WO2015072569A1 - Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk - Google Patents

Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk Download PDF

Info

Publication number
WO2015072569A1
WO2015072569A1 PCT/JP2014/080373 JP2014080373W WO2015072569A1 WO 2015072569 A1 WO2015072569 A1 WO 2015072569A1 JP 2014080373 W JP2014080373 W JP 2014080373W WO 2015072569 A1 WO2015072569 A1 WO 2015072569A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
glass substrate
magnetic disk
polishing slurry
main surface
Prior art date
Application number
PCT/JP2014/080373
Other languages
French (fr)
Japanese (ja)
Inventor
秀雄 酒井
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2015547817A priority Critical patent/JP6280561B2/en
Priority to MYPI2016701745A priority patent/MY183852A/en
Priority to CN201480061961.1A priority patent/CN105745708B/en
Publication of WO2015072569A1 publication Critical patent/WO2015072569A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/08Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for double side lapping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for a magnetic disk and a method for manufacturing a magnetic disk.
  • One of information recording media mounted on a magnetic recording apparatus is a magnetic disk.
  • a magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and a glass substrate is used as the substrate.
  • the surface of the glass substrate is polished with high accuracy so that the flying height of the magnetic head of the magnetic recording apparatus can be reduced as much as possible to achieve high recording density.
  • As a recent improvement in the quality of glass substrates for magnetic disks for example, it is required to reduce the surface roughness of the glass substrate and to eliminate defects such as surface line scratches and minute deposits. ing.
  • the flying height of the magnetic head of the magnetic recording apparatus In order for a magnetic disk manufactured using such a glass substrate to realize a large recording capacity, it is necessary to reduce the flying height of the magnetic head of the magnetic recording apparatus from the surface of the glass substrate. In order to reduce the flying height, it is desirable to suppress as much as possible the occurrence of scratches on the surface of the glass substrate and defects in deposits. In particular, it is not preferable that deposits adhere to the surface of the glass substrate.
  • the surface of the glass substrate is polished using a polishing slurry containing colloidal silica having a very small particle size as the final polishing.
  • a conventional glass substrate polishing method generates a scratch extending linearly due to polishing slurry, that is, a linear mark (scratch), on the substrate surface.
  • a polishing liquid composition containing at least an abrasive and water and having a pH of 0.1 to 7 and abrasive particles of 0.56 ⁇ m or more and less than 1 ⁇ m are contained in the polishing liquid composition.
  • There is a method of polishing a substrate by supplying a polishing composition having 500,000 or less per 1 cm 3 to a polishing machine equipped with a surface plate at a flow rate of 0.06 cm 3 / min or more per 1 cm 2 of the substrate to be polished.
  • Patent Document 1 As a measure for reducing this scratch, there is also known a method of polishing using a polishing liquid in which the ratio of dissolved silica to total silica is 1000 ppm or less in the polishing step (Patent Document 2).
  • an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk and a method for manufacturing a magnetic disk, which can reduce deposits that become defects on the glass substrate.
  • the present invention includes the following forms.
  • Form 1 A method of manufacturing a glass substrate for a magnetic disk, The main surface on both sides of the glass substrate is pressed with a polishing pad, and the main surface and the polishing pad are relative to each other while supplying a polishing slurry containing colloidal silica as abrasive grains between the glass substrate and the polishing pad. Polishing the main surface by moving it mechanically; Before polishing the main surface, the silica in the original polishing slurry generated by adjusting the original polishing slurry, which is the source of the polishing slurry used in the polishing process, to an acidic state and further adjusting to the acidic state And a step of producing the polishing slurry by removing the precipitates by filtering.
  • the method for producing a glass substrate for a magnetic disk comprising:
  • Form 2 The method for manufacturing a glass substrate for a magnetic disk according to mode 1, wherein the original polishing slurry is an alkaline slurry.
  • Form 4 The method for producing a glass substrate for a magnetic disk according to any one of aspects 1 to 3, wherein the concentration of dissolved silica in the polishing slurry is 0.02% by mass or less.
  • the colloidal silica is a glass substrate for a magnetic disk according to any one of modes 1 to 4, which is obtained by heating active silicic acid obtained by ion exchange of an aqueous sodium silicate solution with a cation exchange resin. Production method.
  • Form 9 A method for manufacturing a magnetic disk, comprising: forming at least a magnetic layer on the main surface of a glass substrate for a magnetic disk manufactured by the manufacturing method according to any one of modes 1 to 8.
  • the manufacturing method of the glass substrate for magnetic disks of this invention and the manufacturing method of a magnetic disk are demonstrated in detail.
  • the deposits on the main surface of the glass substrate when using a polishing slurry containing colloidal silica are silica aggregates. Or it discovered that it was a gel-like substance of silica and adhered firmly to the main surface of the glass substrate. It is presumed that this deposit is likely to occur because both glass and silica contain a large amount of SiO 2 and have similar properties.
  • FIG. 1 is a diagram illustrating a configuration of a polishing apparatus that performs a polishing process performed by the method for manufacturing a glass substrate for a magnetic disk of the present embodiment.
  • FIG. 2 is a diagram for explaining a main part of the polishing apparatus 1.
  • the polishing apparatus 1 mainly includes a polishing main body 18, and an upper support 12 and a lower support 14 that support the polishing main body 18.
  • the upper support 12 and the lower support 14 are provided with drive mechanisms (not shown) for driving the upper rotary shaft 65 and the lower rotary shaft 66 of the polishing body 18, and the upper rotary shaft 65 is driven by this drive mechanism.
  • the lower rotating shaft 66 rotates freely.
  • the polishing body 18 includes an upper surface plate 40, a lower surface plate 60, a sun gear 61, an internal gear 62, a supply pipe 63, an upper plate member 64, an upper rotating shaft 65, and a lower rotating shaft 66. Including mainly.
  • the polishing pad 10 is attached to the upper surface of the lower surface plate 60 and the bottom surface of the upper surface plate 40.
  • the polishing pad 10 is shown in a sheet form.
  • a urethane pad made of a urethane foam resin can be used.
  • the glass substrate G is A carrier 30 having a holding hole for holding is arranged.
  • the carrier 30 includes a tooth portion 31 provided on the outer peripheral portion and meshing with the sun gear 61 and the internal gear 62, and one or a plurality of holding holes 32 for receiving and holding the glass substrate G. .
  • the sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centering on the rotation center axis O of the upper rotary shaft 65 and the lower rotary shaft 66 as a whole.
  • the disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass substrates G (workpieces).
  • the carrier 30 revolves while rotating as a planetary gear, and the glass substrate G and the lower surface plate 60 are relatively moved.
  • the sun gear 61 rotates in the CCW (counterclockwise) direction
  • the carrier 30 rotates in the CW (clockwise) direction
  • the internal gear 62 rotates in the CCW direction.
  • a relative motion occurs between the lower surface plate 60 and the glass substrate G.
  • the glass substrate G and the upper surface plate 40 may be moved relatively.
  • the upper surface plate 40 is pressed against the glass substrate G held by the carrier 30 (that is, in the vertical direction) with a predetermined pressure, and thereby the polishing pad is pressed against the glass substrate G. 10 presses.
  • a polishing slurry is supplied between a glass substrate G and the polishing pad 10 from a supply tank (not shown) or via a plurality of supply pipes 63 by a pump (not shown).
  • the supply pipe 63 extends to the upper surface plate 40 through the upper plate member 64.
  • the polishing slurry is a liquid in which abrasive grains of colloidal silica are dispersed in an aqueous solution.
  • a lower rotating shaft 66 connected to a drive motor (not shown) is fixed to the lower surface plate 60.
  • An upper rotary shaft 65 connected to a drive motor (not shown) is fixed to the upper surface plate 40. Therefore, the upper surface plate 40 and the lower surface plate 60 can rotate freely.
  • aluminosilicate glass As the glass substrate G to be polished, for example, aluminosilicate glass is used.
  • the aluminosilicate glass contains SiO 2 and Al 2 O 3 as components.
  • the polishing slurry used for such a polishing apparatus 1 contains colloidal silica as abrasive grains and is produced as follows. Specifically, the original polishing slurry containing colloidal silica that is the basis of the polishing slurry is adjusted to an acidic state. Thereafter, large silica precipitates and gel-like substances produced in the original polishing slurry are removed by filtering. By doing so, the amount of dissolved silica in the original polishing slurry is reduced.
  • the polishing slurry used in the polishing apparatus of the present embodiment is obtained by subjecting an alkaline original polishing slurry having a relatively high dissolved silica concentration to a dissolved silica reduction process before the glass substrate polishing process.
  • the concentration of dissolved silica in the original polishing slurry is, for example, 0.03% by mass or more. It has been found that the amount of silica dissolved in the original polishing slurry containing colloidal silica is large in the alkaline state, while the amount of silica dissolved in the original polishing slurry is relatively small in the acidic state.
  • the polishing slurry is prepared by reducing the amount of dissolved silica contained in the original polishing slurry in advance and removing the dissolved silica precipitates and silica gel substances by filtering before using the polishing slurry. Further, it is possible to suppress the precipitation of silica from the dissolved silica on the main surface of the polishing pad 10 or the glass substrate G during polishing. Since the original polishing slurry containing colloidal silica is usually stored under alkaline conditions of pH 8 to 12 from the viewpoint of dispersibility, the pH is adjusted from alkaline to acidic conditions when used for polishing.
  • the concentration of dissolved silica is preferably maintained stably at a low level in the range of 0.02% by mass or less. At this time, the concentration of dissolved silica is 0.005% by mass or more.
  • the original polishing slurry adjusted to an acidic state has a pH of 1 to 5 in terms of stably suppressing the precipitation of silica during polishing.
  • pH 2 or higher is preferable from the viewpoint of not roughening the main surface of the glass substrate G, and pH 4 or lower is preferable from the viewpoint of cleanliness.
  • the concentration of dissolved silica is 0.03% by mass or more.
  • the concentration of dissolved silica increases rapidly. Accordingly, it is preferable to adjust the alkaline original polishing slurry having a pH of 10 or more to acidic, because the concentration of dissolved silica can be greatly reduced and more silica precipitates and gel-like substances can be removed.
  • the difference in pH before and after pH adjustment from alkaline to acidic is preferably 5 or more, and more preferably 6 or more. As the difference in pH is larger, the amount of silica deposits and gel-like substances during polishing can be reduced, and the amount of deposits on the substrate surface after polishing can be reduced.
  • the above-described dissolved silica means a silica component other than the silica component present in the polishing slurry as solid particles.
  • dissolved silica passes through the separation membrane when the polishing slurry is centrifuged for 90 minutes at a centrifugal force of 4500 G using a separation tube with a separation membrane having a separation membrane with a molecular weight cut off of 10,000.
  • a silica oligomer corresponds to this.
  • the concentration of dissolved silica can be measured, for example, by the following method.
  • the polishing slurry is centrifuged using a centrifuge equipped with a centrifuge tube with a separation membrane (separation membrane fraction molecular weight 10,000), and separated into a solution component containing dissolved silica and a solid component containing silica particles. Then, about the collect
  • colloidal silica solution acidic
  • inorganic acids such as sulfuric acid and nitric acid
  • organic acids such as citric acid and tartaric acid
  • the colloidal silica of this embodiment used for the polishing treatment is obtained by heating active silicic acid obtained by ion exchange of a sodium silicate aqueous solution with a cation exchange resin, and the effect of the dissolved silica reduction treatment is obtained. It is preferable in that it can be exerted greatly.
  • the colloidal silica solution obtained by this method is low in cost, the amount of dissolved silica is large because it is an alkaline solution.
  • the solution of colloidal silica is made acidic before polishing treatment, the amount of dissolved silica is reduced, and the dissolved silica is reduced from the dissolved silica during polishing by removing the precipitated silica by filtering.
  • the average particle diameter (d50) of the colloidal silica is 10 to 100 nm in that the arithmetic average roughness Ra of the surface roughness of the main surface of the glass substrate G is reduced to 0.2 nm or less by polishing the glass substrate G. preferable. More preferably, the average particle diameter (d50) is 10 to 40 nm.
  • the original polishing slurry is filtered with a depth filter and further filtered with a pleated filter.
  • further including filtering the original polishing slurry with a cationized filter removes the deposited large silica and gel-like substances and becomes ions.
  • a pleated filter can be used as the cationized filter.
  • the depth type filter is a type of filter in which the hole diameter decreases as it goes from the outside to the inside (from the upstream side to the downstream side of the polishing slurry flowing through the filter).
  • the pore structure of the filter medium is rough on the inlet side (upstream side), finer on the outlet side (downstream side), and finer continuously or stepwise from the inlet side to the outlet side.
  • large particles among the coarse particles are collected near the inlet side, and small particles are collected near the outlet side, so that effective filtration is possible.
  • the shape of the depth filter may be a bag-like bag type or a hollow cylindrical cartridge type.
  • a filter type that is generally formed into a pleated shape by filtering a filtering material into a hollow cylindrical cartridge type can be used.
  • pleated filters are said to have a thin filter material and are mainly collected on the filter surface, and generally have high filtration accuracy. It is a feature.
  • the pore size of the depth type filter and the pleated type filter is generally expressed as a filtration accuracy capable of removing 99%. For example, a pore size of 1.0 ⁇ m indicates a filter capable of removing 99% of particles having a diameter of 1.0 ⁇ m.
  • the pore size of the depth filter is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less, from the viewpoint of reducing the coarse particle removal load.
  • the pore size of the pleated filter is preferably 1.0 ⁇ m or less, more preferably 0.8 ⁇ m or less, and still more preferably 0.5 ⁇ m or less from the viewpoint of reducing coarse particles. While supplying such a polishing slurry between the glass substrate G pressed by the polishing pad 10 and the polishing pad 10, the glass substrate 10 and the polishing pad 10 are moved relatively to each other on both sides of the glass substrate G. The main surface is polished.
  • Glass substrate manufacturing method A glass substrate that is polished using such colloidal silica is produced by the following method for producing a glass substrate.
  • a glass blank as a raw material for a plate-like magnetic disk glass substrate having a pair of main surfaces is formed.
  • the rough grinding process of this glass blank is performed.
  • the glass blank is subjected to a shape processing treatment and an end surface polishing treatment.
  • the precise grinding process which uses a fixed abrasive for the glass substrate obtained from the glass blank is performed.
  • a first polishing process, a chemical strengthening process, and a second polishing process are performed on the glass substrate.
  • the above-described process is performed, but it is not necessary to have all the above processes, and these processes may not be performed as appropriate.
  • each process will be described.
  • polishing slurry containing the colloidal silica which performed the dissolved silica reduction process mentioned above is a 2nd grinding
  • a glass blank molding process In the molding of a glass blank, for example, a press molding method can be used.
  • a circular glass blank can be obtained by the press molding method.
  • it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, a fusion method, and a float method.
  • a disk-shaped glass substrate serving as a base of the magnetic disk glass substrate can be obtained by appropriately performing shape processing on the plate-shaped glass blanks produced by these known production methods.
  • the glass blank is mainly held on both sides of the glass blank while being held in a holding hole provided in a holding member (carrier) mounted on a well-known double-side grinding apparatus.
  • Surface grinding is performed.
  • the carrier 30 described above may be used.
  • loose abrasive grains are used as the abrasive.
  • the glass blank is ground so as to approximate the target plate thickness dimension and the flatness of the main surface.
  • the rough grinding process is performed according to the dimensional accuracy or surface roughness of the molded glass blank, and may not be performed depending on the case.
  • shape processing processing is performed.
  • a circular hole is formed using a known processing method to obtain a disk-shaped glass substrate having a circular hole.
  • the end surface of the glass substrate is chamfered.
  • a side wall surface orthogonal to the main surface and an inclined surface (intervening surface) connecting the side wall surface and the main surface are formed on the end surface of the glass substrate.
  • the end surface polishing process is a process for performing polishing by supplying a polishing liquid containing loose abrasive grains between the polishing brush and the end surface of the glass substrate and relatively moving the polishing brush and the glass substrate.
  • the inner peripheral side end surface and the outer peripheral side end surface of the glass substrate are to be polished, and the inner peripheral side end surface and the outer peripheral side end surface are in a mirror state.
  • (E) Fine grinding process a fine grinding process is performed on the main surface of the glass substrate.
  • the main surface of the glass substrate is ground using a well-known double-side grinding apparatus.
  • the fixed abrasive is provided on the surface plate for grinding.
  • the main surfaces on both sides of the glass substrate are ground while holding the glass substrate in a holding hole provided in a carrier which is a holding member of a double-side grinding apparatus.
  • the grinding surface containing the fixed abrasive and the main surface of the glass substrate are brought into contact with each other to grind the main surface of the glass substrate.
  • grinding using loose abrasive grains may be performed.
  • a first polishing treatment is performed on the main surface of the glass substrate. Specifically, polishing the main surface on both sides of the glass substrate while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the carrier of the polishing apparatus having the same configuration as the polishing apparatus shown in FIGS. Is done.
  • the first polishing process uses a polishing pad attached to a surface plate using loose abrasive grains. The first polishing removes cracks and distortions remaining on the main surface when, for example, grinding with fixed abrasive grains is performed while adjusting the thickness of the glass substrate.
  • the polishing it is possible to reduce the surface roughness of the main surface, for example, the arithmetic average roughness Ra, while preventing the shape of the end portion of the main surface from excessively dropping or protruding.
  • colloidal silica is not used as the polishing slurry, and for example, cerium oxide abrasive grains or zirconia abrasive grains are used. For this reason, in the first polishing process, the polishing slurry subjected to the dissolved silica reduction process is not used.
  • the kind in particular of a polishing pad is not restrict
  • the glass substrate can be appropriately chemically strengthened.
  • the chemical strengthening liquid for example, a molten liquid obtained by heating potassium nitrate, sodium nitrate, or a mixture thereof can be used. Then, by immersing the glass substrate in the chemical strengthening solution, lithium ions and sodium ions in the glass composition on the surface of the glass substrate are converted into sodium ions and potassium ions having relatively large ion radii in the chemical strengthening solution, respectively. By replacing each, a compressive stress layer is formed in the surface layer portion, and the glass substrate is strengthened. The timing of performing the chemical strengthening treatment can be determined as appropriate.
  • the polishing treatment is performed after the chemical strengthening treatment, the foreign matter fixed to the surface of the glass substrate by the chemical strengthening treatment can be removed together with the smoothing of the surface. This is particularly preferable because it can be performed. Further, the chemical strengthening treatment may be performed as necessary, and may not be performed.
  • the second polishing is intended for mirror polishing of the main surface.
  • the double-side polishing apparatus shown in FIGS. By doing so, it is possible to reduce the roughness of the main surface while finely adjusting the thickness of the glass substrate G and preventing the shape of the end portion of the main surface from excessively dropping or protruding.
  • arithmetic mean roughness Ra of the main surface of the glass substrate G can be 0.2 nm or less, Preferably it can be 0.15 nm or less.
  • the maximum roughness Rmax is preferably 2.0 nm or less.
  • the hardness of the resin polisher of the polishing pad is softer than in the first polishing process.
  • the hardness of the polishing pad used for the second polishing treatment is preferably 60 to 80 in terms of Asker C hardness.
  • the above-described colloidal silica subjected to the dissolved silica reduction treatment is used as the abrasive grains. That is, in the second polishing process, a polishing slurry containing colloidal silica as abrasive grains is used. In this polishing slurry, since the dissolved silica reduction treatment is performed and the amount of dissolved silica is small, it is possible to suppress the precipitation of part of the dissolved silica during polishing. Therefore, it is possible to reduce deposits that become defects on the main surface of the glass substrate, which has been a problem in the past.
  • Such a polishing slurry may be used for polishing the main surface of the glass substrate, and then recovered and used for polishing the main surface of another glass substrate. At this time, after the polishing slurry is repeatedly used for the polishing treatment, it is preferable that the above-described dissolved silica reduction treatment is performed on the polishing slurry containing colloidal silica as the abrasive grains, and further used for polishing another glass substrate. . When the polishing slurry is used by circulating the polishing slurry, it is preferable to use the above-described dissolved silica reduction treatment.
  • the polishing process When the polishing process is repeated, a part of the abrasive grains may be dissolved and the concentration of dissolved silica may increase due to frictional heat caused by sliding between the polishing pad and the glass substrate. In such a case, silica agglomerates or gel-like substances may be newly generated from the dissolved silica in the polishing slurry. For this reason, when the polishing slurry is repeatedly used, it is preferable that the dissolved silica reduction treatment as in this embodiment is performed before the polishing is started.
  • an adhesion layer, a soft magnetic layer, an underlayer, a perpendicular magnetic recording layer, a carbon protective layer, and a lubricating layer are sequentially formed on the main surface of the magnetic disk glass substrate thus manufactured.
  • the carbon protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, for example, and provides wear resistance.
  • an alcohol-modified perfluoropolyether liquid lubricant is used for the lubricating layer.
  • the second polishing process is performed using a polishing slurry in which the presence or absence of the dissolved silica reduction process and the content of the filter process are variously changed. went.
  • the polishing pad used in each of the following examples is a polishing pad made of a soft polisher (suede) (a foamed polyurethane resin having an Asker C hardness of 72).
  • the second polishing process maintains a smooth main surface of the main surface of the glass substrate G obtained by the first polishing process described above, and the surface roughness of the main surface of the glass substrate G is about 2 nm or less in terms of Rmax.
  • the load in the second polishing process was 100 g / cm 2 and the polishing time was 10 minutes.
  • the glass substrate G that had been subjected to the second polishing treatment was immersed in a cleaning bath of neutral detergent, pure water, pure water, and IPA in order to perform ultrasonic cleaning, followed by vapor drying with IPA.
  • Example 1 As the polishing slurry, water (pH 10) in which 15% by weight of an abrasive of colloidal silica (average particle size (d50) 15 nm) is dispersed is used as an original polishing slurry, and sulfuric acid for adjusting pH is added to the original polishing slurry to make it acidic. After adjusting to (pH 4) and using a depth type filter and a pleat type filter in this order, a polishing slurry was obtained. As the depth filter, a filter having a pore diameter of 1 ⁇ m was used. As the pleated filter, a filter having a pore diameter of 0.5 ⁇ m was used.
  • Example 2 sulfuric acid for pH adjustment was added to the same original polishing slurry as in Example 1 to make it acidic (pH 4), and after a depth type filter having a pore diameter of 1 ⁇ m, a cationized pleated type Filter processing was performed using the filter and then the pleated filter, and second polishing was performed as a polishing slurry.
  • the cationized pleated filter is obtained by cationizing a pleated filter having a pore size of 1 ⁇ m.
  • Example 3 In Example 3, the same treatment as in Example 1 was performed except that sulfuric acid for pH adjustment was added to adjust to pH 5 acidity.
  • Example 4 In Example 4, the same treatment as in Example 1 was performed, except that pH-adjusting sulfuric acid was added to adjust to acidic pH2.
  • Example 5 In Example 5, the same treatment as in Example 1 was performed except that sulfuric acid for pH adjustment was added to adjust to pH 1 acidity.
  • Example 6 In Example 6, the same treatment as in Example 2 was performed, except that pH-adjusting sulfuric acid was added to adjust the acidity to pH 5.
  • Example 7 In Example 7, the same treatment as in Example 2 was performed, except that pH-adjusting sulfuric acid was added to adjust to acidic pH2.
  • Example 8 In Example 8, the pleated type filter and the depth type filter, which were filtered in this order, were used as the polishing slurry, the pleated type filter was a filter having a pore size of 1 ⁇ m, and the depth type filter had a pore size of 0. The same processing as in Example 1 was performed except that a filter having a condition of 5 ⁇ m was used.
  • Comparative Example 1 In Comparative Example 1, the same original polishing slurry as in Example 1 was not subjected to filter treatment before polishing, and adjusted to acidity (pH 4) as in Example 1 before being used for polishing.
  • Comparative Example 2 In Comparative Example 2, the same original polishing slurry as in Example 1 was filtered using the depth filter and the pleated filter in this order, and then adjusted to acidic (pH 4) as in Example 1. In addition, this polishing slurry was used for polishing.
  • Comparative Example 3 In Comparative Example 3, the same original polishing slurry as that of Example 1 was subjected to a depth filter (with a pore diameter of 1 ⁇ m), and then the cationized pleated filter (with a pore diameter of 1 ⁇ m), and then a pleated filter. Filtering (filtering) was performed using (conditions with a pore diameter of 0.5 ⁇ m). The polishing slurry subjected to this filter treatment was dispersed in water by 15% by weight and adjusted to acidity (pH 4) in the same manner as in Example 1 before being used for polishing.
  • pH 4 acidity
  • the glass substrate obtained in each of the above examples was observed with OSA (Optical Surface na Analyzer), and each defect point was subjected to SEM (scanning electron microscope) / EDX (energy dispersive X-ray spectroscopy). Detailed analysis of defects was performed.
  • Example 1 among the defects detected on the main surface of the glass substrate, the number of defects of the silica aggregate and the gel-like substance was 36 points. Similarly, in the order of Examples 2 to 8, Comparative Example 1, Comparative Example 2, and Comparative Example 3, the silica aggregate and the gel substance were 20, 44, 29, 24, 24, 10, 38, 98, 71. 62 points were detected as defects. Table 1 below shows the results. In the following table, the depth type filter is called a depth filter, the pleated type filter is called a pleated filter, and the cationized pleated type filter is called a cationized pleated filter.
  • Example 1 From the comparison results of the evaluations of Example 1 and Example 2, it is understood that it is more preferable to further include filtering the polishing slurry using a cationized filter after filtering the polishing slurry with a depth filter. . Further, from the comparison results of the evaluations of Examples 3 to 5 and the comparison results of the evaluations of Examples 6 and 7, in pH adjustment, the silica aggregates and the gel-like substance are placed on the main surface of the glass substrate as the pH is lowered. It is preferable at the point which suppresses adhering, It is preferable to set it as pH 5 or less, and it is more preferable to set it as pH 2 or less.
  • Example 8 it can be seen from the comparison results of the evaluations of Example 1 and Example 8 that it is preferable to use the depth type filter and the pleat type filter in this order in the filter processing. In Example 8, it was observed that the used filter was more easily clogged than Example 1. From this, the effect of this embodiment is clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

A method for manufacturing a glass substrate for a magnetic disk comprises polishing treatment for pressing main surfaces on both sides of a glass substrate by polishing pads, and relatively moving the main surfaces and the polishing pads while supplying polishing slurry containing colloidal silica as polishing abrasive grains between the glass substrate and the polishing pads to thereby polish the main surfaces. The polishing slurry is produced by adjusting original polishing slurry that is a starting material of the polishing slurry used in the polishing treatment to an acid state, and further filtering and removing silica precipitates in the original polishing slurry, which have been produced by the adjustment to the acid state.

Description

磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
 本発明は、磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法に関する。 The present invention relates to a method for manufacturing a glass substrate for a magnetic disk and a method for manufacturing a magnetic disk.
 ハードディスクドライブ装置等の磁気記録装置に搭載される情報記録媒体の一つとして磁気ディスクがある。磁気ディスクは、基板上に磁性層等の薄膜を形成して構成されたものであり、その基板としてガラス基板が用いられている。ガラス基板の表面は磁気記録装置の磁気ヘッドの浮上高さを極力下げることができるように、高精度に研磨して高記録密度化を実現している。近年、ハードディスクドライブ装置の更なる大記録容量化、低価格化の要求に応じて、磁気ディスク用ガラス基板においても更なる高品質化、低コスト化が要求されている。
 近年の磁気ディスク用ガラス基板の高品質化として、例えばガラス基板の表面粗さを低くすること、および、表面の線状の傷や微小付着物等による欠陥がないようにすること、が求められている。
One of information recording media mounted on a magnetic recording apparatus such as a hard disk drive apparatus is a magnetic disk. A magnetic disk is configured by forming a thin film such as a magnetic layer on a substrate, and a glass substrate is used as the substrate. The surface of the glass substrate is polished with high accuracy so that the flying height of the magnetic head of the magnetic recording apparatus can be reduced as much as possible to achieve high recording density. In recent years, in response to demands for further increase in recording capacity and price of hard disk drive devices, there has been a demand for further improvement in quality and cost of glass substrates for magnetic disks.
As a recent improvement in the quality of glass substrates for magnetic disks, for example, it is required to reduce the surface roughness of the glass substrate and to eliminate defects such as surface line scratches and minute deposits. ing.
 このようなガラス基板を用いて作製される磁気ディスクが大記録容量を実現するためには、磁気記録装置の磁気ヘッドのガラス基板表面からの浮上量を低くすることが必要である。この浮上量を低くするためには、ガラス基板の表面の傷や付着物の欠陥の発生を可能な限り抑えることが望まれる。特に、ガラス基板の表面に付着物が付着することは好ましくない。ガラス基板の作製では、仕上げ研磨として、粒径が極めて小さいコロイダルシリカを含む研磨スラリを用いてガラス基板の表面が研磨される。 In order for a magnetic disk manufactured using such a glass substrate to realize a large recording capacity, it is necessary to reduce the flying height of the magnetic head of the magnetic recording apparatus from the surface of the glass substrate. In order to reduce the flying height, it is desirable to suppress as much as possible the occurrence of scratches on the surface of the glass substrate and defects in deposits. In particular, it is not preferable that deposits adhere to the surface of the glass substrate. In the production of the glass substrate, the surface of the glass substrate is polished using a polishing slurry containing colloidal silica having a very small particle size as the final polishing.
 従来のガラス基板の研磨方法では基板表面に研磨スラリ起因の凹状で線状に延びる傷、すなわち線状痕(スクラッチ)が発生することが知られている。このスクラッチの低減対策として研磨工程において、少なくとも研磨材と水とを含有してなるpHが0.1~7の研磨液組成物で且つ、0.56μm以上1μm未満の研磨粒子が研磨液組成物1cm当り500,000個以下である研磨液組成物を、定盤を備えた研磨機に基板の被研磨面積1cm2あたり0.06cm3/分以上の流量で供給して基板を研磨する方法が知られている(特許文献1)。
 また、このスクラッチの低減対策として、研磨工程において、溶存シリカの全シリカに対する比率を1000ppm以下とする研磨液を用いて研磨する方法も知られている(特許文献2)。
It is known that a conventional glass substrate polishing method generates a scratch extending linearly due to polishing slurry, that is, a linear mark (scratch), on the substrate surface. As a measure for reducing this scratch, in the polishing step, a polishing liquid composition containing at least an abrasive and water and having a pH of 0.1 to 7 and abrasive particles of 0.56 μm or more and less than 1 μm are contained in the polishing liquid composition. There is a method of polishing a substrate by supplying a polishing composition having 500,000 or less per 1 cm 3 to a polishing machine equipped with a surface plate at a flow rate of 0.06 cm 3 / min or more per 1 cm 2 of the substrate to be polished. Known (Patent Document 1).
As a measure for reducing this scratch, there is also known a method of polishing using a polishing liquid in which the ratio of dissolved silica to total silica is 1000 ppm or less in the polishing step (Patent Document 2).
特開2006-102829号公報JP 2006-102829 A 特開2010-95568号公報JP 2010-95568 A
 近年、例えば750ギガバイト等の磁気ディスク向けのガラス基板が求められており、ガラス基板の表面の表面粗さ、および、表面の凹状の線状の傷や微小付着物等による欠陥について従来に比べてより厳しい要求がガラス基板に求められている。このため、従来問題にならなかったような基板上の付着物による凸状の欠陥でも磁気ヘッドが磁気ディスクと接触してクラッシュしてしまうことがある。このことはガラス基板上の付着物の厚さがたとえ数nmであっても問題となることを意味する。上述の特許文献1および2に開示されている研磨方法は、研磨後のガラス基板のスクラッチを低減することはできるが、基板表面の付着物については何ら言及されていない。 In recent years, for example, a glass substrate for a magnetic disk such as 750 gigabytes has been demanded, and surface roughness of the surface of the glass substrate, and defects due to concave line-shaped scratches and minute deposits on the surface are compared with the conventional one. More stringent requirements are demanded of glass substrates. For this reason, the magnetic head may come into contact with the magnetic disk and crash even with a convex defect caused by deposits on the substrate, which has not been a problem in the past. This means that there is a problem even if the thickness of the deposit on the glass substrate is several nm. The polishing methods disclosed in Patent Documents 1 and 2 described above can reduce scratches on the glass substrate after polishing, but do not mention any deposits on the substrate surface.
 そこで、本発明は、ガラス基板上の欠陥となる付着物を低減することできる磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for manufacturing a glass substrate for a magnetic disk and a method for manufacturing a magnetic disk, which can reduce deposits that become defects on the glass substrate.
 本発明は、以下の形態を含む。 The present invention includes the following forms.
(形態1)
 磁気ディスク用ガラス基板の製造方法であって、
 ガラス基板の両側の主表面を、研磨パッドで押圧させ、ガラス基板と前記研磨パッドとの間にコロイダルシリカを研磨砥粒として含む研磨スラリを供給しながら、前記主表面と前記研磨パッドとを相対的に移動させることにより、前記主表面を研磨するステップと、
 前記主表面を研磨する前に、前記研磨処理で用いる前記研磨スラリの素となるオリジナル研磨スラリを酸性状態に調整し、さらに前記酸性状態に調整することにより生成された前記オリジナル研磨スラリ中のシリカの析出物をフィルタ処理して除去することにより、前記研磨スラリをつくるステップと、を含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法。
(Form 1)
A method of manufacturing a glass substrate for a magnetic disk,
The main surface on both sides of the glass substrate is pressed with a polishing pad, and the main surface and the polishing pad are relative to each other while supplying a polishing slurry containing colloidal silica as abrasive grains between the glass substrate and the polishing pad. Polishing the main surface by moving it mechanically;
Before polishing the main surface, the silica in the original polishing slurry generated by adjusting the original polishing slurry, which is the source of the polishing slurry used in the polishing process, to an acidic state and further adjusting to the acidic state And a step of producing the polishing slurry by removing the precipitates by filtering. The method for producing a glass substrate for a magnetic disk, comprising:
(形態2)
 前記オリジナル研磨スラリは、アルカリ性のスラリである、形態1に記載の磁気ディスク用ガラス基板の製造方法。
(Form 2)
The method for manufacturing a glass substrate for a magnetic disk according to mode 1, wherein the original polishing slurry is an alkaline slurry.
(形態3)
 前記酸性状態に調整後のオリジナル研磨スラリのpHは、1~5である、形態1または2に記載の磁気ディスク用ガラス基板の製造方法。
(Form 3)
3. The method for producing a glass substrate for a magnetic disk according to aspect 1 or 2, wherein the pH of the original polishing slurry after being adjusted to the acidic state is 1 to 5.
(形態4)
 前記研磨スラリ中における溶存シリカの濃度は0.02質量%以下である、形態1~3のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
(Form 4)
The method for producing a glass substrate for a magnetic disk according to any one of aspects 1 to 3, wherein the concentration of dissolved silica in the polishing slurry is 0.02% by mass or less.
(形態5)
 前記コロイダルシリカは、ケイ酸ナトリウム水溶液を陽イオン交換樹脂でイオン交換することにより得られる活性ケイ酸を加熱して得られる、形態1~4のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
(Form 5)
The colloidal silica is a glass substrate for a magnetic disk according to any one of modes 1 to 4, which is obtained by heating active silicic acid obtained by ion exchange of an aqueous sodium silicate solution with a cation exchange resin. Production method.
(形態6)
 前記研磨スラリは、前記ガラス基板の前記主表面の研磨に用いられた後、回収して、別のガラス基板の主表面の研磨に用いられる、形態1~5のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
(Form 6)
The magnetic material according to any one of embodiments 1 to 5, wherein the polishing slurry is used for polishing the main surface of the glass substrate, and then recovered and used for polishing the main surface of another glass substrate. A method for producing a glass substrate for a disk.
(形態7)
 前記コロイダルシリカの平均粒径は、10~100nmである、形態1~6のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
(Form 7)
The method for producing a glass substrate for a magnetic disk according to any one of Embodiments 1 to 6, wherein the colloidal silica has an average particle diameter of 10 to 100 nm.
(形態8)
 前記フィルタ処理は、デプス型フィルタによる濾過を行うことと、前記デプス型フィルタによる濾過後さらに、カチオン化したフィルタによる濾過を行なうことを含む、形態1~7のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
(Form 8)
The magnetic disk according to any one of modes 1 to 7, wherein the filtering includes filtering with a depth filter, and filtering with a cationized filter after filtering with the depth filter. Method for manufacturing glass substrate.
(形態9)
 形態1~8のいずれか1つに記載の製造方法で作製された磁気ディスク用ガラス基板の前記主表面に少なくとも磁性層を形成することを特徴とする、磁気ディスクの製造方法。
(Form 9)
A method for manufacturing a magnetic disk, comprising: forming at least a magnetic layer on the main surface of a glass substrate for a magnetic disk manufactured by the manufacturing method according to any one of modes 1 to 8.
 上述の磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法によれば、ガラス基板上の欠陥となる付着物を低減することできる。 According to the above-described method for manufacturing a glass substrate for a magnetic disk and a method for manufacturing a magnetic disk, it is possible to reduce deposits that become defects on the glass substrate.
本実施形態の磁気ディスク用ガラス基板の製造方法で行う研磨処理を実行する研磨装置の構成を説明する図である。It is a figure explaining the structure of the grinding | polishing apparatus which performs the grinding | polishing process performed with the manufacturing method of the glass substrate for magnetic discs of this embodiment. 本実施形態の研磨装置の要部を説明する図である。It is a figure explaining the principal part of the polish device of this embodiment.
 以下、本発明の磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法について詳細に説明する。
 本発明者は、ガラス基板の主表面上の欠陥となる付着物について鋭意検討を行った結果、コロイダルシリカを含む研磨スラリを用いた時のガラス基板の主表面の付着物は、シリカの凝集体あるいはシリカのゲル状物質であり、ガラス基板の主表面に強固に付着したものであることを見出した。この付着物は、ガラスとシリカのいずれもがSiOを大量に含有しており、お互い似た性質を持っているために発生しやすいと推察される。そこで、研磨中、コロイダルシリカを含む研磨スラリからシリカの凝集体ならびにシリカのゲル状物質の発生を抑制することがガラス基板の主表面の付着物を抑制するのに最も重要であることを見出し、本発明者は、以下に示す実施形態を含む技術を想到した。
 以下明細書で記載する表面粗さの指標である算術平均粗さRa、Rmaxは、JIS B0601に規定される表面粗さである。この表面粗さは、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を512×256ピクセルの解像度で測定したデータに基づいて得られるものである。
 図1は、本実施形態の磁気ディスク用ガラス基板の製造方法で行う研磨処理を実行する研磨装置の構成を説明する図である。図2は、研磨装置1の要部を説明する図である。
Hereinafter, the manufacturing method of the glass substrate for magnetic disks of this invention and the manufacturing method of a magnetic disk are demonstrated in detail.
As a result of intensive studies on the deposits that become defects on the main surface of the glass substrate, the present inventors found that the deposits on the main surface of the glass substrate when using a polishing slurry containing colloidal silica are silica aggregates. Or it discovered that it was a gel-like substance of silica and adhered firmly to the main surface of the glass substrate. It is presumed that this deposit is likely to occur because both glass and silica contain a large amount of SiO 2 and have similar properties. Therefore, during polishing, we found that suppressing the generation of silica agglomerates and silica gels from the polishing slurry containing colloidal silica is the most important for suppressing deposits on the main surface of the glass substrate, The present inventor has conceived a technique including the following embodiment.
Arithmetic average roughness Ra and Rmax, which are indices of surface roughness described in the specification below, are surface roughness specified in JIS B0601. This surface roughness is obtained based on data obtained by measuring a range of 1 μm × 1 μm with a resolution of 512 × 256 pixels using an atomic force microscope (AFM).
FIG. 1 is a diagram illustrating a configuration of a polishing apparatus that performs a polishing process performed by the method for manufacturing a glass substrate for a magnetic disk of the present embodiment. FIG. 2 is a diagram for explaining a main part of the polishing apparatus 1.
 図1に示すように、研磨装置1は、研磨本体部18と、研磨本体部18を支持する上部支持台12と下部支持台14、を主に有する。
 上部支持台12及び下部支持台14には、研磨本体部18の上部回転シャフト65及び下部回転シャフト66を駆動するための図示されない駆動機構が設けられており、この駆動機構により、上部回転シャフト65及び下部回転シャフト66は自在に回転するようになっている。
As shown in FIG. 1, the polishing apparatus 1 mainly includes a polishing main body 18, and an upper support 12 and a lower support 14 that support the polishing main body 18.
The upper support 12 and the lower support 14 are provided with drive mechanisms (not shown) for driving the upper rotary shaft 65 and the lower rotary shaft 66 of the polishing body 18, and the upper rotary shaft 65 is driven by this drive mechanism. And the lower rotating shaft 66 rotates freely.
 研磨本体部18は、上定盤40と、下定盤60と、太陽歯車61と、内歯車62と、供給管63と、上部板材64と、上部回転シャフト65と、下部回転シャフト66と、を主に含む。
 研磨装置1において、図2に示すように、下定盤60の上面および上定盤40の底面には、研磨パッド10が貼り付けられている。図2では、研磨パッド10はシート状に記されている。研磨パッド10には、例えば、発泡ウレタン樹脂からなるウレタンパッドを用いることができる。
The polishing body 18 includes an upper surface plate 40, a lower surface plate 60, a sun gear 61, an internal gear 62, a supply pipe 63, an upper plate member 64, an upper rotating shaft 65, and a lower rotating shaft 66. Including mainly.
In the polishing apparatus 1, as shown in FIG. 2, the polishing pad 10 is attached to the upper surface of the lower surface plate 60 and the bottom surface of the upper surface plate 40. In FIG. 2, the polishing pad 10 is shown in a sheet form. As the polishing pad 10, for example, a urethane pad made of a urethane foam resin can be used.
 下定盤60の上面と上定盤40の下面には、円板状のガラス基板Gを2つの定盤で挟んで研磨対象のガラス基板Gの主表面を研磨処理する際に、ガラス基板Gを保持するための保持穴を有するキャリア30が配されている。図2では、1つのキャリア30しか記されていないが、複数のキャリア30が用いられる。具体的には、キャリア30は、外周部に設けられて太陽歯車61及び内歯車62に噛合する歯部31と、ガラス基板Gを収容し保持するための1または複数の保持穴32とを有する。太陽歯車61、外縁に設けられた内歯車62および円板状のキャリア30は全体として、上部回転シャフト65と下部回転シャフト66の回転中心軸Oを中心とする遊星歯車機構を構成する。円板状のキャリア30は、内周側で太陽歯車61に噛合し、かつ外周側で内歯車62に噛合するともに、ガラス基板G(ワーク)を1または複数を収容し保持する。下定盤60上では、キャリア30が遊星歯車として自転しながら公転し、ガラス基板Gと下定盤60とが相対的に移動させられる。例えば、太陽歯車61がCCW(反時計回り)の方向に回転すれば、キャリア30はCW(時計回り)の方向に回転し、内歯車62はCCWの方向に回転する。その結果、下定盤60とガラス基板Gの間に相対運動が生じる。同様にして、ガラス基板Gと上定盤40とを相対的に移動させてもよい。 When the main surface of the glass substrate G to be polished is polished between the upper surface of the lower surface plate 60 and the lower surface of the upper surface plate 40 by sandwiching the disk-shaped glass substrate G between two surface plates, the glass substrate G is A carrier 30 having a holding hole for holding is arranged. In FIG. 2, only one carrier 30 is shown, but a plurality of carriers 30 are used. Specifically, the carrier 30 includes a tooth portion 31 provided on the outer peripheral portion and meshing with the sun gear 61 and the internal gear 62, and one or a plurality of holding holes 32 for receiving and holding the glass substrate G. . The sun gear 61, the internal gear 62 provided on the outer edge, and the disk-shaped carrier 30 constitute a planetary gear mechanism centering on the rotation center axis O of the upper rotary shaft 65 and the lower rotary shaft 66 as a whole. The disc-shaped carrier 30 meshes with the sun gear 61 on the inner peripheral side and meshes with the internal gear 62 on the outer peripheral side, and accommodates and holds one or more glass substrates G (workpieces). On the lower surface plate 60, the carrier 30 revolves while rotating as a planetary gear, and the glass substrate G and the lower surface plate 60 are relatively moved. For example, if the sun gear 61 rotates in the CCW (counterclockwise) direction, the carrier 30 rotates in the CW (clockwise) direction, and the internal gear 62 rotates in the CCW direction. As a result, a relative motion occurs between the lower surface plate 60 and the glass substrate G. Similarly, the glass substrate G and the upper surface plate 40 may be moved relatively.
 上記相対運動の動作中には、上定盤40がキャリア30に保持されたガラス基板Gに対して(つまり、鉛直方向に)所定の圧力で押圧し、これによりガラス基板Gに対して研磨パッド10が押圧する。また、研磨中、ポンプ(不図示)によって研磨スラリが、図示されない供給タンクからまたは複数の供給管63を経由してガラス基板Gと研磨パッド10との間に供給される。供給管63は、上部板材64を通して上定盤40に延びている。研磨スラリは、コロイダルシリカの研磨砥粒が水溶液に分散した液体である。 During the operation of the relative movement, the upper surface plate 40 is pressed against the glass substrate G held by the carrier 30 (that is, in the vertical direction) with a predetermined pressure, and thereby the polishing pad is pressed against the glass substrate G. 10 presses. During polishing, a polishing slurry is supplied between a glass substrate G and the polishing pad 10 from a supply tank (not shown) or via a plurality of supply pipes 63 by a pump (not shown). The supply pipe 63 extends to the upper surface plate 40 through the upper plate member 64. The polishing slurry is a liquid in which abrasive grains of colloidal silica are dispersed in an aqueous solution.
 下定盤60には、図示されない駆動モータに接続された下部回転シャフト66が固定されている。上定盤40には、図示されない駆動モータに接続された上部回転シャフト65が固定されている。したがって、上定盤40及び下定盤60は自在に回転することができる。 A lower rotating shaft 66 connected to a drive motor (not shown) is fixed to the lower surface plate 60. An upper rotary shaft 65 connected to a drive motor (not shown) is fixed to the upper surface plate 40. Therefore, the upper surface plate 40 and the lower surface plate 60 can rotate freely.
 研磨対象のガラス基板Gは、例えばアルミノシリケートガラスが用いられる。アルミノシリケートガラスは、SiO,Alを成分として含有する。
 このような研磨装置1に用いる研磨スラリはコロイダルシリカを研磨砥粒として含むもので、以下のように作られる。具体的には、研磨スラリの素となるコロイダルシリカを含むオリジナル研磨スラリを酸性状態に調整する。その後、オリジナル研磨スラリ中に生成したシリカの大きな析出物やゲル状物質をフィルタ処理して除去する。こうすることにより、オリジナル研磨スラリ中における溶存シリカの量が低減される。すなわち、本実施形態の研磨装置に用いる研磨スラリは、溶存シリカの濃度が比較的高いアルカリ性のオリジナル研磨スラリに対して溶存シリカ低減処理がガラス基板の研磨処理前に施されているものである。オリジナル研磨スラリにおける溶存シリカの濃度は例えば0.03質量%以上である。アルカリ性の状態ではコロイダルシリカを含むオリジナル研磨スラリに溶存するシリカの量は大きい一方、酸性状態では、このオリジナル研磨スラリに溶存するシリカの量は相対的に少ないことを見出した。そこで、研磨処理に用いる前に、予めオリジナル研磨スラリに含まれる溶存シリカの量を低下させ、かつ溶存シリカの析出物やシリカのゲル状物質をフィルタ処理により除去することにより研磨スラリを作製するので、研磨中に溶存シリカからシリカが研磨パッド10やガラス基板Gの主表面に析出することを抑制することができる。コロイダルシリカを含んだオリジナル研磨スラリは分散性の観点から通常pH8~12のアルカリ性の条件で保管されるため、研磨のために使用する時にpHをアルカリ性から酸性の条件に調整する。
As the glass substrate G to be polished, for example, aluminosilicate glass is used. The aluminosilicate glass contains SiO 2 and Al 2 O 3 as components.
The polishing slurry used for such a polishing apparatus 1 contains colloidal silica as abrasive grains and is produced as follows. Specifically, the original polishing slurry containing colloidal silica that is the basis of the polishing slurry is adjusted to an acidic state. Thereafter, large silica precipitates and gel-like substances produced in the original polishing slurry are removed by filtering. By doing so, the amount of dissolved silica in the original polishing slurry is reduced. That is, the polishing slurry used in the polishing apparatus of the present embodiment is obtained by subjecting an alkaline original polishing slurry having a relatively high dissolved silica concentration to a dissolved silica reduction process before the glass substrate polishing process. The concentration of dissolved silica in the original polishing slurry is, for example, 0.03% by mass or more. It has been found that the amount of silica dissolved in the original polishing slurry containing colloidal silica is large in the alkaline state, while the amount of silica dissolved in the original polishing slurry is relatively small in the acidic state. Therefore, the polishing slurry is prepared by reducing the amount of dissolved silica contained in the original polishing slurry in advance and removing the dissolved silica precipitates and silica gel substances by filtering before using the polishing slurry. Further, it is possible to suppress the precipitation of silica from the dissolved silica on the main surface of the polishing pad 10 or the glass substrate G during polishing. Since the original polishing slurry containing colloidal silica is usually stored under alkaline conditions of pH 8 to 12 from the viewpoint of dispersibility, the pH is adjusted from alkaline to acidic conditions when used for polishing.
 特に、pH1~5の範囲で、溶存シリカの濃度は0.02質量%以下の範囲で安定して低い水準を維持することが好ましい。なお、このとき溶存シリカの濃度は0.005質量%以上である。このため、酸性状態に調整したオリジナル研磨スラリは、pH1~5であることが、研磨中シリカの析出を安定的に抑制する点で好ましい。特にガラス基板Gの主表面の粗さを粗くしない点からpH2以上が好ましく、清浄性の点からpH4以下であることが好ましい。なお、例えばpH10以上のアルカリ性状態では、溶存シリカの濃度は0.03質量%以上である。pH10以上になると溶存シリカ濃度は急激に増加する。したがって、pH10以上のアルカリ性のオリジナル研磨スラリを酸性に調整すると、溶存シリカ濃度を大きく低減してシリカの析出物やゲル状物質をより多く除去することができるので好適である。また、アルカリ性から酸性へのpH調整の前後におけるpHの差は、5以上とすることが好ましく、6以上とするとより好ましい。このpHの差が大きいほど、研磨時のシリカの析出物やゲル状物質を少なくして研磨後の基板表面への付着物を低減することができる。
 上述の溶存シリカは、固体粒子として研磨スラリ中に存在しているシリカ成分以外のシリカ成分を意味する。具体的には、溶存シリカは、分画分子量が10000である分離膜を有する分離膜付遠沈管を用いて、遠心力4500Gにて90分間研磨スラリを遠心処理したときに、分離膜を通過して遠沈管下部に移行した分散媒中に存在するシリカ成分を指すものであり、例えばシリカオリゴマーがこれに該当するものと推察される。
 溶存シリカの濃度は、例えば下記方法で測定することができる。分離膜付遠沈管(分離膜分画分子量10000)を取り付けた遠心分離装置を用いて研磨スラリを遠心処理し、溶存シリカを含む溶液成分とシリカ粒子等を含む固体成分とに分離する。その後、回収された溶液成分について、溶存シリカ量をモリブデン反応にて定量し、GPC(ゲル浸透クロマトグラフィ分析)によりその分子量を測定する。
In particular, in the range of pH 1 to 5, the concentration of dissolved silica is preferably maintained stably at a low level in the range of 0.02% by mass or less. At this time, the concentration of dissolved silica is 0.005% by mass or more. For this reason, it is preferable that the original polishing slurry adjusted to an acidic state has a pH of 1 to 5 in terms of stably suppressing the precipitation of silica during polishing. In particular, pH 2 or higher is preferable from the viewpoint of not roughening the main surface of the glass substrate G, and pH 4 or lower is preferable from the viewpoint of cleanliness. For example, in an alkaline state having a pH of 10 or more, the concentration of dissolved silica is 0.03% by mass or more. When the pH is 10 or more, the concentration of dissolved silica increases rapidly. Accordingly, it is preferable to adjust the alkaline original polishing slurry having a pH of 10 or more to acidic, because the concentration of dissolved silica can be greatly reduced and more silica precipitates and gel-like substances can be removed. Further, the difference in pH before and after pH adjustment from alkaline to acidic is preferably 5 or more, and more preferably 6 or more. As the difference in pH is larger, the amount of silica deposits and gel-like substances during polishing can be reduced, and the amount of deposits on the substrate surface after polishing can be reduced.
The above-described dissolved silica means a silica component other than the silica component present in the polishing slurry as solid particles. Specifically, dissolved silica passes through the separation membrane when the polishing slurry is centrifuged for 90 minutes at a centrifugal force of 4500 G using a separation tube with a separation membrane having a separation membrane with a molecular weight cut off of 10,000. This indicates a silica component present in the dispersion medium that has moved to the lower part of the centrifuge tube. For example, it is assumed that a silica oligomer corresponds to this.
The concentration of dissolved silica can be measured, for example, by the following method. The polishing slurry is centrifuged using a centrifuge equipped with a centrifuge tube with a separation membrane (separation membrane fraction molecular weight 10,000), and separated into a solution component containing dissolved silica and a solid component containing silica particles. Then, about the collect | recovered solution component, the amount of dissolved silica is quantified by molybdenum reaction, The molecular weight is measured by GPC (gel permeation chromatography analysis).
 コロイダルシリカの溶液を酸性状態にするには、例えば硫酸や硝酸等の無機酸やクエン酸や酒石酸等の有機酸を用いることができる。
 研磨処理に用いる本実施形態のコロイダルシリカは、ケイ酸ナトリウム水溶液を陽イオン交換樹脂でイオン交換することにより得られる活性ケイ酸を加熱して得られるものであることが溶存シリカ低減処理の効果を大きく発揮する点で好ましい。この方法で得られるコロイダルシリカの溶液は、低コストではあるものの、アルカリ溶液であるため溶存シリカの量は多い。このため、研磨処理前にコロイダルシリカの溶液を酸性状態にして、溶存シリカの量を低くし、さらに析出したシリカをフィルタ処理により除去する溶存シリカ低減処理を行うことにより、研磨中溶存シリカからシリカが研磨パッド10やガラス基板Gの主表面に析出することを抑制する効果は大きい。
In order to make the colloidal silica solution acidic, for example, inorganic acids such as sulfuric acid and nitric acid, and organic acids such as citric acid and tartaric acid can be used.
The colloidal silica of this embodiment used for the polishing treatment is obtained by heating active silicic acid obtained by ion exchange of a sodium silicate aqueous solution with a cation exchange resin, and the effect of the dissolved silica reduction treatment is obtained. It is preferable in that it can be exerted greatly. Although the colloidal silica solution obtained by this method is low in cost, the amount of dissolved silica is large because it is an alkaline solution. For this reason, the solution of colloidal silica is made acidic before polishing treatment, the amount of dissolved silica is reduced, and the dissolved silica is reduced from the dissolved silica during polishing by removing the precipitated silica by filtering. Has a great effect of suppressing the precipitation on the main surface of the polishing pad 10 and the glass substrate G.
 コロイダルシリカの平均粒径(d50)は、10~100nmであることが、ガラス基板Gの研磨によってガラス基板Gの主表面の表面粗さの算術平均粗さRaを0.2nm以下にする点で好ましい。より好ましくは、平均粒径(d50)は、10~40nmである。
 なお、フィルタ処理は、オリジナル研磨スラリをデプス型フィルタで濾過した後、さらに、プリーツ型フィルタを用いて濾過することが好ましい。特に、オリジナル研磨スラリをデプス型フィルタで濾過した後、さらに、カチオン化したフィルタを用いてオリジナル研磨スラリを濾過することを含むことが、析出した大きなシリカやゲル状物質を除去し、イオンとなって溶存する溶存シリカの量を低下させる点で好ましい。カチオン化したフィルタには、プリーツ型フィルタを用いることができる。
 デプス型フィルタとは外側から内側になるほど(フィルタを流れる研磨スラリの上流側から下流側に進むほど)孔径が小さくなるタイプのフィルタをいう。言い換えると、デプス型フィルタは、濾過材の孔構造が入口側(上流側)で粗く、出口側(下流側)で細かく、且つ入口側から出口側へ向かうにつれて連続的に又は段階的に細かくなる特徴を持つ。デプス型フィルタでは、粗大粒子の中でも大きな粒子は入口側付近で捕集され、小さな粒子は出口側付近で捕集されるため、効果的な濾過が可能である。デプス型フィルタの形状は、袋状のバッグタイプでもよく、また、中空円筒形状のカートリッジタイプでもよい。
 本実施形態で用いられるプリーツ型フィルタとしては、一般に濾過材をヒダ状(プリーツ状)に成形加工して、中空円筒形状のカートリッジタイプ式にしたものを用いることができる。プリーツ型フィルタは、厚み方向の各部分で捕集するデプス型フィルタと異なり、濾過材の厚みが薄く、フィルタ表面での捕集が主体と言われており、一般的に濾過精度が高いことが特徴である。
 デプス型フィルタ及びプリーツ型フィルタの孔径は、一般に99%除去可能な濾過精度として表され、例えば、孔径1.0μmとは、直径1.0μmの粒子を99%除去可能なフィルタを示している。デプス型フィルタの孔径は、粗大粒子除去負荷軽減の観点から、好ましくは1.5μm以下、より好ましくは1.0μm以下である。プリーツ型フィルタの孔径は、粗大粒子低減の観点から1.0μm以下が好ましく、より好ましくは0.8μm以下、さらに好ましくは0.5μm以下である。
 このような研磨スラリを、研磨パッド10で押圧されたガラス基板Gと研磨パッド10との間に供給しながら、ガラス基板10と研磨パッド10を相対的に移動させて、ガラス基板Gの両側の主表面が研磨される。
The average particle diameter (d50) of the colloidal silica is 10 to 100 nm in that the arithmetic average roughness Ra of the surface roughness of the main surface of the glass substrate G is reduced to 0.2 nm or less by polishing the glass substrate G. preferable. More preferably, the average particle diameter (d50) is 10 to 40 nm.
In the filtering process, it is preferable that the original polishing slurry is filtered with a depth filter and further filtered with a pleated filter. In particular, after filtering the original polishing slurry with a depth filter, further including filtering the original polishing slurry with a cationized filter removes the deposited large silica and gel-like substances and becomes ions. This is preferable in that the amount of dissolved silica dissolved is reduced. A pleated filter can be used as the cationized filter.
The depth type filter is a type of filter in which the hole diameter decreases as it goes from the outside to the inside (from the upstream side to the downstream side of the polishing slurry flowing through the filter). In other words, in the depth filter, the pore structure of the filter medium is rough on the inlet side (upstream side), finer on the outlet side (downstream side), and finer continuously or stepwise from the inlet side to the outlet side. Has characteristics. In the depth type filter, large particles among the coarse particles are collected near the inlet side, and small particles are collected near the outlet side, so that effective filtration is possible. The shape of the depth filter may be a bag-like bag type or a hollow cylindrical cartridge type.
As the pleated filter used in the present embodiment, a filter type that is generally formed into a pleated shape by filtering a filtering material into a hollow cylindrical cartridge type can be used. Unlike depth filters that collect in each part in the thickness direction, pleated filters are said to have a thin filter material and are mainly collected on the filter surface, and generally have high filtration accuracy. It is a feature.
The pore size of the depth type filter and the pleated type filter is generally expressed as a filtration accuracy capable of removing 99%. For example, a pore size of 1.0 μm indicates a filter capable of removing 99% of particles having a diameter of 1.0 μm. The pore size of the depth filter is preferably 1.5 μm or less, more preferably 1.0 μm or less, from the viewpoint of reducing the coarse particle removal load. The pore size of the pleated filter is preferably 1.0 μm or less, more preferably 0.8 μm or less, and still more preferably 0.5 μm or less from the viewpoint of reducing coarse particles.
While supplying such a polishing slurry between the glass substrate G pressed by the polishing pad 10 and the polishing pad 10, the glass substrate 10 and the polishing pad 10 are moved relatively to each other on both sides of the glass substrate G. The main surface is polished.
(ガラス基板の製造方法)
 このようなコロイダルシリカを用いて研磨処理を行うガラス基板は、以下のガラス基板の製造方法により作製される。本実施形態の磁気ディスク用ガラス基板の製造方法では、まず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクの成形処理が行われる。次に、このガラスブランクの粗研削処理が行われる。この後、ガラスブランクに形状加工処理及び端面研磨処理が施される。この後、ガラスブランクから得られたガラス基板に固定砥粒を用いた精研削処理が行われる。この後、第1研磨処理、化学強化処理、及び、第2研磨処理がガラス基板に施される。なお、本実施形態では、上記流れで行うが、上記処理全てがある必要はなく、これらの処理は適宜行われなくてもよい。以下、各処理について説明する。なお、上述した溶存シリカ低減処理を行ったコロイダルシリカを含む研磨スラリを用いたガラス基板Gの研磨処理の対象は、第2研磨処理である。
(Glass substrate manufacturing method)
A glass substrate that is polished using such colloidal silica is produced by the following method for producing a glass substrate. In the method for manufacturing a glass substrate for a magnetic disk according to the present embodiment, first, a glass blank as a raw material for a plate-like magnetic disk glass substrate having a pair of main surfaces is formed. Next, the rough grinding process of this glass blank is performed. Thereafter, the glass blank is subjected to a shape processing treatment and an end surface polishing treatment. Then, the precise grinding process which uses a fixed abrasive for the glass substrate obtained from the glass blank is performed. Thereafter, a first polishing process, a chemical strengthening process, and a second polishing process are performed on the glass substrate. In the present embodiment, the above-described process is performed, but it is not necessary to have all the above processes, and these processes may not be performed as appropriate. Hereinafter, each process will be described. In addition, the object of the grinding | polishing process of the glass substrate G using the grinding | polishing slurry containing the colloidal silica which performed the dissolved silica reduction process mentioned above is a 2nd grinding | polishing process.
 (a)ガラスブランクの成形処理
 ガラスブランクの成形では、例えばプレス成形法を用いることができる。プレス成形法により、円形状のガラスブランクを得ることができる。さらに、ダウンドロー法、リドロー法、フュージョン法、フロート法などの公知の製造方法を用いて製造することができる。これらの公知の製造方法で作られた板状ガラスブランクに対し、適宜形状加工を行うことによって磁気ディスク用ガラス基板の元となる円板状のガラス基板が得られる。
(A) Glass blank molding process In the molding of a glass blank, for example, a press molding method can be used. A circular glass blank can be obtained by the press molding method. Furthermore, it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, a fusion method, and a float method. A disk-shaped glass substrate serving as a base of the magnetic disk glass substrate can be obtained by appropriately performing shape processing on the plate-shaped glass blanks produced by these known production methods.
 (b)粗研削処理
 粗研削処理では、具体的には、ガラスブランクを、周知の両面研削装置に装着される保持部材(キャリア)に設けられた保持穴内に保持しながらガラスブランクの両側の主表面の研削が行われる。この時、上記記載のキャリア30を用いてもよい。研削材として、例えば遊離砥粒が用いられる。粗研削処理では、ガラスブランクが目標とする板厚寸法及び主表面の平坦度に略近づくように研削される。なお、粗研削処理は、成形されたガラスブランクの寸法精度あるいは表面粗さに応じて行われるものであり、場合によっては行われなくてもよい。
(B) Coarse grinding process In the coarse grinding process, specifically, the glass blank is mainly held on both sides of the glass blank while being held in a holding hole provided in a holding member (carrier) mounted on a well-known double-side grinding apparatus. Surface grinding is performed. At this time, the carrier 30 described above may be used. For example, loose abrasive grains are used as the abrasive. In the rough grinding process, the glass blank is ground so as to approximate the target plate thickness dimension and the flatness of the main surface. The rough grinding process is performed according to the dimensional accuracy or surface roughness of the molded glass blank, and may not be performed depending on the case.
 (c)形状加工処理
 次に、形状加工処理が行われる。形状加工処理では、ガラスブランクの成形処理後、公知の加工方法を用いて円孔を形成することにより、円孔があいた円盤形状のガラス基板を得る。その後、ガラス基板の端面の面取りを実施する。これにより、ガラス基板の端面には、主表面と直交している側壁面と、側壁面と主表面を繋ぐ傾斜面(介在面)が形成される。
(C) Shape processing processing Next, shape processing processing is performed. In the shape processing, after forming the glass blank, a circular hole is formed using a known processing method to obtain a disk-shaped glass substrate having a circular hole. Thereafter, the end surface of the glass substrate is chamfered. Thereby, a side wall surface orthogonal to the main surface and an inclined surface (intervening surface) connecting the side wall surface and the main surface are formed on the end surface of the glass substrate.
 (d)端面研磨処理
 次にガラス基板の端面研磨処理が行われる。端面研磨処理は、研磨ブラシとガラス基板の端面との間に遊離砥粒を含む研磨液を供給して研磨ブラシとガラス基板とを相対的に移動させることにより研磨を行う処理である。端面研磨では、ガラス基板の内周側端面及び外周側端面を研磨対象とし、内周側端面及び外周側端面を鏡面状態にする。
(D) End surface polishing treatment Next, an end surface polishing treatment of the glass substrate is performed. The end surface polishing process is a process for performing polishing by supplying a polishing liquid containing loose abrasive grains between the polishing brush and the end surface of the glass substrate and relatively moving the polishing brush and the glass substrate. In the end surface polishing, the inner peripheral side end surface and the outer peripheral side end surface of the glass substrate are to be polished, and the inner peripheral side end surface and the outer peripheral side end surface are in a mirror state.
 (e)精研削処理
 次に、ガラス基板の主表面に精研削処理が施される。具体的には、周知の両面研削装置を用いて、ガラス基板の主表面に対して研削を行う。この場合、固定砥粒を定盤に設けて研削する。具体的には、ガラス基板を、両面研削装置の保持部材であるキャリアに設けられた保持穴内に保持しながらガラス基板の両側の主表面の研削を行う。
 本実施形態の研削処理では、固定砥粒を含んだ研削面とガラス基板の主表面とを接触させてガラス基板の主表面を研削するが、遊離砥粒を用いた研削を行ってもよい。
(E) Fine grinding process Next, a fine grinding process is performed on the main surface of the glass substrate. Specifically, the main surface of the glass substrate is ground using a well-known double-side grinding apparatus. In this case, the fixed abrasive is provided on the surface plate for grinding. Specifically, the main surfaces on both sides of the glass substrate are ground while holding the glass substrate in a holding hole provided in a carrier which is a holding member of a double-side grinding apparatus.
In the grinding process of the present embodiment, the grinding surface containing the fixed abrasive and the main surface of the glass substrate are brought into contact with each other to grind the main surface of the glass substrate. However, grinding using loose abrasive grains may be performed.
 (f)第1研磨処理
 次に、ガラス基板の主表面に第1研磨処理が施される。具体的には、ガラス基板の外周側端面を、図1,2に示される研磨装置と同様の構成の研磨装置のキャリアに設けられた保持穴内に保持しながらガラス基板の両側の主表面の研磨が行われる。第1研磨処理は、遊離砥粒を用いて、定盤に貼り付けられた研磨パッドを用いる。第1研磨は、ガラス基板の板厚を調整しつつ、例えば固定砥粒による研削を行った場合に主表面に残留したクラックや歪みの除去をする。第1研磨では、主表面端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の表面粗さ、例えば算術平均粗さRaを低減することができる。なお、第1研磨処理では、研磨スラリとしてコロイダルシリカを用いず、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などが用いられる。このため、第1研磨処理では、溶存シリカ低減処理を施した研磨スラリは用いられない。なお、研磨パッドの種類は特に制限されないが、例えば、硬質発泡ウレタン樹脂ポリッシャが用いられる。
(F) First polishing treatment Next, a first polishing treatment is performed on the main surface of the glass substrate. Specifically, polishing the main surface on both sides of the glass substrate while holding the outer peripheral side end face of the glass substrate in a holding hole provided in the carrier of the polishing apparatus having the same configuration as the polishing apparatus shown in FIGS. Is done. The first polishing process uses a polishing pad attached to a surface plate using loose abrasive grains. The first polishing removes cracks and distortions remaining on the main surface when, for example, grinding with fixed abrasive grains is performed while adjusting the thickness of the glass substrate. In the first polishing, it is possible to reduce the surface roughness of the main surface, for example, the arithmetic average roughness Ra, while preventing the shape of the end portion of the main surface from excessively dropping or protruding. In the first polishing treatment, colloidal silica is not used as the polishing slurry, and for example, cerium oxide abrasive grains or zirconia abrasive grains are used. For this reason, in the first polishing process, the polishing slurry subjected to the dissolved silica reduction process is not used. In addition, although the kind in particular of a polishing pad is not restrict | limited, For example, a hard foaming urethane resin polisher is used.
 (g)化学強化処理
 ガラス基板は適宜化学強化することができる。化学強化液として、例えば硝酸カリウム,硝酸ナトリウム、またはそれらの混合物を加熱して得られる溶融液を用いることができる。そして、ガラス基板を化学強化液に浸漬することによって、ガラス基板の表層にあるガラス組成中のリチウムイオンやナトリウムイオンが、それぞれ化学強化液中のイオン半径が相対的に大きいナトリウムイオンやカリウムイオンにそれぞれ置換されることで表層部分に圧縮応力層が形成され、ガラス基板が強化される。
 化学強化処理を行うタイミングは、適宜決定することができるが、化学強化処理の後に研磨処理を行うようにすると、表面の平滑化とともに化学強化処理によってガラス基板の表面に固着した異物を取り除くことができるので特に好ましい。また、化学強化処理は、必要に応じて行われればよく、行われなくてもよい。
(G) Chemical strengthening treatment The glass substrate can be appropriately chemically strengthened. As the chemical strengthening liquid, for example, a molten liquid obtained by heating potassium nitrate, sodium nitrate, or a mixture thereof can be used. Then, by immersing the glass substrate in the chemical strengthening solution, lithium ions and sodium ions in the glass composition on the surface of the glass substrate are converted into sodium ions and potassium ions having relatively large ion radii in the chemical strengthening solution, respectively. By replacing each, a compressive stress layer is formed in the surface layer portion, and the glass substrate is strengthened.
The timing of performing the chemical strengthening treatment can be determined as appropriate. However, if the polishing treatment is performed after the chemical strengthening treatment, the foreign matter fixed to the surface of the glass substrate by the chemical strengthening treatment can be removed together with the smoothing of the surface. This is particularly preferable because it can be performed. Further, the chemical strengthening treatment may be performed as necessary, and may not be performed.
 (h)第2研磨(鏡面研磨)処理
 次に、化学強化処理後のガラス基板に第2研磨が施される。第2研磨は、主表面の鏡面研磨を目的とする。第2研磨においても、図1,2に示される両面研磨装置が用いられる。こうすることで、ガラス基板Gの板厚を微調整しつつ主表面の端部の形状が過度に落ち込んだり突出したりすることを防止しつつ、主表面の粗さを低減することができる。これにより、ガラス基板Gの主表面の算術平均粗さRaを0.2nm以下、好ましくは0.15nm以下にすることができる。このとき、最大粗さRmaxは2.0nm以下であることが好ましい。第2研磨処理では、第1研磨処理に比べて、研磨パッドの樹脂ポリッシャの硬度が軟らかい。第2研磨処理に用いる研磨パッドの硬度は、アスカーC硬度で60以上80以下であることが好ましい。
(H) Second polishing (mirror polishing) treatment Next, the glass substrate after the chemical strengthening treatment is subjected to second polishing. The second polishing is intended for mirror polishing of the main surface. Also in the second polishing, the double-side polishing apparatus shown in FIGS. By doing so, it is possible to reduce the roughness of the main surface while finely adjusting the thickness of the glass substrate G and preventing the shape of the end portion of the main surface from excessively dropping or protruding. Thereby, arithmetic mean roughness Ra of the main surface of the glass substrate G can be 0.2 nm or less, Preferably it can be 0.15 nm or less. At this time, the maximum roughness Rmax is preferably 2.0 nm or less. In the second polishing process, the hardness of the resin polisher of the polishing pad is softer than in the first polishing process. The hardness of the polishing pad used for the second polishing treatment is preferably 60 to 80 in terms of Asker C hardness.
 第2研磨処理に用いる遊離砥粒として、上述した溶存シリカ低減処理の施されたコロイダルシリカが研磨砥粒として用いられる。すなわち、第2研磨処理では、コロイダルシリカを研磨砥粒として含む研磨スラリが用いられる。この研磨スラリでは、溶存シリカ低減処理が施され、溶存シリカの量が少ないので、研磨中に溶存シリカの一部が析出することを抑制することができる。したがって、従来問題となっていたガラス基板の主表面上の欠陥となる付着物を低減することできる。 As the free abrasive grains used in the second polishing treatment, the above-described colloidal silica subjected to the dissolved silica reduction treatment is used as the abrasive grains. That is, in the second polishing process, a polishing slurry containing colloidal silica as abrasive grains is used. In this polishing slurry, since the dissolved silica reduction treatment is performed and the amount of dissolved silica is small, it is possible to suppress the precipitation of part of the dissolved silica during polishing. Therefore, it is possible to reduce deposits that become defects on the main surface of the glass substrate, which has been a problem in the past.
 このような研磨スラリは、ガラス基板の前記主表面の研磨に用いられた後、回収して、別のガラス基板の主表面の研磨に用いられてもよい。このとき、研磨スラリが研磨処理に繰り返し用いられた後、コロイダルシリカを研磨砥粒として含む研磨スラリに、上述した溶存シリカ低減処理が施され、さらに別のガラス基板の研磨に用いられることが好ましい。
研磨スラリを循環させて研磨スラリを用いる場合、上述の溶存シリカ低減処理を用いることは好ましい。研磨処理を繰り返し行うと、研磨パッドとガラス基板との摺動による摩擦熱等により、研磨砥粒の一部が溶解して溶存シリカの濃度が増大する場合がある。このような場合、研磨スラリ中の溶存シリカからシリカの凝集体やゲル状物質が新たに発生する場合がある。このため、研磨スラリを繰り返し用いる場合、研磨開始前に本実施形態のような溶存シリカ低減処理が施されることが好ましい。
Such a polishing slurry may be used for polishing the main surface of the glass substrate, and then recovered and used for polishing the main surface of another glass substrate. At this time, after the polishing slurry is repeatedly used for the polishing treatment, it is preferable that the above-described dissolved silica reduction treatment is performed on the polishing slurry containing colloidal silica as the abrasive grains, and further used for polishing another glass substrate. .
When the polishing slurry is used by circulating the polishing slurry, it is preferable to use the above-described dissolved silica reduction treatment. When the polishing process is repeated, a part of the abrasive grains may be dissolved and the concentration of dissolved silica may increase due to frictional heat caused by sliding between the polishing pad and the glass substrate. In such a case, silica agglomerates or gel-like substances may be newly generated from the dissolved silica in the polishing slurry. For this reason, when the polishing slurry is repeatedly used, it is preferable that the dissolved silica reduction treatment as in this embodiment is performed before the polishing is started.
 こうして作製された磁気ディスク用ガラス基板の主表面には、例えば、付着層、軟磁性層、下地層、垂直磁気記録層、カーボン保護層、潤滑層を順次成膜される。これにより、磁気ディスクが作製される。カーボン保護層は、磁気記録層が磁気ヘッドとの接触によって劣化することを防止するためのもので、例えば、水素化カーボンからなり、耐磨耗性が得られる。また、潤滑層には、例えばアルコール変性パーフルオロポリエーテルの液体潤滑剤が用いられる。 For example, an adhesion layer, a soft magnetic layer, an underlayer, a perpendicular magnetic recording layer, a carbon protective layer, and a lubricating layer are sequentially formed on the main surface of the magnetic disk glass substrate thus manufactured. Thereby, a magnetic disk is produced. The carbon protective layer is for preventing the magnetic recording layer from deteriorating due to contact with the magnetic head, and is made of hydrogenated carbon, for example, and provides wear resistance. Further, for example, an alcohol-modified perfluoropolyether liquid lubricant is used for the lubricating layer.
 [実験例]
 本実施形態の効果を確認するために、第2研磨処理に用いる研磨スラリを作製する前のオリジナル研磨スラリ中の溶存シリカ低減処理の有無、及び溶存シリカ低減処理におけるフィルタ処理の内容を種々変えて研磨スラリを作製し、この研磨スラリを用いて第2研磨処理を行うことによりガラス基板を作製した。さらに、このガラス基板を用いて磁気ディスクを作製した。
 まず、アルミノシリケートガラスのガラス基板Gを、上述した(g)の化学強化処理まで行った後、溶存シリカ低減処理の有無とフィルタ処理の内容を種々変えた研磨スラリを用いて第2研磨処理を行った。
 以下の各例に用いた研磨パッドは、ポリシャを軟質ポリシャ(スウェード)の研磨パッド(アスカーC硬度で72の発泡ポリウレタン樹脂)である。この第2研磨処理は、上述した第1研磨処理で得られた平坦なガラス基板Gの主表面を維持しつつ、ガラス基板Gの主表面の表面粗さをRmaxで2nm程度以下の平滑な鏡面に仕上げるための鏡面研磨加工である。なお、第2研磨処理における荷重は100g/cm、研磨時間は10分とした。上記第2研磨処理を終えたガラス基板Gを、中性洗剤、純水、純水、IPAの各洗浄槽に順次浸漬して超音波洗浄を行なった後、IPAによる蒸気乾燥を行なった。
[Experimental example]
In order to confirm the effect of the present embodiment, the presence or absence of the dissolved silica reduction treatment in the original polishing slurry before producing the polishing slurry used for the second polishing treatment, and the contents of the filter treatment in the dissolved silica reduction treatment are variously changed. A polishing slurry was prepared, and a glass substrate was prepared by performing a second polishing process using the polishing slurry. Further, a magnetic disk was produced using this glass substrate.
First, after the glass substrate G of aluminosilicate glass is subjected to the chemical strengthening process of (g) described above, the second polishing process is performed using a polishing slurry in which the presence or absence of the dissolved silica reduction process and the content of the filter process are variously changed. went.
The polishing pad used in each of the following examples is a polishing pad made of a soft polisher (suede) (a foamed polyurethane resin having an Asker C hardness of 72). The second polishing process maintains a smooth main surface of the main surface of the glass substrate G obtained by the first polishing process described above, and the surface roughness of the main surface of the glass substrate G is about 2 nm or less in terms of Rmax. This is a mirror-polishing process for finishing. The load in the second polishing process was 100 g / cm 2 and the polishing time was 10 minutes. The glass substrate G that had been subjected to the second polishing treatment was immersed in a cleaning bath of neutral detergent, pure water, pure water, and IPA in order to perform ultrasonic cleaning, followed by vapor drying with IPA.
(実施例1)
 研磨スラリとしては、コロイダルシリカ(平均粒子径(d50)15nm)の研磨剤を15重量%分散した水(pH10)をオリジナル研磨スラリとし、このオリジナル研磨スラリにpH調整用の硫酸を添加して酸性(pH4)に調整した上でデプス型フィルタならびにプリーツ型フィルタをこの順番に用いてフィルタ処理したものを研磨スラリとした。デプス型フィルタには、孔径1μmの条件のフィルタを用いた。プリーツ型フィルタには、孔径0.5μmの条件のフィルタを用いた。
Example 1
As the polishing slurry, water (pH 10) in which 15% by weight of an abrasive of colloidal silica (average particle size (d50) 15 nm) is dispersed is used as an original polishing slurry, and sulfuric acid for adjusting pH is added to the original polishing slurry to make it acidic. After adjusting to (pH 4) and using a depth type filter and a pleat type filter in this order, a polishing slurry was obtained. As the depth filter, a filter having a pore diameter of 1 μm was used. As the pleated filter, a filter having a pore diameter of 0.5 μm was used.
(実施例2)
 実施例2においては、実施例1と同様のオリジナル研磨スラリに、pH調整用の硫酸を添加して酸性(pH4)に調整した上で、孔径1μmの条件のデプス型フィルタの後にカチオン化プリーツ型フィルタ、その後上記プリーツ型フィルタを用いてフィルタ処理を行い、研磨スラリとして第2研磨を実施した。カチオン化プリーツ型フィルタは、孔径1μmのプリーツ型フィルタをカチオン化処理したものである。
(Example 2)
In Example 2, sulfuric acid for pH adjustment was added to the same original polishing slurry as in Example 1 to make it acidic (pH 4), and after a depth type filter having a pore diameter of 1 μm, a cationized pleated type Filter processing was performed using the filter and then the pleated filter, and second polishing was performed as a polishing slurry. The cationized pleated filter is obtained by cationizing a pleated filter having a pore size of 1 μm.
(実施例3)
 実施例3においては、pH調整用の硫酸を添加してpH5の酸性に調整した以外は実施例1と同じ処理をした。
Example 3
In Example 3, the same treatment as in Example 1 was performed except that sulfuric acid for pH adjustment was added to adjust to pH 5 acidity.
(実施例4)
 実施例4においては、pH調整用の硫酸を添加してpH2の酸性に調整した以外は実施例1と同じ処理をした。
Example 4
In Example 4, the same treatment as in Example 1 was performed, except that pH-adjusting sulfuric acid was added to adjust to acidic pH2.
(実施例5)
 実施例5においては、pH調整用の硫酸を添加してpH1の酸性に調整した以外は実施例1と同じ処理をした。
(Example 5)
In Example 5, the same treatment as in Example 1 was performed except that sulfuric acid for pH adjustment was added to adjust to pH 1 acidity.
(実施例6)
 実施例6においては、pH調整用の硫酸を添加してpH5の酸性に調整した以外は実施例2と同じ処理をした。
(Example 6)
In Example 6, the same treatment as in Example 2 was performed, except that pH-adjusting sulfuric acid was added to adjust the acidity to pH 5.
(実施例7)
 実施例7においては、pH調整用の硫酸を添加してpH2の酸性に調整した以外は実施例2と同じ処理をした。
(Example 7)
In Example 7, the same treatment as in Example 2 was performed, except that pH-adjusting sulfuric acid was added to adjust to acidic pH2.
(実施例8)
 実施例8では、プリーツ型フィルタならびにデプス型フィルタをこの順番に用いてフィルタ処理したものを研磨スラリとし、プリーツ型フィルタには孔径1μmの条件のフィルタを用い、デプス型フィルタには、孔径0.5μmの条件のフィルタを用いた以外は、実施例1と同じ処理をした。
(Example 8)
In Example 8, the pleated type filter and the depth type filter, which were filtered in this order, were used as the polishing slurry, the pleated type filter was a filter having a pore size of 1 μm, and the depth type filter had a pore size of 0. The same processing as in Example 1 was performed except that a filter having a condition of 5 μm was used.
(比較例1)
 比較例1においては、実施例1と同様のオリジナル研磨スラリに研磨前にフィルタ処理を実施せず、実施例1と同様に酸性(pH4)に調整したうえで研磨に用いた。
(Comparative Example 1)
In Comparative Example 1, the same original polishing slurry as in Example 1 was not subjected to filter treatment before polishing, and adjusted to acidity (pH 4) as in Example 1 before being used for polishing.
(比較例2)
 比較例2においては、実施例1と同様のオリジナル研磨スラリを、上記デプス型フィルタならびに上記プリーツ型フィルタをこの順番に用いてフィルタ処理をした後、実施例1と同様に酸性(pH4)に調整した上で、この研磨スラリを研磨に用いた。
(Comparative Example 2)
In Comparative Example 2, the same original polishing slurry as in Example 1 was filtered using the depth filter and the pleated filter in this order, and then adjusted to acidic (pH 4) as in Example 1. In addition, this polishing slurry was used for polishing.
(比較例3)
 比較例3においては、実施例1と同様のオリジナル研磨スラリを、デプス型フィルタ(孔径1μmの条件)、その後カチオン化処理された上記カチオン化プリーツ型フィルタ(孔径1μmの条件)、その後プリーツ型フィルタ(孔径0.5μmの条件)を用いてフィルタ処理(フィルタリング)を行った。このフィルタ処理を行った研磨スラリを、水に15重量%分散させ、実施例1と同様に酸性(pH4)に調整した上で研磨に用いた。
(Comparative Example 3)
In Comparative Example 3, the same original polishing slurry as that of Example 1 was subjected to a depth filter (with a pore diameter of 1 μm), and then the cationized pleated filter (with a pore diameter of 1 μm), and then a pleated filter. Filtering (filtering) was performed using (conditions with a pore diameter of 0.5 μm). The polishing slurry subjected to this filter treatment was dispersed in water by 15% by weight and adjusted to acidity (pH 4) in the same manner as in Example 1 before being used for polishing.
 上記各例で得られたガラス基板に対して、OSA(Optical Surface Analyzer)で観察し、各欠陥のポイントに対して、SEM(走査型電子顕微鏡)/EDX(エネルギ分散型X線分光法)にて欠陥の詳細分析を行った。 The glass substrate obtained in each of the above examples was observed with OSA (Optical Surface na Analyzer), and each defect point was subjected to SEM (scanning electron microscope) / EDX (energy dispersive X-ray spectroscopy). Detailed analysis of defects was performed.
 実施例1では、ガラス基板の主表面上において検出された欠陥のうち、シリカ凝集体ならびにゲル状物質の欠陥数は36ポイントであった。以下同様に、実施例2~8、比較例1、比較例2、及び比較例3の順に、シリカ凝集体ならびにゲル状物質が20、44、29、24,24、10,38、98、71、62ポイント、欠陥として検出された。下記表1はその結果を示す。下記表では、デプス型フィルタをデプスフィルタといい、プリーツ型フィルタをプリーツフィルタといい、カチオン化プリーツ型フィルタをカチオン化プリーツフィルタという。 In Example 1, among the defects detected on the main surface of the glass substrate, the number of defects of the silica aggregate and the gel-like substance was 36 points. Similarly, in the order of Examples 2 to 8, Comparative Example 1, Comparative Example 2, and Comparative Example 3, the silica aggregate and the gel substance were 20, 44, 29, 24, 24, 10, 38, 98, 71. 62 points were detected as defects. Table 1 below shows the results. In the following table, the depth type filter is called a depth filter, the pleated type filter is called a pleated filter, and the cationized pleated type filter is called a cationized pleated filter.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例1及び比較例2の評価の比較結果、及び、実施例2及び比較例3の評価の比較結果より、オリジナル研磨スラリをアルカリ性の状態から酸性状態にした後でフィルタ処理を行うことで得られた研磨スラリが、シリカ凝集体ならびにゲル状物質をガラス基板の主表面に付着させない点で有効であることがわかる。
 また、実施例1と比較例1の評価の比較結果より、研磨スラリを酸性状態にして溶存シリカを低下させてもフィルタ処理を行わなければ、シリカ凝集体ならびにゲル状物質をガラス基板の主表面に付着することを抑制できない、こともわかる。
 実施例1及び実施例2の評価の比較結果より、研磨スラリをデプス型フィルタで濾過した後、さらに、カチオン化したフィルタを用いて前記研磨スラリを濾過することを含むことがより好ましいこともわかる。
 さらに、実施例3~5の評価の比較結果、及び実施例6,7の評価の比較結果より、pH調整では、pHを低くする程、シリカ凝集体ならびにゲル状物質をガラス基板の主表面に付着することを抑制する点で好ましく、pH5以下とすることが好ましく、pH2以下とすることがより好ましい。
 また、実施例1及び実施例8の評価の比較結果より、フィルタ処理では、デプス型フィルタならびにプリーツ型フィルタを、この順番に用いることが好ましいこともわかる。なお、実施例8では、実施例1と比べて、用いたフィルタが詰まり易いことが観察された。
 これより、本実施形態の効果は明確である。
From the comparison result of the evaluation of Example 1 and Comparative Example 2 and the comparison result of the evaluation of Example 2 and Comparative Example 3, it is obtained by performing the filter treatment after the original polishing slurry is changed from the alkaline state to the acidic state. It can be seen that the polishing slurry thus produced is effective in that silica agglomerates and gel-like substances do not adhere to the main surface of the glass substrate.
Further, from the comparison results of the evaluations of Example 1 and Comparative Example 1, the silica aggregate and the gel-like substance were removed from the main surface of the glass substrate if no filtering was performed even when the polishing slurry was made acidic and the dissolved silica was reduced. It can also be seen that it cannot be suppressed from adhering to the surface.
From the comparison results of the evaluations of Example 1 and Example 2, it is understood that it is more preferable to further include filtering the polishing slurry using a cationized filter after filtering the polishing slurry with a depth filter. .
Further, from the comparison results of the evaluations of Examples 3 to 5 and the comparison results of the evaluations of Examples 6 and 7, in pH adjustment, the silica aggregates and the gel-like substance are placed on the main surface of the glass substrate as the pH is lowered. It is preferable at the point which suppresses adhering, It is preferable to set it as pH 5 or less, and it is more preferable to set it as pH 2 or less.
Moreover, it can be seen from the comparison results of the evaluations of Example 1 and Example 8 that it is preferable to use the depth type filter and the pleat type filter in this order in the filter processing. In Example 8, it was observed that the used filter was more easily clogged than Example 1.
From this, the effect of this embodiment is clear.
 以上、本発明の磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法について詳細に説明したが、本発明は上記実施形態および実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 As mentioned above, although the manufacturing method of the glass substrate for magnetic disks of this invention and the manufacturing method of a magnetic disk were demonstrated in detail, this invention is not limited to the said embodiment and Example, In the range which does not deviate from the main point of this invention, Of course, various improvements and changes may be made.
1 研磨装置
10 研磨パッド
12 上部支持台
14 下部支持台
18 研磨本体部
30 キャリア
31 歯部
32 保持穴
40 上定盤
60 下定盤
61 太陽歯車
62 内歯車
63 供給管
64 上部板材
65 上部回転シャフト
66 下部回転シャフト
 
 
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 10 Polishing pad 12 Upper support stand 14 Lower support stand 18 Polishing main-body part 30 Carrier 31 Tooth part 32 Holding hole 40 Upper surface plate 60 Lower surface plate 61 Sun gear 62 Internal gear 63 Supply pipe 64 Upper plate material 65 Upper rotation shaft 66 Lower rotating shaft

Claims (9)

  1.  磁気ディスク用ガラス基板の製造方法であって、
     ガラス基板の両側の主表面を、研磨パッドで押圧させ、ガラス基板と前記研磨パッドとの間にコロイダルシリカを研磨砥粒として含む研磨スラリを供給しながら、前記主表面と前記研磨パッドとを相対的に移動させることにより、前記主表面を研磨するステップと、
     前記主表面を研磨する前に、前記研磨処理で用いる前記研磨スラリの素となるオリジナル研磨スラリを酸性状態に調整し、さらに前記酸性状態に調整することにより生成された前記オリジナル研磨スラリ中のシリカの析出物をフィルタ処理して除去することにより、前記研磨スラリをつくるステップと、を含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法。
    A method of manufacturing a glass substrate for a magnetic disk,
    The main surface on both sides of the glass substrate is pressed with a polishing pad, and the main surface and the polishing pad are relative to each other while supplying a polishing slurry containing colloidal silica as abrasive grains between the glass substrate and the polishing pad. Polishing the main surface by moving it mechanically;
    Before polishing the main surface, the silica in the original polishing slurry generated by adjusting the original polishing slurry, which is the source of the polishing slurry used in the polishing process, to an acidic state and further adjusting to the acidic state And a step of producing the polishing slurry by removing the precipitates by filtering. The method for producing a glass substrate for a magnetic disk, comprising:
  2.  前記オリジナル研磨スラリは、アルカリ性のスラリである、請求項1に記載の磁気ディスク用ガラス基板の製造方法。 2. The method of manufacturing a glass substrate for a magnetic disk according to claim 1, wherein the original polishing slurry is an alkaline slurry.
  3.  前記酸性状態に調整後のオリジナル研磨スラリのpHは、1~5である、請求項1または2に記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to claim 1 or 2, wherein the pH of the original polishing slurry after being adjusted to the acidic state is 1 to 5.
  4.  前記研磨スラリ中における溶存シリカの濃度は0.02質量%以下である、請求項1~3のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 3, wherein the concentration of dissolved silica in the polishing slurry is 0.02 mass% or less.
  5.  前記コロイダルシリカは、ケイ酸ナトリウム水溶液を陽イオン交換樹脂でイオン交換することにより得られる活性ケイ酸を加熱して得られる、請求項1~4のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。 The glass substrate for a magnetic disk according to any one of claims 1 to 4, wherein the colloidal silica is obtained by heating active silicic acid obtained by ion exchange of a sodium silicate aqueous solution with a cation exchange resin. Manufacturing method.
  6.  前記研磨スラリは、前記ガラス基板の前記主表面の研磨に用いられた後、回収して、別のガラス基板の主表面の研磨に用いられる、請求項1~5のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。 6. The polishing slurry according to claim 1, wherein the polishing slurry is used for polishing the main surface of the glass substrate, and then recovered and used for polishing the main surface of another glass substrate. Manufacturing method of glass substrate for magnetic disk.
  7.  前記コロイダルシリカの平均粒径は、10~100nmである、請求項1~6のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。 The method for producing a glass substrate for a magnetic disk according to any one of claims 1 to 6, wherein the colloidal silica has an average particle diameter of 10 to 100 nm.
  8.  前記フィルタ処理は、デプス型フィルタによる濾過を行うことと、前記デプス型フィルタによる濾過後さらに、カチオン化したフィルタによる濾過を行なうことを含む、請求項1~7のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。 The magnetic filter according to any one of claims 1 to 7, wherein the filtering includes filtering with a depth filter, and filtering with a cationized filter after filtering with the depth filter. A method for producing a glass substrate for a disk.
  9.  請求項1~8のいずれか1項に記載の製造方法で作製された磁気ディスク用ガラス基板の前記主表面に少なくとも磁性層を形成する、磁気ディスクの製造方法。 A method for manufacturing a magnetic disk, wherein at least a magnetic layer is formed on the main surface of the glass substrate for a magnetic disk manufactured by the manufacturing method according to any one of claims 1 to 8.
PCT/JP2014/080373 2013-11-15 2014-11-17 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk WO2015072569A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015547817A JP6280561B2 (en) 2013-11-15 2014-11-17 Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
MYPI2016701745A MY183852A (en) 2013-11-15 2014-11-17 Method for manufacturing magnetic-disk glass substrate and method for manufacturing magnetic disk
CN201480061961.1A CN105745708B (en) 2013-11-15 2014-11-17 The manufacturing method of glass substrate for disc and the manufacturing method of disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013236491 2013-11-15
JP2013-236491 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072569A1 true WO2015072569A1 (en) 2015-05-21

Family

ID=53057501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080373 WO2015072569A1 (en) 2013-11-15 2014-11-17 Method for manufacturing glass substrate for magnetic disk and method for manufacturing magnetic disk

Country Status (4)

Country Link
JP (1) JP6280561B2 (en)
CN (1) CN105745708B (en)
MY (1) MY183852A (en)
WO (1) WO2015072569A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108747661A (en) * 2018-06-28 2018-11-06 湖北晶润电子科技有限公司 A kind of glass sander

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519157A (en) * 2007-02-20 2010-06-03 エボニック デグサ ゲーエムベーハー Dispersion containing cerium oxide and colloidal silicon dioxide
JP2012143823A (en) * 2011-01-07 2012-08-02 Kao Corp Manufacturing method for grinding liquid composition
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
JP2013152775A (en) * 2011-12-30 2013-08-08 Hoya Corp Method for manufacturing substrate, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007098485A (en) * 2005-09-30 2007-04-19 Hoya Glass Disk Thailand Ltd Glass substrate for magnetic record medium and manufacturing method of magnetic disk
MY160470A (en) * 2010-09-24 2017-03-15 Kao Corp Process for producing polishing liquid composition
WO2012090426A1 (en) * 2010-12-27 2012-07-05 コニカミノルタオプト株式会社 Method of manufacturing a glass substrate for a hard disk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010519157A (en) * 2007-02-20 2010-06-03 エボニック デグサ ゲーエムベーハー Dispersion containing cerium oxide and colloidal silicon dioxide
JP2012143823A (en) * 2011-01-07 2012-08-02 Kao Corp Manufacturing method for grinding liquid composition
JP2013091589A (en) * 2011-10-27 2013-05-16 Nissan Chem Ind Ltd Porous secondary aggregated silica sol, and method for producing the same
JP2013152775A (en) * 2011-12-30 2013-08-08 Hoya Corp Method for manufacturing substrate, method for manufacturing glass substrate for magnetic disk, and method for manufacturing magnetic disk

Also Published As

Publication number Publication date
CN105745708B (en) 2019-03-19
CN105745708A (en) 2016-07-06
JPWO2015072569A1 (en) 2017-03-16
MY183852A (en) 2021-03-17
JP6280561B2 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP5813628B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5849764B2 (en) Method for preparing silica solution, polishing solution containing silica solution prepared by the method for preparing silica solution, and method for producing glass substrate for magnetic recording medium using the polishing solution
JP6280561B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
JP5319095B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5461936B2 (en) Manufacturing method of glass substrate for magnetic disk
JP6392610B2 (en) Manufacturing method of magnetic disk substrate
JP2015066657A (en) Manufacturing method for glass substrate
JP6374522B2 (en) Magnetic disk substrate manufacturing method, magnetic disk manufacturing method, filtering device, and polishing liquid manufacturing method
JP6280349B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and method for manufacturing substrate for magnetic disk
JP6255026B2 (en) Silica abrasive, method for producing silica abrasive, and method for producing glass substrate for magnetic disk
JP6328052B2 (en) Method for manufacturing glass substrate for information recording medium, method for manufacturing information recording medium, and polishing pad
WO2012090755A1 (en) Method for producing glass substrate for recording medium
JP6034580B2 (en) Manufacturing method of glass substrate for HDD
JP5483530B2 (en) Manufacturing method of magnetic disk substrate
JP5702448B2 (en) Manufacturing method of glass substrate for magnetic disk
US20100247976A1 (en) Glass substrate for a magnetic disk and method of manufacturing the same
WO2014051145A1 (en) Method for producing glass substrate for magnetic disks, method for producing magnetic disk, and cleaning liquid for glass substrate for magnetic disks
WO2012132073A1 (en) Method for manufacturing glass substrate for information recording medium, and information recording medium
JP2010080026A (en) Method for manufacturing substrate for magnetic disk
JP2011062781A (en) Manufacturing method of glass substrate for magnetic disk
SG176882A1 (en) Method for producing glass substrate for magnetic disk
WO2016038745A1 (en) Method for manufacturing substrate for magnetic disk
WO2012042725A1 (en) Glass substrate for information recording medium, manufacturing method for same, information recording medium, and information disc device
JP2015225687A (en) Manufacturing method of magnetic disk glass substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862427

Country of ref document: EP

Kind code of ref document: A1