 1979-06-29 1981-01-30 Toyoda Mach Works Ltd Contact detector
US4451892A (en) * 1980-01-31 1984-05-29 Mcmurtry David R Method of and apparatus for measuring distances in numerically controlled machine tools
JPS57148201A (en) * 1981-03-10 1982-09-13 Toyoda Mach Works Ltd Detecting device for contact
US4786220A (en) * 1984-06-18 1988-11-22 Borg-Warner Corporation Cutting tool wear monitor
JPS61214953A (ja) * 1985-03-15 1986-09-24 Dai Showa Seiki Kk 工具とワ−クの接触検知装置
FR2733064B1 (fr) * 1995-04-14 1997-05-30 Dufour Francois Et Fils Procede et dispositif de controle d'usinage sur machine-outil
JP3146353B2 (ja) * 1998-09-25 2001-03-12 工業技術院長 損耗センサ付き切削工具
US6758640B2 (en) * 2000-10-11 2004-07-06 Fuji Seiko Limited Method and apparatus for controlling movement of cutting blade and workpiece
JP4025864B2 (ja) * 2001-02-02 2007-12-26 国立大学法人広島大学 工作機械用接触検出方法およびその装置
US7052215B2 (en) * 2001-03-29 2006-05-30 Kyocera Corporation Cutting tool with sensor and production method therefor
US20030002943A1 (en) * 2001-06-28 2003-01-02 Dieter Ulbrich Method and device for detecting contact between a tool and a workpiece clamped on a processing machine
US6481939B1 (en) * 2001-08-24 2002-11-19 Robb S. Gillespie Tool tip conductivity contact sensor and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141804A (ja) * 1994-11-22 1996-06-04 Hitachi Zosen Corp 切削工具およびその寿命検出装置
JP2002120129A (ja) * 2000-10-11 2002-04-23 Fuji Seiko Ltd 導電膜付切削工具およびその使用方法
JP2008100305A (ja) * 2006-10-18 2008-05-01 Sumitomo Bakelite Co Ltd 接点位置検出方法及び接点位置検出装置
JP2009056551A (ja) * 2007-08-31 2009-03-19 Toyama Univ 工具位置決め方法および工具位置決め装置

Also Published As

Publication number Publication date
US20170282320A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016114458A1 (ko) 웨이퍼 연마 장치 및 이를 이용한 웨이퍼 연마 방법
CA3008741C (en) Sensor module and tool holder for a cutting tool
US9079280B2 (en) Apparatus and method for monitoring a tool machine
WO2016043374A1 (ko) 가공대상물과 정밀공구 팁의 접촉감지모듈 및 이를 이용한 접촉감지방법
WO2021177569A1 (ko) 박막 시편의 물성 평가방법 및 인장시험 테스트용 박막 시편
WO2019216660A1 (ko) 각도 교정 장치
WO2019088649A1 (ko) 공구의 마모에 따라 가공부하를 조절하는 로봇 시스템 및 이를 이용한 가공부하 조절 방법
WO2022191510A1 (ko) 전극 조립체의 제조 장치 및 전극 조립체의 제조 방법
WO2018088881A1 (ko) 열대류형 가속도 센서 및 이의 제조방법
WO2019203531A1 (ko) 마이크로 소자 전사방법과 전사장치 및 이를 이용한 전자제품
WO2017116178A1 (ko) 정밀공구 팁의 컨텍모듈 및 이를 이용한 컨텍방법
WO2023219448A1 (ko) 광을 이용한 롤러 갭 측정시스템 및 이를 이용한 롤러 갭 측정방법
WO2017222099A1 (ko) 인공치아 가공장치의 가공소재 위치 검출 및 보정 방법과 위치 검출 및 보정 장치
WO2018066904A1 (ko) 기판처리장치 및 이를 이용한 기판처리방법
WO2017086625A1 (ko) 형상측정기
WO2018226071A1 (ko) 심압대 이송용 실린더의 변위 측정 장치 및 이를 갖는 공작 기계
WO2020105983A1 (ko) 로봇팔을 이용한 정밀 가공장치 및 이의 작동방법
WO2018225977A1 (ko) 흡수 용품 제조 방법
WO2020231118A1 (ko) 열배관 누수 감지 시스템
WO2018203590A1 (ko) 3차원 터치 인식을 위한 접촉 위치 및 깊이 측정 알고리즘
US20010045834A1 (en) Method and apparatus for measuring capacitance
WO2019009513A1 (ko) 선형 가변 차동 변환기
WO2017043732A1 (ko) 치수측정장치 및 방법
WO2019231251A1 (ko) 배관 손상 검출장치, 이를 이용한 배관 손상 검출시스템, 및 이를 이용한 배관 손상 검출방법
KR100227821B1 (ko) 웨이퍼 고정용 정전척의 전원공급장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901927

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511771

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901927

Country of ref document: EP

Kind code of ref document: A1