WO2017086625A1 - 형상측정기 - Google Patents

형상측정기 Download PDF

Info

Publication number
WO2017086625A1
WO2017086625A1 PCT/KR2016/012296 KR2016012296W WO2017086625A1 WO 2017086625 A1 WO2017086625 A1 WO 2017086625A1 KR 2016012296 W KR2016012296 W KR 2016012296W WO 2017086625 A1 WO2017086625 A1 WO 2017086625A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
measuring
permanent magnet
measurement
arm
Prior art date
Application number
PCT/KR2016/012296
Other languages
English (en)
French (fr)
Inventor
황재은
Original Assignee
황재은
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황재은 filed Critical 황재은
Publication of WO2017086625A1 publication Critical patent/WO2017086625A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/08Measuring force or stress, in general by the use of counterbalancing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Definitions

  • the present invention relates to a shape measuring device, and more particularly, to a shape measuring device having a measuring force correction means for correcting the measuring force so that the measuring force applied to the surface of the measurement target is constant.
  • a shape measuring device is a device that obtains shape information of a target object in 3D spatial coordinate form by measuring the shape of an object quickly and accurately.
  • the shape measuring machine is used to evaluate the processing accuracy by comparing the shape measurement result of the processed product or part with the designed shape dimension, or is used for reverse engineering of a product without design data such as drawings.
  • the stylus presses the workpiece downward to apply a measuring force, moves in contact, and the displacement sensor reads coordinates to measure the surface shape.
  • FIG. 1 is a schematic diagram illustrating a process of measuring a shape by contacting a surface of a target T to be measured by the stylus 11a of the conventional shape measuring device 10.
  • the conventional shape measuring device 10 is a state in which the stylus 11a is disposed at the end of the measuring arm 11, and the lower end of the stylus 11a presses the surface of the object to be measured T at a constant measuring pressure. Moves along the surface of the object under measurement (T) and measures the shape of the object under measurement (T).
  • the measuring arm 11 rotates up and down at a predetermined angle, and the measuring force correction unit for applying a constant measuring pressure to the surface of the target T to be measured by the stylus 11a ( 15) is provided.
  • the measuring force correction unit 15 is provided with permanent magnets 15c and electromagnets 15a and 15b provided above and below the permanent magnets 15c, respectively.
  • the conventional measuring force correction unit 15 is moved only in one direction according to the application direction of the current when applying the current. That is, the measurement arm 11 is rotated in the direction indicated by A according to the direction of application of current, or when the current in the opposite direction is applied, the measurement arm 11 is rotated in the direction indicated by B.
  • FIG. 1 A according to the direction of application of current, or when the current in the opposite direction is applied, the measurement arm 11 is rotated in the direction indicated by B.
  • the shape measuring device 10 may have difficulty in keeping the measuring arm 11 horizontal. That is, since the stylus 11a is lifted upward or downward in accordance with the current application direction, there is a disadvantage in that intermediate control of the position of the stylus 11a is difficult.
  • An object of the present invention is to solve the above-described problem, and to provide a shape measuring device capable of correcting a measuring force to enable an intermediate position control of a stylus even when a current is applied in one direction.
  • Another object of the present invention is to provide a shape measuring device that can easily implement the vertical position control of the stylus.
  • Still another object of the present invention is to provide a shape measuring device which can increase the reliability of the measurement result by keeping the measurement force constant without noise and vibration with a simple configuration.
  • the object of the present invention can be achieved by a shape measuring device that follows the surface of the object to be measured and measures the shape of the object to be measured.
  • the shape measuring device of the present invention includes: a measuring arm having a stylus in contact with the object to be measured and measuring a shape, and an arm supporting the stylus; A measurement arm support unit which supports the measurement arm unit such that the measurement arm unit pivots vertically and horizontally along the shape of the object to be measured; A measurement force correction unit accommodated in the measurement arm support unit and correcting the measurement force of the stylus to apply a constant measurement pressure to the surface of the object to be measured even if the stylus is rotated up and down and the shape of the object to be measured is changed; A control unit for detecting a shape change of the object to be measured and controlling the measurement force correction unit so that the measurement pressure is corrected by the shape change, wherein the measurement arm support unit comprises: a support unit body; A driving block for supporting the measurement arm part in a linearly movable direction along the longitudinal direction of the support part body;
  • a permanent magnet coupled to the joint plate to protrude a predetermined length in a direction in which the joint plate is coupled; It is provided to surround the outer periphery of the permanent magnet, one end is coupled to the joint plate is characterized in that it comprises an electromagnet for moving the joint plate forward and backward along the longitudinal direction of the permanent magnet by the application of a current in one direction It is done.
  • a pivot shaft for supporting the joint plate to be rotated according to the moving direction of the electromagnet may be rotatably provided between the driving block and the joint plate.
  • the permanent magnet is disposed at both ends of the first permanent magnet and the second permanent magnet around the magnetic coupling plate
  • the electromagnet is the first electromagnet and the second electromagnet at both ends of the coil bobbin, respectively
  • the coil may be wound and provided in the same direction, and the first electromagnet and the second electromagnet may have the same polarity as that of the first and second permanent magnets.
  • the first electromagnet is disposed at a position 1/2 of the total length of the first permanent magnet
  • the second electromagnet is disposed at a position 1/2 of the total length of the second permanent magnet.
  • the first electromagnet and the second electromagnet forming the measuring force correction part are wound by winding the coil in the same direction. Accordingly, even if the current is applied only in one direction, the position control can be performed such that the stylus is in the intermediate position or rotates up and down.
  • FIG. 1 is a schematic diagram schematically showing a measurement force correction process of a conventional shape measuring instrument
  • FIG. 2 is a perspective view showing the configuration of a shape measuring instrument according to the present invention.
  • FIG. 3 is a perspective view illustrating a coupling process of the measuring arm support and the measuring arm of the shape measuring device according to the present invention
  • Figure 4 is an exploded perspective view showing the configuration of the measuring arm support of the shape measuring device according to the present invention
  • FIG. 5 is an exploded perspective view showing an exploded configuration of the measuring arm support, the measuring arm compensator and the measuring arm of the shape measuring device according to the present invention
  • FIG. 6 is an enlarged perspective view illustrating a coupling relationship between a measuring arm supporter and a measuring arm fixing unit of the shape measuring device according to the present invention
  • FIG. 7 and 8 are views illustrating a process of adjusting the angle of the measuring arm by the measuring arm compensation of the shape measuring device according to the present invention
  • 9 and 10 are exemplary views for explaining the measurement arm correction principle of the measurement arm compensation of the shape measuring device according to the present invention.
  • support body 133 vertical shaft coupling portion
  • base plate 135 body coupling block
  • linear moving unit 151 main frame
  • driving block 154 screw coupling ring
  • pivot support member 157 pivot axis 158: pivot support member
  • bracket coupling hole 160 measuring force correction
  • first permanent magnet 162 second permanent magnet
  • first electromagnet 166 coil bobbin
  • FIG. 2 is a perspective view showing the configuration of a shape measuring apparatus 100 according to the present invention.
  • the stylus 149 coupled to the arm 147 moves forward and backward (X axis) along the surface of the measurement target T, and the up and down direction (Y axis). It moves and rotates at a certain angle (Z axis), and forms the surface shape of the object to be measured (T) in three-dimensional coordinates.
  • the shape measuring apparatus 100 moves up and down along a base 110 disposed horizontally on the ground, a vertical axis 120 disposed vertically on the base 110, and a vertical axis 120 and measuring arm portion
  • the measuring arm 130 which supports the 140 to be moved forward and backward and rotates up and down, and the measuring arm which is detachably coupled to the measuring arm support 130 by a magnetic force and measures the shape of the object to be measured T.
  • 140, a linear moving part 150 provided inside the measuring arm support part 130 and supporting the measuring arm 140 so that the measuring arm 140 moves in the front and rear directions, and the stylus 149 is a surface of the object to be measured.
  • the control unit for controlling the measurement force correction unit 160 to move along the direction to apply a constant measurement force and the shape change of the measurement target (T) and to control the measurement force correction unit 160 to correct the measurement force by the shape change ( Not shown).
  • the base 110 is horizontally disposed on the ground and supports the vertical axis 120.
  • the vertical shaft 120 is provided with a driving unit 121 at the top, so that the measuring arm support 130 is moved up and down.
  • the measuring arm supporter 130 supports the measuring arm 140 to stably measure the shape of the object to be measured T.
  • 3 is an exploded perspective view illustrating a coupling structure of the measuring arm support 130 and the measuring arm 140.
  • the measurement arm support unit 130 is provided at the rear of the support unit body 131, the support unit body 131, the vertical shaft coupling unit 133 coupled to the vertical axis 120, and the front of the support unit body 131. It includes a body coupling block 135 is movably coupled by the linear movement unit 150.
  • the support body 131 covers the upper portion of the base plate 134.
  • the base plate 134 accommodates a linear moving part 150 for driving the body coupling block 135 to move back and forth, and a measuring force correction 160 for driving the body coupling block 135 to rotate in the Z-axis direction. do.
  • the base plate 134 analyzes the displacement sensor (not shown) for detecting the positional displacement of the stylus 149 and the displacement detected by the displacement sensor (not shown), and the measurement force correction unit 160 corrects the measurement force.
  • a control unit (not shown) for matching the displacement to three-dimensional coordinates.
  • the front plate surface of the support body 131 has a moving rail 137 for supporting the body coupling block 135 to move back and forth is formed to a predetermined length.
  • the angle at which the stylus 149 is rotated in the Z-axis direction by the shape change of the measurement target T is limited to the width of the moving rail 137.
  • the shape displacement exceeding the width of the moving rail 137 corresponds to the measuring arm support 130 up and down along the vertical axis 120 of the controller (not shown).
  • the body coupling block 135 is coupled to the joint plate 159 accommodated inside the support body 131 through the moving rail 137.
  • the joint plate 159 is coupled to the driving block 153, and the driving block 153 is linearly moved by the driving of the lead screw 155, the body coupling block 135 moves back and forth along the X axis direction in association with the driving block 153. Is moved.
  • the outer circumferential surface of the body coupling block 135 is provided with a front magnetic coupling plate 135a, an upper magnetic coupling plate 135b and a side magnetic coupling plate 135c and detachably coupled to the measuring arm 140 by magnetic force.
  • the front magnetic coupling plate 135a is provided with a pair of left and right on the front surface of the body coupling block 135.
  • the front magnetic coupling plate 135a is coupled to the front magnet 143 provided on the body 141 by a magnetic force.
  • the upper magnetic coupling plate 135b is provided at one side of the upper surface of the body coupling block 135.
  • the upper magnetic coupling plate 135b is coupled by a magnetic force to an upper magnet (not shown) provided in the body 141.
  • the side magnetic coupling plate 135c is provided at the rear side of the body coupling block 135.
  • the side magnetic coupling plate 135c is coupled to the side magnet 145 provided in the body 141 by a magnetic force.
  • the front means the direction in which the stylus 149 faces
  • the rear means the direction opposite to the stylus 149.
  • the front magnetic coupling plate 135a, the top magnetic coupling plate 135b, and the side magnetic coupling plate 135c are embedded in the outer circumferential surface of the body coupling block 135, and formed of a metal plate material so that magnets and magnetic forces can be applied. do.
  • the measuring arm 140 is detachably coupled to the measuring arm support 130, and the stylus 149 contacts the surface of the object T to be detected and detects the shape of the object T to be measured.
  • the measuring arm 140 according to the present invention is detachably coupled to the measuring arm support 130 by the magnetic force of the magnet.
  • the magnetic force of the magnet is to maintain the coupling state for the force of the reference range required when the stylus 149 detects the shape of the object to be measured (T), for example, the force of 4 ⁇ 12g range, For a force exceeding, for example, 13g or more force is released from the coupled state so that the measuring arm 140 is separated from the measuring arm support 130.
  • the measurement arm 140 is formed in the body 141 coupled to the body coupling block 135, and the body 141 is recessed in the body 141 when the body 141 is coupled to the body coupling block 135 (body coupling block ( And a block accommodating groove 142 for accommodating 135, and a front magnet 143, an upper magnet (not shown), and a side magnet 145 formed on the inner side of the block accommodating groove 142.
  • the front of the measuring arm 140 is provided with a stylus 149, and an arm 147 supporting the stylus 149, the rear of the measuring arm 140, the weight during the rotational driving by the pivot in the Z-axis direction A centering weight 148 is provided.
  • the linear moving part 150 supports the body coupling block 135 and the measuring arm 140 coupled to the body coupling block 135 to be linearly moved in the X-axis direction (see FIG. 2).
  • the linear moving part 150 includes a main frame 151 disposed parallel to the upper part of the base plate 134 and a driving block coupled to be slidably moved along the main frame 151. 153, a driving screw 155 for applying a driving force to move the driving block 153 along the main frame 151, a pivot shaft 157 coupled to the side of the driving block 153, and a body coupling.
  • a joint plate 159 coupled to the block 135 and the measuring force correcting unit 160 and allowing the body coupling block 135 to be rotated at a predetermined angle about the pivot axis 157 by the measuring force adjusting unit 160 is included. do.
  • the main frame 151 is provided between the base plate 134 and the support body 131 to support the driving block 153 so that the driving block 153 is moved along the moving rail 137.
  • the driving block 153 is slidably coupled to the upper end of the main frame 151, and the screw coupling ring 154 is screwed to the lead screw 155.
  • the lead screw 155 coupled to the drive shaft (not shown) of the drive motor 156 rotates forward and backward.
  • threads are formed on the outer circumference of the lead screw 155.
  • the screw coupling ring 154 extending on one side of the driving block 153 is formed with a screw thread corresponding to the lead screw 155 on the inner wall surface.
  • the screw coupling ring 154 is moved along the lead screw 155, the driving block 153 is moved along the main frame 151 by this driving force.
  • the pivot shaft 157 is provided on the sidewall of the driving block 153 in a direction perpendicular to the body coupling block 135 so that the joint plate 159 pivots by the measuring force correction 160. (Z-axis direction in Figure 2) to support.
  • the pivot shaft 157 is rotatably provided to the driving block 153 by the pivot support member 158.
  • a plurality of bearings are provided between the pivot shaft 157 and the joint plate 159 to assist the rotation of the pivot shaft 157.
  • the joint plate 159 serves to transfer the measuring force of the measuring force correction unit 160 to the measuring arm 140 through the body coupling block 135.
  • Joint plate 159 is provided with a plate-like material, the upper end is fixedly coupled to the body coupling block 135, the center region is pivotally supported on the pivot shaft 157, one side is the measurement force correction 160 Fixedly coupled to
  • Support member coupling holes 159a and 159b through which a pair of pivot support members 158 are inserted are formed in the center region and the lower region of the joint plate 159.
  • the pivot support member 158 is inserted into the support member coupling holes 159a and 159b so that the plate surface of the joint plate 159 is mounted on the pivot shaft 157 as shown in FIG.
  • the joint plate 159 can be rotated around the center.
  • the upper portion of the joint plate 159 is provided to be in contact with the side of the body coupling block 135 and is provided with a coupling block coupling hole 159c into which the coupling member 159d is inserted.
  • the coupling member 159d is inserted into the body coupling block 135 through the coupling block coupling hole 159c so that the joint plate 159 is fixed to the body coupling block 135.
  • the rotation of the joint plate 159 by the measuring force correcting unit 160 is transmitted to the body coupling block 135, and the arm 147 and the stylus () of the measuring arm 140 coupled to the body coupling block 135. 149).
  • the side of the joint plate 159 is provided with a bracket coupling hole (159e).
  • the bracket coupling hole 159e is coupled to the coil bracket 169 of the measuring force correction 160.
  • the bracket coupling hole 159e is positioned to correspond to the fastening hole 169a of the coil bracket 169, and a fastening member (not shown) not shown in the drawing is inserted.
  • the fastening member (not shown) may be fastened to transmit the Z-axis rotation angle for measuring the force of the measuring force correction unit 160 to the joint plate 159.
  • the measurement force compensator 160 moves the stylus along the surface of the object under measurement T under the control of a controller (not shown) and applies the measurement force such that a constant measurement pressure is applied. Correct.
  • the measuring force correction unit 160 may control the arm (not shown) by the control unit (not shown) to move the stylus 149 along the surface of the measurement target T at a position where the shape of the measurement target T is changed. 147) to a certain angle range.
  • Measuring force correction unit 160 is a first permanent magnet 161 and a second having a predetermined length around the magnetic coupling plate 163 as shown in Figure 6 and 7 (a) and (b)
  • a first electromagnet 165 and a second electromagnet 167 exhibiting magnetic force by application are included.
  • the first permanent magnet 161 and the second permanent magnet 162 are integrally provided at both ends of the magnetic coupling plate 163 in a rod shape, and fixed to the driving block 153 by the block fixing member 164.
  • the coil bobbin 166 is disposed in a form surrounding the first permanent magnet 161 and the second permanent magnet 162, and the coil bracket 169 provided at one side is fixed to the joint plate 159.
  • the first permanent magnet 161 and the second permanent magnet 162 is fixed to the driving block 153, the position is fixed, the coil bobbin 166 is controlled by a controller (not shown), the first electromagnet ( 165 and the second electromagnet 167 are moved in the front-rear direction along the first permanent magnet 161 and the second permanent magnet 162 by the amount of current applied to the second electromagnet 167.
  • the first permanent magnet 161 and the second permanent magnet 162 are arranged in the polarity facing each other around the magnet coupling plate 163. That is, the N pole and the S pole of the first permanent magnet 161 are disposed from the block fixing member 164 side, and the S pole and the N pole of the second permanent magnet 162 are disposed in contact with the magnetic coupling plate 163. do.
  • the first electromagnet 165 has an N pole and an S pole disposed between the N pole and the S pole of the first permanent magnet 161 so that the ends of the N pole are positioned, and the coil bobbin 166 is formed of the first electromagnet 165.
  • the S pole and the N pole of the two electromagnets 167 are sequentially arranged. That is, the permanent magnets 161 and 162 and the electromagnets 165 and 167 are arranged side by side with the same polarity.
  • the first electromagnet 165 and the second electromagnet 167 are provided with coils wound in the same direction about the coil bobbin 166. As a result, even if a current is applied in one direction, the intermediate position control of the arm 147 can be enabled.
  • 9 and 10 are exemplary diagrams for explaining the principle related to the configuration of the measurement force correction unit 160 of the present invention.
  • the permanent magnets 20 and the electromagnets 30 are arranged side by side with the same polarity. When a current is applied, the permanent magnet 20 in the center of the electromagnet 30 is balanced in position.
  • the direction of the magnetic force line M of the permanent magnet 20 tends to be parallel with the direction of the magnetic force line E of the electromagnet 30. If the permanent magnet 20 is disposed in the magnetic core in a direction opposite to the direction of the magnetic force line E, the magnetic force line M of the permanent magnet 20 is parallel to the magnetic force line E of the electromagnet 30. You have the power to turn inside, and your position is out of balance.
  • the measuring force correction unit 160 of the present invention is arranged side by side with the same polarity so that the direction of the magnetic force lines (M, E) of the permanent magnet 20 and the electromagnet 30 is the same.
  • the magnitude of the force applied by the electromagnet 30 to be positioned in parallel with the permanent magnet 20 is 1 of the permanent magnet 20 as shown in (d) of FIG. 10 and (e) of FIG. This is when the end of the electromagnet 30 is positioned at the size of / 2, that is, the center of the electrode.
  • the measuring force correction 160 is designed such that the first electromagnet 165 is positioned at a length of 1/2 of the first permanent magnet 161, and the second electromagnet 167 is the second permanent magnet 162. It is designed to be located at the length of 1/2).
  • the first electromagnet 165 and the second electromagnet 167 are induced to generate the maximum force in order to be positioned in parallel with the first permanent magnet 161 and the second permanent magnet 162.
  • the first electromagnet 165 and the second electromagnet 167 as shown in (a) and (b) of FIG. ) Are balanced with each other to be positioned in the middle of the first permanent magnet 161 and the second permanent magnet 162. As a result, the arm 147 also maintains a horizontal state.
  • the second electromagnet 167 is the second permanent magnet as shown in (a) and (b) of FIG. Since the force to be in parallel with (162) increases, it is attracted to the second permanent magnet (162).
  • the first electromagnet 165 is moved toward the first permanent magnet 161, and the joint plate 159 is pivoted. It rotates counterclockwise about the axis 157, and the measuring arm 140 is rotated upwards.
  • the angle ⁇ at which the arm 147 of the measuring arm 140 and the stylus 149 pivot up and down by the rotation of the joint plate 159 is limited by the width of the moving rail 137.
  • the joint plate 159 is exposed to the outside through the moving rail 137 to a certain length, and the body coupling block 135 is coupled to the exposed portion. Therefore, the angle at which the joint plate 159 can be rotated is limited to the width of the movable rail 137.
  • the stylus 149 and the arm 147 are rotated up and down by the width of the movable rail 137, and when the angle is exceeded, the measurement arm support 130 along the vertical axis 120 under the control of a controller (not shown). ) Is moved up and down.
  • the horizontal position control of the arm 147 is applied even if the current is applied only in one direction. Is possible. That is, as described above, when the same amount of current is applied to the first electromagnet 165 and the second electromagnet 167, the first electromagnet 165 and the second electromagnet 167 have a balance of force, and thus the magnetic coupling plate. Since it is located at the center of the 163, the horizontal position control of the stylus 149 and the arm 147 is possible.
  • the conventional shape measuring device 10 shown in FIG. 1 can reduce the inconvenience of alternately applying currents in different directions for horizontal position control, and can prevent noise and vibration that are incidentally generated. There is an advantage.
  • the measurement force correction unit 160 can easily deflect the arm 147 up and down by controlling the amount of current applied to the first electromagnet 165 and the second electromagnet 167 differently. have.
  • the controller (not shown) measures the shape of the object to be measured (T) by converting a position detected by the displacement sensor (not shown) according to the position change of the stylus 149 into a coordinate value.
  • the controller (not shown) controls the driving motor 156 to linearly move the driving block 153 at a constant speed. Then, the stylus 149 is set to press the surface of the object under test T at a constant pressure.
  • the measurement pressure applied by the stylus 149 to the measurement target may be set according to the material of the measurement target.
  • the controller controls the measurement force compensator 160 to maintain a predetermined measurement pressure according to the material of the measurement target (T). To this end, the controller (not shown) controls the measurement force correction unit 160 based on real-time position information of the stylus 149 transmitted from the displacement sensor (not shown) and measurement pressure information of the stylus 149.
  • the controller (not shown) drives the driving unit 121 of the vertical shaft 120 when the rotation angle of the arm 147 pivoted in the Z-axis direction by the measuring force correction unit 160 exceeds the maximum allowable angle.
  • the measurement arm support 130 is controlled to move in the Y-axis direction.
  • a process of measuring the shape of the object to be measured by the shape measuring apparatus 100 according to the present invention having such a configuration will be described with reference to FIGS. 2 to 10.
  • the shape measuring apparatus 100 measures the shape of a target object T having a disc shape, as an example.
  • the displacement according to the movement of the stylus 149 based on the coordinate value of the position where the stylus 149 is initially positioned is measured in the shape of the object T to be measured.
  • the stylus 149 is exemplarily described as measuring the shape while gradually moving from an initial position located at the top center of the object T to be measured.
  • the measuring arm 140 is moved in the X-axis direction by the linear moving part 150 in a state coupled to the body coupling block 135 by a magnetic force. At this time, the stylus 149 moves while pressing the surface of the object to be measured T at a set measuring pressure.
  • the stylus 149 When the stylus 149 is moved in the horizontal direction in the X-axis direction at the initial position, the object to be measured T is formed to be bent, so that the stylus 149 is spaced apart from the surface of the object to be measured T by a predetermined distance. When the stylus 149 is lifted up, the measured pressure applied to the target to be measured by the stylus 149 is reduced.
  • the measurement pressure applied by the stylus 149 to the measurement target T is set to 5g
  • the measurement pressure is reduced to 4g when the stylus 149 is moved and spaced apart from the surface of the measurement target T. do.
  • the moving distance in the X-axis direction is very fine, the actual stylus 149 is pressed to a pressure smaller than the set pressure without being completely separated from the measurement target T.
  • the controller (not shown) receives the change in the measured pressure applied from the stylus 149 and the displacement of the applied stylus 149 from the displacement sensor (not shown), and the stylus 149 applies the measured pressure of 5 g again. Control the measurement force correction 160 to be.
  • the controller (not shown) controls the measurement force compensator 160 in a direction in which the stylus 149 moves downward so that a measurement pressure of 1 g, which is a difference from the reference measurement pressure, is further added from the current measurement pressure of 4 g.
  • the first electromagnet 165 and the second electromagnet 167 may include a magnetic coupling plate ( 163). In this case, the same amount of current is applied to the first electromagnet 165 and the second electromagnet 167.
  • the controller (not shown) applies a larger current than the second electromagnet 167 to the first electromagnet 165 to add a measurement pressure of 1 g. At this time, the larger the measured pressure to be corrected, the larger the difference in the current value between the first electromagnet 165 and the second electromagnet 167.
  • the first electromagnet 165 When a large current is applied to the first electromagnet 165, the first electromagnet 165 is moved toward the first permanent magnet 161, and the joint plate 159 is moved counterclockwise about the pivot axis 157. Done. As a result, the arm 147 and the stylus 149 move downwards to be in close contact with the surface of the object T to be measured and apply a measuring pressure of 5g.
  • a measurement pressure larger than the measurement pressure of 5 g set in accordance with the shape of the object to be measured T may be applied.
  • An example may be a case in which the object to be measured T has an inclined surface that gradually increases.
  • the controller (not shown) controls the measurement force compensator 160 to move the stylus 149 in the upper direction to maintain the set pressure of 5g.
  • the shape measuring apparatus 100 can measure the shape by pressing the surface of the entire measurement target T in close contact with the same measurement pressure.
  • the shape measuring device is disposed by winding the coil in the same direction as the first electromagnet and the second electromagnet forming the measurement force correction unit. Accordingly, even if the current is applied only in one direction, the position control can be performed such that the stylus is in the intermediate position or rotates up and down.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

본 발명은 형상측정기에 관한 것으로서, 보다 자세히는 피측정대상의 표면에 인가되는 측정력이 일정해지도록 측정력을 보정하는 측정력보정수단이 구비된 형상측정기에 관한 것이다.

Description

형상측정기
본 발명은 형상측정기에 관한 것으로서, 보다 자세히는 피측정대상의 표면에 인가되는 측정력이 일정해지도록 측정력을 보정하는 측정력보정수단이 구비된 형상측정기에 관한 것이다.
형상측정기는 물체의 형상을 빠르고 정확하게 측정하여 피측정물의 형상 정보를 3차원 공간 좌표 형태로 얻는 장비이다. 형상측정기는 가공된 제품이나 부품의 형상 측정 결과를 설계된 형상치수와 비교하여 가공정밀도를 평가하는데 이용하거나 도면 등의 설계 자료가 없는 제품의 역설계 등에 이용된다.
형상측정기의 일례가 등록특허 제10-1217217호 "접촉식 표면형상측정기의 측정력 자동 보정장치"에 개시된 바 있다.
종래 형상측정기는 스타일러스가 측정물을 하방으로 가압하여 측정력을 인가하고, 접촉상태에서 이동하며 변위센서가 좌표값을 읽어 표면형상을 측정한다.
도 1은 종래 형상측정기(10)의 스타일러스(11a)가 피측정대상(T)의 표면을 접촉하여 형상을 측정하는 과정을 개략적으로 도시한 개략도이다. 도시된 바와 같이 종래 형상측정기(10)는 측정암(11)의 단부에 스타일러스(11a)가 배치되고, 스타일러스(11a)의 하단부가 피측정대상(T)의 표면을 일정한 측정압으로 가압한 상태에서 피측정대상(T)의 표면을 따라 이동하며 피측정대상(T)의 형상을 측정하게 된다.
이 때, 측정암(11)의 타단부에는 측정암(11)이 상하로 일정각도로 회동하며 스타일러스(11a)가 피측정대상(T)의 표면에 일정한 측정압을 인가하도록 하는 측정력보정부(15)가 구비된다. 측정력보정부(15)는 영구자석(15c)과, 영구자석(15c)의 상하에 각각 구비된 전자석(15a,15b)으로 구비된다.
종래 측정력보정부(15)는 전류를 인가하면, 전류의 인가방향에 따라 한방향으로만 이동된다. 즉, 전류의 인가방향에 따라 A로 표시한 방향으로 측정암(11)이 회동되거나, 반대방향의 전류를 인가하면 B로 표시한 방향으로 측정암(11)이 회동된다.
종래 형상측정기(10)는 측정력보정부(15)의 전류인가방향에 따라 상방향 또는 하방향으로만 측정암(11)이 회동되기 때문에 측정암(11)을 수평하게 유지하기가 어려운 점이 있다. 즉, 전류인가방향에 따라 스타일러스(11a)가 상방향으로 들리거나 아래로 하강되기 때문에 스타일러스(11a) 위치의 중간제어가 힘든 단점이 있다.
또한, 종래 형상측정기(10)는 전류를 인가하지 않더라도 측정암(11)의 자중에 의해 측정암(11)이 하부로 급격하게 하강되게 된다. 또한, 측정암(11)이 아래로 하강되는 방향으로 전류가 인가될 때에는 상방향으로 상승하는 방향으로 전류를 인가할 때보다 작은 량의 전류를 인가하더라도 측정암(11)의 자중이 함께 작용하여 큰 폭으로 아래로 하강되어 위치 제어가 힘든 단점이 있다.
이러한 위치의 중간 제어의 어려움을 해소하기 위해, 상방향으로 측정암(11)이 이동하는 방향의 전류와 하방향으로 측정암(11)이 이동하는 방향의 전류를 계속하여 교번적으로 인가하는 기술이 개발되었다. 이 경우, 위치의 중간 제어는 가능하나 소음과 진동이 발생되는 다른 문제가 있었다. 그리고, 진동이 발생되는 경우 스타일러스(11a)의 측정에 오차가 발생되는 문제도 있었다.
본 발명의 목적은 상술한 문제를 해결하기 위한 것으로, 한 방향으로 전류를 인가하더라도 스타일러스의 중간위치 제어가 가능하게 측정력을 보정할 수 있는 형상측정기를 제공하는 것이다.
본 발명의 다른 목적은 스타일러스의 상하방향 위치 제어를 간단하게 구현할 수 있는 형상측정기를 제공하는 것이다.
본 발명의 또 다른 목적은 간단한 구성으로 소음과 진동없이 측정력을 일정하게 유지하여 측정결과의 신뢰성을 높일 수 있는 형상측정기를 제공하는 것이다.
본 발명의 상기 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 본 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.
본 발명의 목적은 피측정대상의 표면을 따라가며 상기 피측정대상의 형상을 측정하는 형상측정기에 의해 달성될 수 있다. 본 발명의 형상측정기는, 상기 피측정대상과 접촉하며 형상을 측정하는 스타일러스와, 상기 스타일러스를 지지하는 암을 갖는 측정암부와; 상기 측정암부가 상기 피측정대상의 형상을 따라 좌우 직선 이동 및 상하로 피봇 회동되도록 상기 측정암부를 지지하는 측정암지지부와; 상기 측정암지지부 내부에 수용되어 상기 스타일러스가 상하로 회동되며 상기 피측정대상의 형상이 가변되더라도 상기 피측정대상의 표면에 일정한 측정압력을 인가하도록 상기 스타일러스의 측정력을 보정하는 측정력보정부와; 상기 피측정대상의 형상 변화를 감지하고, 상기 형상 변화만큼 측정압력이 보정되도록 상기 측정력보정부를 제어하는 제어부를 포함하며, 상기 측정암지지부는, 지지부본체와; 상기 지지부본체의 길이방향을 따라 상기 측정암부를 좌우 직선이동가능하게 지지하는 드라이빙블럭과; 상기 측정암부와 수직한 방향으로 일단이 상기 측정암부에 고정되게 구비되고, 상기 암이 상하회동되는 방향으로 상기 드라이빙블럭에 회동가능하게 결합되는 조인트플레이트를 포함하고, 상기 측정력보정부는 상기 드라이빙블럭에 상기 조인트플레이트가 결합된 방향으로 일정길이 돌출되게 결합되는 영구자석과; 상기 영구자석의 외주연을 감싸게 구비되며, 일단이 상기 조인트플레이트에 결합되어 한 방향의 전류의 인가에 의해 상기 영구자석의 길이방향을 따라 전후로 이동되며 상기 조인트플레이트를 회동시키는 전자석을 포함하는 것을 특징으로 한다.
일 실시예에 따르면, 상기 드라이빙블럭과 상기 조인트플레이트 사이에는 상기 전자석의 이동방향에 따라 상기 조인트플레이트가 회동되도록 지지하는 피봇축이 회전가능하게 구비될 수 있다.
일 실시예에 따르면, 상기 영구자석은 자석결합판을 중심으로 양단에 각각 제1영구자석과 제2영구자석이 배치되고, 상기 전자석은 코일보빈을 중심으로 양단에 각각 제1전자석과 제2전자석이 코일이 동일방향으로 권취되어 구비되고, 상기 제1전자석과 상기 제2전자석은 상기 제1영구자석 및 상기 제2영구자석과 동일한 극성이 서로 나란하게 배치될 수 있다.
일 실시예에 따르면, 상기 제1전자석은 상기 제1영구자석의 전체 길이의 1/2의 위치에 배치되고, 상기 제2전자석은 상기 제2영구자석의 전체 길이의 1/2의 위치에 배치될 수 있다.
본 발명에 따른 형상측정기는 측정력보정부를 형성하는 제1전자석과 제2전자석이 동일방향으로 코일을 권취하여 배치된다. 이에 의해 한 방향으로만 전류를 인가하더라도 스타일러스가 중간위치에 있거나 상하로 회동되도록 위치 제어를 할 수 있다.
이에 의해 종래 스타일러스를 중간위치로 제어하기 위해 서로 다른 방향 전류를 교번적으로 연속하여 인가하던 것과 비교할 때, 진동과 소음이 적고 신뢰성 있는 측정결과를 얻을 수 있는 장점이 있다.
또한, 제1전자석과 제2전자석으로 인가되는 전류량을 상이하게 조절하여 스타일러스의 상하 위치를 용이하게 제어할 수 있다.
도 1은 종래 형상측정기의 측정력 보정과정을 개략적으로 도시한 개략도,
도 2는 본 발명에 따른 형상측정기의 구성을 도시한 사시도,
도 3은 본 발명에 따른 형상측정기의 측정암지지부와 측정암부의 결합과정을 도시한 사시도,
도 4는 본 발명에 따른 형상측정기의 측정암지지부의 구성을 도시한 분해사시도,
도 5는 본 발명에 따른 형상측정기의 측정암지지부와 측정암보정부 및 측정암부의 구성을 분해하여 도시한 분해사시도,
도 6은 본 발명에 따른 형상측정기의 측정암지지부와 측정암보정부의 결합관계를 도시한 확대사시도,
도 7과 도 8은 본 발명에 따른 형상측정기의 측정암보정부에 의해 측정암부의 각도가 조절되는 과정을 도시한 예시도,
도 9와 도 10은 본 발명에 따른 형상측정기의 측정암보정부의 측정암보정원리를 설명하기 위한 예시도이다.
[부호의 설명]
100 : 형상측정기 110 : 베이스
120 : 수직축 130 : 측정암지지부
131 : 지지부본체 133 : 수직축결합부
134 : 베이스판 135 : 바디결합블록
135a : 정면자석결합판 135b : 상면자석결합판
135c : 측면자석결합판 137 : 이동레일
140 : 측정암부 141 : 바디
142 : 블록수용홈 143 : 정면자석
145 : 측면자석 147 : 암
148 : 무게추 149 : 스타일러스
150 : 직선이동부 151 : 메인프레임
153 : 드라이빙블럭 154 : 스크류결합링
155 : 리드스크류 156 : 구동모터
157 : 피봇축 158 : 피봇지지부재
159 : 조인트플레이트 159a,b : 지지부재결합공
159c : 결합블록결합공 159d : 결합부재
159e : 브래킷결합공 160 : 측정력보정부
161 : 제1영구자석 162 : 제2영구자석
163 : 자석결합판 164 : 블럭고정부재
165 : 제1전자석 166 : 코일보빈
167 : 제2전자석 169 : 코일브래킷
169a : 체결공
본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시예로 한정되는 것으로 해석되어서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 부재는 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
도 2는 본 발명에 따른 형상측정기(100)의 구성을 도시한 사시도이다. 도시된 바와 같이 본 발명에 따른 형상측정기(100)는 암(147)에 결합된 스타일러스(149)가 피측정대상(T)의 표면을 따라 전후방향(X축) 이동, 상하방향(Y축) 이동, 일정각도 피벗 회동(Z축) 되며 피측정대상(T)의 표면 형상을 3차원 좌표로 형성한다.
본 발명에 따른 형상측정기(100)는 지면에 수평하게 배치되는 베이스(110)와, 베이스(110)에 수직하게 배치되는 수직축(120)과, 수직축(120)을 따라 상하로 이동되며 측정암부(140)가 전후방향으로 이동 및 상하로 회동되도록 지지하는 측정암지지부(130)와, 측정암지지부(130)에 자력에 의해 착탈가능하게 결합되며 피측정대상(T)의 형상을 측정하는 측정암부(140)와, 측정암지지부(130)의 내부에 구비되며 측정암부(140)가 전후방향으로 이동되도록 지지하는 직선이동부(150)와, 스타일러스(149)가 피측정대상(T)의 표면을 따라 이동하며 일정한 측정력을 인가하도록 하는 측정력보정부(160)와, 피측정대상(T)의 형상변화를 감지하고 측정력보정부(160)가 형상변화만큼 측정력을 보정하도록 제어하는 제어부(미도시)를 포함한다.
베이스(110)는 지면에 수평하게 배치되며, 수직축(120)을 지지한다. 수직축(120)은 상부에 구동부(121)가 구비되어, 측정암지지부(130)가 상하로 이동되도록 한다.
측정암지지부(130)는 측정암부(140)가 안정적으로 피측정대상(T)의 형상을 측정하도록 지지한다. 도 3은 측정암지지부(130)와 측정암부(140)의 결합구조를 도시한 분해사시도이다. 도시된 바와 같이 측정암지지부(130)는 지지부본체(131)와, 지지부본체(131)의 후방에 구비되어 수직축(120)에 결합되는 수직축결합부(133)와, 지지부본체(131)의 전방에 직선이동부(150)에 의해 이동가능하게 결합되는 바디결합블록(135)을 포함한다.
지지부본체(131)는 베이스판(134)의 상부를 덮는다. 베이스판(134)에는 바디결합블록(135)을 전후 이동가능하게 구동하는 직선이동부(150)와, 바디결합블록(135)을 Z축방향으로 회동되게 구동하는 측정력보정부(160)가 수용된다. 또한, 베이스판(134)에는 스타일러스(149)의 위치변위를 감지하는 변위센서(미도시)와, 변위센서(미도시)에서 감지된 변위를 분석하여 측정력보정부(160)가 측정력을 보정하도록 제어하고, 변위를 3차원 좌표로 매칭하는 제어부(미도시)가 구비된다.
지지부본체(131)의 전방 판면에는 바디결합블록(135)이 전후로 이동되게 지지하는 이동레일(137)이 일정 길이 형성된다. 여기서, 피측정대상(T)의 형상변화에 의해 스타일러스(149)가 Z축방향으로 회동되는 각도는 이동레일(137)의 폭만큼으로 제한된다. 이동레일(137)의 폭을 넘어가는 형상변위는 제어부(미도시)각 수직축(120)을 따라 측정암지지부(130)를 상하로 이동하여 대응하게 된다.
바디결합블록(135)은 이동레일(137)을 관통하여 지지부본체(131)의 내부에 수용된 조인트플레이트(159)에 결합된다. 조인트플레이트(159)가 드라이빙블럭(153)에 결합되고, 드라이빙블럭(153)이 리드스크류(155)의 구동에 의해 직선이동되면, 이에 연동하여 바디결합블록(135)이 X축방향으로 따라 전후로 이동된다.
바디결합블록(135)의 외주면에는 정면자석결합판(135a), 상면자석결합판(135b) 및 측면자석결합판(135c)이 구비되어 자력에 의해 측정암부(140)와 착탈가능하게 결합된다.
정면자석결합판(135a)은 바디결합블록(135)의 전면에 좌우 한 쌍이 구비된다. 정면자석결합판(135a)은 바디(141)에 구비된 정면자석(143)과 자력에 의해 결합된다. 상면자석결합판(135b)은 바디결합블록(135)의 상면 일측에 구비된다. 상면자석결합판(135b)은 바디(141)에 구비된 상면자석(미도시)과 자력에 의해 결합된다. 측면자석결합판(135c)은 바디결합블록(135)의 후방쪽 측면에 구비된다. 측면자석결합판(135c)은 바디(141)에 구비된 측면자석(145)과 자력에 의해 결합된다.
여기서, 전방은 스타일러스(149)가 향하는 방향이고, 후방은 스타일러스(149)와 반대방향을 의미한다.
정면자석결합판(135a), 상면자석결합판(135b) 및 측면자석결합판(135c)은 바디결합블록(135)의 외주면에 매립되게 형성되며, 자석과 자력이 작용될 수 있도록 금속판 소재로 형성된다.
측정암부(140)는 측정암지지부(130)에 착탈가능하게 결합되며, 스타일러스(149)가 피측정대상(T)의 표면에 접촉되며 피측정대상(T)의 형상을 탐지한다. 본 발명에 따른 측정암부(140)는 자석의 자력에 의해 측정암지지부(130)에 착탈가능하게 결합된다.
이 때, 자석의 자력은 스타일러스(149)가 피측정대상(T)의 형상을 탐지할 때 요구되는 기준범위의 힘, 일례로 4~12g 범위의 힘에 대해서는 결합상태가 유지되도록 하고, 기준범위를 초과하는 힘, 일례로 13g 이상의 힘에 대해서는 결합상태가 해제되어 측정암부(140)가 측정암지지부(130)로부터 분리되도록 한다.
이를 위해 측정암부(140)는 바디결합블록(135)에 결합되는 바디(141)와, 바디(141)에 함몰형성되어 바디(141)가 바디결합블록(135)에 결합될 때 바디결합블록(135)을 수용하는 블록수용홈(142)과, 블록수용홈(142)의 내측면에 형성되는 정면자석(143), 상면자석(미도시) 및 측면자석(145)을 포함한다.
또한, 측정암부(140)의 전방에는 스타일러스(149)와, 스타일러스(149)를 지지하는 암(147)이 구비되고, 측정암부(140)의 후방에는 Z축 방향으로 피봇에 의한 회동구동시 무게중심을 잡는 무게추(148)가 구비된다.
직선이동부(150)는 바디결합블록(135)과, 바디결합블록(135)에 결합된 측정암부(140)가 X축방향(도 2 참조)으로 직선이동되도록 지지한다. 직선이동부(150)는 도 4와 도 5에 도시된 바와 같이 베이스판(134)의 상부에 평행하게 배치되는 메인프레임(151)과, 메인프레임(151)을 따라 슬라이딩 이동되게 결합된 드라이빙블럭(153)과, 드라이빙블럭(153)이 메인프레임(151)을 따라 이동되도록 구동력을 인가하는 리드스크류(155)와, 드라이빙블럭(153)의 측면에 결합되는 피봇축(157)과, 바디결합블록(135)과 측정력보정부(160)에 함께 결합되며 측정력보정부(160)에 의해 바디결합블록(135)이 피봇축(157)을 중심으로 일정각도 회동되도록 하는 조인트플레이트(159)를 포함한다.
메인프레임(151)은 베이스판(134)과 지지부본체(131) 사이에 구비되어 드라이빙블럭(153)이 이동레일(137)을 따라 이동되도록 드라이빙블럭(153)을 지지한다. 드라이빙블럭(153)은 상단이 메인프레임(151)에 슬라이딩 이동가능하게 결합되고, 스크류결합링(154)이 리드스크류(155)에 나사결합된다.
제어부(미도시)의 제어에 의해 구동모터(156)가 정역회전하면, 구동모터(156)의 구동축(미도시)에 결합된 리드스크류(155)가 정역회전한다. 도면에 도시되지 않았으나 리드스크류(155)의 외주연에는 나사산이 형성된다.
드라이빙블럭(153)의 일측에 연장형성된 스크류결합링(154)은 내벽면에 리드스크류(155)에 대응되는 나사산이 형성된다. 리드스크류(155)가 회전되면, 스크류결합링(154)이 리드스크류(155)를 따라 이동되고, 드라이빙블럭(153)은 이 구동력에 의해 메인프레임(151)을 따라 이동하게 된다.
피봇축(157)은 도 6에 도시된 바와 같이 드라이빙블럭(153)의 측벽에 바디결합블록(135)에 수직한 방향으로 구비되어 측정력보정부(160)에 의해 조인트플레이트(159)가 피봇회동(도 2의 Z축방향)되도록 지지한다. 피봇축(157)은 피봇지지부재(158)에 의해 드라이빙블럭(153)에 아이들회전 가능하게 구비된다. 도면에 도시되지 않았으나 피봇축(157)과 조인트플레이트(159) 사이에는 복수개의 베어링(미도시)이 구비되어 피봇축(157)의 회전을 돕는다.
조인트플레이트(159)는 측정력보정부(160)의 측정력을 바디결합블록(135)을 통해 측정암부(140)로 전달하는 역할을 한다. 조인트플레이트(159)는 판상재질로 구비되며, 상단은 바디결합블록(135)에 고정결합되고, 가운데 영역은 피봇축(157)에 피봇 회전가능하게 지지되고, 일측면은 측정력보정부(160)에 고정결합된다.
조인트플레이트(159)의 가운데 영역과 하부영역에는 한 쌍의 피봇지지부재(158)가 삽입되는 지지부재결합공(159a,159b)이 관통형성된다. 지지부재결합공(159a,159b)에 피봇지지부재(158)가 삽입되어 도 7의 (b)에 도시된 바와 같이 조인트플레이트(159)의 판면이 피봇축(157) 상에 얹혀져서 피봇축(157)을 중심으로 조인트플레이트(159)가 회동될 수 있다.
조인트플레이트(159)의 상부에는 바디결합블록(135)의 측면에 접촉되게 배치되며 결합부재(159d)가 삽입되는 결합블록결합공(159c)이 구비된다. 결합부재(159d)가 결합블록결합공(159c)를 통해 바디결합블록(135)의 내부로 삽입되어 조인트플레이트(159)가 바디결합블록(135)에 고정된다. 이에 의해 측정력보정부(160)에 의한 조인트플레이트(159)의 회동이 바디결합블록(135)으로 전달되고, 바디결합블록(135)에 결합된 측정암부(140)의 암(147)과 스타일러스(149)로 전달될 수 있다.
조인트플레이트(159)의 측면에는 브래킷결합공(159e)이 구비된다. 브래킷결합공(159e)은 측정력보정부(160)의 코일브래킷(169)이 결합된다. 브래킷결합공(159e)은 코일브래킷(169)의 체결공(169a)에 대응되게 위치되고, 도면에 도시되지 않은 체결부재(미도시)가 삽입된다. 체결부재(미도시)가 체결되어 조인트플레이트(159)로 측정력보정부(160)의 측정력보정을 위한 Z축방향 회전각도가 전달될 수 있다.
측정력보정부(160)는 제어부(미도시)의 제어에 의해 피측정대상(T)의 형상변화에 따라 스타일러스가 피측정대상(T)의 표면을 따라 이동하며 일정한 측정압력이 인가되도록 측정력을 보정한다.
측정력보정부(160)는 피측정대상(T)의 형상이 변화되는 위치에서 스타일러스(149)가 피측정대상(T)의 표면을 따라 이동될 수 있도록 제어부(미도시)의 제어에 의해 암(147)을 일정각도 범위로 회동시킨다.
측정력보정부(160)는 도 6과 도 7의 (a) 및 (b)에 도시된 바와 같이 자석결합판(163)을 중심으로 일정 길이를 갖게 구비된 제1영구자석(161) 및 제2영구자석(162)과, 제1영구자석(161) 및 제2영구자석(162)의 주변을 링형태로 감싸게 배치되는 코일보빈(166)과, 코일보빈(166)의 양단에 권취되어 전류의 인가에 의해 자력을 나타내는 제1전자석(165) 및 제2전자석(167)을 포함한다.
제1영구자석(161) 및 제2영구자석(162)은 자석결합판(163)의 양단에 일체로 막대 형태로 구비되고, 블럭고정부재(164)에 의해 드라이빙블럭(153)에 고정된다.
코일보빈(166)은 제1영구자석(161)과 제2영구자석(162)을 감싸는 형태로 배치되고, 일측에 구비된 코일브래킷(169)이 조인트플레이트(159)에 고정된다. 여기서, 제1영구자석(161) 및 제2영구자석(162)은 드라이빙블럭(153)에 고정되므로 위치가 고정되고, 코일보빈(166)은 제어부(미도시)의 제어에 의해 제1전자석(165)과 제2전자석(167)으로 인가되는 전류량에 의해 제1영구자석(161)과 제2영구자석(162)을 따라 전후방향으로 이동되게 된다.
여기서, 자석결합판(163)을 중심으로 제1영구자석(161)과 제2영구자석(162)은 서로 마주보게 극성이 배치된다. 즉, 블럭고정부재(164) 측으로부터 제1영구자석(161)의 N극과 S극이 배치되고, 자석결합판(163)과 접하게 제2영구자석(162)의 S극과 N극이 배치된다.
그리고, 제1전자석(165)은 제1영구자석(161)의 N극과 S극의 사이에 N극의 끝단이 위치하도록 N극과 S극이 배치되고, 코일보빈(166)을 중심으로 제2전자석(167)의 S극과 N극이 순차적으로 배치된다. 즉, 영구자석(161,162)과 전자석(165,167)은 같은 극성끼리 서로 나란하게 배치된다.
제1전자석(165)과 제2전자석(167)은 코일보빈(166)을 중심으로 코일이 동일 방향으로 권취되어 구비된다. 이에 의해 한 방향으로 전류를 인가하더라도 암(147)의 중간위치 제어가 가능해질 수가 있다.
도 9와 도 10은 본 발명의 측정력보정부(160)의 구성과 관련된 원리를 설명하기 위한 예시도이다.
본 발명의 측정력보정부(160)는 영구자석(20)과 전자석(30)이 같은 극성끼리 서로 나란하게 배치된다. 전류가 인가될 때, 전자석(30)의 중심에 있는 영구자석(20)이 위치의 균형을 이루게 된다.
도 9에 도시된 바와 같이 통상 전자석(30)의 코일에 전류(i)가 인가되면, 코일의 주변에는 자력선(E)이 형성된다. 이 때, 자력선은 N극에서 S극을 향하도록 형성된다.
이러한 자력선의 중심, 즉 자심 속에 영구자석(20)을 배치할 때는 영구자석(20)의 자력선(M)의 방향이 전자석(30)의 자력선(E)의 방향과 나란해지려는 성향이 있다. 만약, 자심 속에 영구자석(20)을 자력선(E)의 방향과 반대방향으로 배치하는 경우, 영구자석(20)의 자력선(M)이 전자석(30)의 자력선(E)과 나란해지기 위해 자심 속에서 돌아서려는 힘을 갖게 되고, 위치가 균형을 이루지 않게 된다.
이에 본 발명의 측정력보정부(160)는 영구자석(20)과 전자석(30)의 자력선(M,E)의 방향이 동일해지도록 서로 같은 극성끼리 나란하게 배치된다.
한편, 도 10의 (a)에 도시된 바와 같이 전자석(30)의 전극이 영구자석(20)의 전극과 나란하게 되도록 전류가 인가되고, 영구자석(20)의 위치가 고정되면 전자석(30) 은 영구자석(20)과 전극이 나란하게 있기 위해 힘을 인가하게 된다.
이 상태에서 외부의 전자석(30)을 도 10의 (b)에 실선으로 도시된 바와 같이 하부로 이동시키면, 전자석(30)은 도 10의 (a)와 같이 영구자석(20)과 나란하게 위치하기 위해 점선방향으로 힘을 인가하게 된다.
동일하게 도 10의 (c)에 실선으로 도시된 바와 같이 전자석(30)을 상부로 이동시키면, 전자석(30)은 점선으로 도시된 바와 같이 하부방향으로 힘을 인가하게 된다.
이 때, 전자석(30)이 영구자석(20)과 나란하게 위치하기 위해 인가하는 힘의 크기는 도 10의 (d)와 도 10의 (e)에 도시된 바와 같이 영구자석(20)의 1/2의 크기, 즉 전극의 중심에 전자석(30)의 단부가 위치했을 때이다.
이에 본 발명에 따른 측정력보정부(160)는 제1전자석(165)이 제1영구자석(161)의 1/2 길이에 위치되도록 설계되고, 제2전자석(167)이 제2영구자석(162)의 1/2 길이에 위치되도록 설계되었다. 이에 의해 제1전자석(165)과 제2전자석(167)이 제1영구자석(161) 및 제2영구자석(162)과 나란하게 위치하기 위해 최대의 힘을 발생하도록 유도하게 된다.
여기서, 제1전자석(165)과 제2전자석(167)에 동일한 전류를 인가하게 되면, 도 7의 (a)와 (b)에 도시된 바와 같이 제1전자석(165)과 제2전자석(167)은 서로 힘의 균형을 이루게 되어 제1영구자석(161)과 제2영구자석(162)의 중간에 위치하게 된다. 이에 의해 암(147)도 수평상태를 유지하게 된다.
반면, 제1전자석(165)에 비해 제2전자석(167)으로 큰 전류를 인가하게 되면, 도 8의 (a)와 (b)에 도시된 바와 같이 제2전자석(167)이 제2영구자석(162)과 나란하게 있으려는 힘이 커지므로 제2영구자석(162) 쪽으로 끌려가게 된다.
이렇게 코일보빈(166)이 제2영구자석(162)을 향해 하부방향으로 이동되면, 코일보빈(166)에 결합된 조인트플레이트(159)는 피봇축(157)을 중심으로 시계방향으로 회동되고, 조인트플레이트(159)에 결합된 바디결합블록(135)과, 측정암부(140)는 일정각도(α) 하부방향으로 회동된다.
한편, 제1전자석(165)에 제2전자석(167) 보다 큰 전류가 인가되면, 앞서와 반대로 제1전자석(165)이 제1영구자석(161) 쪽으로 이동되고, 조인트플레이트(159)가 피봇축(157)을 중심으로 반시계방향으로 회동되고, 측정암부(140)는 상부방향으로 회동된다.
여기서, 조인트플레이트(159)의 회동에 의해 측정암부(140)의 암(147)과 스타일러스(149)가 상하로 피벗회동되는 각도(α)는 이동레일(137)의 폭에 의해 제한된다. 도 3에 도시된 바와 같이 조인트플레이트(159)는 이동레일(137)을 통해 외부로 일정 길이 노출되고, 노출된 부분에 바디결합블록(135)이 결합된다. 따라서, 조인트플레이트(159)가 회동될 수 있는 각도는 이동레일(137)의 폭만큼으로 제한되게 된다.
스타일러스(149)와 암(147)은 이동레일(137)의 폭 만큼 상하로 회동되고, 이 각도를 초과하는 경우에는 제어부(미도시)의 제어에 의해 수직축(120)을 따라 측정암지지부(130)가 상하로 위치가 이동된다.
본 발명에 따른 측정력보정부(160)는 제1전자석(165)과 제2전자석(167)을 형성하는 코일이 동일방향으로 권취되므로 전류를 한방향으로만 인가하더라도 암(147)의 수평방향 위치제어가 가능하다. 즉, 앞서 설명한 바와 같이 제1전자석(165)과 제2전자석(167)에 동일량의 전류를 인가할 경우 제1전자석(165)과 제2전자석(167)이 힘의 균형을 이루어 자석결합판(163)의 중앙에 위치하게 되므로 스타일러스(149)와 암(147)의 수평방향 위치제어가 가능해진다.
이에 도 1에 도시된 종래 형상측정기(10)가 수평방향 위치제어를 위해 서로다른 방향의 전류를 교번적으로 인가하던 수로고움을 덜 수 있고, 이에 이해 부수적으로 발생되던 소음과 진동을 방지할 수 있는 장점이 있다.
또한, 본 발명에 따른 측정력보정부(160)는 제1전자석(165)과 제2전자석(167)으로 인가되는 전류의 양을 상이하게 제어하는 것으로 암(147)을 용이하게 상하로 편향시킬 수 있다.
제어부(미도시)는 스타일러스(149)의 위치변화에 따라 변위센서(미도시)가 감지한 위치를 좌표값으로 변환하여 피측정대상(T)의 형상을 측정한다. 제어부(미도시)는 일정한 속도로 드라이빙블럭(153)이 직선 이동되도록 구동모터(156)을 제어한다. 그리고, 스타일러스(149)가 일정한 압력으로 피측정대상(T)의 표면을 가압하도록 설정한다.
이 때, 스타일러스(149)가 피측정대상에 인가하는 측정압력은 피측정대상의 재질에 따라 설정될 수 있다.
제어부(미도시)는 스타일러스(149)가 이동할 때, 피측정대상(T)의 재질에 따라 기설정된 측정압력이 일정하게 유지될 수 있도록 측정력보정부(160)를 제어한다. 이를 위해 제어부(미도시)는 변위센서(미도시)로부터 전송되는 스타일러스(149)의 실시간 위치정보와 스타일러스(149)의 측정압력정보를 기초로 측정력보정부(160)를 제어한다.
그리고, 제어부(미도시)는 측정력보정부(160)에 의해 Z축방향으로 피봇회동된 암(147)의 회동각도가 최대허용각도를 넘어가는 경우, 수직축(120)의 구동부(121)를 구동하여 측정암지지부(130)가 Y축방향으로 이동되도록 제어한다.
이러한 구성을 갖는 본 발명에 따른 형상측정기(100)가 피측정대상(T)의 형상을 측정하는 과정을 도 2 내지 도 10을 참조하여 설명한다.
도 2에 도시된 바와 같이 원판 형상의 피측정대상(T)의 형상을 본 발명에 따른 형상측정기(100)가 측정하는 것을 일례로 설명한다.
스타일러스(149)가 처음 위치되는 위치의 좌표값을 기준으로 스타일러스(149)의 이동에 따른 변위를 피측정대상(T)의 형상으로 측정하게 된다. 이를 위해 도 2에 도시된 바와 같이 스타일러스(149)가 피측정대상(T)의 최상부 중심에 위치한 초기위치로부터 점차 이동하며 형상을 측정하는 것으로 예시하여 설명한다.
측정암부(140)는 바디결합블록(135)에 자력에 의해 결합된 상태에서 직선이동부(150)에 의해 X축 방향으로 이동된다. 이 때, 스타일러스(149)는 피측정대상(T)의 표면을 설정된 측정압력으로 가압하며 이동하게 된다.
초기위치에서 스타일러스(149)가 X축 방향으로 수평방향으로 이동되면, 피측정대상(T)은 절곡되어 형성되므로 스타일러스(149)가 피측정대상(T)의 표면으로부터 일정거리 이격되거나 들뜨게 된다. 스타일러스(149)가 들뜨게 되면 스타일러스(149)가 피측정대상(T)으로 인가되는 측정압이 줄어들게 된다.
일례로, 스타일러스(149)가 피측정대상(T)에 인가하는 측정압이 5g으로 설정된 상태에서, 스타일러스(149)가 이동되어 피측정대상(T)의 표면으로부터 이격되면 측정압이 4g으로 줄어들게 된다. 이 때, X축방향으로 이동거리가 아주 미세하므로 실제 스타일러스(149)는 피측정대상(T)으로부터 완전히 이격되지 않고 설정된 압력보다 작은 압력으로 가압하는 상태가 된다.
제어부(미도시)는 스타일러스(149)로부터 인가되는 측정압의 변화와, 변위센서(미도시)로부터 인가된 스타일러스(149)의 변위를 전송받고, 다시 스타일러스(149)가 5g의 측정압을 인가할 수 있도록 측정력보정부(160)를 제어한다.
제어부(미도시)는 현재 측정압인 4g에서 기준 측정압과의 차이인 1g의 측정압이 추가로 더해지도록 스타일러스(149)가 하부방향으로 이동되는 방향으로 측정력보정부(160)를 제어한다.
도 2에 도시된 바와 같이 암(147)이 수평상태인 경우, 도 7의 (a)와 (b)에 도시된 바와 같이 제1전자석(165)과 제2전자석(167)은 자석결합판(163)의 가운데에 위치한다. 이 경우, 제1전자석(165)과 제2전자석(167)에 동일한 전류량이 인가된다.
제어부(미도시)는 1g의 측정압을 추가하기 위해 제1전자석(165)으로 제2전자석(167) 보다 큰 전류를 인가한다. 이 때, 보정해야하는 측정압이 클수록 제1전자석(165)과 제2전자석(167) 사이의 전류값의 차이가 커지게 된다.
제1전자석(165)에 큰 전류가 인가되면, 제1전자석(165)이 제1영구자석(161) 쪽으로 이동되고, 조인트플레이트(159)가 피봇축(157)을 중심으로 반시계방향으로 이동하게 된다. 이에 의해 암(147)과 스타일러스(149)가 하부방향으로 이동하여 피측정대상(T)의 표면과 밀착되며 5g의 측정압력을 인가하게 된다.
한편, 피측정대상(T)의 형상에 따라 설정된 5g의 측정압 보다 큰 측정압이 인가되는 경우가 있다. 피측정대상(T)이 점차 높아지는 경사면을 갖는 경우가 그 예일 수 있다.
이 경우, 제어부(미도시)는 설정된 5g의 측정압이 유지되도록 스타일러스(149)가 상부방향으로 이동되도록 측정력보정부(160)를 제어하게 된다.
이러한 방식으로 본 발명에 따른 형상측정기(100)는 전체 피측정대상(T)의 표면을 동일한 측정압으로 밀착 가압하며 형상을 측정할 수 있다.
이상에서 살펴본 바와 같이 본 발명에 따른 형상측정기는 측정력보정부를 형성하는 제1전자석과 제2전자석이 동일방향으로 코일을 권취하여 배치된다. 이에 의해 한 방향으로만 전류를 인가하더라도 스타일러스가 중간위치에 있거나 상하로 회동되도록 위치 제어를 할 수 있다.
이에 의해 종래 스타일러스를 중간위치로 제어하기 위해 서로 다른 방향 전류를 교번적으로 연속하여 인가하던 것과 비교할 때, 진동과 소음이 적고 신뢰성 있는 측정결과를 얻을 수 있는 장점이 있다.
또한, 제1전자석과 제2전자석으로 인가되는 전류량을 상이하게 조절하여 스타일러스의 상하 위치를 용이하게 제어할 수 있다.
이상에서 설명된 본 발명의 형상측정기의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.

Claims (4)

  1. 피측정대상의 표면을 따라가며 상기 피측정대상의 형상을 측정하는 형상측정기에 있어서,
    상기 피측정대상과 접촉하며 형상을 측정하는 스타일러스와, 상기 스타일러스를 지지하는 암을 갖는 측정암부와;
    상기 측정암부가 상기 피측정대상의 형상을 따라 좌우 직선 이동 및 상하로 피봇 회동되도록 상기 측정암부를 지지하는 측정암지지부와;
    상기 측정암지지부 내부에 수용되어 상기 스타일러스가 상하로 회동되며 상기 피측정대상의 형상이 가변되더라도 상기 피측정대상의 표면에 일정한 측정압력을 인가하도록 상기 스타일러스의 측정력을 보정하는 측정력보정부와;
    상기 피측정대상의 형상 변화를 감지하고, 상기 형상 변화만큼 측정압력이 보정되도록 상기 측정력보정부를 제어하는 제어부를 포함하며,
    상기 측정암지지부는,
    지지부본체와;
    상기 지지부본체의 길이방향을 따라 상기 측정암부를 좌우 직선이동가능하게 지지하는 드라이빙블럭과;
    상기 측정암부와 수직한 방향으로 일단이 상기 측정암부에 고정되게 구비되고, 상기 트레이싱암이 상하회동되는 방향으로 상기 드라이빙블럭에 회동가능하게 결합되는 조인트플레이트를 포함하고,
    상기 측정력보정부는
    상기 드라이빙블럭에 상기 조인트플레이트가 결합된 방향으로 일정길이 돌출되게 결합되는 영구자석과;
    상기 영구자석의 외주연을 감싸게 구비되며, 일단이 상기 조인트플레이트에 결합되어 한 방향의 전류의 인가에 의해 상기 영구자석의 길이방향을 따라 전후로 이동되며 상기 조인트플레이트를 회동시키는 전자석을 포함하는 것을 특징으로 하는 형상측정기.
  2. 제1항에 있어서,
    상기 드라이빙블럭과 상기 조인트플레이트 사이에는 상기 전자석의 이동방향에 따라 상기 조인트플레이트가 회동되도록 지지하는 피봇축이 회전가능하게 구비되는 것을 특징으로 하는 형상측정기.
  3. 제2항에 있어서,
    상기 영구자석은 자석결합판을 중심으로 양단에 각각 제1영구자석과 제2영구자석이 배치되고,
    상기 전자석은 코일보빈을 중심으로 양단에 각각 제1전자석과 제2전자석이 코일이 동일방향으로 권취되어 구비되고,
    상기 제1전자석과 상기 제2전자석은 상기 제1영구자석 및 상기 제2영구자석과 동일한 극성이 서로 나란하게 배치되는 것을 특징으로 하는 형상측정기.
  4. 제3항에 있어서,
    상기 제1전자석은 상기 제1영구자석의 전체 길이의 1/2의 위치에 배치되고,
    상기 제2전자석은 상기 제2영구자석의 전체 길이의 1/2의 위치에 배치되는 것을 특징으로 하는 형상측정기.
PCT/KR2016/012296 2015-11-18 2016-10-28 형상측정기 WO2017086625A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150162039A KR101626322B1 (ko) 2015-11-18 2015-11-18 형상측정기
KR10-2015-0162039 2015-11-18

Publications (1)

Publication Number Publication Date
WO2017086625A1 true WO2017086625A1 (ko) 2017-05-26

Family

ID=56138475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012296 WO2017086625A1 (ko) 2015-11-18 2016-10-28 형상측정기

Country Status (2)

Country Link
KR (1) KR101626322B1 (ko)
WO (1) WO2017086625A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174969A (zh) * 2020-03-06 2020-05-19 合肥工业大学 一种产生负阶跃的多维力传感器动态标定设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101944080B1 (ko) * 2018-07-24 2019-01-30 황재은 형상측정기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013779B1 (ko) * 1990-08-17 1995-11-16 가부시키가이샤 도시바 변위측정장치
JP2002507281A (ja) * 1997-06-10 2002-03-05 ケーエルエー−テンカー コーポレイション 改良形探針表面形状測定装置およびアレイ
KR100918989B1 (ko) * 2008-06-09 2009-09-25 전남도립대학산학협력단 잔존 프리스트레스 측정 장치 및 연성재질 튜브방식의 플랫 잭
KR20110057308A (ko) * 2009-11-24 2011-06-01 정은수 범용 외경측정장치
KR20110065334A (ko) * 2009-12-09 2011-06-15 가부시키가이샤 니데크 안경 프레임 형상 측정 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950013779B1 (ko) * 1990-08-17 1995-11-16 가부시키가이샤 도시바 변위측정장치
JP2002507281A (ja) * 1997-06-10 2002-03-05 ケーエルエー−テンカー コーポレイション 改良形探針表面形状測定装置およびアレイ
KR100918989B1 (ko) * 2008-06-09 2009-09-25 전남도립대학산학협력단 잔존 프리스트레스 측정 장치 및 연성재질 튜브방식의 플랫 잭
KR20110057308A (ko) * 2009-11-24 2011-06-01 정은수 범용 외경측정장치
KR20110065334A (ko) * 2009-12-09 2011-06-15 가부시키가이샤 니데크 안경 프레임 형상 측정 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174969A (zh) * 2020-03-06 2020-05-19 合肥工业大学 一种产生负阶跃的多维力传感器动态标定设备

Also Published As

Publication number Publication date
KR101626322B1 (ko) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2016200185A1 (ko) 3차원 스캐닝 시스템 및 이를 위한 라인레이저 정렬용 표적기구
WO2020004792A1 (ko) 플리퍼 장치 및 이를 이용한 대상물 검사방법
WO2018038334A1 (ko) 틸팅 스테이지 시스템
WO2019164296A1 (ko) 카메라 모듈
WO2015046761A1 (ko) 자동 초점 조절 및 손떨림 보정 기능을 갖는 휴대단말기용 카메라 액추에이터
WO2015111884A1 (en) Camera module and method for auto focusing thereof
WO2017086625A1 (ko) 형상측정기
WO2020027588A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 모듈
WO2019151700A1 (ko) 카메라 모듈
WO2019143116A1 (ko) 렌즈 어셈블리 및 그를 포함하는 카메라 모듈
WO2016171391A1 (ko) 진동하는 구조물의 마찰측정 장치
WO2017196137A1 (ko) 삼차원 물체 제조용 와이어 공급장치
WO2017039082A1 (en) Cleaning apparatus and cleaning method using same
WO2016080786A1 (ko) 회전 및 병진 운동 시의 출력부재의 강성을 제어하는 장치
WO2017150812A1 (ko) 이동형 가공기 이송기구
WO2013065980A1 (en) Camera module
WO2016195176A1 (ko) 델타 로봇 캘리브레이션 방법 및 델타 로봇 캘리브레이션 장치
WO2016190502A1 (ko) 형상측정기
WO2020184859A1 (ko) 반도체 칩을 전사하는 전사 장치 및 방법
WO2020022671A1 (ko) 형상측정기
WO2014025115A1 (en) Carrier tape feeder for chip mounter
JP4054534B2 (ja) 微細構造を転写するための装置と方法
WO2018066904A1 (ko) 기판처리장치 및 이를 이용한 기판처리방법
WO2018124610A1 (ko) 로봇 교시 장치
WO2017126816A1 (ko) 웹가이드 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16866577

Country of ref document: EP

Kind code of ref document: A1