WO2016043288A1 - Method for manufacturing magnetic disk substrate - Google Patents

Method for manufacturing magnetic disk substrate Download PDF

Info

Publication number
WO2016043288A1
WO2016043288A1 PCT/JP2015/076564 JP2015076564W WO2016043288A1 WO 2016043288 A1 WO2016043288 A1 WO 2016043288A1 JP 2015076564 W JP2015076564 W JP 2015076564W WO 2016043288 A1 WO2016043288 A1 WO 2016043288A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
substrate
slurry
magnetic disk
adsorbent
Prior art date
Application number
PCT/JP2015/076564
Other languages
French (fr)
Japanese (ja)
Inventor
俵 義浩
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2014/074541 external-priority patent/WO2016042619A1/en
Priority claimed from PCT/JP2014/076198 external-priority patent/WO2016051539A1/en
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2016548953A priority Critical patent/JP6286566B2/en
Priority to MYPI2017700733A priority patent/MY182185A/en
Priority to CN201580048163.XA priority patent/CN106716530B/en
Priority to SG11201701760UA priority patent/SG11201701760UA/en
Publication of WO2016043288A1 publication Critical patent/WO2016043288A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for manufacturing a magnetic disk substrate having a polishing process.
  • a personal computer, a notebook personal computer, a DVD (Digital Versatile Disc) recording device and the like have a built-in hard disk device for data recording.
  • a hard disk device used in a portable computer such as a notebook personal computer
  • a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk.
  • Magnetic recording information is recorded on or read from the magnetic layer by a (DFH (Dynamic Flying Height) head).
  • a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like. In order to stably read and write magnetic recording information by the magnetic head, it is required to make the surface irregularities of the magnetic disk glass substrate as small as possible.
  • the glass substrate is subjected to a polishing process.
  • An abrasive containing fine abrasive grains such as silica (SiO 2 ) is used for precise polishing for making a glass substrate into a final product.
  • an abrasive is used as a polishing agent in a predetermined size by performing a filtering treatment or centrifugal separation.
  • polishing circulating the slurry containing a silica abrasive grain at the time of a grinding
  • polishing slurry including silica abrasive grains after filtering using a filter having a minimum trapped particle diameter of 1 ⁇ m or less
  • a method of manufacturing a magnetic disk glass substrate to be used is known (Patent Document 1).
  • the glass substrate after the final polishing treatment is washed with a cleaning liquid in order to remove foreign matters such as abrasive grains adhering to the surface (final washing treatment).
  • the magnetic head may collide with the surface irregularities, which makes it difficult to read / write stable magnetic recording information.
  • the plate-like foreign matter has a large adhesion area with the magnetic disk substrate, and therefore cannot be easily removed with a cleaning liquid having a low cleaning power.
  • the plate-like foreign matter is a foreign matter having an irregular shape larger than the average particle diameter (d50) of the substantially spherical silica abrasive grains, and is considered to be removed by a filter.
  • the average particle diameter indicates a median diameter measured based on a volume distribution using a laser diffraction / scattering method.
  • the filter is easily clogged with the silica abrasive grains, and thus foreign substances cannot be efficiently removed from the slurry.
  • an object of the present invention is to provide a method for manufacturing a magnetic disk substrate that can improve the yield after polishing of the magnetic disk substrate by removing foreign substances contained in the polishing liquid.
  • the present inventor replaces a filter that is easily clogged and cannot sufficiently remove the above-mentioned plate-like foreign matters or a centrifugal separator that cannot sufficiently remove the above-mentioned plate-like foreign matters before the polishing treatment.
  • a new method that can remove the plate-like foreign material was examined.
  • the surface of the silica particles has a negative surface potential, and the surface potential of the silica abrasive grains of the large plate-like foreign material is larger than the surface potential of the roughly spherical silica abrasive grains of a small size, Paying attention to the large absolute value, the following method was invented.
  • a first aspect of the present invention is a method in which a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing is performed.
  • a method for manufacturing a magnetic disk substrate including a polishing process for polishing a main surface of the substrate by sliding the pad and the substrate relatively,
  • the polishing abrasive grains contained in the slurry and a plate-like substance having a particle size larger than the average particle diameter of the polishing abrasive grains have a difference in the amount of surface charge
  • a solid adsorbent adsorbed on at least the plate-like substance and having a surface charge different in sign from the surface charge of the plate-like substance is mixed with the slurry.
  • An adsorption process for adsorbing an adsorbent to the plate-like substance is performed.
  • a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other.
  • a method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate, Abrasive grains contained in the slurry stock solution and a plate-like substance having a particle size larger than the average particle diameter of the abrasive grains have a difference in the amount of surface charge, and are adsorbed on at least the plate-like substance, and The plate-like substance that adsorbs the adsorbent after the adsorbent is adsorbed to the plate-like substance by mixing a solid adsorbent having a surface charge different in sign from the surface charge of the plate-like substance into the slurry stock solution. Is used as the slurry used for the polishing treatment.
  • the adsorbent is preferably an organic polymer.
  • a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other.
  • a method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate, Before performing the polishing treatment, among the abrasive grains contained in the slurry and an organic polymer adsorbed on at least the plate-like substance among the plate-like substances having a particle diameter larger than the average particle diameter of the abrasive grains An adsorbing process is performed in which the adsorbent is adsorbed to the plate-like substance in the slurry by preparing the adsorbent in the slurry.
  • a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other.
  • a method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate, An adsorbent made of at least an organic polymer adsorbed on the plate-like substance is prepared in a solvent among the abrasive grains contained in the slurry and a plate-like substance having a particle size larger than the average particle size of the abrasive grains.
  • an adsorption process for adsorbing the adsorbent on a plate-like substance in the slurry is performed by introducing a solvent in which the adsorbent is prepared into a slurry before performing the polishing process.
  • the abrasive grains are preferably silica particles having an average particle size of 10 nm or more and 60 nm or less.
  • a separation treatment for separating the plate-like substance adsorbed on the adsorbent from the slurry is performed,
  • the polishing treatment is preferably performed using the slurry from which the plate-like substance has been removed by the separation treatment.
  • the abrasive grains are preferably silica abrasive grains obtained using water glass and an ion exchange resin.
  • a cleaning process for cleaning the main surface of the substrate is performed, and in the cleaning process, an alkali cleaning liquid is used that makes the difference in arithmetic mean roughness Ra of the substrate surface before and after the cleaning process 0.05 nm or less. Is preferred.
  • an additive for reducing the absolute value of the surface charge of the abrasive grains is added to the slurry before the polishing treatment after the adsorption treatment.
  • the content of alkaline earth metal ions in the slurry before the adsorption treatment is preferably 200 ppm or less.
  • a plate-like substance whose maximum length is 5 times or more of the thickness among the particles contained in the slurry.
  • the adsorbent is an organic polymer, and after the polishing process, at least one of (1) bringing an organic solvent into contact with the adsorbent remaining on the surface of the magnetic disk substrate and (2) oxidizing. It is preferable to remove by performing one. In particular, when the adsorbent cannot be completely decomposed by oxidation, it is effective to dissolve the adsorbent in an organic solvent.
  • the arithmetic average roughness Ra of the surface of the substrate after the polishing treatment is preferably 0.15 nm or less.
  • a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other.
  • a method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate Before performing the polishing treatment, due to the difference in the amount of surface charge each of the polishing abrasive grains and large particles having a particle diameter larger than the average particle diameter of the polishing abrasive grains contained in the slurry has, By mixing the slurry with a solid adsorbent that is more easily adsorbed by large-diameter particles than particles having an average particle diameter of abrasive grains and has a surface charge that is different in sign from the surface charge of the large-diameter particles. The adsorbent is adsorbed on the large-diameter particles in the slurry.
  • a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other.
  • a method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate, Before performing the polishing treatment, the polishing abrasive grains contained in the slurry and the difference in surface charge amount of the large-diameter particles having a particle diameter larger than the average particle diameter of the polishing abrasive grains, respectively, Adsorption that adsorbs the adsorbent to the large-diameter particles in the slurry by creating an adsorbent in the slurry that is made of an organic polymer that is easily adsorbed to the large-diameter particles compared to particles having an average particle diameter. It is characterized by performing processing.
  • the magnetic disk substrate has a disk shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out.
  • a magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the magnetic disk substrate.
  • a glass substrate, an aluminum substrate, or the like can be used as the magnetic disk substrate.
  • a final polishing process is performed before the magnetic layer is formed.
  • the main surface of the magnetic disk substrate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surface on both sides of the magnetic disk substrate is polished while holding the outer peripheral side end face of the magnetic disk substrate in the holding hole provided in the holding member of the double-side polishing apparatus.
  • the double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached.
  • a polishing liquid containing colloidal silica (silica abrasive grains) as free abrasive grains is used as the polishing liquid used in the final polishing process.
  • Colloidal silica contained in the polishing liquid used in the final polishing treatment can be produced by a sol-gel method using tetramethyl orthosilicate, tetraethyl orthosilicate, or the like, or an ion exchange method using water glass as a raw material. Among these, it is preferable to manufacture by an ion exchange method from a cost viewpoint.
  • silica sand and an alkali agent for example, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , KHCO 3 , KOH, etc.
  • an alkali agent for example, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , KHCO 3 , KOH, etc.
  • water glass is mixed with a proton-type cation exchange resin to lower the pH of the aqueous silicate solution.
  • the slurry containing colloidal silica thus generated may contain large-sized particles (coarse particles, plate-like substances, etc.) having a large particle size that are inappropriate for use as abrasive grains.
  • the average particle diameter of colloidal silica suitable as abrasive grains is 60 nm or less, preferably 10 to 60 nm, more preferably 20 to 50 nm, whereas large diameters inappropriate for use as abrasive grains.
  • the particle diameter of the particles is 2 times or more of the average particle diameter, and more inappropriate is 5 times or more.
  • the particle size of large particles is 200 nm to 1 ⁇ m.
  • the slurry containing colloidal silica produced in this way may contain a plate-like substance derived from raw material silica sand.
  • This plate-like substance is a silicate crystal containing aluminum, and this crystal is a layered layered silicate (for example, a layered clay mineral such as montmorillonite, saponite, and kaolinite).
  • This plate-like material has a very flat shape. When such a plate-like substance adheres to a precisely polished surface, it is easy to adhere to it, making it difficult to clean. Therefore, this plate-like substance is a foreign substance (hereinafter referred to as a plate-like foreign substance) against a slurry containing colloidal silica. Called).
  • This plate-like foreign material remains without melting even when silica sand and an alkali agent are mixed and melted, and contains colloidal silica produced from water glass in water glass obtained by dissolving the melt in water. It remains in the slurry.
  • the maximum length which is the particle size of the plate-like foreign matter, refers to the maximum length of the long side of the rectangular frame that circumscribes the outline of the plate-like foreign matter, for example, when a two-dimensional image of the plate-like foreign matter is obtained.
  • the maximum length of the longest side of the rectangular parallelepiped frame that circumscribes the three-dimensional image of the plate-like foreign material is referred to, and the length of the shortest side of the rectangular parallelepiped frame at this time is referred to as the thickness.
  • Particles having a maximum length of 5 times or more the thickness are plate-like foreign substances.
  • the maximum length of the plate-like foreign material is 200 nm to 1 ⁇ m and the thickness is 10 to 25 nm.
  • an adsorption process and a separation process described below are performed in advance.
  • an adsorbent having a positive surface charge is introduced into the slurry containing colloidal silica, thereby adsorbing the plate-like foreign material to the adsorbent.
  • Silica-based particles such as colloidal silica and large-diameter particles in the slurry have a negative surface charge. This surface charge depends on the surface area of the silica-based particle, and the larger the particle, the larger the absolute amount of the negative surface charge. For this reason, when an adsorbent is introduced into the slurry, the adsorbent is attracted to the silica-based particles with a force proportional to the surface charge of the silica-based particles.
  • the silica-based particles are dispersed in the slurry by repelling each other due to negative surface charges. This repulsive force suppresses the movement distance of the silica-based particles in the slurry.
  • the plate-like foreign material is flat and has a large surface area, the probability of the plate-like foreign material coming into contact with the surface when the adsorbent moves increases as the silica-based particles having a large particle diameter are flat. Furthermore, larger adsorbents are adsorbed on large-diameter particles having a large surface area, particularly plate-shaped particles. Further, since the plate-like substance having a larger particle diameter has a larger mass, the moving speed is lower. For this reason, the time for which the adsorbent comes into contact with the plate-like substance having a larger particle diameter becomes longer, and more adsorbent is adsorbed.
  • the particle size of the adsorbent is larger than the average particle size of the abrasive grains and smaller than the particle size of the large particles.
  • the silica-based particles that have adsorbed the adsorbent are less likely to adhere to the substrate even when used for polishing. Even if the silica-based particles adsorbing the adsorbent are attached to the substrate, the silica-based particles adsorbing the adsorbent can be easily removed from the substrate by the cleaning treatment. It is preferable that the large-sized particles adsorbing the adsorbent are separated and removed from the slurry by the following separation treatment.
  • a separation process is a process which isolate
  • the large-diameter particles in the slurry can be reduced. In this way, large particles are removed from the slurry.
  • the silica-based particles to which the adsorbent having a positive surface charge is attached the negative surface charge is neutralized.
  • the silica-based particles are stably dispersed in the slurry by repelling each other due to the surface charge, the silica-based particles with the neutralized surface charge lose repulsive force and may aggregate and precipitate. .
  • the silica-based particles with the neutralized surface charge lose repulsive force and may aggregate and precipitate.
  • by putting an appropriate amount of adsorbent having a positive surface charge into the slurry large particles can be precipitated, and the precipitate can be separated by filtration or the like. Supernatant may be used.
  • large-diameter particles such as plate-like foreign matters and coarse particles can be removed from the slurry.
  • the amount of adsorbent added to the slurry is preferably greater than the number of large particles present in the slurry in order to ensure that the adsorbent is adsorbed on the large particles. For this reason, it is preferable to adjust so that the density
  • the number of adsorbents is sufficiently smaller than the number of abrasive grains so that sufficient polishing can be performed even if the adsorbent adsorbs abrasive grains. For this reason, it is more preferable to adjust the addition amount so that the concentration of the adsorbent with respect to the total amount of the slurry after the adsorbent is added is 5 wt% or less.
  • adsorbent having a positive surface charge for example, fine particles (polymer fine particles) made of an organic polymer and having a particle diameter of 50 nm to 100 nm can be used.
  • the organic polymer a polymer obtained by polymerizing a monomer that is insoluble or hardly soluble in water is preferably used.
  • a vinyl polymer, an acrylic polymer, or the like can be used.
  • vinyl polymers examples include styrene, ⁇ -methylstyrene, divinylbenzene, methyl methacrylate, methyl acrylate, t-butyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl acrylate, n-butyl acrylate, and ethylene glycol. Dimethacrylate or the like can be used.
  • carboxyl group-containing vinyl monomers such as methacrylic acid, acrylic acid, and vinyl acetate or salts thereof; sulfonic acid group-containing vinyl monomers such as styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and sodium styrenesulfonate.
  • a salt thereof; fine particles composed of a vinyl polymer may be produced by using one or more monomers such as a hydroxyl group-containing vinyl monomer such as hydroxyethyl methacrylate.
  • acrylic polymer examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-dimethylaminoethyl acrylate, 2-hydroxyethyl acrylate, and the like.
  • PMMA polymethyl methacrylate resin
  • a cationic polymerization initiator In order to make the surface charge of the obtained polymer fine particles positive, a cationic polymerization initiator can be used.
  • the cationic polymerization initiator for example, 2,2′-azobis (2-methylpropionamidine) dihydrochloride and the like can be used.
  • any polymerization method such as a suspension polymerization method or an emulsion polymerization method can be used.
  • a soap-free emulsion polymerization method in order to make the particle diameter of the polymer fine particles serving as the adsorbent uniform.
  • the monomer is emulsified in a solvent in which the monomer is insoluble or hardly soluble, and a polymerization initiator soluble in the solvent is added.
  • the addition amount of the polymerization initiator so that the polymerization initiator per monomer droplet in the solvent is 1 molecule or less, the progress of the polymerization reaction in the monomer droplet can be controlled by the reaction time. It can be controlled, and the particle diameter of the polymer fine particles growing in each droplet can be made uniform.
  • the particle size of the polymer particles increases and the polymer particles become harder. Further, the shape of the polymer fine particles changes from an irregular shape to a spherical shape as the polymerization reaction proceeds. As the polymer fine particles are irregular and soft, the adhesion area to the silica-based particles increases, and as the polymer fine particles are spherical and hard, the adhesion area to the silica-based particles tends to decrease.
  • the average particle size of the polymer fine particles to 200 nm or less, preferably 50 nm to 100 nm, amorphous and soft polymer fine particles can be obtained.
  • the adsorbent having a positive surface charge When the adsorbent having a positive surface charge is put into a slurry containing colloidal silica and stirred, the adsorbent adheres to the large diameter particles in the slurry and neutralizes the negative surface charge of the large diameter particles. As a result, large-diameter particles are precipitated, so that foreign matters can be removed by filtration, centrifugation, or the like.
  • the particle diameter of the silica-based particles to be removed can be adjusted by adjusting the particle diameter of the adsorbent having a positive surface charge.
  • the particle diameter of the adsorbent is preferably equal to or greater than the average particle diameter of the abrasive grains so that the abrasive grains to be left in the slurry are difficult to adsorb.
  • the particle size of the adsorbent is preferably smaller than the average particle size of the large particles so that the adsorbent is easily adsorbed by the large particles to be removed, and is less than half the average particle size of the large particles.
  • the average particle diameter of the adsorbent is more preferably 50 nm to 100 nm.
  • the surface charge of the silica particles in the slurry can be varied, and the particle diameter of the silica particles removed by the adsorbent can be adjusted.
  • polymer fine particles By growing polymer fine particles by a polymerization reaction in an appropriate solvent, when the polymer fine particles having a preferable particle size and hardness are produced, the polymerization reaction is stopped, and by introducing this solvent into a slurry containing colloidal silica, The polymer fine particles in the solvent adhere to the large-sized particles in the slurry as an adsorbent, and neutralize the negative surface charge of the large-sized particles. As a result, large-diameter particles are precipitated, so that foreign matters can be removed by filtration, centrifugation, or the like. In this case, in order to facilitate mixing with the slurry, it is preferable to grow the polymer fine particles in a hydrophilic solvent.
  • any polymerization method such as a suspension polymerization method or an emulsion polymerization method can be used.
  • An adsorbent made of an organic polymer having a surface charge having a sign different from that of the surface charge of the large particle may be prepared in the slurry.
  • a monomer that becomes polymer fine particles may be charged into a slurry containing colloidal silica, and a polymerization reaction may be performed in the slurry.
  • colloidal silica is a hydrocolloid and does not affect the polymerization reaction
  • the polymerization reaction can be carried out by suspending or emulsifying the monomer in the slurry.
  • polymer fine particles having a particle diameter smaller than that of the large particles and before being completely cured can be prepared and adsorbed on the large particles.
  • the polymerization reaction in the slurry can be stopped, for example, by cooling the slurry.
  • the amount of monomer added to the slurry is preferably adjusted so that the monomer concentration relative to the total amount of slurry after the monomer addition is 0.01 wt% or more.
  • the amount of monomer added is too large, the amount of adsorbent composed of the organic polymer to be produced increases in the amount adsorbed on the abrasive grains, which may reduce production efficiency. It is more preferable to adjust the amount of monomer added so that the monomer concentration relative to the total amount is 5 wt% or less.
  • the larger the silica particle having a larger particle diameter the larger the absolute amount of the negative surface charge. Therefore, more monomers having a positive charge are collected around the silica particle having a larger particle diameter. For this reason, the polymer fine particles grow around the large-diameter particles and the adsorbent is easily formed.
  • the prepared adsorbent is adsorbed by the large-sized particles, and the large-sized particles are precipitated by neutralizing the negative surface charge of the large-sized particles. For this reason, foreign substances can be removed by filtration, centrifugation, or the like.
  • adsorbent Most of the adsorbent is precipitated and removed with the large particles. Even if the adsorbent is not removed and remains in the slurry slightly, it does not affect the polishing process. In preparation for the case where the adsorbent remains in the slurry and the adsorbent adheres to the substrate after the final polishing process, it is preferable to perform a process of cleaning the substrate and removing the adsorbent from the substrate after the final polishing process. . Any method can be used for cleaning. For example, it can be removed by ashing polymer fine particles that are adsorbents.
  • the polymer fine particles are decomposed by irradiating the substrate after the final polishing process in the air with ultraviolet rays, and the polymer fine particles are oxidized by ozone generated from oxygen in the air.
  • the polymer fine particles can be ashed.
  • the fine polymer particles may be ashed by placing the substrate after the final polishing treatment in an ozone atmosphere. Further, for example, by bringing the polymer fine particles into contact with a solvent containing an organic solvent or an anionic surfactant, at least a part of the polymer fine particles can be dissolved in the solvent, and the polymer fine particles can be removed.
  • the polymer fine particles cannot be sufficiently removed by ashing, it is particularly effective to dissolve the polymer fine particles in a solvent. In this case, it is more preferable to perform a treatment for ashing the polymer fine particles and then a treatment for dissolving the remaining polymer fine particles. If the adsorbent does not remain on the substrate after the final polishing process, or if there is no problem in using the substrate even if it remains, the cleaning step of removing the adsorbent can be omitted.
  • the adsorption process and the separation process performed as necessary after the adsorption process are collectively referred to as a removal process.
  • a treatment for reducing the surface charge of the colloidal silica in order to aggregate the colloidal silica.
  • a treatment for reducing the surface charge of the colloidal silica in order to aggregate the colloidal silica.
  • an additive for reducing the surface charge of colloidal silica in the slurry for example, sulfate compounds such as K 2 SO 4 and Na 2 SO 4 , K 3 PO 4 , Na 3 PO 4 and other phosphoric acid compounds, NaNO 3 and other nitric acid compounds
  • the surface charge of the colloidal silica is reduced before the removal treatment, the adsorbent having a positive surface charge is less likely to adhere to the large particles, and it is difficult to remove the large particles from the slurry.
  • the alkaline earth metal ion content of the slurry before the removal treatment in the present embodiment is preferably 200 ppm or less.
  • the content of alkaline earth metal ions exceeds 200 ppm, the surface charge of the silica abrasive grains is reduced, and the above-described removal treatment makes it difficult to obtain a sufficient removal effect.
  • the amount of alkaline earth metal in the slurry can be reduced, for example, by making the raw material highly pure when preparing the slurry, or by bringing an ion exchange resin or the like into contact with the slurry stock solution.
  • the final polishing process performed using colloidal silica from which the plate-like foreign material has been removed in advance as the free abrasive grains is suitable for the final polishing process of the glass substrate.
  • the glass used for the magnetic disk glass substrate include aluminosilicate glass, soda lime glass, and borosilicate glass.
  • aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
  • the manufacturing method of the glass substrate for magnetic discs is demonstrated.
  • a magnetic disk glass blank (hereinafter simply referred to as a glass blank) is a material for a disk-shaped magnetic disk glass substrate having a pair of main surfaces, and is a form before a center hole is cut out.
  • a hole is made in the central portion of the produced glass blank to produce a ring-shaped (annular) glass substrate.
  • shape processing is performed on the glass substrate with holes.
  • end face polishing is performed on the glass substrate that has been processed into a shape.
  • grinding with fixed abrasive is performed on the glass substrate on which the end face has been polished.
  • first polishing is performed on the main surface of the glass substrate.
  • chemical strengthening is performed on the glass substrate as necessary.
  • second polishing final polishing is performed on the glass substrate. After the second polishing, a glass substrate for magnetic disk is obtained through a cleaning process.
  • a glass substrate having a circular central hole can be obtained by forming a circular hole on a glass blank using a core drill or the like.
  • (C) Shape processing In the shape processing, chamfering is performed on the edge of the glass substrate after the circular hole is formed.
  • (D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the inner end face and the outer peripheral end face of the glass substrate by brush polishing. At this time, an abrasive slurry containing particles such as cerium oxide as free abrasive grains is used.
  • the main surface of the glass substrate is ground using a double-side grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus.
  • the double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
  • a glass substrate is polished while applying a polishing slurry containing loose abrasive grains to the double-side polishing apparatus using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus.
  • the free abrasive grains for example, cerium oxide abrasive grains or zirconia abrasive grains (particle size: diameter of about 1 to 2 ⁇ m) is used.
  • the glass substrate is sandwiched between a pair of upper and lower surface plates.
  • An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. While supplying the polishing liquid between the main surface of the glass substrate and the polishing pad, the glass substrate and the polishing pad move relatively by moving either the upper surface plate, the lower surface plate, or both. Then, both main surfaces of the glass substrate are polished.
  • the glass substrate is chemically strengthened by immersing the glass substrate in a chemical strengthening solution.
  • a chemical strengthening liquid for example, a mixed melt of potassium nitrate and sodium nitrate can be used.
  • (H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. The machining allowance by the second polishing is, for example, about 1 ⁇ m. The second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
  • the main surface roughness (arithmetic mean roughness Ra) can be 0.15 nm or less and the main surface micro-waveness can be 0.1 nm or less.
  • the glass substrate becomes a glass substrate for a magnetic disk before the surface of the glass substrate is cleaned using an alkaline cleaning liquid and the magnetic layer is formed.
  • an alkaline cleaning liquid in which the difference in the arithmetic average roughness Ra of the surface of the glass substrate before and after the cleaning process is 0.05 nm or less. Since plate-like foreign substances adhering to the glass substrate are difficult to remove, an alkaline cleaning liquid having a high cleaning power has been conventionally used. For this reason, the alkaline cleaning liquid having a strong cleaning power is likely to act on the main surface of the glass substrate having no plate-like foreign matter and roughen the main surface.
  • the cleaning treatment is preferably non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid in terms of not causing scratches on the glass substrate.
  • scrub cleaning is performed to remove the plate-like foreign matter by rubbing the glass substrate with a brush or a cleaning pad in order to remove the plate-like foreign matter firmly attached to the glass substrate.
  • this scrub cleaning tends to damage the main surface of the glass substrate.
  • since it polishes using the slurry containing the silica abrasive grain which performed the removal process mentioned above a plate-shaped foreign material does not adhere to a glass substrate. For this reason, it is not necessary to perform scrub cleaning as in the past. For this reason, in this embodiment, unnecessary scratches are not applied to the main surface of the glass substrate by performing non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid.
  • the polymer fine particles can be ashed by placing the glass substrate after the second polishing treatment in an ozone atmosphere. Further, the fine polymer particles may be ashed by ozone generated by irradiating the glass substrate after the second polishing treatment with ultraviolet rays in the air. When the polymer fine particles are not completely removed by ashing, the polymer fine particles may be removed by washing the glass substrate with a cleaning agent containing an organic solvent or an anionic surfactant that dissolves the polymer fine particles. When the polymer fine particles do not remain on the glass substrate after the second polishing treatment, or when there is no problem in using the glass substrate even if the polymer fine particles remain, the cleaning step for removing the polymer fine particles can be omitted.
  • Example 1 (Creation of colloidal silica) A slurry containing colloidal silica having an average particle size of 20 nm was obtained by ion exchange using silica sand and sodium carbonate as raw materials.
  • An adsorbent was added to and mixed with the slurry containing the colloidal silica.
  • the adsorbent polystyrene fine particles having a particle diameter of 50 nm were used.
  • the amount of adsorbent added was adjusted so that the concentration of the adsorbent relative to the total amount of slurry was 1 wt%.
  • Glass substrate polishing process Next, the final polishing process of the glass substrate was performed using the filtrate which passed the filter by the separation process as a polishing liquid. While supplying the above polishing liquid between the main surface of the glass substrate and the polyurethane polishing pad, the main surface of the glass substrate was polished by moving the polishing pad relative to the main surface of the glass substrate.
  • Example 2 (Adsorption treatment) A slurry containing colloidal silica obtained in the same manner as in Example 1 was charged with styrene monomer and suspended in the slurry by stirring, and then a polymerization initiator was added to the resulting suspension. By stirring at 70 ° C. for 20 minutes, polystyrene fine particles having a particle diameter of 50 nm were generated. The amount of styrene monomer charged was adjusted so that the concentration relative to the total amount of the suspension was 1 wt%.
  • Glass substrate polishing process Next, the final polishing process of the glass substrate was performed using the filtrate which passed the filter by the separation process as a polishing liquid. While supplying the above polishing liquid between the main surface of the glass substrate and the polyurethane polishing pad, the main surface of the glass substrate was polished by moving the polishing pad relative to the main surface of the glass substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 The present invention is a method for manufacturing a magnetic disk substrate that includes a polishing process for polishing the main surface of the substrate by sandwiching a disk-shaped substrate with a pair of polishing pads, supplying slurry including abrasive gains to between the polishing pads and the substrate, and sliding the polishing pads and the substrate relatively to each other. The abrasive gains and plate-shaped substances having a grain size larger than the average grain size of the abrasive grains, both included in the slurry, have a difference in the amount of surface charge, and an adsorption process for causing a solid adsorbent, which is adsorbed to at least the plate-shaped substances and has a surface charge the sign of which differs from the surface charge of the plate-shaped substances, to be adsorbed to the shaped-like substances in the slurry by mixing the adsorbent into the slurry is executed before the polishing process is executed.

Description

磁気ディスク用基板の製造方法Manufacturing method of magnetic disk substrate
 本発明は、研磨処理を有する磁気ディスク用基板の製造方法に関する。 The present invention relates to a method for manufacturing a magnetic disk substrate having a polishing process.
 今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、DVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、ガラス基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、ガラス基板が好適に用いられている。磁気ヘッドによる磁気記録情報の読み書きを安定して行うために、磁気ディスク用ガラス基板の表面凹凸は可能な限り小さくすることが求められる。 Today, a personal computer, a notebook personal computer, a DVD (Digital Versatile Disc) recording device and the like have a built-in hard disk device for data recording. In particular, in a hard disk device used in a portable computer such as a notebook personal computer, a magnetic disk in which a magnetic layer is provided on a glass substrate is used, and the magnetic head slightly floats above the surface of the magnetic disk. Magnetic recording information is recorded on or read from the magnetic layer by a (DFH (Dynamic Flying Height) head). As the substrate of this magnetic disk, a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like. In order to stably read and write magnetic recording information by the magnetic head, it is required to make the surface irregularities of the magnetic disk glass substrate as small as possible.
 磁気ディスク用ガラス基板の表面凹凸を小さくするために、ガラス基板の研磨処理が行われる。ガラス基板を最終製品とするための精密な研磨に、シリカ(SiO2)等の微細な研磨砥粒を含む研磨剤が用いられる。このような研磨剤は、研磨処理後のガラス基板の表面品質を高めるために、フィルタリング処理や遠心分離を行なうことで所定のサイズに揃えて研磨剤として用いられる。また、研磨処理時、シリカ砥粒を含むスラリーを循環させながら研磨に用いる場合、研磨に使用したスラリーをフィルタリングしたのち、研磨に再使用する。
 例えば、ガラス基板の主表面のシリカ砥粒を用いた研磨工程の最終研磨工程において、最小捕捉粒子径が1μm以下のフィルタを使用してフィルタリングした後の研磨用スラリー(シリカ砥粒を含む)を用いる磁気ディスク用ガラス基板の製造方法が知られている(特許文献1)。最終研磨処理後のガラス基板は、表面に付着した砥粒等の異物を除去するために、洗浄液で洗浄される(最終洗浄処理)。
In order to reduce the surface unevenness of the magnetic disk glass substrate, the glass substrate is subjected to a polishing process. An abrasive containing fine abrasive grains such as silica (SiO 2 ) is used for precise polishing for making a glass substrate into a final product. In order to improve the surface quality of the glass substrate after the polishing treatment, such an abrasive is used as a polishing agent in a predetermined size by performing a filtering treatment or centrifugal separation. Moreover, when using for grinding | polishing, circulating the slurry containing a silica abrasive grain at the time of a grinding | polishing process, after filtering the slurry used for grinding | polishing, it reuses for grinding | polishing.
For example, in the final polishing step of the polishing step using silica abrasive grains on the main surface of the glass substrate, polishing slurry (including silica abrasive grains) after filtering using a filter having a minimum trapped particle diameter of 1 μm or less A method of manufacturing a magnetic disk glass substrate to be used is known (Patent Document 1). The glass substrate after the final polishing treatment is washed with a cleaning liquid in order to remove foreign matters such as abrasive grains adhering to the surface (final washing treatment).
特開2010-079948号公報JP 2010-079948 A
 研磨処理後の最終洗浄処理において、磁気ディスク用ガラス基板の表面から砥粒等の異物を除去するために洗浄力の高い洗浄液を用いると、磁気ディスク用ガラス基板が洗浄液によりエッチングされ、主表面に僅かな凹凸が形成される。この僅かな凹凸は、従来の磁気ヘッドの浮上距離よりも充分に小さく、かつては無視できる範囲であった。 In the final cleaning process after the polishing process, if a cleaning liquid having a high cleaning power is used to remove foreign substances such as abrasive grains from the surface of the magnetic disk glass substrate, the magnetic disk glass substrate is etched by the cleaning liquid, Slight irregularities are formed. This slight unevenness was sufficiently smaller than the flying distance of the conventional magnetic head and was once negligible.
 しかし、近年、磁気ディスクの記録密度の増加に伴い、微弱な磁界の読み取りおよび記録を確実に行うために、磁気ヘッドの磁気ディスク表面からの浮上距離を極めて小さくすることが行われている。このため、エッチングによる僅かな凹凸が無視できなくなってきた。そこで、従来よりも洗浄力の低い洗浄液を用いて、磁気ディスク用基板の最終洗浄処理を行うことが試みられている。 However, in recent years, as the recording density of the magnetic disk increases, in order to reliably read and record a weak magnetic field, the flying distance of the magnetic head from the magnetic disk surface has been extremely reduced. For this reason, slight unevenness due to etching cannot be ignored. Therefore, it has been attempted to perform a final cleaning process on the magnetic disk substrate using a cleaning liquid having a lower cleaning power than conventional ones.
 一方、最終洗浄処理後の磁気ディスク用基板の主表面には、研磨処理に用いるシリカ砥粒を含むスラリーに由来する異物が付着する場合がある。近年、表面検査装置の検査精度が向上したことにより、この異物の中に極めて平たい形をした板状の異物(以下、板状異物という)があることが判明した。板状異物が磁気ディスク用基板の主表面に残存した状態で主表面に磁性層を形成すると、磁気ディスクの面上に表面凹凸が形成される。この磁気ディスクの磁気記録情報の読み書きを、極めて浮上距離の短い磁気ヘッドで行うと、磁気ヘッドがこの表面凹凸に衝突するおそれがあり、安定した磁気記録情報の読み書きが難しくなる不都合がある。この板状異物は、磁気ディスク用基板との付着面積が大きいため、洗浄力の低い洗浄液では容易に除去することができない。一方、板状異物を除去するためにガラス基板に対して洗浄力の高い洗浄液を用いると、エッチングによる凹凸が主表面に形成されるため、好ましくない。
 上記の板状異物は、概略球形状のシリカ砥粒の平均粒子径(d50)より大きな異形状の異物であるため、フィルタにより除去できるとも考えられる。ここで、平均粒子径とは、レーザー回折・散乱法を用いた体積分布に基づいて測定されるメディアン径を示す。しかし、スラリーをフィルタで濾過すると、シリカ砥粒によりフィルタが容易に目詰まりを起こすため、スラリーから効率よく異物を除去することができなかった。
On the other hand, foreign matters derived from the slurry containing silica abrasive grains used for the polishing process may adhere to the main surface of the magnetic disk substrate after the final cleaning process. In recent years, it has been clarified that there is a plate-like foreign material (hereinafter referred to as a plate-like foreign material) having a very flat shape due to the improvement in inspection accuracy of the surface inspection apparatus. When the magnetic layer is formed on the main surface with the plate-like foreign material remaining on the main surface of the magnetic disk substrate, surface irregularities are formed on the surface of the magnetic disk. If the magnetic recording information on the magnetic disk is read / written by a magnetic head having a very short flying distance, the magnetic head may collide with the surface irregularities, which makes it difficult to read / write stable magnetic recording information. The plate-like foreign matter has a large adhesion area with the magnetic disk substrate, and therefore cannot be easily removed with a cleaning liquid having a low cleaning power. On the other hand, it is not preferable to use a cleaning solution having a high cleaning power for the glass substrate in order to remove the plate-like foreign matter, because irregularities due to etching are formed on the main surface.
The plate-like foreign matter is a foreign matter having an irregular shape larger than the average particle diameter (d50) of the substantially spherical silica abrasive grains, and is considered to be removed by a filter. Here, the average particle diameter indicates a median diameter measured based on a volume distribution using a laser diffraction / scattering method. However, when the slurry is filtered with a filter, the filter is easily clogged with the silica abrasive grains, and thus foreign substances cannot be efficiently removed from the slurry.
 そこで、本発明は、研磨液に含まれる異物を除去することで、磁気ディスク用基板の研磨処理後の歩留まりを向上させることができる磁気ディスク用基板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a magnetic disk substrate that can improve the yield after polishing of the magnetic disk substrate by removing foreign substances contained in the polishing liquid.
 本発明者は、研磨処理前に、目詰まりがし易く、上述の板状異物を十分に除去することができないフィルタや、上述の板状異物を十分に除去することができない遠心分離に替えて、板状異物を除去できる新たな方法を検討した。その結果、シリカ粒子の表面は、負の表面電位を帯びており、サイズの大きい板状異物のシリカ砥粒の表面電位は、サイズの小さい概略球形状のシリカ砥粒の表面電位に比べて、その絶対値が大きいことに注目し、以下の方法を発明した。 The present inventor replaces a filter that is easily clogged and cannot sufficiently remove the above-mentioned plate-like foreign matters or a centrifugal separator that cannot sufficiently remove the above-mentioned plate-like foreign matters before the polishing treatment. A new method that can remove the plate-like foreign material was examined. As a result, the surface of the silica particles has a negative surface potential, and the surface potential of the silica abrasive grains of the large plate-like foreign material is larger than the surface potential of the roughly spherical silica abrasive grains of a small size, Paying attention to the large absolute value, the following method was invented.
 上記課題を解決するため、本発明の第1の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 前記スラリー中に含まれる、前記研磨砥粒および前記研磨砥粒の平均粒子径よりも粒子径が大きな板状物質とが表面電荷の量に差を有し、
 前記研磨処理を行う前に、少なくとも前記板状物質に吸着され、かつ、前記板状物質の表面電荷と符号が異なる表面電荷を有する固体の吸着材を前記スラリーに混合することで、前記スラリー中の前記板状物質に吸着材を吸着させる吸着処理を行うことを特徴とする。
In order to solve the above-described problem, a first aspect of the present invention is a method in which a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing is performed. A method for manufacturing a magnetic disk substrate including a polishing process for polishing a main surface of the substrate by sliding the pad and the substrate relatively,
The polishing abrasive grains contained in the slurry and a plate-like substance having a particle size larger than the average particle diameter of the polishing abrasive grains have a difference in the amount of surface charge,
Before performing the polishing treatment, a solid adsorbent adsorbed on at least the plate-like substance and having a surface charge different in sign from the surface charge of the plate-like substance is mixed with the slurry. An adsorption process for adsorbing an adsorbent to the plate-like substance is performed.
 本発明の第2の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 スラリー原液中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも粒径が大きな板状物質とが表面電荷の量に差を有し、少なくとも前記板状物質に吸着され、かつ、前記板状物質の表面電荷と符号の異なる表面電荷を有する固体の吸着材を前記スラリー原液に混合して前記板状物質に吸着材を吸着させた後、前記吸着材を吸着した前記板状物質を前記スラリー原液中から除去したものを前記研磨処理に使用するスラリーとして用いることを特徴とする。
According to a second aspect of the present invention, a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate,
Abrasive grains contained in the slurry stock solution and a plate-like substance having a particle size larger than the average particle diameter of the abrasive grains have a difference in the amount of surface charge, and are adsorbed on at least the plate-like substance, and The plate-like substance that adsorbs the adsorbent after the adsorbent is adsorbed to the plate-like substance by mixing a solid adsorbent having a surface charge different in sign from the surface charge of the plate-like substance into the slurry stock solution. Is used as the slurry used for the polishing treatment.
 前記吸着材は、有機高分子であることが好ましい。 The adsorbent is preferably an organic polymer.
 本発明の第3の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 前記研磨処理を行う前に、前記スラリー中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも大きな粒子径の板状物質のうち少なくとも前記板状物質に吸着される有機高分子からなる吸着材を前記スラリー中で作成することで、前記吸着材を前記スラリー中の板状物質に吸着させる吸着処理を行うことを特徴とする。
According to a third aspect of the present invention, a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate,
Before performing the polishing treatment, among the abrasive grains contained in the slurry and an organic polymer adsorbed on at least the plate-like substance among the plate-like substances having a particle diameter larger than the average particle diameter of the abrasive grains An adsorbing process is performed in which the adsorbent is adsorbed to the plate-like substance in the slurry by preparing the adsorbent in the slurry.
 本発明の第4の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 前記スラリー中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも大きな粒子径の板状物質のうち少なくとも前記板状物質に吸着される有機高分子からなる吸着材を溶媒中で作成し、
 研磨処理を行う前のスラリーに前記吸着材が作成された溶媒を投入することで、前記吸着材を前記スラリー中の板状物質に吸着させる吸着処理を行うことを特徴とする。
According to a fourth aspect of the present invention, a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate,
An adsorbent made of at least an organic polymer adsorbed on the plate-like substance is prepared in a solvent among the abrasive grains contained in the slurry and a plate-like substance having a particle size larger than the average particle size of the abrasive grains. And
It is characterized in that an adsorption process for adsorbing the adsorbent on a plate-like substance in the slurry is performed by introducing a solvent in which the adsorbent is prepared into a slurry before performing the polishing process.
 前記研磨砥粒は、平均粒子径が10nm以上60nm以下のシリカ粒子であることが好ましい。 The abrasive grains are preferably silica particles having an average particle size of 10 nm or more and 60 nm or less.
 前記吸着処理の後、前記スラリーから吸着材に吸着させた前記板状物質を分離する分離処理を行い、
 前記分離処理によって前記板状物質が除去された前記スラリーを用いて前記研磨処理を行うことが好ましい。
After the adsorption treatment, a separation treatment for separating the plate-like substance adsorbed on the adsorbent from the slurry is performed,
The polishing treatment is preferably performed using the slurry from which the plate-like substance has been removed by the separation treatment.
 前記砥粒は、水ガラスとイオン交換樹脂を用いて得られるシリカ砥粒である、ことが好ましい。 The abrasive grains are preferably silica abrasive grains obtained using water glass and an ion exchange resin.
 前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、前記洗浄処理では、前記洗浄処理前後の基板の表面の算術平均粗さRaの差を0.05nm以下にするアルカリ洗浄液を用いることが好ましい。 After the polishing process, a cleaning process for cleaning the main surface of the substrate is performed, and in the cleaning process, an alkali cleaning liquid is used that makes the difference in arithmetic mean roughness Ra of the substrate surface before and after the cleaning process 0.05 nm or less. Is preferred.
 前記吸着処理後、前記研磨処理前のスラリーに、前記砥粒の表面電荷の絶対値を減少させる添加剤を添加することが好ましい。 It is preferable that an additive for reducing the absolute value of the surface charge of the abrasive grains is added to the slurry before the polishing treatment after the adsorption treatment.
 前記吸着処理前の、前記スラリーのアルカリ土類金属イオンの含有率は、200ppm以下であることが好ましい。 The content of alkaline earth metal ions in the slurry before the adsorption treatment is preferably 200 ppm or less.
 前記吸着処理において、前記スラリーに含まれる粒子のうち、最大長さが厚さの5倍以上の板状物質を除去することが好ましい。 In the adsorption treatment, it is preferable to remove a plate-like substance whose maximum length is 5 times or more of the thickness among the particles contained in the slurry.
 前記吸着材は有機高分子であり、前記研磨処理の後、前記磁気ディスク用基板の表面に残存している吸着材に対して(1)有機溶媒を接触させる、(2)酸化させる、の少なくとも一方を行うことにより除去することが好ましい。特に、酸化では吸着材を完全に分解できない場合に、吸着材を有機溶媒に溶解させることが有効である。 The adsorbent is an organic polymer, and after the polishing process, at least one of (1) bringing an organic solvent into contact with the adsorbent remaining on the surface of the magnetic disk substrate and (2) oxidizing. It is preferable to remove by performing one. In particular, when the adsorbent cannot be completely decomposed by oxidation, it is effective to dissolve the adsorbent in an organic solvent.
 研磨処理後の、基板の表面の算術平均粗さRaは、0.15nm以下であることが好ましい。 The arithmetic average roughness Ra of the surface of the substrate after the polishing treatment is preferably 0.15 nm or less.
 本発明の第5の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 前記研磨処理を行う前に、前記スラリー中に含まれる、前記研磨砥粒および前記研磨砥粒の平均粒子径よりも粒子径が大きな大径粒子とがそれぞれ有する表面電荷の量の差によって、前記研磨砥粒の平均粒子径を有する粒子と比べて大径粒子に吸着されやすく、かつ、前記大径粒子の表面電荷と符号が異なる表面電荷を有する固体の吸着材を前記スラリーに混合することで、前記スラリー中の大径粒子に吸着材を吸着させる吸着処理を行うことを特徴とする。
According to a fifth aspect of the present invention, a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate,
Before performing the polishing treatment, due to the difference in the amount of surface charge each of the polishing abrasive grains and large particles having a particle diameter larger than the average particle diameter of the polishing abrasive grains contained in the slurry has, By mixing the slurry with a solid adsorbent that is more easily adsorbed by large-diameter particles than particles having an average particle diameter of abrasive grains and has a surface charge that is different in sign from the surface charge of the large-diameter particles. The adsorbent is adsorbed on the large-diameter particles in the slurry.
 本発明の第6の態様は、一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
 前記研磨処理を行う前に、前記スラリー中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも大きな粒子径の大径粒子がそれぞれ有する表面電荷量の差によって、前記研磨砥粒の平均粒子径を有する粒子と比較して前記大径粒子に吸着されやすい有機高分子からなる吸着材を前記スラリー中で作成することで、前記吸着材を前記スラリー中の大径粒子に吸着させる吸着処理を行うことを特徴とする。
According to a sixth aspect of the present invention, a disk-shaped substrate is sandwiched between a pair of polishing pads, a slurry containing abrasive grains is supplied between the polishing pad and the substrate, and the polishing pad and the substrate are relative to each other. A method of manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of the substrate by sliding on the substrate,
Before performing the polishing treatment, the polishing abrasive grains contained in the slurry and the difference in surface charge amount of the large-diameter particles having a particle diameter larger than the average particle diameter of the polishing abrasive grains, respectively, Adsorption that adsorbs the adsorbent to the large-diameter particles in the slurry by creating an adsorbent in the slurry that is made of an organic polymer that is easily adsorbed to the large-diameter particles compared to particles having an average particle diameter. It is characterized by performing processing.
 上述の磁気ディスク用基板の製造方法によれば、研磨処理に用いるシリカ砥粒から板状異物のような異物を除去することができる。このため、磁気ディスク用基板の主表面に板状異物が付着せず、磁気ディスク用基板の研磨処理後の歩留まりを向上させることができる。 According to the method for manufacturing a magnetic disk substrate described above, foreign matters such as plate-like foreign matters can be removed from the silica abrasive grains used in the polishing process. For this reason, plate-like foreign substances do not adhere to the main surface of the magnetic disk substrate, and the yield after the polishing process of the magnetic disk substrate can be improved.
 以下、本発明の実施形態に係る磁気ディスク用基板の製造方法について説明する。
(磁気ディスク用基板)
 まず、磁気ディスク用基板について説明する。磁気ディスク用基板は、円板形状であって、外周と同心の円形の中心孔がくり抜かれたリング状である。磁気ディスク用基板の両面の円環状領域に磁性層(記録領域)が形成されることで、磁気ディスクが形成される。磁気ディスク用基板として、ガラス基板やアルミニウム基板等を用いることができる。
Hereinafter, a method for manufacturing a magnetic disk substrate according to an embodiment of the present invention will be described.
(Magnetic disk substrate)
First, the magnetic disk substrate will be described. The magnetic disk substrate has a disk shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out. A magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the magnetic disk substrate. As the magnetic disk substrate, a glass substrate, an aluminum substrate, or the like can be used.
 本実施形態においては、磁性層を形成する前に、最終研磨処理が行われる。最終研磨処理では、遊星歯車機構を備えた両面研磨装置を用いて、磁気ディスク用基板の主表面に対して研磨処理を行う。具体的には、磁気ディスク用基板の外周側端面を、両面研磨装置の保持部材に設けられた保持孔内に保持しながら磁気ディスク用基板の両側の主表面の研磨を行う。両面研磨装置は、上下一対の定盤(上定盤および下定盤)を有しており、下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。磁気ディスク用基板の主表面と研磨パッドとの間に研磨液を供給しながら、上定盤または下定盤のいずれか一方、または、双方を移動させることで、磁気ディスク用基板と研磨パッドとが相対的に移動し、磁気ディスク用基板の両主表面が研磨される。 In this embodiment, a final polishing process is performed before the magnetic layer is formed. In the final polishing process, the main surface of the magnetic disk substrate is polished using a double-side polishing apparatus equipped with a planetary gear mechanism. Specifically, the main surface on both sides of the magnetic disk substrate is polished while holding the outer peripheral side end face of the magnetic disk substrate in the holding hole provided in the holding member of the double-side polishing apparatus. The double-side polishing apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and an annular plate-shaped polishing pad (for example, as a whole on the upper surface of the lower surface plate and the bottom surface of the upper surface plate) Resin polisher) is attached. While supplying the polishing liquid between the main surface of the magnetic disk substrate and the polishing pad, either or both of the upper surface plate and the lower surface plate are moved, so that the magnetic disk substrate and the polishing pad are moved. The two main surfaces of the magnetic disk substrate are polished relative to each other.
 本実施形態においては、最終研磨処理に用いる研磨液として、コロイダルシリカ(シリカ砥粒)を遊離砥粒として含む研磨液が用いられる。
 最終研磨処理に用いる研磨液に含まれるコロイダルシリカは、オルトケイ酸テトラメチル、オルトケイ酸テトラエチル等を原料とするゾルゲル法、水ガラスを原料とするイオン交換法により製造することができる。この中でも、コスト面からイオン交換法により製造することが好ましい。
 具体的には、ケイ砂とアルカリ剤(例えばNaCO、NaHCO、NaOH、KCO、KHCO、KOH等)とを混合し、加熱して熔融することでケイ酸塩を生成する。次に、得られたケイ酸塩を、必要に応じて冷却した後、水に溶解させることでケイ酸塩水溶液(水ガラス)を生成する。この水ガラスにプロトン型陽イオン交換樹脂を混合してケイ酸塩水溶液のpHを下げる。その後、所定の時間、所定の温度の加熱処理を行うことで、ケイ酸塩水溶液中でシラノール基同士の縮重合が促進され、シリカの粒子が生成され、コロイダルシリカを含むスラリーが得られる。
In the present embodiment, a polishing liquid containing colloidal silica (silica abrasive grains) as free abrasive grains is used as the polishing liquid used in the final polishing process.
Colloidal silica contained in the polishing liquid used in the final polishing treatment can be produced by a sol-gel method using tetramethyl orthosilicate, tetraethyl orthosilicate, or the like, or an ion exchange method using water glass as a raw material. Among these, it is preferable to manufacture by an ion exchange method from a cost viewpoint.
Specifically, silica sand and an alkali agent (for example, Na 2 CO 3 , NaHCO 3 , NaOH, K 2 CO 3 , KHCO 3 , KOH, etc.) are mixed and heated to melt to produce silicate. To do. Next, the obtained silicate is cooled as necessary, and then dissolved in water to produce an aqueous silicate solution (water glass). The water glass is mixed with a proton-type cation exchange resin to lower the pH of the aqueous silicate solution. Thereafter, by performing a heat treatment at a predetermined temperature for a predetermined time, the polycondensation of silanol groups in the silicate aqueous solution is promoted, silica particles are generated, and a slurry containing colloidal silica is obtained.
 このように生成されたコロイダルシリカを含むスラリーには、研磨砥粒として用いるのには不適切な、粒子径が大きい大径粒子(粗大粒子、板状物質等)が含まれる場合がある。具体的には、研磨砥粒として適したコロイダルシリカの平均粒子径が60nm以下、好ましくは10~60nm、より好ましくは20~50nmであるのに対し、砥粒として用いるのに不適切な大径粒子の粒子径は平均粒子径の2倍以上、より不適切なものは5倍以上である。例えば、大径粒子の粒子径は200nm~1μmである。
 また、このように生成されたコロイダルシリカを含むスラリーには、原料のケイ砂に由来する、板状物質が混在している場合がある。この板状物質はアルミニウムを含むケイ酸塩の結晶であり、この結晶は層状を成す層状ケイ酸塩(例えばモンモリロナイト、サポナイト、カオリナイトなどの層状粘土鉱物)である。この板状物質は、極めて平たい形をしている。このような板状物質は精密に研磨された表面に付着した場合、密着しやすいため、洗浄することが困難になるため、この板状物質はコロイダルシリカを含むスラリーに対する異物(以下、板状異物と称する)とみなされる。
 この板状異物は、ケイ砂とアルカリ剤とを混合して熔融しても熔けることなく残存し、熔融物を水に溶解させて得られる水ガラス内、水ガラスから製造されるコロイダルシリカを含むスラリー内にも残存する。
The slurry containing colloidal silica thus generated may contain large-sized particles (coarse particles, plate-like substances, etc.) having a large particle size that are inappropriate for use as abrasive grains. Specifically, the average particle diameter of colloidal silica suitable as abrasive grains is 60 nm or less, preferably 10 to 60 nm, more preferably 20 to 50 nm, whereas large diameters inappropriate for use as abrasive grains. The particle diameter of the particles is 2 times or more of the average particle diameter, and more inappropriate is 5 times or more. For example, the particle size of large particles is 200 nm to 1 μm.
Moreover, the slurry containing colloidal silica produced in this way may contain a plate-like substance derived from raw material silica sand. This plate-like substance is a silicate crystal containing aluminum, and this crystal is a layered layered silicate (for example, a layered clay mineral such as montmorillonite, saponite, and kaolinite). This plate-like material has a very flat shape. When such a plate-like substance adheres to a precisely polished surface, it is easy to adhere to it, making it difficult to clean. Therefore, this plate-like substance is a foreign substance (hereinafter referred to as a plate-like foreign substance) against a slurry containing colloidal silica. Called).
This plate-like foreign material remains without melting even when silica sand and an alkali agent are mixed and melted, and contains colloidal silica produced from water glass in water glass obtained by dissolving the melt in water. It remains in the slurry.
 ここで、板状異物の粒径である最大長さは、例えば板状異物の2次元画像が得られる場合、板状異物の輪郭線と外接する長方形枠の長辺の最大長さをいう。また、板状異物の3次元像と外接する直方体枠の最も長い辺の最大長さをいい、このときの直方体枠の最も短い辺の長さを厚さという。最大長さが厚さの5倍以上の粒子が板状異物である。例えば板状異物の最大長さは200nm~1μm、厚みは10~25nmである。
 本実施形態では、あらかじめ以下に説明する吸着処理および分離処理を行う。
Here, the maximum length, which is the particle size of the plate-like foreign matter, refers to the maximum length of the long side of the rectangular frame that circumscribes the outline of the plate-like foreign matter, for example, when a two-dimensional image of the plate-like foreign matter is obtained. In addition, the maximum length of the longest side of the rectangular parallelepiped frame that circumscribes the three-dimensional image of the plate-like foreign material is referred to, and the length of the shortest side of the rectangular parallelepiped frame at this time is referred to as the thickness. Particles having a maximum length of 5 times or more the thickness are plate-like foreign substances. For example, the maximum length of the plate-like foreign material is 200 nm to 1 μm and the thickness is 10 to 25 nm.
In the present embodiment, an adsorption process and a separation process described below are performed in advance.
(吸着処理)
 吸着処理は、スラリーに含まれる、研磨砥粒の平均粒子径を有する粒子とこの平均粒子径よりも粒子径が大きな大径粒子(粗大粒子や板状物質等)とがそれぞれ異なる値の表面電荷量を有し、研磨砥粒と比べて大径粒子、特に板状異物に吸着されやすく、かつ、大径粒子の表面電荷と符号が異なる表面電荷を有する吸着材をスラリーに混合することで、スラリー中で大径粒子、特に板状異物を吸着材に吸着させる処理である。
 具体的には、コロイダルシリカを含むスラリーに対し、表面電荷が正である吸着材を投入することで、板状異物を吸着材に吸着させる。
(Adsorption treatment)
In the adsorption process, the surface charge having different values for the particles having the average particle diameter of the abrasive grains contained in the slurry and the large particles (coarse particles, plate-like substances, etc.) having a particle diameter larger than the average particle diameter. By mixing the slurry with an adsorbent having a surface charge different from the surface charge of the large-diameter particles, which is easily adsorbed on the large-diameter particles, particularly the plate-like foreign matters, compared to the abrasive grains. This is a treatment for adsorbing large-diameter particles, particularly plate-like foreign matters, on the adsorbent in the slurry.
Specifically, an adsorbent having a positive surface charge is introduced into the slurry containing colloidal silica, thereby adsorbing the plate-like foreign material to the adsorbent.
 スラリー中のコロイダルシリカ、大径粒子等のシリカ系粒子は、負の表面電荷を有している。そして、この表面電荷は、シリカ系粒子の表面積に依存しており、大きな粒子ほど負の表面電荷の絶対量が大きい。このため、スラリー中に吸着材を投入すると、吸着材はシリカ系粒子の表面電荷に比例する力でシリカ系粒子に引かれる。
 ここで、シリカ系粒子は、負の表面電荷によって反発し合うことによりスラリー中に分散している。この反発力によってシリカ系粒子のスラリー中での移動距離が小さく抑制されている。一方、スラリーに投入される吸着材の量は少ないため、吸着材同士の反発は少ない。このため、スラリー中の吸着材は、表面電荷の絶対量がより大きいシリカ系粒子に向かって移動し、表面電荷の絶対量がより大きいシリカ系粒子に吸着される。
Silica-based particles such as colloidal silica and large-diameter particles in the slurry have a negative surface charge. This surface charge depends on the surface area of the silica-based particle, and the larger the particle, the larger the absolute amount of the negative surface charge. For this reason, when an adsorbent is introduced into the slurry, the adsorbent is attracted to the silica-based particles with a force proportional to the surface charge of the silica-based particles.
Here, the silica-based particles are dispersed in the slurry by repelling each other due to negative surface charges. This repulsive force suppresses the movement distance of the silica-based particles in the slurry. On the other hand, since the amount of adsorbent charged into the slurry is small, there is little repulsion between the adsorbents. For this reason, the adsorbent in the slurry moves toward the silica-based particles having a larger absolute amount of surface charge and is adsorbed by the silica-based particles having a larger absolute amount of surface charge.
 なお、大きな粒子径のシリカ系粒子ほど、特に板状異物は平板状で表面積が大きいため、吸着材が移動したときに板状異物が表面に接触する確率が高くなる。さらに、表面積が大きい大径粒子、特に板状のものほど、より多くの吸着材が吸着されることとなる。
 また、大きな粒子径の板状物質ほど、質量が大きいため、移動速度が小さい。このため、大きな粒子径の板状物質ほど吸着材が接触する時間が長くなり、より多くの吸着材が吸着されることとなる。
In addition, since the plate-like foreign material is flat and has a large surface area, the probability of the plate-like foreign material coming into contact with the surface when the adsorbent moves increases as the silica-based particles having a large particle diameter are flat. Furthermore, larger adsorbents are adsorbed on large-diameter particles having a large surface area, particularly plate-shaped particles.
Further, since the plate-like substance having a larger particle diameter has a larger mass, the moving speed is lower. For this reason, the time for which the adsorbent comes into contact with the plate-like substance having a larger particle diameter becomes longer, and more adsorbent is adsorbed.
 したがって、スラリー中に存在する粒子のうち、多数の研磨砥粒に対して異物として含まれる小数の板状物質が確実に、吸着材に吸着される。なお、吸着材の粒子径は、研磨砥粒の平均粒子径よりも大きく、大径粒子の粒子径よりも小さい。 Therefore, among the particles present in the slurry, a small number of plate-like substances contained as foreign matters with respect to a large number of abrasive grains are reliably adsorbed by the adsorbent. The particle size of the adsorbent is larger than the average particle size of the abrasive grains and smaller than the particle size of the large particles.
 吸着材を吸着したシリカ系粒子は、研磨処理に用いても基板に付着しにくくなる。仮に吸着材を吸着したシリカ系粒子が基板に付着したとしても、吸着材を吸着したシリカ系粒子は洗浄処理により容易に基板から除去することができる。吸着材を吸着した大径粒子は、以下の分離処理によりスラリーから分離して除去することが好ましい。 The silica-based particles that have adsorbed the adsorbent are less likely to adhere to the substrate even when used for polishing. Even if the silica-based particles adsorbing the adsorbent are attached to the substrate, the silica-based particles adsorbing the adsorbent can be easily removed from the substrate by the cleaning treatment. It is preferable that the large-sized particles adsorbing the adsorbent are separated and removed from the slurry by the following separation treatment.
(分離処理)
 分離処理は、吸着処理の後、吸着材を吸着した大径粒子をスラリーから分離する処理である。吸着材とともに、吸着材を吸着した大径粒子を分離することで、スラリー中の大径粒子を減少させることができる。こうして、スラリーから大径粒子が除去される。
 表面電荷が正である吸着材が付着したシリカ系粒子では負の表面電荷が中和される。このとき、シリカ系粒子は表面電荷により反発しあうことでスラリー中に安定に分散しているため、表面電荷が中和されたシリカ系粒子は反発力を失い、凝集して沈殿する場合もある。このため、表面電荷が正である吸着材をスラリーに適量投入することで、大径粒子を沈殿させ、沈殿を濾過等により分離することができる。なお、上澄みを使用してもよい。以上により、スラリーから板状異物や粗大粒子等の大径粒子を除去することができる。
(Separation process)
A separation process is a process which isolate | separates the large diameter particle which adsorb | sucked the adsorbent from a slurry after an adsorption process. By separating the large-diameter particles adsorbing the adsorbent together with the adsorbent, the large-diameter particles in the slurry can be reduced. In this way, large particles are removed from the slurry.
In the silica-based particles to which the adsorbent having a positive surface charge is attached, the negative surface charge is neutralized. At this time, since the silica-based particles are stably dispersed in the slurry by repelling each other due to the surface charge, the silica-based particles with the neutralized surface charge lose repulsive force and may aggregate and precipitate. . For this reason, by putting an appropriate amount of adsorbent having a positive surface charge into the slurry, large particles can be precipitated, and the precipitate can be separated by filtration or the like. Supernatant may be used. As described above, large-diameter particles such as plate-like foreign matters and coarse particles can be removed from the slurry.
 スラリーに投入する吸着材の添加量は、吸着材を大径粒子に確実に吸着させるために、スラリー中に存在する大径粒子の数よりも吸着材の数が多いことが好ましい。このため、吸着材を添加後のスラリーの全体量に対する吸着材の濃度が0.01wt%以上となるように調整することが好ましい。また、吸着材の添加量が多すぎると、吸着材が研磨砥粒を吸着する量が増えて生産効率が低下するおそれがある。このため、吸着材が研磨砥粒を吸着しても充分に研磨が行えるように、吸着材の数が研磨砥粒の数よりも充分に少ないことが好ましい。このため、吸着材を添加後のスラリーの全体量に対する吸着材の濃度が5wt%以下となるように添加量を調整するとより好ましい。 The amount of adsorbent added to the slurry is preferably greater than the number of large particles present in the slurry in order to ensure that the adsorbent is adsorbed on the large particles. For this reason, it is preferable to adjust so that the density | concentration of an adsorbent with respect to the whole quantity of the slurry after adding adsorbent may be 0.01 wt% or more. Moreover, when there is too much addition amount of an adsorbent, there exists a possibility that the quantity which an adsorbent adsorb | sucks abrasive grain may increase, and production efficiency may fall. For this reason, it is preferable that the number of adsorbents is sufficiently smaller than the number of abrasive grains so that sufficient polishing can be performed even if the adsorbent adsorbs abrasive grains. For this reason, it is more preferable to adjust the addition amount so that the concentration of the adsorbent with respect to the total amount of the slurry after the adsorbent is added is 5 wt% or less.
 表面電荷が正である吸着材として、例えば有機高分子からなる粒径が50nm~100nmの微粒子(ポリマー微粒子)を用いることができる。有機高分子として、水に不溶または難溶のモノマーを重合させてなる高分子を用いることが好ましい。具体的には、ビニル系ポリマー、アクリル系ポリマー等を用いることができる。
 ビニル系ポリマーとして、例えば、スチレン、α-メチルスチレン、ジビニルベンゼン、メチルメタクリレート、メチルアクリレート、t-ブチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、エチレングリコールジメタクリレート等を用いることができる。また、メタクリル酸、アクリル酸、酢酸ビニル等のカルボキシル基含有ビニル系モノマーあるいはその塩;スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、スチレンスルホン酸ナトリウム等のスルホン酸基含有ビニル系モノマーあるいはその塩;ヒドロキシエチルメタクリレート等の水酸基含有ビニル系モノマー等のモノマーを1種単独または2種以上使用してビニル系ポリマーからなる微粒子を生成してもよい。
As the adsorbent having a positive surface charge, for example, fine particles (polymer fine particles) made of an organic polymer and having a particle diameter of 50 nm to 100 nm can be used. As the organic polymer, a polymer obtained by polymerizing a monomer that is insoluble or hardly soluble in water is preferably used. Specifically, a vinyl polymer, an acrylic polymer, or the like can be used.
Examples of vinyl polymers include styrene, α-methylstyrene, divinylbenzene, methyl methacrylate, methyl acrylate, t-butyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, 2-ethylhexyl acrylate, n-butyl acrylate, and ethylene glycol. Dimethacrylate or the like can be used. Also, carboxyl group-containing vinyl monomers such as methacrylic acid, acrylic acid, and vinyl acetate or salts thereof; sulfonic acid group-containing vinyl monomers such as styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and sodium styrenesulfonate. Alternatively, a salt thereof; fine particles composed of a vinyl polymer may be produced by using one or more monomers such as a hydroxyl group-containing vinyl monomer such as hydroxyethyl methacrylate.
 アクリル系ポリマーとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸2-ジメチルアミノエチル、アクリル酸2-ヒドロキシエチル等を用いることができる。この中でも、ポリメタクリル酸メチル樹脂(PMMA)を用いることが好ましい。 Examples of the acrylic polymer that can be used include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 2-dimethylaminoethyl acrylate, 2-hydroxyethyl acrylate, and the like. Among these, it is preferable to use polymethyl methacrylate resin (PMMA).
 得られるポリマー微粒子の表面電荷を正とするために、カチオン性の重合開始剤を用いることができる。カチオン性の重合開始剤として、例えば、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド等を用いることができる。 In order to make the surface charge of the obtained polymer fine particles positive, a cationic polymerization initiator can be used. As the cationic polymerization initiator, for example, 2,2′-azobis (2-methylpropionamidine) dihydrochloride and the like can be used.
 重合法として、懸濁重合法、乳化重合法等の任意の重合法を用いることができる。この中でも、吸着材となるポリマー微粒子の粒子径を均一とするために、ソープフリー乳化重合法を用いることが好ましい。具体的には、モノマーが不溶または難溶の溶媒中にモノマーを乳化させるとともに、この溶媒に可溶の重合開始剤を添加する。このとき、溶媒中のモノマー液滴1つ当たりの重合開始剤が1分子以下となるように重合開始剤の添加量を調節することで、モノマー液滴内での重合反応の進行を反応時間で制御することができ、各液滴内で成長するポリマー微粒子の粒子径を均一にすることができる。 As the polymerization method, any polymerization method such as a suspension polymerization method or an emulsion polymerization method can be used. Among these, it is preferable to use a soap-free emulsion polymerization method in order to make the particle diameter of the polymer fine particles serving as the adsorbent uniform. Specifically, the monomer is emulsified in a solvent in which the monomer is insoluble or hardly soluble, and a polymerization initiator soluble in the solvent is added. At this time, by adjusting the addition amount of the polymerization initiator so that the polymerization initiator per monomer droplet in the solvent is 1 molecule or less, the progress of the polymerization reaction in the monomer droplet can be controlled by the reaction time. It can be controlled, and the particle diameter of the polymer fine particles growing in each droplet can be made uniform.
 重合反応が進むほどポリマー微粒子の粒子径が大きくなるとともに、ポリマー微粒子が硬くなる。また、ポリマー微粒子の形状は、重合反応が進むにつれて、不定形から球状に変化する。ポリマー微粒子が不定形で柔らかいほどシリカ系粒子への付着面積が大きくなり、ポリマー微粒子が球状で硬いほどシリカ系粒子への付着面積が小さくなる傾向がある。ポリマー微粒子の平均粒子径を200nm以下、好ましくは50nm~100nmとすることで、不定形かつ柔らかいポリマー微粒子が得られる。 As the polymerization reaction proceeds, the particle size of the polymer particles increases and the polymer particles become harder. Further, the shape of the polymer fine particles changes from an irregular shape to a spherical shape as the polymerization reaction proceeds. As the polymer fine particles are irregular and soft, the adhesion area to the silica-based particles increases, and as the polymer fine particles are spherical and hard, the adhesion area to the silica-based particles tends to decrease. By setting the average particle size of the polymer fine particles to 200 nm or less, preferably 50 nm to 100 nm, amorphous and soft polymer fine particles can be obtained.
 上記の表面電荷が正である吸着材を、コロイダルシリカを含むスラリーに投入し、攪拌すると、吸着材がスラリー中の大径粒子に付着し、大径粒子の負の表面電荷を中和する。これにより大径粒子が沈殿するため、濾過、遠心分離等により異物を除去することができる。 When the adsorbent having a positive surface charge is put into a slurry containing colloidal silica and stirred, the adsorbent adheres to the large diameter particles in the slurry and neutralizes the negative surface charge of the large diameter particles. As a result, large-diameter particles are precipitated, so that foreign matters can be removed by filtration, centrifugation, or the like.
 なお、表面電荷が正である吸着材の粒子径を調節することにより、除去されるシリカ系粒子の粒子径を調節することができる。具体的には、吸着材の粒子径は、スラリー中に残すべき研磨砥粒を吸着しにくいように、研磨砥粒の平均粒子径以上であることが好ましい。一方、吸着材が除去されるべき大径粒子に吸着されやすいように、吸着材の粒子径は大径粒子の平均粒子径よりも小さいことが好ましく、大径粒子の平均粒子径の半分以下であることが好ましい。
 上記観点から、吸着材の平均粒子径は50nm~100nmとすることがより好ましい。
Note that the particle diameter of the silica-based particles to be removed can be adjusted by adjusting the particle diameter of the adsorbent having a positive surface charge. Specifically, the particle diameter of the adsorbent is preferably equal to or greater than the average particle diameter of the abrasive grains so that the abrasive grains to be left in the slurry are difficult to adsorb. On the other hand, the particle size of the adsorbent is preferably smaller than the average particle size of the large particles so that the adsorbent is easily adsorbed by the large particles to be removed, and is less than half the average particle size of the large particles. Preferably there is.
From the above viewpoint, the average particle diameter of the adsorbent is more preferably 50 nm to 100 nm.
 また、コロイダルシリカを含むスラリーのpHを調節することで、スラリー中のシリカ系粒子の表面電荷を変動させ、吸着材により除去されるシリカ系粒子の粒子径を調節することができる。 Also, by adjusting the pH of the slurry containing colloidal silica, the surface charge of the silica particles in the slurry can be varied, and the particle diameter of the silica particles removed by the adsorbent can be adjusted.
 適切な溶媒中で重合反応によりポリマー微粒子を成長させ、好ましい粒子径および硬さのポリマー微粒子が生成された時点で重合反応を停止させ、コロイダルシリカを含むスラリー中にこの溶媒を投入することで、溶媒中のポリマー微粒子が吸着材としてスラリー中の大径粒子に付着し、大径粒子の負の表面電荷を中和する。これにより大径粒子が沈殿するため、濾過、遠心分離等により異物を除去することができる。
 この場合、スラリーとの混合を容易にするため、親水性の溶媒中でポリマー微粒子を成長させることが好ましい。ポリマー微粒子を成長させる重合法として、懸濁重合法、乳化重合法等の任意の重合法を用いることができる。特に、上記のソープフリー乳化重合法を用いることが好ましい。
By growing polymer fine particles by a polymerization reaction in an appropriate solvent, when the polymer fine particles having a preferable particle size and hardness are produced, the polymerization reaction is stopped, and by introducing this solvent into a slurry containing colloidal silica, The polymer fine particles in the solvent adhere to the large-sized particles in the slurry as an adsorbent, and neutralize the negative surface charge of the large-sized particles. As a result, large-diameter particles are precipitated, so that foreign matters can be removed by filtration, centrifugation, or the like.
In this case, in order to facilitate mixing with the slurry, it is preferable to grow the polymer fine particles in a hydrophilic solvent. As a polymerization method for growing polymer fine particles, any polymerization method such as a suspension polymerization method or an emulsion polymerization method can be used. In particular, it is preferable to use the soap-free emulsion polymerization method.
 なお、大径粒子が有する表面電荷とは符号が異なる表面電荷を有する有機高分子からなる吸着材をスラリー中で作成してもよい。この場合、コロイダルシリカを含むスラリー中に、ポリマー微粒子となるモノマーを投入し、スラリー中で重合反応を行えばよい。
 コロイダルシリカは親水コロイドであり、重合反応に影響しないため、スラリー中にモノマーを懸濁あるいは乳化させて重合反応を行うことができる。スラリー中で重合反応を行う場合、大径粒子の粒子径と比較して小さい粒子径を有し、かつ、完全に硬化する前のポリマー微粒子を作成して大径粒子に吸着させることができる。
 スラリー中で重合反応を行う場合でも、上記と同様の組成のポリマー微粒子を作成することができる。
 スラリー中での重合反応は、例えば、スラリーを冷却することによって停止させることができる。
 スラリーへのモノマーの投入量は、モノマー投入後のスラリーの全体量に対するモノマーの濃度が0.01wt%以上となるように調整することが好ましい。また、モノマーの投入量が多すぎると、生成される有機高分子からなる吸着材が研磨砥粒に吸着される量が増えて生産効率が低下するおそれがあるため、モノマーを投入後のスラリーの全体量に対するモノマーの濃度が5wt%以下となるようにモノマーの投入量を調整するとより好ましい。
An adsorbent made of an organic polymer having a surface charge having a sign different from that of the surface charge of the large particle may be prepared in the slurry. In this case, a monomer that becomes polymer fine particles may be charged into a slurry containing colloidal silica, and a polymerization reaction may be performed in the slurry.
Since colloidal silica is a hydrocolloid and does not affect the polymerization reaction, the polymerization reaction can be carried out by suspending or emulsifying the monomer in the slurry. When the polymerization reaction is performed in the slurry, polymer fine particles having a particle diameter smaller than that of the large particles and before being completely cured can be prepared and adsorbed on the large particles.
Even when the polymerization reaction is performed in the slurry, polymer fine particles having the same composition as described above can be produced.
The polymerization reaction in the slurry can be stopped, for example, by cooling the slurry.
The amount of monomer added to the slurry is preferably adjusted so that the monomer concentration relative to the total amount of slurry after the monomer addition is 0.01 wt% or more. In addition, if the amount of monomer added is too large, the amount of adsorbent composed of the organic polymer to be produced increases in the amount adsorbed on the abrasive grains, which may reduce production efficiency. It is more preferable to adjust the amount of monomer added so that the monomer concentration relative to the total amount is 5 wt% or less.
 スラリー中で重合反応を行う場合、大きな粒子径のシリカ系粒子ほど、負の表面電荷の絶対量が大きいため、正の電荷を有するモノマーは大きな粒子径のシリカ系粒子の周囲により多く集まる。このため、大径粒子の周囲でポリマー微粒子が成長して吸着材が作成されやすい。作成された吸着材は大径粒子に吸着され、大径粒子の負の表面電荷が中和されることで大径粒子が沈殿する。このため、濾過、遠心分離等により異物を除去することができる。 When the polymerization reaction is carried out in a slurry, the larger the silica particle having a larger particle diameter, the larger the absolute amount of the negative surface charge. Therefore, more monomers having a positive charge are collected around the silica particle having a larger particle diameter. For this reason, the polymer fine particles grow around the large-diameter particles and the adsorbent is easily formed. The prepared adsorbent is adsorbed by the large-sized particles, and the large-sized particles are precipitated by neutralizing the negative surface charge of the large-sized particles. For this reason, foreign substances can be removed by filtration, centrifugation, or the like.
 吸着材のほとんどは大径粒子とともに沈殿し除去される。仮に吸着材が除去されずにスラリーに僅かに残ったとしても、研磨処理には影響しない。
 なお、スラリーに吸着材が残存し、最終研磨処理後の基板に吸着材が付着していた場合に備えて、最終研磨処理後に基板を洗浄し基板から吸着材を除去する処理を行うことが好ましい。洗浄には、任意の方法を用いることができる。例えば、吸着材であるポリマー微粒子を灰化することにより除去することができる。ポリマー微粒子を灰化するには、例えば、空気中で最終研磨処理後の基板に紫外線を照射することによりポリマー微粒子を分解するとともに、空気中の酸素から生成されるオゾンによりポリマー微粒子を酸化させることでポリマー微粒子を灰化することができる。あるいは、最終研磨処理後の基板をオゾン雰囲気下におくことでポリマー微粒子を灰化させてもよい。
 また、例えば、有機溶媒やアニオン界面活性剤を含む溶媒にポリマー微粒子を接触させることで溶媒にポリマー微粒子の少なくとも一部を溶解させ、ポリマー微粒子を除去することができる。ポリマー微粒子を灰化により充分に除去できない場合には、ポリマー微粒子を溶媒に溶解させることが特に有効である。この場合には、ポリマー微粒子を灰化させる処理を行った後、残ったポリマー微粒子を溶解させる処理を行うとより好ましい。
 なお、最終研磨処理後の基板に吸着材が残存しない場合や、残存しても基板の使用に問題がない場合は、吸着材を除去する洗浄工程を省略することができる。
 以下の説明では、吸着処理および吸着処理後に必要に応じて行う分離処理を、あわせて除去処理という。
Most of the adsorbent is precipitated and removed with the large particles. Even if the adsorbent is not removed and remains in the slurry slightly, it does not affect the polishing process.
In preparation for the case where the adsorbent remains in the slurry and the adsorbent adheres to the substrate after the final polishing process, it is preferable to perform a process of cleaning the substrate and removing the adsorbent from the substrate after the final polishing process. . Any method can be used for cleaning. For example, it can be removed by ashing polymer fine particles that are adsorbents. In order to incinerate the polymer fine particles, for example, the polymer fine particles are decomposed by irradiating the substrate after the final polishing process in the air with ultraviolet rays, and the polymer fine particles are oxidized by ozone generated from oxygen in the air. The polymer fine particles can be ashed. Alternatively, the fine polymer particles may be ashed by placing the substrate after the final polishing treatment in an ozone atmosphere.
Further, for example, by bringing the polymer fine particles into contact with a solvent containing an organic solvent or an anionic surfactant, at least a part of the polymer fine particles can be dissolved in the solvent, and the polymer fine particles can be removed. When the polymer fine particles cannot be sufficiently removed by ashing, it is particularly effective to dissolve the polymer fine particles in a solvent. In this case, it is more preferable to perform a treatment for ashing the polymer fine particles and then a treatment for dissolving the remaining polymer fine particles.
If the adsorbent does not remain on the substrate after the final polishing process, or if there is no problem in using the substrate even if it remains, the cleaning step of removing the adsorbent can be omitted.
In the following description, the adsorption process and the separation process performed as necessary after the adsorption process are collectively referred to as a removal process.
 上記の除去処理を行った後、コロイダルシリカを凝集させるために、コロイダルシリカの表面電荷を減少させる処理を行うことが好ましい。コロイダルシリカを凝集させることで、研磨レートを高めるとともに、研磨処理後のガラス基板の表面凹凸を小さくすることができる。
 コロイダルシリカの表面電荷を減少させる方法として、具体的には、スラリー中のコロイダルシリカの表面電荷を減少させる添加剤(例えば、KSO,NaSO等の硫酸化合物、KPO,NaPO等の燐酸化合物、NaNO等の硝酸化合物)を添加することが好ましい。除去処理を行う前にコロイダルシリカの表面電荷を減少させると、表面電荷が正である吸着材が大径粒子に付着しにくくなり、大径粒子をスラリーから除去することが困難になる。
After the above removal treatment, it is preferable to perform a treatment for reducing the surface charge of the colloidal silica in order to aggregate the colloidal silica. By aggregating colloidal silica, it is possible to increase the polishing rate and reduce the surface roughness of the glass substrate after the polishing treatment.
As a method for reducing the surface charge of colloidal silica, specifically, an additive for reducing the surface charge of colloidal silica in the slurry (for example, sulfate compounds such as K 2 SO 4 and Na 2 SO 4 , K 3 PO 4 , Na 3 PO 4 and other phosphoric acid compounds, NaNO 3 and other nitric acid compounds) are preferably added. If the surface charge of the colloidal silica is reduced before the removal treatment, the adsorbent having a positive surface charge is less likely to adhere to the large particles, and it is difficult to remove the large particles from the slurry.
 また、本実施形態における除去処理前の、スラリーのアルカリ土類金属イオン含有率は、200ppm以下であることが好ましい。アルカリ土類金属イオンの含有率が200ppmを超えると、シリカ砥粒の表面電荷が低減し、上述の除去処理では、十分な除去効果が得られ難い。スラリー中のアルカリ土類金属量は、例えば、スラリーを調合する際に原料を高純度のものにしたり、スラリー原液にイオン交換樹脂等を接触させること等によって減少させることができる。 Further, the alkaline earth metal ion content of the slurry before the removal treatment in the present embodiment is preferably 200 ppm or less. When the content of alkaline earth metal ions exceeds 200 ppm, the surface charge of the silica abrasive grains is reduced, and the above-described removal treatment makes it difficult to obtain a sufficient removal effect. The amount of alkaline earth metal in the slurry can be reduced, for example, by making the raw material highly pure when preparing the slurry, or by bringing an ion exchange resin or the like into contact with the slurry stock solution.
 上記の板状異物は、特にガラス基板の主表面に付着すると、その後の洗浄処理等で除去することは難しくなる。このため、あらかじめ板状異物を除去したコロイダルシリカを遊離砥粒に用いて行う最終研磨処理は、ガラス基板の最終研磨処理に好適である。磁気ディスク用ガラス基板に用いるガラスとして、具体的には、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラス等が挙げられる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。
 ここで、磁気ディスク用ガラス基板の製造方法について説明する。
In particular, when the plate-like foreign material adheres to the main surface of the glass substrate, it is difficult to remove it by a subsequent cleaning process or the like. For this reason, the final polishing process performed using colloidal silica from which the plate-like foreign material has been removed in advance as the free abrasive grains is suitable for the final polishing process of the glass substrate. Specific examples of the glass used for the magnetic disk glass substrate include aluminosilicate glass, soda lime glass, and borosilicate glass. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
Here, the manufacturing method of the glass substrate for magnetic discs is demonstrated.
(磁気ディスク用ガラス基板の製造方法)
 先ず、磁気ディスク用ガラスブランクをプレス成形により作製する。磁気ディスク用ガラスブランク(以降、単にガラスブランクという)は、一対の主表面を有する円板状の磁気ディスク用ガラス基板の素材であって、中心孔がくり抜かれる前の形態である。
 次に、作製されたガラスブランクの中心部分に孔をあけ、リング形状(円環状)のガラス基板を作製する。次に、穴をあけたガラス基板に対して形状加工を行う。次に、形状加工されたガラス基板に対して端面研磨を行う。次に、端面研磨の行われたガラス基板に、固定砥粒による研削を行う。次に、ガラス基板の主表面に第1研磨を行う。次に、ガラス基板に対して必要に応じて化学強化を行う。その後、ガラス基板に対して第2研磨(最終研磨)を行う。第2研磨後、洗浄処理を経て、磁気ディスク用ガラス基板が得られる。
 以下、各処理について、さらに説明する。
(Method for producing glass substrate for magnetic disk)
First, a glass blank for a magnetic disk is produced by press molding. A magnetic disk glass blank (hereinafter simply referred to as a glass blank) is a material for a disk-shaped magnetic disk glass substrate having a pair of main surfaces, and is a form before a center hole is cut out.
Next, a hole is made in the central portion of the produced glass blank to produce a ring-shaped (annular) glass substrate. Next, shape processing is performed on the glass substrate with holes. Next, end face polishing is performed on the glass substrate that has been processed into a shape. Next, grinding with fixed abrasive is performed on the glass substrate on which the end face has been polished. Next, the first polishing is performed on the main surface of the glass substrate. Next, chemical strengthening is performed on the glass substrate as necessary. Thereafter, second polishing (final polishing) is performed on the glass substrate. After the second polishing, a glass substrate for magnetic disk is obtained through a cleaning process.
Hereinafter, each process will be further described.
 (a)プレス成形処理
 溶融ガラス流の先端部を切断した溶融ガラスの塊を一対の金型のプレス成形面の間に挟みこみ、プレスしてガラスブランクを成形する。所定時間プレスを行った後、金型を開いてガラスブランクが取り出される。
(A) Press molding process The lump of the molten glass which cut | disconnected the front-end | tip part of the molten glass flow is pinched | interposed between the press molding surfaces of a pair of metal molds, and is pressed to form a glass blank. After pressing for a predetermined time, the mold is opened and the glass blank is taken out.
 (b)円孔形成処理
 ガラスブランクに対してコアドリル等を用いて円孔を形成することにより円形状の中央孔があいたガラス基板を得ることができる。
(B) Circular hole formation treatment A glass substrate having a circular central hole can be obtained by forming a circular hole on a glass blank using a core drill or the like.
 (c)形状加工処理
 形状加工処理では、円孔形成後のガラス基板の端部に対する面取り加工を行う。
(C) Shape processing In the shape processing, chamfering is performed on the edge of the glass substrate after the circular hole is formed.
 (d)端面研磨処理
 端面研磨処理では、ガラス基板の内側端面及び外周側端面に対して、ブラシ研磨により鏡面仕上げを行う。このとき、酸化セリウム等の粒子を遊離砥粒として含む砥粒スラリーが用いられる。
(D) End surface polishing process In the end surface polishing process, mirror finishing is performed on the inner end face and the outer peripheral end face of the glass substrate by brush polishing. At this time, an abrasive slurry containing particles such as cerium oxide as free abrasive grains is used.
 (e)研削処理
 固定砥粒による研削処理では、遊星歯車機構を備えた両面研削装置を用いて、ガラス基板の主表面に対して研削加工を行う。具体的には、ガラスブランクから生成されたガラス基板の外周側端面を、両面研削装置の保持部材に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研削を行う。両面研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研削することができる。
(E) Grinding process In the grinding process using the fixed abrasive grains, the main surface of the glass substrate is ground using a double-side grinding apparatus having a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate generated from the glass blank in the holding hole provided in the holding member of the double-side grinding apparatus. The double-sided grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between the upper surface plate and the lower surface plate. Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
 (f)第1研磨処理
 第1研磨は、例えば固定砥粒による研削を行った場合に主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。
(F) First polishing treatment In the first polishing, for example, when grinding with fixed abrasive grains is performed, scratches and distortions remaining on the main surface are removed, or fine surface irregularities (microwaveness, roughness) are adjusted. Objective.
 第1研磨処理では、両面研削装置と同様の構成を備えた両面研磨装置を用い、遊離砥粒を含んだ研磨スラリーを両面研磨装置に与えながらガラス基板が研磨される。遊離砥粒として、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒など(粒子サイズ:直径1~2μm程度)が用いられる。両面研磨装置も、両面研削装置と同様に、上下一対の定盤の間にガラス基板が狭持される。下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂ポリッシャ)が取り付けられている。ガラス基板の主表面と研磨パッドとの間に研磨液を供給しながら、上定盤または下定盤のいずれか一方、または、双方を移動させることで、ガラス基板と研磨パッドとが相対的に移動し、ガラス基板の両主表面が研磨される。 In the first polishing process, a glass substrate is polished while applying a polishing slurry containing loose abrasive grains to the double-side polishing apparatus using a double-side polishing apparatus having the same configuration as the double-side grinding apparatus. As the free abrasive grains, for example, cerium oxide abrasive grains or zirconia abrasive grains (particle size: diameter of about 1 to 2 μm) is used. In the double-side polishing apparatus, similarly to the double-side grinding apparatus, the glass substrate is sandwiched between a pair of upper and lower surface plates. An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. While supplying the polishing liquid between the main surface of the glass substrate and the polishing pad, the glass substrate and the polishing pad move relatively by moving either the upper surface plate, the lower surface plate, or both. Then, both main surfaces of the glass substrate are polished.
 (g)化学強化処理
 化学強化処理では、ガラス基板を化学強化液に浸漬することによって、ガラス基板を化学強化する。化学強化液として、例えば硝酸カリウムと硝酸ナトリウムの混合熔融液等を用いることができる。
(G) Chemical strengthening treatment In the chemical strengthening treatment, the glass substrate is chemically strengthened by immersing the glass substrate in a chemical strengthening solution. As the chemical strengthening liquid, for example, a mixed melt of potassium nitrate and sodium nitrate can be used.
 (h)第2研磨(最終研磨)処理
 第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。第2研磨による取り代は、例えば1μm程度である。第2研磨処理が第1研磨処理と異なる点は、遊離砥粒の種類及び粒子サイズが異なることと、樹脂ポリッシャの硬度が異なることである。
(H) Second polishing (final polishing) treatment The second polishing treatment aims at mirror polishing of the main surface. Also in the second polishing, a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used. The machining allowance by the second polishing is, for example, about 1 μm. The second polishing process is different from the first polishing process in that the type and particle size of the free abrasive grains are different and the hardness of the resin polisher is different.
 第2研磨処理では、上述した除去処理を行った、コロイダルシリカを遊離砥粒として含む研磨液が用いられる。
 第2研磨処理を実施することで、主表面の粗さ(算術平均粗さRa)を0.15nm以下かつ主表面のマイクロウェービネスを0.1nm以下とすることができる。
In the second polishing process, a polishing liquid containing colloidal silica as the free abrasive grains subjected to the above-described removal process is used.
By performing the second polishing treatment, the main surface roughness (arithmetic mean roughness Ra) can be 0.15 nm or less and the main surface micro-waveness can be 0.1 nm or less.
 (i)洗浄処理
 第2研磨処理の後、ガラス基板は、アルカリ洗浄液を用いてガラス基板の表面が洗浄され、磁性層が形成される前の磁気ディスク用ガラス基板となる。
 このとき、洗浄処理では、洗浄処理前後のガラス基板の表面の算術平均粗さRaの差が0.05nm以下にするアルカリ洗浄液を用いることが好ましい。ガラス基板に付着する板状異物は、除去し難いため、従来、洗浄力の高いアルカリ洗浄液を従来用いていた。このため、洗浄力の強いアルカリ洗浄液は、板状異物のないガラス基板の主表面に作用して主表面を荒らし易い。しかし、本実施形態では、上述した除去処理を施したシリカ砥粒を用いて研磨処理を行うので、ガラス基板には板状異物は付着しない。このため、本実施形態では、従来に比べて洗浄力の弱いアルカリ洗浄液、すなわち、洗浄処理前後のガラス基板の表面の算術平均粗さRaの差を0.05nm以下にするアルカリ洗浄液を用いることができる。なお、Raは、JIS B0601に規定される算術平均粗さである。この算術平均粗さは、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を512×256ピクセルの解像度で測定したデータに基づいて得られるものである。
(I) Cleaning Process After the second polishing process, the glass substrate becomes a glass substrate for a magnetic disk before the surface of the glass substrate is cleaned using an alkaline cleaning liquid and the magnetic layer is formed.
At this time, in the cleaning process, it is preferable to use an alkaline cleaning liquid in which the difference in the arithmetic average roughness Ra of the surface of the glass substrate before and after the cleaning process is 0.05 nm or less. Since plate-like foreign substances adhering to the glass substrate are difficult to remove, an alkaline cleaning liquid having a high cleaning power has been conventionally used. For this reason, the alkaline cleaning liquid having a strong cleaning power is likely to act on the main surface of the glass substrate having no plate-like foreign matter and roughen the main surface. However, in this embodiment, since the polishing process is performed using the silica abrasive grains subjected to the above-described removal process, no plate-like foreign matter adheres to the glass substrate. For this reason, in this embodiment, it is necessary to use an alkaline cleaning liquid that has a weaker cleaning power than the prior art, that is, an alkaline cleaning liquid that makes the difference in arithmetic mean roughness Ra of the surface of the glass substrate before and after the cleaning treatment 0.05 nm or less. it can. Note that Ra is an arithmetic average roughness specified in JIS B0601. This arithmetic average roughness is obtained based on data obtained by measuring a range of 1 μm × 1 μm with a resolution of 512 × 256 pixels using an atomic force microscope (AFM).
 また、洗浄処理は、ガラス基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄であることが、ガラス基板に傷を作らない点で好ましい。従来の洗浄処理では、ガラス基板に強固に付着した板状異物を除去するために、ブラシや洗浄パッドでガラス基板を擦って、板状異物を除去するスクラブ洗浄を行なっていた。しかし、このスクラブ洗浄では、ガラス基板の主表面に傷を付け易い。本実施形態では、上述した除去処理を施したシリカ砥粒を含んだスラリーを用いて研磨するので、ガラス基板には板状異物が付着しない。このため、従来のようにスクラブ洗浄をしなくてもよい。このため、本実施形態では、ガラス基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄をすることにより、不要な傷をガラス基板の主表面に付けることがなくなる。 In addition, the cleaning treatment is preferably non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid in terms of not causing scratches on the glass substrate. In the conventional cleaning process, scrub cleaning is performed to remove the plate-like foreign matter by rubbing the glass substrate with a brush or a cleaning pad in order to remove the plate-like foreign matter firmly attached to the glass substrate. However, this scrub cleaning tends to damage the main surface of the glass substrate. In this embodiment, since it polishes using the slurry containing the silica abrasive grain which performed the removal process mentioned above, a plate-shaped foreign material does not adhere to a glass substrate. For this reason, it is not necessary to perform scrub cleaning as in the past. For this reason, in this embodiment, unnecessary scratches are not applied to the main surface of the glass substrate by performing non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid.
 なお、第2研磨処理後の洗浄処理において、最終研磨処理後のガラス基板に付着したポリマー微粒子を洗浄する処理を行う事が好ましい。具体的には、第2研磨処理後のガラス基板をオゾン雰囲気下におくことでポリマー微粒子を灰化させることができる。また、空気中で第2研磨処理後のガラス基板に紫外線を照射することにより発生するオゾンによりポリマー微粒子を灰化させてもよい。ポリマー微粒子が灰化では完全に除去されない場合は、ポリマー微粒子を溶解する有機溶媒やアニオン界面活性剤を含む洗浄剤を用いてガラス基板を洗浄することでポリマー微粒子を除去してもよい。
 第2研磨処理後のガラス基板にポリマー微粒子が残存しない場合や、ポリマー微粒子が残存してもガラス基板の使用に問題がない場合は、ポリマー微粒子を除去する洗浄工程を省略することができる。
In the cleaning process after the second polishing process, it is preferable to perform a process of cleaning the polymer fine particles attached to the glass substrate after the final polishing process. Specifically, the polymer fine particles can be ashed by placing the glass substrate after the second polishing treatment in an ozone atmosphere. Further, the fine polymer particles may be ashed by ozone generated by irradiating the glass substrate after the second polishing treatment with ultraviolet rays in the air. When the polymer fine particles are not completely removed by ashing, the polymer fine particles may be removed by washing the glass substrate with a cleaning agent containing an organic solvent or an anionic surfactant that dissolves the polymer fine particles.
When the polymer fine particles do not remain on the glass substrate after the second polishing treatment, or when there is no problem in using the glass substrate even if the polymer fine particles remain, the cleaning step for removing the polymer fine particles can be omitted.
 以下、本発明の実施例および比較例について説明する。
〔実施例1〕
(コロイダルシリカの作成)
 ケイ砂と炭酸ナトリウムとを原料としてイオン交換法により平均粒子径が20nmのコロイダルシリカを含むスラリーを得た。
Examples of the present invention and comparative examples will be described below.
[Example 1]
(Creation of colloidal silica)
A slurry containing colloidal silica having an average particle size of 20 nm was obtained by ion exchange using silica sand and sodium carbonate as raw materials.
(吸着処理)
 上記のコロイダルシリカを含むスラリーに対し、吸着材を添加し、混合した。吸着材として、粒子径50nmのポリスチレン微粒子を用いた。吸着材の添加量は、スラリーの全体量に対する吸着材の濃度が1wt%となるように調整した。
(Adsorption treatment)
An adsorbent was added to and mixed with the slurry containing the colloidal silica. As the adsorbent, polystyrene fine particles having a particle diameter of 50 nm were used. The amount of adsorbent added was adjusted so that the concentration of the adsorbent relative to the total amount of slurry was 1 wt%.
(分離処理)
 吸着処理の後、スラリー中のシリカ系粒子を吸着して沈殿したポリスチレン微粒子をフィルタにより濾過し分離した。
(Separation process)
After the adsorption treatment, polystyrene fine particles precipitated by adsorbing silica-based particles in the slurry were filtered and separated by a filter.
(ガラス基板の研磨処理)
 次に、分離処理でフィルタを通過した濾過液を研磨液として用いて、ガラス基板の最終研磨処理を行った。ガラス基板の主表面とポリウレタン製の研磨パッドとの間に、上記の研磨液を供給しながら、研磨パッドをガラス基板の主表面に対して相対移動させることでガラス基板の主表面を研磨した。
(Glass substrate polishing process)
Next, the final polishing process of the glass substrate was performed using the filtrate which passed the filter by the separation process as a polishing liquid. While supplying the above polishing liquid between the main surface of the glass substrate and the polyurethane polishing pad, the main surface of the glass substrate was polished by moving the polishing pad relative to the main surface of the glass substrate.
〔実施例2〕
(吸着処理)
 実施例1と同様にして得られたコロイダルシリカを含むスラリーに対し、スチレンモノマーを投入し、撹拌することでスラリー中に懸濁させた後、得られた懸濁液に重合開始剤を添加し、70℃で20分間撹拌することで、粒子径50nmのポリスチレン微粒子を生成させた。スチレンモノマーの投入量は、懸濁液の全体量に対する濃度が1wt%となるように調整した。
[Example 2]
(Adsorption treatment)
A slurry containing colloidal silica obtained in the same manner as in Example 1 was charged with styrene monomer and suspended in the slurry by stirring, and then a polymerization initiator was added to the resulting suspension. By stirring at 70 ° C. for 20 minutes, polystyrene fine particles having a particle diameter of 50 nm were generated. The amount of styrene monomer charged was adjusted so that the concentration relative to the total amount of the suspension was 1 wt%.
(分離処理)
 吸着処理の後、スラリー中でポリスチレン微粒子を吸着して沈殿したシリカ系粒子をフィルタにより濾過し分離した。
(Separation process)
After the adsorption treatment, silica-based particles precipitated by adsorbing polystyrene fine particles in the slurry were filtered and separated.
(ガラス基板の研磨処理)
 次に、分離処理でフィルタを通過した濾過液を研磨液として用いて、ガラス基板の最終研磨処理を行った。ガラス基板の主表面とポリウレタン製の研磨パッドとの間に、上記の研磨液を供給しながら、研磨パッドをガラス基板の主表面に対して相対移動させることでガラス基板の主表面を研磨した。
(Glass substrate polishing process)
Next, the final polishing process of the glass substrate was performed using the filtrate which passed the filter by the separation process as a polishing liquid. While supplying the above polishing liquid between the main surface of the glass substrate and the polyurethane polishing pad, the main surface of the glass substrate was polished by moving the polishing pad relative to the main surface of the glass substrate.
〔比較例〕
 実施例1と同様にして得られたコロイダルシリカを含むスラリーに対し、吸着処理および分離処理を行わずに研磨液として用いて、ガラス基板の最終研磨処理を実施例と同様に行った。
[Comparative Example]
The slurry containing colloidal silica obtained in the same manner as in Example 1 was used as a polishing liquid without performing adsorption treatment and separation treatment, and the final polishing treatment of the glass substrate was performed in the same manner as in the example.
〔ガラス基板主表面の板状異物の検出〕
 研磨処理後、洗浄、乾燥したガラス基板の主表面について、光学式の表面検査装置と走査型電子顕微鏡(SEM: Scanning Electron Microscope)を用いて異物の検出と同定を行った。
[Detection of plate-like foreign material on the main surface of the glass substrate]
After polishing, the main surface of the cleaned and dried glass substrate was subjected to detection and identification of foreign matter using an optical surface inspection device and a scanning electron microscope (SEM).
 その結果、実施例1、2のガラス基板については板状異物が検出されなかったが、比較例のガラス基板については板状異物が検出された。実施例1、2では、吸着処理によってスラリー中の板状異物が吸着材に吸着されたため、ガラス基板に板状異物が付着しなかったものと考えられる。 As a result, no plate-like foreign matter was detected for the glass substrates of Examples 1 and 2, but a plate-like foreign matter was detected for the glass substrate of the comparative example. In Examples 1 and 2, it is considered that the plate-like foreign matter did not adhere to the glass substrate because the plate-like foreign matter in the slurry was adsorbed to the adsorbent by the adsorption treatment.
 以上、本発明の磁気ディスク用基板の製造方法について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 上記実施形態においては、シリカ砥粒を用いて研磨処理を行う場合について説明したが、本発明はこれに限らず、他の砥粒を用いて研磨処理を行う場合に本発明を適用してもよい。
As mentioned above, although the manufacturing method of the substrate for magnetic disks of this invention was demonstrated in detail, this invention is not limited to the said embodiment, You may make various improvement and change in the range which does not deviate from the main point of this invention. Of course.
In the above embodiment, the case where the polishing process is performed using the silica abrasive grains has been described. However, the present invention is not limited to this, and the present invention may be applied to the case where the polishing process is performed using other abrasive grains. Good.

Claims (16)

  1.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     前記スラリー中に含まれる、前記研磨砥粒および前記研磨砥粒の平均粒子径よりも粒子径が大きな板状物質とが表面電荷の量に差を有し、
     前記研磨処理を行う前に、少なくとも前記板状物質に吸着され、かつ、前記板状物質の表面電荷と符号が異なる表面電荷を有する固体の吸着材を前記スラリーに混合することで、前記スラリー中の板状物質に吸着材を吸着させる吸着処理を行うことを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    The polishing abrasive grains contained in the slurry and a plate-like substance having a particle size larger than the average particle diameter of the polishing abrasive grains have a difference in the amount of surface charge,
    Before performing the polishing treatment, a solid adsorbent adsorbed on at least the plate-like substance and having a surface charge different in sign from the surface charge of the plate-like substance is mixed with the slurry. A method for manufacturing a magnetic disk substrate, comprising performing an adsorption process for adsorbing an adsorbent on the plate-like substance.
  2.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     スラリー原液中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも粒径が大きな板状物質とが表面電荷の量に差を有し、少なくとも板状物質に吸着され、かつ、上記板状物質の表面電荷と符号の異なる表面電荷を有する固体の吸着材を前記スラリー原液に混合して板状物質に吸着材を吸着させた後、前記吸着材を吸着した前記板状物質を前記スラリー原液中から除去したものを前記研磨処理に使用するスラリーとして用いることを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    The abrasive grains contained in the slurry stock solution and the plate-like substance having a particle size larger than the average particle diameter of the abrasive grains have a difference in the amount of surface charge, and are adsorbed to at least the plate-like substance, and A solid adsorbent having a surface charge different in sign from the surface charge of the plate-like substance is mixed with the slurry stock solution to adsorb the adsorbent to the plate-like substance, and then the plate-like substance adsorbed to the adsorbent is added to the plate-like substance. A method for producing a magnetic disk substrate, wherein a slurry removed from a slurry stock solution is used as a slurry used for the polishing treatment.
  3.  前記吸着材は、有機高分子であることを特徴とする請求項1又は2に記載の磁気ディスク用基板の製造方法。 3. The method of manufacturing a magnetic disk substrate according to claim 1, wherein the adsorbent is an organic polymer.
  4.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     前記研磨処理を行う前に、前記スラリー中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも大きな粒子径の板状物質のうち少なくとも板状物質に吸着される有機高分子からなる吸着材を前記スラリー中で作成することで、前記吸着材を前記スラリー中の板状物質に吸着させる吸着処理を行うことを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    Before performing the polishing treatment, it is composed of an abrasive polymer contained in the slurry and an organic polymer adsorbed on at least the plate-like substance among the plate-like substances having a particle diameter larger than the average particle diameter of the polishing abrasive grains. A method of manufacturing a magnetic disk substrate, comprising: performing an adsorption process for adsorbing the adsorbent on a plate-like substance in the slurry by preparing the adsorbent in the slurry.
  5.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     前記スラリー中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも大きな粒子径の板状物質のうち少なくとも板状物質に吸着される有機高分子からなる吸着材を溶媒中で作成し、
     研磨処理を行う前のスラリーに前記吸着材が作成された溶媒を投入することで、前記吸着材を前記スラリー中の板状物質に吸着させる吸着処理を行うことを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    An adsorbent made of an organic polymer adsorbed on at least the plate-like substance is prepared in a solvent among the abrasive grains contained in the slurry and the plate-like substance having a particle size larger than the average particle size of the abrasive grains. ,
    A magnetic disk substrate characterized by performing an adsorption process for adsorbing the adsorbent to a plate-like substance in the slurry by introducing a solvent in which the adsorbent is prepared into a slurry before performing a polishing process. Production method.
  6.  前記研磨砥粒は、平均粒子径が10nm以上60nm以下のシリカ粒子である請求項1~5のいずれか一項に記載の磁気ディスク用基板の製造方法。 6. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the abrasive grains are silica particles having an average particle diameter of 10 nm to 60 nm.
  7.  前記吸着処理の後、前記スラリーから吸着材を吸着した前記板状物質を分離する分離処理を行い、
     前記分離処理によって板状物質が除去された前記スラリーを用いて前記研磨処理を行うことを特徴とする請求項1~6の何れか一項に記載の磁気ディスク用基板の製造方法。
    After the adsorption treatment, a separation treatment for separating the plate-like substance that adsorbs the adsorbent from the slurry is performed,
    7. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the polishing treatment is performed using the slurry from which the plate-like substance has been removed by the separation treatment.
  8.  前記研磨砥粒は、水ガラスとイオン交換樹脂を用いて得られるシリカ砥粒である、請求項1~7のいずれか1項に記載の磁気ディスク用基板の製造方法。 The method for producing a magnetic disk substrate according to any one of claims 1 to 7, wherein the polishing abrasive grains are silica abrasive grains obtained using water glass and an ion exchange resin.
  9.  前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、前記洗浄処理では、前記洗浄処理前後の基板の表面の算術平均粗さRaの差を0.05nm以下にするアルカリ洗浄液を用いる、請求項1~8のいずれか1項に記載の磁気ディスク用基板の製造方法。 After the polishing process, a cleaning process for cleaning the main surface of the substrate is performed, and in the cleaning process, an alkali cleaning liquid is used that sets the difference in arithmetic mean roughness Ra of the surface of the substrate before and after the cleaning process to 0.05 nm or less. The method for producing a magnetic disk substrate according to any one of claims 1 to 8.
  10.  前記吸着処理後、前記研磨処理前のスラリーに、前記砥粒の表面電荷の絶対値を減少させる添加剤を添加する、請求項1~9のいずれか一項に記載の磁気ディスク用基板の製造方法。 The magnetic disk substrate production according to any one of claims 1 to 9, wherein an additive for reducing the absolute value of the surface charge of the abrasive grains is added to the slurry before the polishing treatment after the adsorption treatment. Method.
  11.  前記吸着処理前の、前記スラリーのアルカリ土類金属イオンの含有率は、200ppm以下である、請求項1~10のいずれか1項に記載の磁気ディスク用基板の製造方法。 The method for manufacturing a magnetic disk substrate according to any one of claims 1 to 10, wherein the content of alkaline earth metal ions in the slurry before the adsorption treatment is 200 ppm or less.
  12.  前記吸着処理において、前記スラリーに含まれる粒子のうち、最大長さが厚さの5倍以上の板状物質を吸着する、請求項1~11のいずれか1項に記載の磁気ディスク用基板の製造方法。 The magnetic disk substrate according to any one of claims 1 to 11, wherein in the adsorption treatment, among the particles contained in the slurry, a plate-like substance having a maximum length of 5 times or more the thickness is adsorbed. Production method.
  13.  前記吸着材は有機高分子であり、前記研磨処理の後、前記磁気ディスク用基板の表面に残存している吸着材に対して(1)有機溶媒を接触させる、(2)酸化させる、の少なくとも一方を行うことにより除去することを特徴とする請求項1~12のいずれか1項に記載の磁気ディスク用基板の製造方法。 The adsorbent is an organic polymer, and after the polishing process, at least one of (1) bringing an organic solvent into contact with the adsorbent remaining on the surface of the magnetic disk substrate and (2) oxidizing. 13. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the magnetic disk substrate is removed by performing one of the steps.
  14.  研磨処理後の、基板の表面の算術平均粗さRaは、0.15nm以下であることを特徴とする請求項1~13のいずれか1項に記載の磁気ディスク用基板の製造方法。 14. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the arithmetic average roughness Ra of the surface of the substrate after the polishing treatment is 0.15 nm or less.
  15.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     前記研磨処理を行う前に、前記スラリー中に含まれる、前記研磨砥粒および前記研磨砥粒の平均粒子径よりも粒子径が大きな大径粒子とがそれぞれ有する表面電荷の量の差によって、前記研磨砥粒の平均粒子径を有する粒子と比べて大径粒子に吸着されやすく、かつ、前記大径粒子の表面電荷と符号が異なる表面電荷を有する固体の吸着材を前記スラリーに混合することで、前記スラリー中の大径粒子に吸着材を吸着させる吸着処理を行うことを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    Before performing the polishing treatment, due to the difference in the amount of surface charge each of the polishing abrasive grains and large particles having a particle diameter larger than the average particle diameter of the polishing abrasive grains contained in the slurry has, By mixing the slurry with a solid adsorbent that is more easily adsorbed by large-diameter particles than particles having an average particle diameter of abrasive grains and has a surface charge that is different in sign from the surface charge of the large-diameter particles. A method for producing a substrate for a magnetic disk, comprising performing an adsorption treatment for adsorbing an adsorbent on the large-diameter particles in the slurry.
  16.  一対の研磨パッドで円盤状の基板を挟み、前記研磨パッドと前記基板の間に研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の主表面を研磨する研磨処理を含む磁気ディスク用基板の製造方法であって、
     前記研磨処理を行う前に、前記スラリー中に含まれる研磨砥粒および前記研磨砥粒の平均粒子径よりも大きな粒子径の大径粒子がそれぞれ有する表面電荷量の差によって、前記研磨砥粒の平均粒子径を有する粒子と比較して前記大径粒子に吸着されやすい有機高分子からなる吸着材を前記スラリー中で作成することで、前記吸着材を前記スラリー中の大径粒子に吸着させる吸着処理を行うことを特徴とする磁気ディスク用基板の製造方法。
    By sandwiching a disk-shaped substrate between a pair of polishing pads, supplying a slurry containing abrasive grains between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, the substrate A method for manufacturing a magnetic disk substrate including a polishing process for polishing the main surface of
    Before performing the polishing treatment, the polishing abrasive grains contained in the slurry and the difference in surface charge amount of the large-diameter particles having a particle diameter larger than the average particle diameter of the polishing abrasive grains, respectively, Adsorption that adsorbs the adsorbent to the large-diameter particles in the slurry by creating an adsorbent in the slurry that is made of an organic polymer that is easily adsorbed to the large-diameter particles compared to particles having an average particle diameter. A method of manufacturing a magnetic disk substrate, comprising performing a process.
PCT/JP2015/076564 2014-09-17 2015-09-17 Method for manufacturing magnetic disk substrate WO2016043288A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016548953A JP6286566B2 (en) 2014-09-17 2015-09-17 Manufacturing method of magnetic disk substrate
MYPI2017700733A MY182185A (en) 2014-09-17 2015-09-17 Method for manufacturing magnetic-disk substrate
CN201580048163.XA CN106716530B (en) 2014-09-17 2015-09-17 The manufacturing method of substrate for magnetic disc
SG11201701760UA SG11201701760UA (en) 2014-09-17 2015-09-17 Method for manufacturing magnetic-disk substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/074541 WO2016042619A1 (en) 2014-09-17 2014-09-17 Production method for magnetic disk substrate
JPPCT/JP2014/074541 2014-09-17
JPPCT/JP2014/076198 2014-09-30
PCT/JP2014/076198 WO2016051539A1 (en) 2014-09-30 2014-09-30 Process for producing substrate for magnetic disk

Publications (1)

Publication Number Publication Date
WO2016043288A1 true WO2016043288A1 (en) 2016-03-24

Family

ID=55533324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076564 WO2016043288A1 (en) 2014-09-17 2015-09-17 Method for manufacturing magnetic disk substrate

Country Status (5)

Country Link
JP (1) JP6286566B2 (en)
CN (1) CN106716530B (en)
MY (1) MY182185A (en)
SG (1) SG11201701760UA (en)
WO (1) WO2016043288A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7094119B2 (en) 2018-03-08 2022-07-01 三菱電機株式会社 Test mode setting circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260121A (en) * 2009-04-30 2010-11-18 Kao Corp Method of manufacturing abrasive slurry
JP2011173958A (en) * 2010-02-23 2011-09-08 Tokyo Electron Ltd Method for producing slurry, slurry, grinding method and grinding apparatus
JP2012143859A (en) * 2010-12-24 2012-08-02 Kao Corp Method for manufacturing polishing liquid composition
JP2013170119A (en) * 2012-02-23 2013-09-02 Asahi Glass Co Ltd Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836441B2 (en) * 2004-11-30 2011-12-14 花王株式会社 Polishing liquid composition
JP2010079948A (en) * 2008-09-24 2010-04-08 Hoya Glass Disk Thailand Ltd Method of manufacturing glass substrate for magnetic disk
MY160470A (en) * 2010-09-24 2017-03-15 Kao Corp Process for producing polishing liquid composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260121A (en) * 2009-04-30 2010-11-18 Kao Corp Method of manufacturing abrasive slurry
JP2011173958A (en) * 2010-02-23 2011-09-08 Tokyo Electron Ltd Method for producing slurry, slurry, grinding method and grinding apparatus
JP2012143859A (en) * 2010-12-24 2012-08-02 Kao Corp Method for manufacturing polishing liquid composition
JP2013170119A (en) * 2012-02-23 2013-09-02 Asahi Glass Co Ltd Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid

Also Published As

Publication number Publication date
JP6286566B2 (en) 2018-02-28
SG11201701760UA (en) 2017-04-27
JPWO2016043288A1 (en) 2017-07-06
CN106716530A (en) 2017-05-24
CN106716530B (en) 2019-06-21
MY182185A (en) 2021-01-18

Similar Documents

Publication Publication Date Title
JP5849764B2 (en) Method for preparing silica solution, polishing solution containing silica solution prepared by the method for preparing silica solution, and method for producing glass substrate for magnetic recording medium using the polishing solution
JP2023052035A (en) Polishing liquid, manufacturing method of glass substrate, and, manufacturing method of magnetic disc
JP6286566B2 (en) Manufacturing method of magnetic disk substrate
WO2017038201A1 (en) Method for producing glass substrate for information recording medium, method for producing information recording medium, information recording medium glass substrate, and magnetic recording medium
JP6392610B2 (en) Manufacturing method of magnetic disk substrate
JP6374522B2 (en) Magnetic disk substrate manufacturing method, magnetic disk manufacturing method, filtering device, and polishing liquid manufacturing method
WO2016051539A1 (en) Process for producing substrate for magnetic disk
WO2016042619A1 (en) Production method for magnetic disk substrate
JP2015067507A (en) Method for producing colloidal silica abrasive and method for producing glass substrate for magnetic disk
JP5682222B2 (en) Method for producing cerium oxide abrasive
JP6255026B2 (en) Silica abrasive, method for producing silica abrasive, and method for producing glass substrate for magnetic disk
JP6558771B2 (en) Manufacturing method of magnetic disk substrate
JP2015066656A (en) Regeneration method for used polishing agent and manufacturing method for glass substrate
JP6431543B2 (en) Manufacturing method of magnetic disk substrate
WO2013146090A1 (en) Method for manufacturing glass substrate for magnetic disk
JP2016181313A (en) Manufacturing method of substrate for magnetic disk
JP2016011377A (en) Silica abrasive grain, method for producing silica abrasive grain and method for producing glass substrate for magnetic disk
WO2016039482A1 (en) Method for manufacture of substrate for magnetic disk and substrate for magnetic disk
WO2012090755A1 (en) Method for producing glass substrate for recording medium
WO2015072569A1 (en) Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk
CN109107971B (en) Method for manufacturing glass substrate for magnetic disk
JP2016011332A (en) Method for producing silica abrasive grain, water glass and method for producing glass substrate for magnetic disk
JP2015124120A (en) Method for producing silica abrasive grain and method for producing glass substrate for magnetic disk
WO2012090597A1 (en) Method for producing glass substrate for recording medium
WO2012090598A1 (en) Method for producing glass substrate for recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841305

Country of ref document: EP

Kind code of ref document: A1