WO2016039482A1 - Method for manufacture of substrate for magnetic disk and substrate for magnetic disk - Google Patents

Method for manufacture of substrate for magnetic disk and substrate for magnetic disk Download PDF

Info

Publication number
WO2016039482A1
WO2016039482A1 PCT/JP2015/076048 JP2015076048W WO2016039482A1 WO 2016039482 A1 WO2016039482 A1 WO 2016039482A1 JP 2015076048 W JP2015076048 W JP 2015076048W WO 2016039482 A1 WO2016039482 A1 WO 2016039482A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
substrate
abrasive grains
slurry
magnetic disk
Prior art date
Application number
PCT/JP2015/076048
Other languages
French (fr)
Japanese (ja)
Inventor
俵 義浩
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201580047901.9A priority Critical patent/CN106605264A/en
Priority to JP2016547813A priority patent/JPWO2016039482A1/en
Priority to SG11201701758RA priority patent/SG11201701758RA/en
Publication of WO2016039482A1 publication Critical patent/WO2016039482A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for manufacturing a magnetic disk substrate having a polishing process and a magnetic disk substrate.
  • a personal computer, a notebook personal computer, or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device for data recording.
  • a hard disk device used in a portable computer such as a notebook personal computer
  • a magnetic disk having a magnetic layer provided on a substrate is used, and a magnetic head slightly lifted above the surface of the magnetic disk ( Magnetic recording information is recorded on or read from the magnetic layer by a DFH (Dynamic Flying Height) head.
  • a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like.
  • the glass substrate is subjected to a polishing process.
  • An abrasive containing fine abrasive grains of silica (SiO 2 ) abrasive grains is used for precise polishing for making a glass substrate into a final product.
  • such an abrasive is used as an abrasive in a predetermined size by filtering or centrifuging.
  • polishing process after filtering the slurry used for grinding
  • Patent Document 1 A method for manufacturing a glass substrate for a magnetic disk using (including Patent Document 1) is known (Patent Document 1).
  • This plate-like foreign material is a foreign material having an irregular shape having a size larger than the average particle size (d50) of the roughly spherical silica abrasive grains. Therefore, in order to make the particle size of the silica abrasive grains within a predetermined range, before the polishing process is performed.
  • silica abrasive grains may be filtered using a filter.
  • the average particle diameter indicates a median diameter measured based on a volume distribution using a laser diffraction / scattering method.
  • the filter easily clogs, and silica abrasive grains cannot be produced efficiently.
  • the plate-like foreign material is deformed and passes through the filter after filtering, the plate-like foreign material cannot be sufficiently removed, and the plate-like foreign material remains, and polishing is performed using a slurry containing silica abrasive particles.
  • plate-like foreign matters still adhered to the main surface of the glass substrate.
  • the plate-like foreign matter cannot be removed sufficiently, and the plate-like foreign matter still adheres to the main surface of the polished glass substrate There was also.
  • an object of the present invention is to provide a magnetic disk substrate manufacturing method and a magnetic disk substrate capable of improving the yield after the substrate polishing process.
  • the present inventor replaces a filter that is easily clogged and cannot sufficiently remove the above-mentioned plate-like foreign matters or a centrifugal separator that cannot sufficiently remove the above-mentioned plate-like foreign matters before the polishing treatment.
  • a new method that can remove plate-like foreign matters was examined. Therefore, the present inventor noticed that the dielectrophoretic force of the silica abrasive grains being dielectrically polarized in an electric field and causing dielectrophoresis caused by the dielectric polarization is proportional to the cube of the diameter of the particles, and the following method is used.
  • the present invention includes the following forms.
  • a method for manufacturing a magnetic disk substrate comprising: By sandwiching the substrate between a pair of polishing pads, supplying a slurry containing abrasive grains of dielectric material between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, Including a polishing process for polishing both main surfaces of the substrate; Prior to the polishing treatment, the slurry is passed through an AC electric field having a non-uniform electric field intensity distribution caused by the electrode shape, and the foreign substances present in the slurry and the abrasive grains are separated by dielectrophoresis to form the foreign substances.
  • a method of manufacturing a magnetic disk substrate wherein a removal process for removing the magnetic disk is performed. That is, the removal treatment utilizes a difference in dielectrophoretic force that is received by particles having an average particle diameter of the abrasive grains and foreign matters (large-diameter particles) having a larger particle diameter than the average particle diameter. .
  • the abrasive grains are silica abrasive grains
  • the said silica abrasive grain is a manufacturing method of the board
  • Form 3 The magnetic disk according to mode 3, wherein an additive that decreases the absolute value of the surface potential of the silica abrasive grains is added to the slurry before the polishing treatment, and the addition of the additive is performed after the removal treatment. Manufacturing method for industrial use.
  • a method for manufacturing a magnetic disk substrate comprising: By sandwiching a substrate between a pair of polishing pads, supplying a slurry containing abrasive grains made of colloidal silica between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, Including a polishing process for polishing both main surfaces of the substrate;
  • the slurry used in the polishing treatment is passed into the slurry stock solution by passing the slurry stock solution between electrodes having a shape capable of generating an electric field with an uneven electric field intensity distribution by applying an alternating current.
  • a positive dielectrophoresis or a negative dielectrophoresis is caused to a plate-like foreign substance composed of a layered silicate contained therein, and the plate-like foreign substance is inhibited from passing between the electrodes, thereby causing the plate-like foreign substance to flow into the slurry.
  • a magnetic disk substrate having a pair of main surfaces having circular holes, an inner peripheral end surface forming a circular hole, and an outer peripheral end surface, wherein the main surface is made of a layered silicate having a maximum diameter of 100 nm or more.
  • plate-like foreign matters and the like can be removed from the abrasive grains used in the polishing process by utilizing the difference in dielectric constant, so that the plate-like foreign matters and the like are formed on the main surface of the substrate. Will not adhere. For this reason, the yield after the polishing process of the substrate can be improved. Further, according to the above-described magnetic disk substrate, it is possible to provide a magnetic disk substrate with a small number of plate-like foreign substances attached.
  • FIG. 1 It is a figure which shows the example of the glass substrate for magnetic discs manufactured with the manufacturing method of this embodiment.
  • (A), (b) is a figure explaining the grinding
  • silica abrasive grains are used as examples for the polishing abrasive grains.
  • polishing abrasive grains that serve as dielectric materials such as titanium oxide, cerium oxide, and aluminum oxide, are used. Etc. can also be applied.
  • abrasive grains of silica, titanium oxide, cerium oxide, and aluminum oxide silica abrasive grains are more preferable from the viewpoint of realizing further low roughness as a magnetic disk substrate.
  • FIG. 1 is a view showing an example of a glass substrate 1 for a magnetic disk manufactured by the manufacturing method of the present embodiment.
  • a magnetic disk glass substrate 1 (hereinafter simply referred to as a glass substrate 1) has a disc shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out. Yes.
  • a magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the glass substrate for a magnetic disk. That is, the magnetic disk glass substrate 1 has a pair of main surfaces having circular holes, an inner peripheral end surface that forms the circular holes, and an outer peripheral end surface.
  • a glass blank which is a base plate of a magnetic disk glass substrate, is produced by a float method or press molding.
  • the glass blank is a circular glass plate and is in a form before the center hole is cut out.
  • aluminosilicate glass soda lime glass, borosilicate glass, or the like can be used.
  • aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
  • FIGS. 2A and 2B are diagrams illustrating a polishing apparatus used in the polishing process of the glass substrate manufacturing method of the present embodiment.
  • the polishing apparatus 10 includes a lower surface plate 12, an upper surface plate 14, an internal gear 16, a carrier 18, a polishing pad 20, a sun gear 22, And an internal gear 24.
  • the polishing apparatus 10 sandwiches the internal gear 16 between the lower surface plate 12 and the upper surface plate 14 from the vertical direction.
  • a plurality of carriers 18 are held in the internal gear 16 during polishing.
  • five carriers 18 are shown.
  • a polishing pad 20 is planarly bonded to the lower surface plate 12 and the upper surface plate 14.
  • the carrier 18 is arranged so that the lower main surface of the glass substrate 1 contacts the polishing pad 20 on the lower surface plate 12 and the upper main surface of the glass substrate 1 contacts the polishing pad 20 on the upper surface plate 14. Is done. By polishing in such a state, the main surfaces on both sides of the glass substrate 1 processed into a ring shape can be polished.
  • the annular glass substrate 1 is held in a circular hole provided in each carrier 18.
  • the glass substrate 1 is held on the lower surface plate 12 by a carrier 18 having a gear 19 on the outer periphery.
  • the carrier 18 meshes with a sun gear 22 and an internal gear 24 provided on the lower surface plate 12.
  • the slurry used for polishing contains silica abrasive grains, is supplied to the upper surface plate 14 as shown in FIG. 2A, flows to the lower surface plate 12, and is collected in an external container.
  • the glass substrate 1 is sandwiched between the pair of polishing pads 20, and slurry containing silica abrasive grains is supplied between the polishing pad 20 and the glass substrate 1, so that the polishing pad 20 and the glass substrate 1 are relative to each other.
  • the main surfaces of the glass substrate 1 are polished by sliding them.
  • the silica abrasive grain contained in the slurry used for such a final polishing process is an abrasive grain subjected to the removal process described below.
  • FIG. 3 is a schematic diagram of a removal processing apparatus that performs the removal processing of the present embodiment.
  • the removal processing apparatus 50 includes a pair of electrodes 52 and 54. An AC voltage is applied to the electrodes 52 and 54.
  • the electrode 52 is a flat plate electrode.
  • the electrode 54 is an electrode having a smaller area than the area of the electrode 52, that is, a dot-like electrode. For this reason, when an AC voltage is applied between the electrode 52 and the electrode 54, the area of the electrode surface is different, so that an electric field having a nonuniform electric field strength is formed between the electrodes 52 and 54.
  • an electric field with non-uniform electric field strength means that the electric field strength (electric field strength) is high or low in space, or the electric flux density is dense in space. It means that the electric flux density becomes sparse as it approaches 52, and the electric flux density becomes denser as it approaches the electrode 54.
  • a flow path 55 through which slurry containing silica abrasive grains (colloidal silica) flows is provided in the gap between the electrodes 52 and 54.
  • a recovery pipe 56 is connected to the downstream end of the flow path 55. The recovery pipe 56 is provided on the electrode 52 side in the flow path 55.
  • heterogenous by applying an alternating voltage a well-known electrode shape can be used not only in the above-mentioned flat plate electrode and a dotted electrode.
  • a quadrupole electrode and an interdigital (comb-shaped) electrode are known.
  • Interdigital shape is a shape in which electrodes such as triangles, squares, trapezoids, and sinusoidal waveforms are arranged repeatedly and continuously. Unlike inter-electrode flow paths, the distance between electrodes increases regularly and decreases. This is a channel between electrodes.
  • Plate-like foreign substances such as silica abrasive grains in the slurry flowing through the channel 55, layered silicate crystals containing aluminum, and metal oxide particles such as iron oxide or titanium oxide (hereinafter also referred to as foreign substances such as plate-like foreign substances)
  • dielectric polarization occurs according to the difference in dielectric constant with the dispersion medium (liquid in which particles in the slurry are dispersed). Due to the dielectrophoretic force generated in the electric field due to this dielectric polarization, foreign matters such as silica abrasive grains and plate-like foreign matter move in the electric field.
  • a foreign substance such as a silica abrasive grain or a plate-like foreign substance having a larger particle diameter is more easily moved by a large dielectrophoretic force.
  • the electrode 54 has a higher electric flux density as foreign substances such as silica abrasive grains and plate-like foreign substances having larger particle diameters. The electrode 54 is easily held and strongly held on the electrode 54 side.
  • the removal treatment of the present embodiment uses the difference in dielectrophoretic force received by the silica abrasive grains and the foreign substances such as plate-like foreign substances having a particle diameter larger than the average particle diameter. It is.
  • the difference in the dielectrophoretic force due to the difference in particle diameter is more prominent when the difference in particle diameter is twice or more, and becomes more prominent when it is five or more times.
  • Positive dielectrophoresis refers to a behavior in which the dielectric constant of the dispersion medium in the slurry is smaller than that of the particles and the particles move toward a place where the electric flux density is dense due to the dielectric polarization of the particles.
  • Negative dielectrophoresis refers to a behavior in which the dielectric constant of the dispersion medium in the slurry is larger than that of the particles, and the particles move toward a place where the electric flux density is sparse due to the dielectric polarization of the particles. Therefore, in this embodiment, in order to cause dielectrophoresis in the silica abrasive grains, the dielectric constant is at least different between the liquid (dispersion medium) in the slurry and the silica abrasive grains.
  • the collection tube 56 is provided on the electrode 52 side (upper side of the drawing in FIG. 3) of the flow path 55.
  • foreign matters such as plate-like foreign matters that are easily moved by a large dielectrophoretic force move in the direction of the electrode 54 where the electric flux density is higher than that of the silica abrasive grains, and stay in a region near the electrode 54.
  • the slurry flows as a uniform laminar flow in the flow path 54 from the left side of the paper in FIG. 3, the slurry containing silica abrasive grains with small movement due to dielectrophoresis is collected on the electrode 52 side.
  • the liquid as the dispersion medium moves toward the electrode 54 where the electric flux density is dense. It moves in the direction in which the density is sparse, that is, in the direction away from the electrode 54 side where the electric field strength (electric field strength) is sparse. For this reason, the plate-like foreign material and the metal oxide particles are pressed against the electrode 54 which is a flat plate electrode having a low electric flux density when a combination of a flat plate electrode and a dotted electrode is used.
  • Abrasive grains having a smaller particle size have a small electrophoretic force and a relatively low force held in the flow path, and are recovered by the flow of the slurry.
  • foreign matters such as plate-like foreign matter remain in the flow path by the dielectrophoretic force and are removed from the slurry used for the polishing process. That is, in the present embodiment, the slurry is passed through an AC electric field having a non-uniform spatial distribution of electric field strength, and dielectrophoresis according to the size of the foreign particles such as silica abrasive grains and plate-like foreign particles in the slurry is performed.
  • a removal process for removing foreign matters such as plate-like foreign matters having a particle size larger than the average particle size of silica abrasive grains from the slurry is performed.
  • the abrasive grains made of colloidal silica and the plate-like foreign substances made of layered silicate can be separated by dielectrophoresis, and the plate-like foreign substances in the slurry can be removed.
  • the treatment conditions such as the alternating voltage used in the present embodiment, the flow rate of the slurry flowing in the flow path 55, the viscosity of the slurry, and the concentration of the silica abrasive grains in the slurry are not particularly limited, and abrasive grains, foreign matter, Dielectric migration is efficiently generated according to the difference in the dielectric constant of the dispersion medium and the size of the foreign particles such as abrasive grains and plate-like foreign particles. As long as foreign matter such as a plate-like foreign matter having a diameter can be removed from the slurry, it may be set appropriately.
  • At least the flow of the slurry flowing through the flow path 55 needs to be a laminar flow so that the silica abrasive particles can move by dielectrophoresis according to the size of the foreign particles such as silica abrasive particles and plate-like foreign matters.
  • the width of the flow path which is the distance between the electrodes through which the slurry flows, is preferably as close as possible to the particle size of the foreign matter such as the plate-like foreign matter to be removed, and is preferably 100 ⁇ m or less, preferably 30 ⁇ m or less.
  • the average particle diameter (d50) of the silica abrasive subjected to such removal treatment is, for example, 10 to 60 nm, more preferably 10 to 30 nm.
  • the size of coarse silica particles having a particle size larger than the particle size is 130 to 240 nm. That is, it is possible to suitably remove foreign matters having a particle size that is twice or more the average particle size (d50) of silica abrasive grains.
  • the rectangular frame is tilted in any direction around the silica abrasive grains and the rectangular frame is The maximum length of the long side of the rectangular frame when the rectangular frame surrounds the image of the silica abrasive grains so as to circumscribe the image of the grain.
  • the rectangular parallelepiped frame is an image of the silica abrasive grains so that the rectangular parallelepiped frame is circumscribed by the silica abrasive grains image in all directions around the silica abrasive grains.
  • the maximum length of the long side of the cuboid frame when enclosing.
  • the silica abrasive grains used in the present embodiment may be produced by any manufacturing method, for example, may be obtained by sol-gel method from tetramethyl orthosilicate or tetraethyl orthosilicate, but water glass and ion exchange resin are used. It is preferable that it is obtained by using. Such a silica abrasive can easily produce a large amount of silica abrasive without cost.
  • Water glass is obtained using silica sand as a material. Specifically, sodium silicate is produced by mixing and melting silica sand and sodium carbonate, and after cooling the melt, water glass can be obtained by dissolving in water.
  • water glass since water glass has many impurities, such as aluminum, and uses silica sand as a raw material, water glass contains many impurities, such as aluminum. If a large amount of aluminum, which is one of these impurities, is contained, a plate-like foreign material made of the above-described layered silicate can be easily formed. However, even the silica abrasive grains obtained by using the water glass and the ion exchange resin that are easy to form the silica abrasive grains of the plate-like foreign matter, the silica abrasive grains of the plate-like foreign substance are sufficiently obtained by the above-described removal treatment. Can be removed.
  • an additive such as K 2 SO 4 or Na 2 SO 4 is added to the slurry after the removal treatment before the polishing treatment.
  • a sulfuric acid compound, a phosphoric acid compound such as K 3 PO 4 or Na 3 PO 4, or a nitric acid compound such as NaNO 3 is added.
  • This additive also reduces the absolute value of the surface potential of the silica abrasive grains in the slurry. If the absolute value of the surface potential of the silica abrasive grains is reduced, the dielectric polarization of the silica abrasive grains may be affected, and the removal treatment effect may not be sufficiently obtained. For this reason, an additive is added to the slurry after the removal treatment before the polishing treatment.
  • the content of silica abrasive grains in the slurry before the above-described removal treatment is higher than the content of silica abrasive grains in the slurry after the polishing treatment. It is preferable for obtaining the effect of the removal treatment by the above.
  • the plate-like foreign material having a shape in which the ratio of the maximum width to the minimum width is 5 or more is removed from the silica abrasive grains.
  • the above-mentioned minimum width and maximum width of the silica abrasive grains are, for example, when the silica abrasive grains are imaged as a two-dimensional image, while the rectangular frames are tilted in all directions around the silica abrasive grains and the rectangular frames are harmful to the image of the silica abrasive grains.
  • the rectangular frame surrounds the image of the silica abrasive grains, the minimum length of the short side and the maximum length of the long side of the rectangular frame are referred to.
  • the silica abrasive grains are imaged as a three-dimensional image
  • the three-dimensional silica abrasive grains in the rectangular parallelepiped frame so that the rectangular parallelepiped frame circumscribes the image of the silica abrasive grains while tilting the rectangular parallelepiped frame in all directions around the silica abrasive grains.
  • the minimum length of the short side and the maximum length of the long side of the cuboid frame are referred to.
  • the minimum width substantially corresponds to the thickness of the plate-like foreign material.
  • the crushing treatment includes, for example, a treatment for applying ultrasonic vibration to the silica abrasive grains.
  • the silica abrasive grains agglomerate in order to collect the silica abrasive grains having a desired particle diameter by causing dielectrophoresis in the silica abrasive grains by the removal treatment. For this reason, it is preferable to crush the aggregate of silica abrasive grains by applying ultrasonic vibration to the recovered silica abrasive grains after the removal treatment, for example.
  • the aggregates easily cause scratches on the main surface of the glass substrate during the polishing process.
  • the slurry before the polishing treatment, the slurry is passed through an AC electric field having nonuniform electric field strength, and dielectrophoresis according to the particle size of the particles in the slurry is performed on the silica abrasive grains. It is generated in foreign matter such as plate-like foreign matter. This removes foreign matters such as plate-like foreign matters having a particle size larger than the average particle size of the silica abrasive grains from the slurry. For this reason, foreign matters such as plate-like foreign matters larger than the average particle size of the silica abrasive grains can be removed from the slurry.
  • the slurry used for the polishing process is an electrode having a shape that can generate an uneven electric field with non-uniform electric field strength or a dense distribution of electric flux density by applying an alternating voltage. By passing the slurry stock solution in between, positive dielectrophoresis or negative dielectrophoresis is caused to the plate-like foreign substance made of layered silicate contained in this slurry raw solution, and the plate-like foreign substance passes between the electrodes.
  • the slurry stock solution here refers to a polishing solution containing new silica abrasive grains that have never been used for polishing treatment.
  • the silica abrasive grains of the plate-like foreign material can be removed by the removal process, but the larger the silica abrasive grains, the greater the dielectrophoretic force.
  • grains removed by this embodiment are not limited to foreign materials, such as a plate-shaped foreign material, The rough spherical silica abrasive grain larger than an average particle diameter is also contained.
  • a glass blank as a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is produced by press molding (press molding process).
  • a glass plate having the same shape as the glass blank may be cut out from the glass plate by forming a glass plate by a well-known float method, redraw method, or fusion method.
  • shape processing is performed on the glass substrate on which the circular hole is formed (shape processing treatment). Thereby, a glass substrate is produced
  • end-face polishing is performed on the shape-processed glass substrate (end-face polishing process). Grinding is performed on the main surface of the glass substrate that has been subjected to end face polishing (grinding treatment). Next, 1st grinding
  • the disk-shaped glass substrate with a circular hole is obtained by forming a circular hole using a drill etc. with respect to a glass blank. Further, chamfering is performed on the end of the glass substrate after the circular hole forming process. The chamfering process is performed using a grinding wheel or the like. By chamfering, a side wall surface of the substrate that extends perpendicularly to the main surface of the glass substrate on the end surface of the glass substrate, and a chamfer surface that is provided between the side wall surface and the main surface and extends at an angle to the side wall surface. Are formed.
  • (C) End face polishing process In the end face polishing process, the inner end face and the outer peripheral side end face of the glass substrate are polished using polishing abrasive grains to perform mirror finish.
  • (D) Grinding process In the grinding process, a grinding process is performed on the main surface of the glass substrate using a grinding apparatus (not shown) provided with a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate made from the glass blank in the holding hole provided in the holding member of the grinding apparatus.
  • the grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between a fixed surface sheet such as a diamond grindstone between the upper surface plate and the lower surface plate. . Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
  • the glass substrate is polished while applying a slurry containing abrasive grains.
  • abrasive grains used for the first polishing for example, free abrasive grains such as cerium oxide abrasive grains or zirconia abrasive grains are used.
  • the polishing apparatus used for the first polishing process similarly to the grinding apparatus, the glass substrate is sandwiched between a pair of upper and lower surface plates. An annular flat polishing pad is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. Then, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are relatively moved, thereby polishing both main surfaces of the glass substrate.
  • the glass substrate is subjected to second polishing.
  • the second polishing treatment aims at mirror polishing of the main surface.
  • a polishing apparatus 10 as shown in FIGS. 2A and 2B is used. Specifically, the main surface on both sides of the glass substrate 1 is polished while the outer peripheral side end surface of the glass substrate 1 is held in the hole provided in the carrier 18 of the polishing apparatus 10.
  • the type and particle size of loose abrasive grains are different from those in the first polishing process, and the polishing pad 20 is also different in hardness from the polishing pad in the first polishing process.
  • the slurry used for the second polishing treatment is a slurry containing the silica abrasive grains subjected to the above-described removal treatment.
  • the arithmetic average roughness Ra of the roughness of the main surface can be set to 0.15 nm or less.
  • the root mean square roughness Rq of the micro-waviness, which is a wave having a wavelength of 50 to 200 ⁇ m, on the main surface of the glass substrate can be set to 0.1 nm or less.
  • the glass substrate is cleaned with the surface of the glass substrate using an alkali cleaning solution containing an inorganic alkali to become a final glass substrate.
  • the chemical strengthening process is performed, but the chemical strengthening process may not be performed if necessary.
  • another polishing process may be added, and the polishing process of the two main surfaces may be performed by one polishing process.
  • the slurry containing the silica abrasive grains subjected to the removal treatment of this embodiment is used for final polishing so as to have surface irregularities as a final product.
  • the glass substrate is polished using the slurry that has been subjected to the above-described removal treatment, so that the number of plate-like foreign substances made of layered silicate having a maximum diameter of 100 nm or more is 2 on the main surface. Glass substrates that are less than pieces / sheet can be manufactured.
  • a cleaning process for cleaning the main surface of the glass substrate is performed as described above.
  • an alkaline cleaning liquid containing an inorganic alkali that has a weak cleaning power so that the difference in surface roughness Ra between the glass substrate before and after the cleaning process is within a range of 0.05 nm or less.
  • an alkaline cleaning liquid having a strong cleaning power has been used.
  • the alkaline cleaning liquid having a strong cleaning power not only removes the plate-like foreign matter but also acts on the main surface of the glass substrate to roughen the main surface.
  • an alkaline cleaning solution having a pH difference of 0.05 nm or less in the surface roughness Ra (arithmetic average roughness) of the glass substrate before and after the cleaning treatment such as an alkaline cleaning solution containing an inorganic alkali having a pH of less than 10, is used.
  • the inorganic alkali includes, for example, NaOH or KOH.
  • Ra is the surface roughness specified in JIS B0601.
  • This surface roughness is obtained based on data obtained by measuring a range of 1 ⁇ m ⁇ 1 ⁇ m with a resolution of 512 ⁇ 256 pixels using an atomic force microscope (AFM). Further, the fine waviness with a wavelength of 50 to 200 ⁇ m can be measured by, for example, an optical surface shape measuring device.
  • AFM atomic force microscope
  • the cleaning treatment is preferably non-scrub cleaning in which the glass substrate is immersed or brought into contact with the cleaning liquid, from the viewpoint of not scratching the glass substrate.
  • scrub cleaning is performed to remove the plate-like foreign matter by rubbing the glass substrate with a brush or a cleaning pad in order to remove the plate-like foreign matter firmly attached to the glass substrate.
  • this scrub cleaning tends to damage the main surface of the glass substrate.
  • the present invention also provides a magnetic disk substrate having an arithmetic average roughness Ra of 0.15 nm or less, more preferably 0.12 nm or less, and even more preferably 0.10 nm or less, of the surface roughness of the main surface of the substrate. It is suitable for.
  • the surface roughness Ra is set to 0.15 nm or less in the final polishing process, not only the plate-like foreign matter existing in the slurry is likely to stick to the substrate surface, but also a cleaning solution having a strong etching power as described above after the final polishing process.
  • the plate-like foreign matter tends to remain on the glass substrate surface, but this problem can be solved by the manufacturing method of the present embodiment.
  • the main surface of the cleaned and dried glass substrate was subjected to detection of foreign matters or defects using a laser type surface inspection apparatus.
  • the laser threshold is set to a range in which the number of detected foreign matters or defects is 10 to 20, and the detected foreign matter or defects are measured using the SEM (scanning electron microscope) or AFM (atomic force microscope). The number of foreign matters having a thickness of 100 nm or more was counted.
  • a cross-sectional TEM transmission electron microscope

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

Provided is a method for manufacture of a substrate for a magnetic disk, comprising a polishing process of sandwiching a substrate with a pair of polishing pads, supplying a slurry which includes a dielectric and abrasive polishing particles between the polishing pads and the substrate, and sliding the polishing pads and the substrate relative to each other, thereby polishing both main surfaces of the substrate. Prior to the polishing process, a removal process is carried out on the abrasive polishing particles of passing the slurry through an alternating electric field with a uniform field strength which arises from electrode shapes, and, with dielectrophoresis, separating foreign matter in the slurry from the abrasive polishing particles, and removing same.

Description

磁気ディスク用基板の製造方法及び磁気ディスク用基板Manufacturing method of magnetic disk substrate and magnetic disk substrate
 本発明は、研磨処理を有する磁気ディスク用基板の製造方法及び磁気ディスク用基板に関する。 The present invention relates to a method for manufacturing a magnetic disk substrate having a polishing process and a magnetic disk substrate.
 今日、パーソナルコンピュータ、ノート型パーソナルコンピュータ、あるいはDVD(Digital Versatile Disc)記録装置等には、データ記録のためにハードディスク装置が内蔵されている。特に、ノート型パーソナルコンピュータ等の可搬性を前提とした機器に用いられるハードディスク装置では、基板に磁性層が設けられた磁気ディスクが用いられ、磁気ディスクの面上を僅かに浮上させた磁気ヘッド(DFH(Dynamic Flying Height)ヘッド)で磁性層に磁気記録情報が記録され、あるいは読み取られる。この磁気ディスクの基板には、金属基板等に比べて塑性変形をしにくい性質を持つことから、ガラス基板が好適に用いられている。しかも、磁気ヘッドによる磁気記録情報の読み書きを安定して行うために、磁気ディスクのガラス基板の表面凹凸は可能な限り小さくすることが求められる。 Today, a personal computer, a notebook personal computer, or a DVD (Digital Versatile Disc) recording device has a built-in hard disk device for data recording. In particular, in a hard disk device used in a portable computer such as a notebook personal computer, a magnetic disk having a magnetic layer provided on a substrate is used, and a magnetic head slightly lifted above the surface of the magnetic disk ( Magnetic recording information is recorded on or read from the magnetic layer by a DFH (Dynamic Flying Height) head. As the substrate of this magnetic disk, a glass substrate is preferably used because it has a property that it is less likely to undergo plastic deformation than a metal substrate or the like. Moreover, in order to stably read and write magnetic recording information by the magnetic head, it is required to make the surface irregularities of the glass substrate of the magnetic disk as small as possible.
 磁気ディスク用ガラス基板の表面凹凸を小さくするために、ガラス基板の研磨処理が行われる。ガラス基板を最終製品とするための精密な研磨に、シリカ(SiO2)砥粒の微細な研磨砥粒を含む研磨剤が用いられる。このような研磨剤は、研磨処理後のガラス基板の表面品質を高めるために、フィルタリングや遠心分離を行なうことで所定のサイズに揃えて研磨剤として用いられる。また、研磨処理時、シリカ砥粒を含むスラリーを循環させながら研磨に用いる場合、研磨に使用したスラリーをフィルタリングしたのち、研磨に再使用する。
 例えば、ガラス基板の主表面のシリカ砥粒を用いた研磨工程の最終研磨工程において、最小捕捉粒子径が1μm以下のフィルタを使用してフィルタリングした後の緩衝剤を含む研磨用スラリー(シリカ砥粒を含む)を用いる磁気ディスク用ガラス基板の製造方法が知られている(特許文献1)。
In order to reduce the surface unevenness of the magnetic disk glass substrate, the glass substrate is subjected to a polishing process. An abrasive containing fine abrasive grains of silica (SiO 2 ) abrasive grains is used for precise polishing for making a glass substrate into a final product. In order to improve the surface quality of the glass substrate after the polishing treatment, such an abrasive is used as an abrasive in a predetermined size by filtering or centrifuging. Moreover, when using for grinding | polishing, circulating the slurry containing a silica abrasive grain at the time of a grinding | polishing process, after filtering the slurry used for grinding | polishing, it reuses for grinding | polishing.
For example, in a final polishing step of a polishing step using silica abrasive grains on the main surface of a glass substrate, a polishing slurry (silica abrasive grains) containing a buffering agent after filtering using a filter having a minimum trapping particle diameter of 1 μm or less A method for manufacturing a glass substrate for a magnetic disk using (including Patent Document 1) is known (Patent Document 1).
特開2010-079948号公報JP 2010-079948 A
 ところが、上述した研磨処理後のガラス基板の主表面には、研磨処理に用いるスラリー中のシリカ砥粒に由来する板状異物等の異物が付着する場合がある。この板状異物のガラス基板への付着は、近年、計測技術の進展によって認識されてきたものである。ガラス基板に付着した板状異物は、磁気ディスクの主表面上に表面凹凸を作るので、極めて浮上距離の短い磁気ヘッドにおいて、安定した磁気記録情報の読み書きが難しくなる不都合がある。また、この板状異物は、最終洗浄処理においても容易に除去することができない。洗浄力の高い洗浄液を用いると、ガラス基板の主表面の平滑な面に凹凸を作り、磁気ディスク用ガラス基板として好ましくない。
 この板状異物は、概略球形状のシリカ砥粒の平均粒径(d50)よりサイズの大きな異形状の異物であるため、シリカ砥粒の粒子サイズを所定の範囲に揃えるために、研磨処理前に、シリカ砥粒を、フィルタを用いてフィルタリングする場合もある。ここで、平均粒径とは、レーザー回折・散乱法を用いた体積分布に基づいて測定されるメディアン径を示す。しかし、このようなフィルタリングでは、フィルタが容易に目詰まりを起こすため、効率よくシリカ砥粒を作製することができない。しかも、フィルタリング後のシリカ砥粒には、板状異物が変形してフィルタを通過するため板状異物を十分に除去できず板状異物が残存し、シリカ砥粒を含むスラリーを用いて研磨処理したガラス基板の主表面には、依然として板状異物が付着する場合もあった。また、遠心分離によって板状異物のような大きなシリカ砥粒を除去しようとしても、板状異物を十分に除去できず、研磨処理したガラス基板の主表面には、依然として板状異物が付着する場合もあった。このため、ガラス基板の研磨処理後の歩留まりが低下する問題がある。このような問題は、ガラス基板に限られず、金属基板(アルミニウム基板)においても同様に生じる。そして、これらの問題は、平均粒径が、10~60nm、より好ましくは10~30nmといった非常に微小な粒径の研磨砥粒の場合に特に顕著である。
However, foreign substances such as plate-like foreign substances derived from silica abrasive grains in the slurry used for the polishing process may adhere to the main surface of the glass substrate after the above-described polishing process. The adhesion of the plate-like foreign matter to the glass substrate has been recognized in recent years due to the progress of measurement technology. The plate-like foreign matter attached to the glass substrate creates surface irregularities on the main surface of the magnetic disk, which makes it difficult to read and write stable magnetic recording information in a magnetic head with a very short flying distance. Moreover, this plate-like foreign material cannot be easily removed even in the final cleaning process. If a cleaning liquid having a high cleaning power is used, irregularities are formed on the smooth surface of the main surface of the glass substrate, which is not preferable as a glass substrate for a magnetic disk.
This plate-like foreign material is a foreign material having an irregular shape having a size larger than the average particle size (d50) of the roughly spherical silica abrasive grains. Therefore, in order to make the particle size of the silica abrasive grains within a predetermined range, before the polishing process is performed. In addition, silica abrasive grains may be filtered using a filter. Here, the average particle diameter indicates a median diameter measured based on a volume distribution using a laser diffraction / scattering method. However, with such filtering, the filter easily clogs, and silica abrasive grains cannot be produced efficiently. Moreover, since the plate-like foreign material is deformed and passes through the filter after filtering, the plate-like foreign material cannot be sufficiently removed, and the plate-like foreign material remains, and polishing is performed using a slurry containing silica abrasive particles. In some cases, plate-like foreign matters still adhered to the main surface of the glass substrate. In addition, even when trying to remove large silica abrasive grains such as plate-like foreign matter by centrifugation, the plate-like foreign matter cannot be removed sufficiently, and the plate-like foreign matter still adheres to the main surface of the polished glass substrate There was also. For this reason, there exists a problem that the yield after the grinding | polishing process of a glass substrate falls. Such a problem occurs not only in the glass substrate but also in a metal substrate (aluminum substrate). These problems are particularly noticeable in the case of abrasive grains having an extremely small particle diameter such as an average particle diameter of 10 to 60 nm, more preferably 10 to 30 nm.
 そこで、本発明は、基板の研磨処理後の歩留まりを向上させることができる磁気ディスク用基板の製造方法、及び磁気ディスク用基板を提供することを目的とする。 Accordingly, an object of the present invention is to provide a magnetic disk substrate manufacturing method and a magnetic disk substrate capable of improving the yield after the substrate polishing process.
 本発明者は、研磨処理前に、目詰まりがし易く、上述の板状異物を十分に除去することができないフィルタや、上述の板状異物を十分に除去することができない遠心分離に替えて、板状異物等を除去できる新たな方法を検討した。そこで、本発明者は、シリカ砥粒が、電場中で誘電分極し、誘電分極によって生じる誘電泳動を引き起こす誘電泳動力は、粒子の直径の3乗に比例することに注目し、以下の方法を発明した。本発明は、以下の形態を含む。 The present inventor replaces a filter that is easily clogged and cannot sufficiently remove the above-mentioned plate-like foreign matters or a centrifugal separator that cannot sufficiently remove the above-mentioned plate-like foreign matters before the polishing treatment. A new method that can remove plate-like foreign matters was examined. Therefore, the present inventor noticed that the dielectrophoretic force of the silica abrasive grains being dielectrically polarized in an electric field and causing dielectrophoresis caused by the dielectric polarization is proportional to the cube of the diameter of the particles, and the following method is used. Invented. The present invention includes the following forms.
(形態1)
磁気ディスク用基板の製造方法であって、
 一対の研磨パッドで基板を挟み、前記研磨パッドと前記基板の間に誘電体材料の研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の両主表面を研磨する研磨処理を含み、
 前記研磨処理の前に、前記スラリーは電極形状によって生じる電場強度の分布が不均一な交流電場中を通過させ、前記スラリー中に存在する異物と研磨砥粒とを誘電泳動によって分離して前記異物を除去する除去処理がなされる、ことを特徴とする磁気ディスク用基板の製造方法。すなわち、前記除去処理は、前記研磨砥粒の平均粒径を有する粒子と該平均粒径よりも粒径が大きな異物(大径粒子)とがそれぞれ受ける誘電泳動力の差を利用するものである。
(Form 1)
A method for manufacturing a magnetic disk substrate, comprising:
By sandwiching the substrate between a pair of polishing pads, supplying a slurry containing abrasive grains of dielectric material between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, Including a polishing process for polishing both main surfaces of the substrate;
Prior to the polishing treatment, the slurry is passed through an AC electric field having a non-uniform electric field intensity distribution caused by the electrode shape, and the foreign substances present in the slurry and the abrasive grains are separated by dielectrophoresis to form the foreign substances. A method of manufacturing a magnetic disk substrate, wherein a removal process for removing the magnetic disk is performed. That is, the removal treatment utilizes a difference in dielectrophoretic force that is received by particles having an average particle diameter of the abrasive grains and foreign matters (large-diameter particles) having a larger particle diameter than the average particle diameter. .
(形態2)
 前記研磨砥粒は、シリカ砥粒であり、
 前記シリカ砥粒は、水ガラスとイオン交換樹脂を用いて得られたものである、形態1に記載の磁気ディスク用基板の製造方法。
(Form 2)
The abrasive grains are silica abrasive grains,
The said silica abrasive grain is a manufacturing method of the board | substrate for magnetic discs of the form 1 which is obtained using water glass and ion-exchange resin.
(形態3)
 前記研磨処理前に前記スラリーには、前記シリカ砥粒の表面電位の絶対値を減少させる添加剤が添加され、前記添加剤の添加は、前記除去処理後に行われる、形態3に記載の磁気ディスク用基板の製造方法。
(Form 3)
The magnetic disk according to mode 3, wherein an additive that decreases the absolute value of the surface potential of the silica abrasive grains is added to the slurry before the polishing treatment, and the addition of the additive is performed after the removal treatment. Manufacturing method for industrial use.
(形態4)
 前記除去処理後の研磨砥粒に解砕処理を施す、形態1~3のいずれか1つに記載の磁気ディスク用基板の製造方法。
(Form 4)
The method for manufacturing a magnetic disk substrate according to any one of Embodiments 1 to 3, wherein the abrasive grains after the removal treatment are crushed.
(形態5)
 前記除去処理前の前記スラリーにおける前記研磨砥粒の含有率は、前記研磨処理後の前記スラリーにおける前記研磨砥粒の含有率に比べて高い、形態1~4のいずれか1つに記載の磁気ディスク用基板の製造方法。
(Form 5)
The magnetic content according to any one of aspects 1 to 4, wherein the content of the abrasive grains in the slurry before the removal treatment is higher than the content of the abrasive grains in the slurry after the polishing treatment. A method for manufacturing a disk substrate.
(形態6)
前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、前記洗浄処理では、pHが10未満の、無機アルカリを含んだアルカリ洗浄液を用いる、形態1~5のいずれか1つに記載の磁気ディスク用基板の製造方法。
(Form 6)
After the polishing process, a cleaning process for cleaning the main surface of the substrate is performed, and in the cleaning process, an alkaline cleaning solution containing an inorganic alkali having a pH of less than 10 is used. A method of manufacturing a magnetic disk substrate.
(形態7)
 前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、
 前記洗浄処理は、前記基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄である、形態1~6のいずれか1つに記載の磁気ディスク用基板の製造方法。
(Form 7)
After the polishing process, a cleaning process for cleaning the main surface of the substrate is performed,
The method for manufacturing a magnetic disk substrate according to any one of Embodiments 1 to 6, wherein the cleaning treatment is non-scrub cleaning in which the substrate is immersed in or brought into contact with a cleaning liquid.
(形態8)
前記除去処理では、コロイダルシリカからなる研磨砥粒と層状ケイ酸塩からなる板状異物を誘電泳動によって分離し、スラリー中の板状異物が除去される、形態1~7のいずれか1つに記載の磁気ディスク用基板の製造方法。
(Form 8)
In the removing treatment, the abrasive grains made of colloidal silica and the plate-like foreign matters made of layered silicate are separated by dielectrophoresis, and the plate-like foreign matters in the slurry are removed. A method for manufacturing the magnetic disk substrate according to claim.
(形態9)
 磁気ディスク用基板の製造方法であって、
 一対の研磨パッドで基板を挟み、前記研磨パッドと前記基板の間にコロイダルシリカからなる研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の両主表面を研磨する研磨処理を含み、
 前記研磨処理に用いられるスラリーは、交流電流を印加することで電場強度の分布が不均一な電場を発生させることができる形状を有する電極間にスラリー原液を通過させることにより、前記スラリー原液中に含まれる層状ケイ酸塩からなる板状異物に対して正の誘電泳動又は負の誘電泳動を生じさせ、前記板状異物が前記電極間を通過するのを阻害して前記板状異物を前記スラリー原液から除去したものである、ことを特徴とする磁気ディスク用基板の製造方法。
(Form 9)
A method for manufacturing a magnetic disk substrate, comprising:
By sandwiching a substrate between a pair of polishing pads, supplying a slurry containing abrasive grains made of colloidal silica between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, Including a polishing process for polishing both main surfaces of the substrate;
The slurry used in the polishing treatment is passed into the slurry stock solution by passing the slurry stock solution between electrodes having a shape capable of generating an electric field with an uneven electric field intensity distribution by applying an alternating current. A positive dielectrophoresis or a negative dielectrophoresis is caused to a plate-like foreign substance composed of a layered silicate contained therein, and the plate-like foreign substance is inhibited from passing between the electrodes, thereby causing the plate-like foreign substance to flow into the slurry. A method for producing a magnetic disk substrate, wherein the substrate is removed from a stock solution.
(形態10)
 円孔を有する一対の主表面と、円孔を形成する内周端面と、外周端面と、を有する磁気ディスク用基板であって、前記主表面は、最大径が100nm以上の層状ケイ酸塩からなる板状異物の付着数が、2個/枚未満である、ことを特徴とする磁気ディスク用基板。
(Form 10)
A magnetic disk substrate having a pair of main surfaces having circular holes, an inner peripheral end surface forming a circular hole, and an outer peripheral end surface, wherein the main surface is made of a layered silicate having a maximum diameter of 100 nm or more. A magnetic disk substrate, wherein the number of adhered plate-like foreign matters is less than 2 / sheet.
 上述の磁気ディスク用基板の製造方法によれば、研磨処理に用いる研磨砥粒から板状異物等を誘電率の違いを利用して除去することができるため、基板の主表面に板状異物等が付着することはない。このため、基板の研磨処理後の歩留まりを向上させることができる。また、上述の磁気ディスク用基板によれば、板状異物の付着数が少ない磁気ディスク基板を提供することができる。 According to the above-described method for manufacturing a magnetic disk substrate, plate-like foreign matters and the like can be removed from the abrasive grains used in the polishing process by utilizing the difference in dielectric constant, so that the plate-like foreign matters and the like are formed on the main surface of the substrate. Will not adhere. For this reason, the yield after the polishing process of the substrate can be improved. Further, according to the above-described magnetic disk substrate, it is possible to provide a magnetic disk substrate with a small number of plate-like foreign substances attached.
本実施形態の製造方法で製造される磁気ディスク用ガラス基板の例を示す図である。It is a figure which shows the example of the glass substrate for magnetic discs manufactured with the manufacturing method of this embodiment. (a),(b)は、本実施形態のガラス基板の製造方法の研磨処理で用いる研磨装置を説明する図である。(A), (b) is a figure explaining the grinding | polishing apparatus used by the grinding | polishing process of the manufacturing method of the glass substrate of this embodiment. 本実施形態の除去処理を行う除去処理装置の模式図である。It is a schematic diagram of the removal processing apparatus which performs the removal process of this embodiment.
 以下、本発明の実施形態に係る磁気ディスク用基板の製造方法及び磁気ディスク用基板について説明する。以下の説明では、ガラス基板を例として用いて説明するが、本実施形態の磁気ディスク用基板の製造方法は、金属基板(アルミニウム基板)にも同様に適用することができる。また、本実施形態では、研磨砥粒に用いる例としてシリカ砥粒を例として用いて説明するが、シリカ砥粒以外に、誘電体材料となる研磨砥粒、例えば酸化チタン、酸化セリウム、酸化アルミニウム等を適用することもできる。シリカ、酸化チタン、酸化セリウム、酸化アルミニウムの砥粒の中でも、磁気ディスク用基板としてより一層の低粗さを実現できる観点で、シリカ砥粒がより好ましい。 Hereinafter, a method for manufacturing a magnetic disk substrate and a magnetic disk substrate according to an embodiment of the present invention will be described. In the following description, a glass substrate is used as an example, but the method for manufacturing a magnetic disk substrate according to the present embodiment can be similarly applied to a metal substrate (aluminum substrate). In this embodiment, silica abrasive grains are used as examples for the polishing abrasive grains. However, in addition to silica abrasive grains, polishing abrasive grains that serve as dielectric materials, such as titanium oxide, cerium oxide, and aluminum oxide, are used. Etc. can also be applied. Among the abrasive grains of silica, titanium oxide, cerium oxide, and aluminum oxide, silica abrasive grains are more preferable from the viewpoint of realizing further low roughness as a magnetic disk substrate.
(磁気ディスク用ガラス基板)
 まず、本実施形態で製造される磁気ディスク用ガラス基板について説明する。図1は、本実施形態の製造方法で製造される磁気ディスク用ガラス基板1の例を示す図である。磁気ディスク用ガラス基板1(以降、単にガラス基板1という)は、図1に示されるように、円板形状であって、外周と同心の円形の中心孔がくり抜かれたリング状を成している。磁気ディスク用ガラス基板の両面の円環状領域に磁性層(記録領域)が形成されることで、磁気ディスクが形成される。
 すなわち、磁気ディスク用ガラス基板1は、円孔を有する一対の主表面と、円孔を形成する内周端面と、外周端面と、を有する。
(Magnetic disk glass substrate)
First, the glass substrate for magnetic disks manufactured by this embodiment is demonstrated. FIG. 1 is a view showing an example of a glass substrate 1 for a magnetic disk manufactured by the manufacturing method of the present embodiment. As shown in FIG. 1, a magnetic disk glass substrate 1 (hereinafter simply referred to as a glass substrate 1) has a disc shape and a ring shape in which a circular center hole concentric with the outer periphery is cut out. Yes. A magnetic disk is formed by forming magnetic layers (recording areas) in the annular areas on both sides of the glass substrate for a magnetic disk.
That is, the magnetic disk glass substrate 1 has a pair of main surfaces having circular holes, an inner peripheral end surface that forms the circular holes, and an outer peripheral end surface.
 磁気ディスク用ガラス基板の素板であるガラスブランクは、フロート法やプレス成形により作製される。ガラスブランクは、円形状のガラス板であり、中心孔がくり抜かれる前の形態である。ガラスブランクの材料として、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラスなどを用いることができる。特に、化学強化を施すことができ、また主表面の平面度及び基板の強度において優れた磁気ディスク用ガラス基板を作製することができるという点で、アルミノシリケートガラスを好適に用いることができる。 A glass blank, which is a base plate of a magnetic disk glass substrate, is produced by a float method or press molding. The glass blank is a circular glass plate and is in a form before the center hole is cut out. As a material for the glass blank, aluminosilicate glass, soda lime glass, borosilicate glass, or the like can be used. In particular, aluminosilicate glass can be suitably used in that it can be chemically strengthened and a glass substrate for a magnetic disk excellent in the flatness of the main surface and the strength of the substrate can be produced.
 後述するように、ガラスブランクに形状加工処理、端面研磨処理、研削処理等を施して得られたガラス基板1に最終研磨処理を施してガラス基板1は最終のガラス基板となる。このとき、最終研磨処理では、図2(a),(b)に示すような研磨処理装置10を用いてシリカ砥粒を含むスラリーを用いた研磨処理が行われる。図2(a),(b)は、本実施形態のガラス基板の製造方法の研磨処理で用いる研磨装置を説明する図である。 As will be described later, the glass substrate 1 obtained by subjecting the glass blank to shape processing, end surface polishing, grinding, and the like is subjected to final polishing and the glass substrate 1 becomes the final glass substrate. At this time, in the final polishing process, a polishing process using a slurry containing silica abrasive grains is performed using a polishing apparatus 10 as shown in FIGS. FIGS. 2A and 2B are diagrams illustrating a polishing apparatus used in the polishing process of the glass substrate manufacturing method of the present embodiment.
 研磨装置10は、図2(a)、(b)に示すように、下定盤12と、上定盤14と、インターナルギヤ16と、キャリア18と、研磨パッド20と、太陽ギヤ22と、インターナルギヤ24と、を備える。
 研磨装置10は、上下方向から、下定盤12と上定盤14との間にインターナルギヤ16を挟む。インターナルギヤ16内には、研磨時に複数のキャリア18が保持される。図2(b)には、5つのキャリア18が示されている。下定盤12及び上定盤14には、研磨パッド20が平面的に接着されている。
As shown in FIGS. 2A and 2B, the polishing apparatus 10 includes a lower surface plate 12, an upper surface plate 14, an internal gear 16, a carrier 18, a polishing pad 20, a sun gear 22, And an internal gear 24.
The polishing apparatus 10 sandwiches the internal gear 16 between the lower surface plate 12 and the upper surface plate 14 from the vertical direction. A plurality of carriers 18 are held in the internal gear 16 during polishing. In FIG. 2B, five carriers 18 are shown. A polishing pad 20 is planarly bonded to the lower surface plate 12 and the upper surface plate 14.
 下定盤12上の研磨パッド20にガラス基板1の下側の主表面が当接し、上定盤14上の研磨パッド20にガラス基板1の上側の主表面が当接するように、キャリア18が配置される。このような状態で研磨を行うことにより、リング状に加工されたガラス基板1の両側の主表面を研磨することができる。 The carrier 18 is arranged so that the lower main surface of the glass substrate 1 contacts the polishing pad 20 on the lower surface plate 12 and the upper main surface of the glass substrate 1 contacts the polishing pad 20 on the upper surface plate 14. Is done. By polishing in such a state, the main surfaces on both sides of the glass substrate 1 processed into a ring shape can be polished.
 図2(b)に示されるように、各キャリア18に設けられた円形状の孔に、円環状のガラス基板1が保持される。一方、ガラス基板1は、下定盤12の上で、外周にギヤ19を有するキャリア18に保持される。キャリア18は、下定盤12に設けられた太陽ギヤ22、インターナルギヤ24と噛合する。
 この構成により、ガラス基板1は、遊星歯車方式で、研磨パッド20に対して相対的に移動して研磨される。研磨に用いるスラリーはシリカ砥粒を含み、図2(a)に示すように上定盤14に供給され、下定盤12に流れて外部容器に回収される。
 すなわち、最終研磨処理では、一対の研磨パッド20でガラス基板1を挟み、研磨パッド20とガラス基板1の間にシリカ砥粒を含むスラリーを供給して、研磨パッド20とガラス基板1を相対的に摺動させることにより、ガラス基板1の両主表面が研磨される。
 なお、このような最終研磨処理に用いるスラリーに含まれるシリカ砥粒は、以下説明する除去処理された砥粒である。
As shown in FIG. 2B, the annular glass substrate 1 is held in a circular hole provided in each carrier 18. On the other hand, the glass substrate 1 is held on the lower surface plate 12 by a carrier 18 having a gear 19 on the outer periphery. The carrier 18 meshes with a sun gear 22 and an internal gear 24 provided on the lower surface plate 12.
With this configuration, the glass substrate 1 is polished by moving relative to the polishing pad 20 in a planetary gear system. The slurry used for polishing contains silica abrasive grains, is supplied to the upper surface plate 14 as shown in FIG. 2A, flows to the lower surface plate 12, and is collected in an external container.
That is, in the final polishing process, the glass substrate 1 is sandwiched between the pair of polishing pads 20, and slurry containing silica abrasive grains is supplied between the polishing pad 20 and the glass substrate 1, so that the polishing pad 20 and the glass substrate 1 are relative to each other. The main surfaces of the glass substrate 1 are polished by sliding them.
In addition, the silica abrasive grain contained in the slurry used for such a final polishing process is an abrasive grain subjected to the removal process described below.
 (除去処理)
 図3は、本実施形態の除去処理を行う除去処理装置の模式図である。除去処理装置50は、一対の電極52,54を備える。電極52,54には、交流電圧が印加される。電極52は平板電極である。電極54は電極52の面積に比べて面積の小さい電極であり、いわば点状電極である。このため、電極52と電極54との間に交流電圧が印加されたとき、電極面の面積が異なることから、電極52,54間で電場強度が不均一な電場が形成される。すなわち、電場強度が不均一な電場とは、空間において、電場強度(電界の強さ)に高低が存在すること、あるいは電束密度が空間において粗密を成すことをいい、具体的には、電極52に近づくにつれて電束密度が疎になっており、電極54に近づくにつれ電束密度が密になっていることをいう。
 電極52,54の隙間には、シリカ砥粒(コロイダルシリカ)を含んだスラリーの流れる流路55が設けられている。
 流路55の下流側の端には、回収管56が接続されている。回収管56は、流路55のうち電極52の側に設けられている。
 尚、交流電圧を印加することで電場強度が不均一な電場を発生させることができる形状の電極としては、上記した平板電極と点状電極に限られず公知の電極形状を用いることができる。例えば、四重極電極、インターデジタル形状(櫛型)電極などが知られている。インターデジタル形状とは、三角形、方形、台形、正弦波形などの電極が繰り返し連続して配置された形状で、一定間隔の電極間流路と異なり、規則的に電極間距離が大きくなり、小さくなる電極間流路としたものである。
(Removal process)
FIG. 3 is a schematic diagram of a removal processing apparatus that performs the removal processing of the present embodiment. The removal processing apparatus 50 includes a pair of electrodes 52 and 54. An AC voltage is applied to the electrodes 52 and 54. The electrode 52 is a flat plate electrode. The electrode 54 is an electrode having a smaller area than the area of the electrode 52, that is, a dot-like electrode. For this reason, when an AC voltage is applied between the electrode 52 and the electrode 54, the area of the electrode surface is different, so that an electric field having a nonuniform electric field strength is formed between the electrodes 52 and 54. In other words, an electric field with non-uniform electric field strength means that the electric field strength (electric field strength) is high or low in space, or the electric flux density is dense in space. It means that the electric flux density becomes sparse as it approaches 52, and the electric flux density becomes denser as it approaches the electrode 54.
In the gap between the electrodes 52 and 54, a flow path 55 through which slurry containing silica abrasive grains (colloidal silica) flows is provided.
A recovery pipe 56 is connected to the downstream end of the flow path 55. The recovery pipe 56 is provided on the electrode 52 side in the flow path 55.
In addition, as an electrode of the shape which can generate | occur | produce an electric field whose electric field intensity | strength is non-uniform | heterogenous by applying an alternating voltage, a well-known electrode shape can be used not only in the above-mentioned flat plate electrode and a dotted electrode. For example, a quadrupole electrode and an interdigital (comb-shaped) electrode are known. Interdigital shape is a shape in which electrodes such as triangles, squares, trapezoids, and sinusoidal waveforms are arranged repeatedly and continuously. Unlike inter-electrode flow paths, the distance between electrodes increases regularly and decreases. This is a channel between electrodes.
 流路55を流れるスラリー中のシリカ砥粒、アルミニウムを含む層状ケイ酸塩の結晶等の板状異物、及び酸化鉄あるいは酸化チタンなどの酸化金属粒子(以降、板状異物等の異物ともいう)は、上述の不均一な電場強度を有する電場を通過するとき、分散媒(スラリー中の粒子が分散する液体)との誘電率の差に応じて誘電分極を起こす。この誘電分極により電場中で発生する誘電泳動力によってシリカ砥粒及び板状異物等の異物は電場中で移動する。このとき、粒径の大きなシリカ砥粒又は板状異物等の異物ほど大きな誘電泳動力によって移動し易くなる。シリカ砥粒及び板状異物等の異物が分散媒に対して誘電率が高い正の誘電泳動の場合、大きな粒径のシリカ砥粒及び板状異物等の異物ほど電束密度が高くなる電極54の側に移動し易く、電極54の側で強く保持されることとなる。一方、シリカ砥粒及び板状異物等の異物が分散媒に対して誘電率が低い負の誘電泳動の場合、粒径の大きなシリカ砥粒又は板状異物等の異物ほど電束密度が疎になる電極52の側に移動し易く、電束密度が密になっている電極54側から反発する向きに力を受けることとなる。つまり、本実施形態の除去処理は、シリカ砥粒のうち、シリカ砥粒と、この平均粒径よりも粒径が大きな板状異物等の異物とがそれぞれ受ける誘電泳動力の差を利用するものである。粒径の違いによる誘電泳動力の差は、粒径の差が2倍以上であるとより顕著になり、5倍以上であるとさらに顕著になる。 Plate-like foreign substances such as silica abrasive grains in the slurry flowing through the channel 55, layered silicate crystals containing aluminum, and metal oxide particles such as iron oxide or titanium oxide (hereinafter also referred to as foreign substances such as plate-like foreign substances) When passing through an electric field having the above-mentioned non-uniform electric field strength, dielectric polarization occurs according to the difference in dielectric constant with the dispersion medium (liquid in which particles in the slurry are dispersed). Due to the dielectrophoretic force generated in the electric field due to this dielectric polarization, foreign matters such as silica abrasive grains and plate-like foreign matter move in the electric field. At this time, a foreign substance such as a silica abrasive grain or a plate-like foreign substance having a larger particle diameter is more easily moved by a large dielectrophoretic force. In the case of positive dielectrophoresis in which foreign substances such as silica abrasive grains and plate-like foreign substances have a high dielectric constant with respect to the dispersion medium, the electrode 54 has a higher electric flux density as foreign substances such as silica abrasive grains and plate-like foreign substances having larger particle diameters. The electrode 54 is easily held and strongly held on the electrode 54 side. On the other hand, when the foreign particles such as silica abrasive grains and plate-like foreign substances are negative dielectrophoresis having a low dielectric constant with respect to the dispersion medium, the electric flux density is smaller as the foreign substances such as silica abrasive grains or plate-like foreign substances having larger particle diameters. Therefore, it is easy to move to the electrode 52 side, and a force is applied in the direction of repulsion from the electrode 54 side where the electric flux density is dense. In other words, the removal treatment of the present embodiment uses the difference in dielectrophoretic force received by the silica abrasive grains and the foreign substances such as plate-like foreign substances having a particle diameter larger than the average particle diameter. It is. The difference in the dielectrophoretic force due to the difference in particle diameter is more prominent when the difference in particle diameter is twice or more, and becomes more prominent when it is five or more times.
 なお、正の誘電泳動とは、スラリー中の分散媒の誘電率が粒子より小さく、粒子の誘電分極によって粒子が電束密度が密になる場所に向かって移動する挙動をいう。また、負の誘電泳動とは、スラリー中の分散媒の誘電率が粒子より大きく、粒子の誘電分極によって粒子が電束密度が疎になる場所に向かって移動する挙動をいう。
 したがって、本実施形態では、シリカ砥粒に誘電泳動を生じさせるために、スラリー中の液体(分散媒)とシリカ砥粒の間で、誘電率が少なくとも異なっている。
Positive dielectrophoresis refers to a behavior in which the dielectric constant of the dispersion medium in the slurry is smaller than that of the particles and the particles move toward a place where the electric flux density is dense due to the dielectric polarization of the particles. Negative dielectrophoresis refers to a behavior in which the dielectric constant of the dispersion medium in the slurry is larger than that of the particles, and the particles move toward a place where the electric flux density is sparse due to the dielectric polarization of the particles.
Therefore, in this embodiment, in order to cause dielectrophoresis in the silica abrasive grains, the dielectric constant is at least different between the liquid (dispersion medium) in the slurry and the silica abrasive grains.
 シリカ砥粒が正の誘電泳動をする場合には、図3に示すように、回収管56は、流路55のうち電極52の側(図3では紙面の上側)に設けられている。これにより、大きな誘電泳動力によって移動し易い板状異物等の異物は、シリカ砥粒に比べて電束密度が密になる電極54の方向に移動し、電極54の近傍領域に停留する。一方、スラリーは、図3中の紙面左側から流路54内を一様な層流として流れるので、誘電泳動による移動が小さなシリカ砥粒を含んだスラリーは、電極52の側に設けられた回収管56に流れ込み、研磨処理用のスラリーとして回収される。また、シリカ砥粒が負の誘電泳動をする場合には、分散媒である液体が電束密度が密になる電極54の方向に移動することから、板状異物及び酸化金属粒子は、電束密度が疎になる方向、つまり電界の強さ(電場強度)が疎になる電極54側から離れる方向へ移動することとなる。そのため、板状異物及び酸化金属粒子は、平板電極と点状電極の組み合わせを用いた場合には、電束密度が疎になる平板電極である電極54の側に押しつけられる。
 また四重極電極又はインターデジタル形状電極を用いた場合には、研磨砥粒、板状異物等の異物は、周囲の電極から最も距離の離れた位置である流路の中心に押し集まり、流路内に保持されることとなる。このようにして、スラリー中の研磨砥粒、板状異物等の異物は、流路の中心に保持されることとなる。このとき、粒径がより大きな板状異物等の異物は粒径がより小さい研磨砥粒と比べて電気泳動力が大きくなり、流路内に保持される力が強くなる。粒径がより小さい研磨砥粒は、電気泳動力が小さく、相対的に流路内に保持される力は弱く、スラリーの流れにより回収されることとなる。一方、板状異物等の異物は流路内に誘電泳動力によって留まり、研磨処理に用いられるスラリーから除去される。
 すなわち、本実施形態では、スラリーを電場強度の空間分布が不均一な交流電場中に通過させて、スラリー中のシリカ砥粒及び板状異物等の異物の大きさに応じた誘電泳動をシリカ砥粒及び板状異物等の異物に生じさせることにより、シリカ砥粒の平均粒径より大きな粒径の板状異物等の異物をスラリーから除去する除去処理が行われる。
 このように、本実施形態では、コロイダルシリカからなる研磨砥粒と層状ケイ酸塩からなる板状異物を誘電泳動によって分離し、スラリー中の板状異物を除去することができる。
When the silica abrasive grains perform positive dielectrophoresis, as shown in FIG. 3, the collection tube 56 is provided on the electrode 52 side (upper side of the drawing in FIG. 3) of the flow path 55. As a result, foreign matters such as plate-like foreign matters that are easily moved by a large dielectrophoretic force move in the direction of the electrode 54 where the electric flux density is higher than that of the silica abrasive grains, and stay in a region near the electrode 54. On the other hand, since the slurry flows as a uniform laminar flow in the flow path 54 from the left side of the paper in FIG. 3, the slurry containing silica abrasive grains with small movement due to dielectrophoresis is collected on the electrode 52 side. It flows into the tube 56 and is recovered as a slurry for polishing treatment. Further, when the silica abrasive grains undergo negative dielectrophoresis, the liquid as the dispersion medium moves toward the electrode 54 where the electric flux density is dense. It moves in the direction in which the density is sparse, that is, in the direction away from the electrode 54 side where the electric field strength (electric field strength) is sparse. For this reason, the plate-like foreign material and the metal oxide particles are pressed against the electrode 54 which is a flat plate electrode having a low electric flux density when a combination of a flat plate electrode and a dotted electrode is used.
In addition, when a quadrupole electrode or an interdigital electrode is used, foreign substances such as abrasive grains and plate-like foreign substances gather and gather at the center of the flow channel at the position farthest away from the surrounding electrodes. It will be held in the road. In this way, foreign substances such as abrasive grains and plate-like foreign substances in the slurry are held at the center of the flow path. At this time, a foreign substance such as a plate-like foreign substance having a larger particle diameter has a higher electrophoretic force than a polishing abrasive grain having a smaller particle diameter, and a stronger force is retained in the flow path. Abrasive grains having a smaller particle size have a small electrophoretic force and a relatively low force held in the flow path, and are recovered by the flow of the slurry. On the other hand, foreign matters such as plate-like foreign matter remain in the flow path by the dielectrophoretic force and are removed from the slurry used for the polishing process.
That is, in the present embodiment, the slurry is passed through an AC electric field having a non-uniform spatial distribution of electric field strength, and dielectrophoresis according to the size of the foreign particles such as silica abrasive grains and plate-like foreign particles in the slurry is performed. By causing them to occur in foreign matters such as grains and plate-like foreign matters, a removal process for removing foreign matters such as plate-like foreign matters having a particle size larger than the average particle size of silica abrasive grains from the slurry is performed.
As described above, in this embodiment, the abrasive grains made of colloidal silica and the plate-like foreign substances made of layered silicate can be separated by dielectrophoresis, and the plate-like foreign substances in the slurry can be removed.
 本実施形態で用いる交流電圧や流路55に流すスラリーの流速やスラリーの粘度、及びスラリー中のシリカ砥粒の濃度等の処理条件は、特に制限されず、スラリー中の研磨砥粒、異物、分散媒の誘電率の違い及び研磨砥粒、板状異物等の異物の大きさに応じた誘電泳動を効率よく生じさせ、これにより、シリカ砥粒の平均粒径より大きな粒径(平板の最大径)の板状異物等の異物をスラリーから除去することができる限りにおいて、適宜設定されるとよい。少なくとも、シリカ砥粒及び板状異物等の異物の大きさに応じた誘電泳動によってシリカ砥粒が移動可能なように、流路55を流れるスラリーの流れは層流であることが必要である。スラリーを流す電極間の距離となる流路の幅は除去する板状異物等の異物の粒径に近いほど良く、100μm以下、好ましくは30μm以下とすることが好ましい。 The treatment conditions such as the alternating voltage used in the present embodiment, the flow rate of the slurry flowing in the flow path 55, the viscosity of the slurry, and the concentration of the silica abrasive grains in the slurry are not particularly limited, and abrasive grains, foreign matter, Dielectric migration is efficiently generated according to the difference in the dielectric constant of the dispersion medium and the size of the foreign particles such as abrasive grains and plate-like foreign particles. As long as foreign matter such as a plate-like foreign matter having a diameter can be removed from the slurry, it may be set appropriately. At least the flow of the slurry flowing through the flow path 55 needs to be a laminar flow so that the silica abrasive particles can move by dielectrophoresis according to the size of the foreign particles such as silica abrasive particles and plate-like foreign matters. The width of the flow path, which is the distance between the electrodes through which the slurry flows, is preferably as close as possible to the particle size of the foreign matter such as the plate-like foreign matter to be removed, and is preferably 100 μm or less, preferably 30 μm or less.
 このような除去処理の施されたシリカ砥粒の平均粒径(d50)は、例えば10~60nm、より好ましくは10~30nmであり、除去処理により除去される板状異物等の異物、または平均粒径よりも粒径が大きなシリカ粗大粒子の大きさは130~240nmである。すなわち、シリカ砥粒の平均粒径(d50)の2倍以上の粒径の異物を好適に除去することができる。
 シリカ砥粒の粒径、板状異物等の異物の大きさは、例えばシリカ砥粒を2次元画像として撮像した場合、シリカ砥粒の周りのあらゆる方向に矩形枠を傾けて矩形枠がシリカ砥粒の像に外接するように、矩形枠がシリカ砥粒の像を囲んだときの矩形枠の長辺の最大長さをいう。また、シリカ砥粒を3次元画像として撮像した場合、シリカ砥粒の周りのあらゆる方向に直方体枠を傾けて直方体枠がシリカ砥粒の像に外接するように、直方体枠がシリカ砥粒の像を囲んだときの直方体枠の長辺の最大長さをいう。
The average particle diameter (d50) of the silica abrasive subjected to such removal treatment is, for example, 10 to 60 nm, more preferably 10 to 30 nm. The size of coarse silica particles having a particle size larger than the particle size is 130 to 240 nm. That is, it is possible to suitably remove foreign matters having a particle size that is twice or more the average particle size (d50) of silica abrasive grains.
For example, when the silica abrasive grains are captured as a two-dimensional image, the rectangular frame is tilted in any direction around the silica abrasive grains and the rectangular frame is The maximum length of the long side of the rectangular frame when the rectangular frame surrounds the image of the silica abrasive grains so as to circumscribe the image of the grain. In addition, when the silica abrasive grains are imaged as a three-dimensional image, the rectangular parallelepiped frame is an image of the silica abrasive grains so that the rectangular parallelepiped frame is circumscribed by the silica abrasive grains image in all directions around the silica abrasive grains. The maximum length of the long side of the cuboid frame when enclosing.
 本実施形態に用いるシリカ砥粒は、どのような製造方法によって作製されたものでもよく、例えば、オルトケイ酸テトラメチルやオルトケイ酸テトラエチルからゾルゲル法で得てもよいが、水ガラスとイオン交換樹脂を用いて得られるものであることが好ましい。このようなシリカ砥粒は、コストをかけることなく容易に多量のシリカ砥粒を作製することができる。水ガラスは、ケイ砂を材料として得られる。具体的には、ケイ砂と炭酸ナトリウムとを混合して熔融することでケイ酸ナトリウムを生成し、熔融物を冷却後、水に溶解させることで水ガラスを得ることができる。このように水ガラスは、アルミニウム等の不純物が多くケイ砂を原料とするので、水ガラスにはアルミニウム等の不純物が多く含まれる。この不純物の1つであるアルミニウムを多く含むと、上述の層状ケイ酸塩からなる板状異物を作り易い。しかし、このように板状異物のシリカ砥粒をつくり易い水ガラスとイオン交換樹脂を用いて得られるシリカ砥粒であっても、上述した除去処理により、板状異物のシリカ砥粒を十分に除去することができる。 The silica abrasive grains used in the present embodiment may be produced by any manufacturing method, for example, may be obtained by sol-gel method from tetramethyl orthosilicate or tetraethyl orthosilicate, but water glass and ion exchange resin are used. It is preferable that it is obtained by using. Such a silica abrasive can easily produce a large amount of silica abrasive without cost. Water glass is obtained using silica sand as a material. Specifically, sodium silicate is produced by mixing and melting silica sand and sodium carbonate, and after cooling the melt, water glass can be obtained by dissolving in water. Thus, since water glass has many impurities, such as aluminum, and uses silica sand as a raw material, water glass contains many impurities, such as aluminum. If a large amount of aluminum, which is one of these impurities, is contained, a plate-like foreign material made of the above-described layered silicate can be easily formed. However, even the silica abrasive grains obtained by using the water glass and the ion exchange resin that are easy to form the silica abrasive grains of the plate-like foreign matter, the silica abrasive grains of the plate-like foreign substance are sufficiently obtained by the above-described removal treatment. Can be removed.
 また、研磨レートの向上及び研磨処理後のガラス基板の表面凹凸を小さくするために、研磨処理前に、除去処理後のスラリーに添加剤、例えば、K2SO4,Na2SO4などのような硫酸化合物、K3PO4,Na3PO4などのような燐酸化合物、NaNO3などのような硝酸化合物、が添加される。この添加剤は、スラリー中のシリカ砥粒の表面電位の絶対値を減少させるものでもある。シリカ砥粒の表面電位の絶対値を減少させると、シリカ砥粒の誘電分極に影響を与えて、除去処理の効果を十分に得られなくなる可能性がある。このため、研磨処理前に、除去処理後のスラリーに添加剤を添加する。 Further, in order to improve the polishing rate and reduce the surface unevenness of the glass substrate after the polishing treatment, an additive such as K 2 SO 4 or Na 2 SO 4 is added to the slurry after the removal treatment before the polishing treatment. A sulfuric acid compound, a phosphoric acid compound such as K 3 PO 4 or Na 3 PO 4, or a nitric acid compound such as NaNO 3 is added. This additive also reduces the absolute value of the surface potential of the silica abrasive grains in the slurry. If the absolute value of the surface potential of the silica abrasive grains is reduced, the dielectric polarization of the silica abrasive grains may be affected, and the removal treatment effect may not be sufficiently obtained. For this reason, an additive is added to the slurry after the removal treatment before the polishing treatment.
 また、本実施形態では、上述の除去処理前のスラリーにおけるシリカ砥粒の含有率は、研磨処理後のスラリーにおけるシリカ砥粒の含有率に比べて高くすることが、誘電分極を利用した誘電泳動による除去処理の効果を得る上で好ましい。 Further, in this embodiment, the content of silica abrasive grains in the slurry before the above-described removal treatment is higher than the content of silica abrasive grains in the slurry after the polishing treatment. It is preferable for obtaining the effect of the removal treatment by the above.
 また、除去処理では、シリカ砥粒のうち最小幅に対する最大幅の比が5以上の形状を有する板状異物が除去されることが好ましい。このような板状異物であるシリカ砥粒は、ガラス基板の主表面に付着すると、洗浄処理等で除去することは極めて難しくなる。このため、研磨処理を行う前のシリカ砥粒に対して、上述の除去処理を施すことが好ましい。シリカ砥粒の上記最小幅及び最大幅は、例えばシリカ砥粒を2次元画像として撮像した場合、シリカ砥粒の周りのあらゆる方向に矩形枠を傾けながら矩形枠がシリカ砥粒の像に害外接するように矩形枠がシリカ砥粒の像を囲んだとき、この矩形枠の短辺の最小長さ、長辺の最大長さをいう。また、シリカ砥粒を3次元画像として撮像した場合、シリカ砥粒の周りのあらゆる方向に直方体枠を傾けながら直方体枠がシリカ砥粒の像に外接するように直方体枠でシリカ砥粒の3次元の像を囲んだとき、この直方体枠の短辺の最小長さ及び長辺の最大長さをいう。なお板状異物の場合、最小幅は実質的に板状異物の厚みに該当する。 In the removal treatment, it is preferable that the plate-like foreign material having a shape in which the ratio of the maximum width to the minimum width is 5 or more is removed from the silica abrasive grains. When the silica abrasive grains, which are such plate-like foreign substances, adhere to the main surface of the glass substrate, it is extremely difficult to remove them by a cleaning process or the like. For this reason, it is preferable to perform the above-mentioned removal process with respect to the silica abrasive grain before performing a polishing process. The above-mentioned minimum width and maximum width of the silica abrasive grains are, for example, when the silica abrasive grains are imaged as a two-dimensional image, while the rectangular frames are tilted in all directions around the silica abrasive grains and the rectangular frames are harmful to the image of the silica abrasive grains. Thus, when the rectangular frame surrounds the image of the silica abrasive grains, the minimum length of the short side and the maximum length of the long side of the rectangular frame are referred to. Further, when the silica abrasive grains are imaged as a three-dimensional image, the three-dimensional silica abrasive grains in the rectangular parallelepiped frame so that the rectangular parallelepiped frame circumscribes the image of the silica abrasive grains while tilting the rectangular parallelepiped frame in all directions around the silica abrasive grains. When the image is enclosed, the minimum length of the short side and the maximum length of the long side of the cuboid frame are referred to. In the case of a plate-like foreign material, the minimum width substantially corresponds to the thickness of the plate-like foreign material.
 また、除去処理後のシリカ砥粒に解砕処理を施すことが好ましい。解砕処理は、例えばシリカ砥粒に超音波振動を与える処理を含む。除去処理によりシリカ砥粒に誘電泳動を生じさせて、所望の粒径のシリカ砥粒を集めるため、シリカ砥粒が凝集する場合もある。このため、除去処理後、回収されたシリカ砥粒に対して例えば超音波振動を与えて、シリカ砥粒の凝集体を解砕することが好ましい。シリカ砥粒の凝集体が生成されると、研磨処理中、この凝集体がガラス基板の主表面に傷をつくり易い。 Moreover, it is preferable to crush the silica abrasive after the removal treatment. The crushing treatment includes, for example, a treatment for applying ultrasonic vibration to the silica abrasive grains. In some cases, the silica abrasive grains agglomerate in order to collect the silica abrasive grains having a desired particle diameter by causing dielectrophoresis in the silica abrasive grains by the removal treatment. For this reason, it is preferable to crush the aggregate of silica abrasive grains by applying ultrasonic vibration to the recovered silica abrasive grains after the removal treatment, for example. When aggregates of silica abrasive grains are generated, the aggregates easily cause scratches on the main surface of the glass substrate during the polishing process.
 このように、本実施形態では、研磨処理の前に、スラリーを電場強度が不均一な交流電場中に通過させて、スラリー中の粒子の粒径の大きさに応じた誘電泳動をシリカ砥粒、板状異物等の異物に生じさせる。これにより、シリカ砥粒の平均粒径より大きな粒径の板状異物等の異物をスラリーから除去する。このため、シリカ砥粒の平均粒径より大きな板状異物等の異物をスラリーから除去することができる。したがって、スラリーを用いてガラス基板を研磨処理しても、研磨処理後のガラス基板の主表面には板状異物等の異物が付着しない。したがって、本実施形態では、ガラス基板の研磨処理後の歩留まりを向上させることができる。
 また、研磨処理に用いられるスラリーは、交流電圧を印加することで、電場強度が不均一な、あるいは電束密度の分布が粗密を成した不均一な電場を発生させることができる形状を有する電極間にスラリー原液を通過させることにより、このスラリー原液中に含まれる層状ケイ酸塩からなる板状異物に対して正の誘電泳動又は負の誘電泳動を生じさせ、板状異物が電極間を通過するのを阻害して板状異物をスラリー原液から除去したものとすることができる。この場合においても、スラリーを用いてガラス基板を研磨処理しても、研磨処理後のガラス基板の主表面には板状異物等の異物が付着しない。したがって、本実施形態では、ガラス基板の研磨処理後の歩留まりを向上させることができる。ここでいうスラリー原液とは、研磨処理に一度も使用されていない新品のシリカ砥粒を含んだ研磨液をいう。
 なお、上記説明では、除去処理により板状異物のシリカ砥粒が除去できることを説明したが、大きなシリカ砥粒程、誘電泳動力は大きくなる。このため、本実施形態で除去される粒子は、板状異物等の異物に限定されず、平均粒径より大きな概略球形状のシリカ砥粒も含まれる。
As described above, in the present embodiment, before the polishing treatment, the slurry is passed through an AC electric field having nonuniform electric field strength, and dielectrophoresis according to the particle size of the particles in the slurry is performed on the silica abrasive grains. It is generated in foreign matter such as plate-like foreign matter. This removes foreign matters such as plate-like foreign matters having a particle size larger than the average particle size of the silica abrasive grains from the slurry. For this reason, foreign matters such as plate-like foreign matters larger than the average particle size of the silica abrasive grains can be removed from the slurry. Therefore, even if the glass substrate is polished using the slurry, foreign matters such as plate-like foreign matters do not adhere to the main surface of the glass substrate after the polishing treatment. Therefore, in this embodiment, the yield after the polishing treatment of the glass substrate can be improved.
In addition, the slurry used for the polishing process is an electrode having a shape that can generate an uneven electric field with non-uniform electric field strength or a dense distribution of electric flux density by applying an alternating voltage. By passing the slurry stock solution in between, positive dielectrophoresis or negative dielectrophoresis is caused to the plate-like foreign substance made of layered silicate contained in this slurry raw solution, and the plate-like foreign substance passes between the electrodes. It is possible to prevent the plate-like foreign matter from being removed from the slurry stock solution. Even in this case, even if the glass substrate is polished by using the slurry, foreign matters such as plate-like foreign matters do not adhere to the main surface of the glass substrate after the polishing treatment. Therefore, in this embodiment, the yield after the polishing treatment of the glass substrate can be improved. The slurry stock solution here refers to a polishing solution containing new silica abrasive grains that have never been used for polishing treatment.
In the above description, it has been described that the silica abrasive grains of the plate-like foreign material can be removed by the removal process, but the larger the silica abrasive grains, the greater the dielectrophoretic force. For this reason, the particle | grains removed by this embodiment are not limited to foreign materials, such as a plate-shaped foreign material, The rough spherical silica abrasive grain larger than an average particle diameter is also contained.
(磁気ディスク用ガラス基板の製造方法)
 次に、本実施形態の磁気ディスク用ガラス基板の製造方法を説明する。先ず、一対の主表面を有する板状の磁気ディスク用ガラス基板の素材となるガラスブランクをプレス成形により作製する(プレス成形処理)。なお、ガラスブランクをプレス成形で作製する他に、周知のフロート法、リドロー法、あるいはフュージョン法でガラス板を形成し、ガラス板から上記ガラスブランクと同じ形状のガラスブランクを切り出してもよい。次に、作製されたガラスブランクの中心部分に円孔を形成し、円孔を形成したガラス基板に対して形状加工を行う(形状加工処理)。これにより、ガラス基板が生成される。次に、形状加工されたガラス基板に対して端面研磨を行う(端面研磨処理)。端面研磨の行われたガラス基板の主表面に研削を行う(研削処理)。次に、ガラス基板の主表面に第1研磨を行う(第1研磨処理)。次に、必要に応じてガラス基板に対して化学強化を行う(化学強化処理)。次に、化学強化されたガラス基板に対して第2研磨を行う(第2研磨処理)。その後、第2研磨処理後のガラス基板に対して洗浄を行う。以上の処理を経て、磁気ディスク用ガラス基板が得られる。
(Method for producing glass substrate for magnetic disk)
Next, the manufacturing method of the glass substrate for magnetic disks of this embodiment is demonstrated. First, a glass blank as a material for a plate-shaped magnetic disk glass substrate having a pair of main surfaces is produced by press molding (press molding process). In addition to producing the glass blank by press molding, a glass plate having the same shape as the glass blank may be cut out from the glass plate by forming a glass plate by a well-known float method, redraw method, or fusion method. Next, a circular hole is formed in the center part of the produced glass blank, and shape processing is performed on the glass substrate on which the circular hole is formed (shape processing treatment). Thereby, a glass substrate is produced | generated. Next, end-face polishing is performed on the shape-processed glass substrate (end-face polishing process). Grinding is performed on the main surface of the glass substrate that has been subjected to end face polishing (grinding treatment). Next, 1st grinding | polishing is performed to the main surface of a glass substrate (1st grinding | polishing process). Next, chemical strengthening is performed on the glass substrate as necessary (chemical strengthening treatment). Next, second polishing is performed on the chemically strengthened glass substrate (second polishing treatment). Thereafter, the glass substrate after the second polishing process is cleaned. The glass substrate for magnetic disks is obtained through the above processing.
 (a)プレス成形処理
 熔融ガラス流の先端部を切断器により切断し、切断された熔融ガラス塊を一対の金型のプレス成形面の間に挟みこみ、プレスしてガラスブランクを成形する。所定時間プレスを行った後、金型を開いてガラスブランクが取り出される。
(A) Press molding process The front-end | tip part of a molten glass flow is cut | disconnected with a cutter, the cut molten glass lump is pinched | interposed between the press molding surfaces of a pair of metal molds, and a glass blank is formed by pressing. After pressing for a predetermined time, the mold is opened and the glass blank is taken out.
 (b)形状加工処理
 ガラスブランクに対してドリル等を用いて円孔を形成することにより円形状の孔があいたディスク状のガラス基板が得られる。さらに、円孔形成処理後のガラス基板の端部に対する面取り加工を行う。面取り加工は、研削砥石等を用いて行なわれる。面取り加工により、ガラス基板の端面に、ガラス基板の主表面に対して垂直に延びる基板の側壁面と、この側壁面と主表面の間に設けられ、側壁面に対して傾斜して延びる面取り面とを有する端面が形成される。
(B) Shape processing The disk-shaped glass substrate with a circular hole is obtained by forming a circular hole using a drill etc. with respect to a glass blank. Further, chamfering is performed on the end of the glass substrate after the circular hole forming process. The chamfering process is performed using a grinding wheel or the like. By chamfering, a side wall surface of the substrate that extends perpendicularly to the main surface of the glass substrate on the end surface of the glass substrate, and a chamfer surface that is provided between the side wall surface and the main surface and extends at an angle to the side wall surface. Are formed.
 (c)端面研磨処理
 端面研磨処理では、ガラス基板の内側端面及び外周側端面に対して、研磨砥粒を用いて研磨をし、鏡面仕上げを行う。
(C) End face polishing process In the end face polishing process, the inner end face and the outer peripheral side end face of the glass substrate are polished using polishing abrasive grains to perform mirror finish.
 (d)研削処理
 研削処理では、遊星歯車機構を備えた図示しない研削装置を用いて、ガラス基板の主表面に対して研削処理を行う。具体的には、ガラスブランクから作製されたガラス基板の外周側端面を、研削装置の保持部材に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研削を行う。研削装置は、上下一対の定盤(上定盤および下定盤)を有しており、上定盤および下定盤の間にダイヤモンド砥石等の固定砥粒シートを介してガラス基板が狭持される。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させ、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研削することができる。
(D) Grinding process In the grinding process, a grinding process is performed on the main surface of the glass substrate using a grinding apparatus (not shown) provided with a planetary gear mechanism. Specifically, the main surface on both sides of the glass substrate is ground while holding the outer peripheral side end face of the glass substrate made from the glass blank in the holding hole provided in the holding member of the grinding apparatus. The grinding apparatus has a pair of upper and lower surface plates (upper surface plate and lower surface plate), and a glass substrate is sandwiched between a fixed surface sheet such as a diamond grindstone between the upper surface plate and the lower surface plate. . Then, by moving one or both of the upper surface plate and the lower surface plate and relatively moving the glass substrate and each surface plate, both main surfaces of the glass substrate can be ground.
 (e)第1研磨処理
 次に、研削のガラス基板の主表面に第1研磨が施される。具体的には、ガラス基板の外周側端面を、図示しない研磨装置の研磨用キャリアに設けられた孔内に保持しながらガラス基板の両側の主表面の研磨が行われる。第1研磨は、研削処理後の主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸(マイクロウェービネス、粗さ)の調整を目的とする。
(E) 1st grinding | polishing process Next, 1st grinding | polishing is given to the main surface of the glass substrate of grinding. Specifically, the main surface on both sides of the glass substrate is polished while holding the outer peripheral side end face of the glass substrate in a hole provided in a polishing carrier of a polishing apparatus (not shown). The purpose of the first polishing is to remove scratches and distortions remaining on the main surface after the grinding treatment, or to adjust minute surface irregularities (microwaveness, roughness).
 第1研磨処理では、研磨砥粒を含むスラリーを与えながらガラス基板が研磨される。第1研磨に用いる研磨砥粒として、例えば、酸化セリウム砥粒、あるいはジルコニア砥粒などの遊離砥粒が用いられる。第1研磨処理に用いる研磨装置も、研削装置と同様に、上下一対の定盤の間にガラス基板が狭持される。下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッドが取り付けられている。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研磨する。 In the first polishing process, the glass substrate is polished while applying a slurry containing abrasive grains. As the abrasive grains used for the first polishing, for example, free abrasive grains such as cerium oxide abrasive grains or zirconia abrasive grains are used. In the polishing apparatus used for the first polishing process, similarly to the grinding apparatus, the glass substrate is sandwiched between a pair of upper and lower surface plates. An annular flat polishing pad is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate as a whole. Then, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are relatively moved, thereby polishing both main surfaces of the glass substrate.
 (f)化学強化処理
 ガラス基板を化学強化する場合、化学強化液として、例えば硝酸カリウムと硫酸ナトリウムの混合熔融液等を用い、ガラス基板を化学強化液中に浸漬する。
(F) Chemical strengthening treatment When chemically strengthening a glass substrate, for example, a mixed melt of potassium nitrate and sodium sulfate is used as the chemical strengthening solution, and the glass substrate is immersed in the chemical strengthening solution.
 (g)第2研磨(最終研磨)処理
 次に、ガラス基板に第2研磨が施される。第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨処理では、図2(a),(b)に示すような研磨装置10が用いられる。具体的には、ガラス基板1の外周側端面を、研磨装置10のキャリア18に設けられた孔内に保持させながら、ガラス基板1の両側の主表面の研磨が行われる。第2研磨処理では、遊離砥粒の種類及び粒子サイズが第1研磨処理と異なり、また、研磨パッド20も、第1研磨処理の研磨パッドと、硬度の点で異なる。第2研磨処理に用いるスラリーは、上述した除去処理の施されたシリカ砥粒を含むスラリーである。第2研磨処理を実施することで、主表面の粗さの算術平均粗さRaを0.15nm以下とすることができる。さらに、ガラス基板の主表面の波長50~200μmのうねりである微小うねりの二乗平均平方根粗さRqを0.1nm以下とすることができる。
 この後、ガラス基板は、無機アルカリを含んだアルカリ洗浄液を用いてガラス基板の表面が洗浄され、最終ガラス基板となる。
 本実施形態では、化学強化処理を行なうが、必要に応じて化学強化処理は行なわなくてもよい。第1研磨処理及び第2研磨処理の他にさらに別の研磨処理を加えてもよく、2つの主表面の研磨処理を1つの研磨処理で済ませてもよい。また、上記各処理の順番は、適宜変更してもよい。本実施形態の除去処理の施されたシリカ砥粒を含むスラリーは、最終製品としての表面凹凸になるように、最終研磨に用いられる。
 第2研磨処理では、上述した除去処理を行ったスラリーを用いてガラス基板を研磨するので、最大径が100nm以上の層状ケイ酸塩からなる板状異物の、主表面への付着数が、2個/枚未満であるガラス基板を作製することができる。
(G) Second polishing (final polishing) treatment Next, the glass substrate is subjected to second polishing. The second polishing treatment aims at mirror polishing of the main surface. In the second polishing process, a polishing apparatus 10 as shown in FIGS. 2A and 2B is used. Specifically, the main surface on both sides of the glass substrate 1 is polished while the outer peripheral side end surface of the glass substrate 1 is held in the hole provided in the carrier 18 of the polishing apparatus 10. In the second polishing process, the type and particle size of loose abrasive grains are different from those in the first polishing process, and the polishing pad 20 is also different in hardness from the polishing pad in the first polishing process. The slurry used for the second polishing treatment is a slurry containing the silica abrasive grains subjected to the above-described removal treatment. By performing the second polishing treatment, the arithmetic average roughness Ra of the roughness of the main surface can be set to 0.15 nm or less. Furthermore, the root mean square roughness Rq of the micro-waviness, which is a wave having a wavelength of 50 to 200 μm, on the main surface of the glass substrate can be set to 0.1 nm or less.
Thereafter, the glass substrate is cleaned with the surface of the glass substrate using an alkali cleaning solution containing an inorganic alkali to become a final glass substrate.
In the present embodiment, the chemical strengthening process is performed, but the chemical strengthening process may not be performed if necessary. In addition to the first polishing process and the second polishing process, another polishing process may be added, and the polishing process of the two main surfaces may be performed by one polishing process. Moreover, you may change suitably the order of said each process. The slurry containing the silica abrasive grains subjected to the removal treatment of this embodiment is used for final polishing so as to have surface irregularities as a final product.
In the second polishing treatment, the glass substrate is polished using the slurry that has been subjected to the above-described removal treatment, so that the number of plate-like foreign substances made of layered silicate having a maximum diameter of 100 nm or more is 2 on the main surface. Glass substrates that are less than pieces / sheet can be manufactured.
 第2研磨処理後、上述したように、ガラス基板の主表面を洗浄する洗浄処理を行う。このとき、洗浄処理では、洗浄処理前後のガラス基板の表面粗さRaの差が0.05nm以下の範囲内となる洗浄力の弱い、無機アルカリを含んだアルカリ洗浄液を用いることが好ましい。従来、ガラス基板に付着する板状異物は、除去し難いため洗浄力の強いアルカリ洗浄液を用いていた。しかし、洗浄力の強いアルカリ洗浄液は、板状異物の除去だけでなく、ガラス基板の主表面に作用して主表面を荒らしてしまう。そこで、本実施形態では、上述した除去処理を施したシリカ砥粒を用いて研磨処理を行うため、ガラス基板には板状異物は付着せず、従来に比べて洗浄力の弱いアルカリ洗浄液、具体的にはpHが10未満の、無機アルカリを含んだアルカリ洗浄液など、洗浄処理前後のガラス基板の表面粗さRa(算術平均粗さ)の差が0.05nm以下の範囲となるアルカリ洗浄液を用いることができる。無機アルカリは、例えばNaOHあるいはKOHを含む。なお、Raは、JIS B0601に規定される表面粗さである。この表面粗さは、原子間力顕微鏡(AFM)を用いて1μm×1μmの範囲を512×256ピクセルの解像度で測定したデータに基づいて得られるものである。また、波長50~200μmの微小うねりは、例えば光学式表面形状測定装置で測定することができる。 After the second polishing process, a cleaning process for cleaning the main surface of the glass substrate is performed as described above. At this time, in the cleaning process, it is preferable to use an alkaline cleaning liquid containing an inorganic alkali that has a weak cleaning power so that the difference in surface roughness Ra between the glass substrate before and after the cleaning process is within a range of 0.05 nm or less. Conventionally, since the plate-like foreign material adhering to the glass substrate is difficult to remove, an alkaline cleaning liquid having a strong cleaning power has been used. However, the alkaline cleaning liquid having a strong cleaning power not only removes the plate-like foreign matter but also acts on the main surface of the glass substrate to roughen the main surface. Therefore, in this embodiment, since the polishing process is performed using the silica abrasive grains subjected to the above-described removal process, the plate-like foreign matter does not adhere to the glass substrate, and an alkaline cleaning liquid having a weaker cleaning power than the conventional one, specifically In particular, an alkaline cleaning solution having a pH difference of 0.05 nm or less in the surface roughness Ra (arithmetic average roughness) of the glass substrate before and after the cleaning treatment, such as an alkaline cleaning solution containing an inorganic alkali having a pH of less than 10, is used. be able to. The inorganic alkali includes, for example, NaOH or KOH. Ra is the surface roughness specified in JIS B0601. This surface roughness is obtained based on data obtained by measuring a range of 1 μm × 1 μm with a resolution of 512 × 256 pixels using an atomic force microscope (AFM). Further, the fine waviness with a wavelength of 50 to 200 μm can be measured by, for example, an optical surface shape measuring device.
 また、洗浄処理は、ガラス基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄であることが、ガラス基板に傷を作らない点で好ましい。従来の洗浄処理では、ガラス基板に強固に付着した板状異物を除去するために、ブラシや洗浄パッドでガラス基板を擦って、板状異物を除去するスクラブ洗浄を行なっていた。しかし、このスクラブ洗浄では、ガラス基板の主表面に傷を付け易い。本実施形態では、上述した除去処理を施したシリカ砥粒を含んだスラリーを用いて研磨するので、ガラス基板には板状異物が付着しない。このため、従来のようにスクラブ洗浄をしなくてもよい。このため、本実施形態では、ガラス基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄をすることにより、不要な傷をガラス基板の主表面に付けることがなくなる。
 また、本発明は、基板の主表面の表面粗のうち算術平均粗さRaが0.15nm以下、より好ましくは0.12nm以下、さらに好ましくは0.10nm以下の磁気ディスク用基板を製造するために好適である。
 特に、最終研磨処理で表面粗さRaを0.15nm以下とする場合、スラリー中に存在する板状異物が基板表面に張り付きやすくなるばかりか、最終研磨処理後には前述のとおりエッチング力の強い洗浄液が使用できないため、板状異物がガラス基板表面に残留しやすいという問題があるが、この問題は、本実施形態の製造方法によって解決することができる。
Further, the cleaning treatment is preferably non-scrub cleaning in which the glass substrate is immersed or brought into contact with the cleaning liquid, from the viewpoint of not scratching the glass substrate. In the conventional cleaning process, scrub cleaning is performed to remove the plate-like foreign matter by rubbing the glass substrate with a brush or a cleaning pad in order to remove the plate-like foreign matter firmly attached to the glass substrate. However, this scrub cleaning tends to damage the main surface of the glass substrate. In this embodiment, since it polishes using the slurry containing the silica abrasive grain which performed the removal process mentioned above, a plate-shaped foreign material does not adhere to a glass substrate. For this reason, it is not necessary to perform scrub cleaning as in the prior art. For this reason, in this embodiment, unnecessary scratches are not applied to the main surface of the glass substrate by performing non-scrub cleaning in which the glass substrate is immersed in or brought into contact with the cleaning liquid.
The present invention also provides a magnetic disk substrate having an arithmetic average roughness Ra of 0.15 nm or less, more preferably 0.12 nm or less, and even more preferably 0.10 nm or less, of the surface roughness of the main surface of the substrate. It is suitable for.
In particular, when the surface roughness Ra is set to 0.15 nm or less in the final polishing process, not only the plate-like foreign matter existing in the slurry is likely to stick to the substrate surface, but also a cleaning solution having a strong etching power as described above after the final polishing process. However, the plate-like foreign matter tends to remain on the glass substrate surface, but this problem can be solved by the manufacturing method of the present embodiment.
 上述した第2研磨処理後、洗浄、乾燥したガラス基板の主表面について、レーザー式の表面検査装置を用いて異物又は欠陥の検出を行った。レーザーの閾値を異物又は欠陥の検出数が10~20個となる範囲に設定し、検出された異物又は欠陥について、SEM(走査型電子顕微鏡)又はAFM(原子間力顕微鏡)を用いて、長径が100nm以上となる異物の数をカウントした。次に断面TEM(透過型電子顕微鏡)を用いて、長径が100nm以上の異物に対して、層状の平板異物(層状ケイ酸塩からなる板状異物)であるか否かを確認した。誘電泳動による除去処理を行っていないイオン交換法によるシリカを含んだスラリーで研磨したガラス基板では、ガラス基板の表裏の主表面に複数の層状平板異物が付着していることが確認された(2個/枚以上の層状平板異物が付着している)。一方、イオン交換法によるシリカを含んだスラリーについて誘電泳動による異物の除去処理を行った後に基板を研磨した場合には、ガラス基板の表裏の主表面に付着した層状平板異物は検出されなかった(基板主表面には層状平板異物の付着がない)。 After the second polishing process described above, the main surface of the cleaned and dried glass substrate was subjected to detection of foreign matters or defects using a laser type surface inspection apparatus. The laser threshold is set to a range in which the number of detected foreign matters or defects is 10 to 20, and the detected foreign matter or defects are measured using the SEM (scanning electron microscope) or AFM (atomic force microscope). The number of foreign matters having a thickness of 100 nm or more was counted. Next, using a cross-sectional TEM (transmission electron microscope), it was confirmed whether or not a foreign material having a major axis of 100 nm or more is a layered flat foreign material (a plate-like foreign material made of layered silicate). In a glass substrate polished with a slurry containing silica by an ion exchange method that has not been subjected to removal treatment by dielectrophoresis, it was confirmed that a plurality of layered flat foreign matters were attached to the main surfaces of the front and back surfaces of the glass substrate (2 Pieces / sheet or more of layered flat foreign matter are attached). On the other hand, when the substrate was polished after removing the foreign matter by dielectrophoresis for the slurry containing silica by the ion exchange method, the layered flat foreign matter adhering to the main surfaces of the front and back surfaces of the glass substrate was not detected ( There is no adhesion of layered flat foreign material on the main surface of the substrate).
 以上、本発明の磁気ディスク用基板の製造方法及び磁気ディスク用基板について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 The magnetic disk substrate manufacturing method and the magnetic disk substrate of the present invention have been described in detail above. However, the present invention is not limited to the above-described embodiment, and various improvements and modifications can be made without departing from the spirit of the present invention. Of course, you may do it.
1 ガラス基板
10 研磨装置
12 下定盤
14 上定盤
16 インターナルギヤ
18 キャリア
20 研磨パッド
19 ギヤ
22 太陽ギヤ
24 インターナルギヤ
50 除去処理装置
52,54 電極
55 流路
56 回収管
DESCRIPTION OF SYMBOLS 1 Glass substrate 10 Polishing device 12 Lower surface plate 14 Upper surface plate 16 Internal gear 18 Carrier 20 Polishing pad 19 Gear 22 Sun gear 24 Internal gear 50 Removal processing device 52, 54 Electrode 55 Channel 56 Collection pipe

Claims (10)

  1.  磁気ディスク用基板の製造方法であって、
     一対の研磨パッドで基板を挟み、前記研磨パッドと前記基板の間に誘電体材料の研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の両主表面を研磨する研磨処理を含み、
     前記研磨処理の前に、前記スラリーは電極形状によって生じる電場強度の分布が不均一な交流電場中を通過させ、前記スラリー中に存在する異物と研磨砥粒とを誘電泳動によって分離して異物を除去する除去処理がなされる、ことを特徴とする磁気ディスク用基板の製造方法。
    A method for manufacturing a magnetic disk substrate, comprising:
    By sandwiching the substrate between a pair of polishing pads, supplying a slurry containing abrasive grains of dielectric material between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, Including a polishing process for polishing both main surfaces of the substrate;
    Prior to the polishing treatment, the slurry is passed through an AC electric field having a non-uniform electric field intensity distribution caused by the electrode shape, and the foreign substances present in the slurry and the abrasive grains are separated by dielectrophoresis to remove the foreign substances. A method of manufacturing a magnetic disk substrate, characterized in that a removal process is performed.
  2.  前記研磨砥粒は、シリカ砥粒であり、
     前記シリカ砥粒は、水ガラスとイオン交換樹脂を用いて得られたものである、請求項1に記載の磁気ディスク用基板の製造方法。
    The abrasive grains are silica abrasive grains,
    The method for manufacturing a magnetic disk substrate according to claim 1, wherein the silica abrasive grains are obtained using water glass and an ion exchange resin.
  3.  前記研磨処理前に前記スラリーには、前記シリカ砥粒の表面電位の絶対値を減少させる添加剤が添加され、前記添加剤の添加は、前記除去処理後に行われる、請求項2に記載の磁気ディスク用基板の製造方法。 The magnetic material according to claim 2, wherein an additive that decreases an absolute value of a surface potential of the silica abrasive grains is added to the slurry before the polishing treatment, and the addition of the additive is performed after the removal treatment. A method for manufacturing a disk substrate.
  4.  前記除去処理後の研磨砥粒に解砕処理を施す、請求項1~3のいずれか1項に記載の磁気ディスク用基板の製造方法。 The method for manufacturing a magnetic disk substrate according to any one of claims 1 to 3, wherein the abrasive grains after the removal treatment are subjected to a crushing treatment.
  5.  前記除去処理前の前記スラリーにおける前記研磨砥粒の含有率は、前記研磨処理後の前記スラリーにおける前記研磨砥粒の含有率に比べて高い、請求項1~4のいずれか1項に記載の磁気ディスク用基板の製造方法。 The content rate of the polishing abrasive grains in the slurry before the removal treatment is higher than the content rate of the polishing abrasive grains in the slurry after the polishing treatment. A method of manufacturing a magnetic disk substrate.
  6.  前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、前記洗浄処理では、pHが10未満の、無機アルカリを含んだアルカリ洗浄液を用いる、請求項1~5のいずれか1項に記載の磁気ディスク用基板の製造方法。 6. The polishing process according to claim 1, wherein a cleaning process for cleaning the main surface of the substrate is performed after the polishing process, and in the cleaning process, an alkaline cleaning solution containing an inorganic alkali having a pH of less than 10 is used. Of manufacturing a magnetic disk substrate.
  7.  前記研磨処理後、基板の主表面を洗浄する洗浄処理を行い、
     前記洗浄処理は、前記基板を洗浄液に浸すあるいは接触させる非スクラブ洗浄である、請求項1~6のいずれか1項に記載の磁気ディスク用基板の製造方法。
    After the polishing process, a cleaning process for cleaning the main surface of the substrate is performed,
    7. The method for manufacturing a magnetic disk substrate according to claim 1, wherein the cleaning process is non-scrub cleaning in which the substrate is immersed in or brought into contact with a cleaning liquid.
  8.  前記除去処理では、コロイダルシリカからなる研磨砥粒と層状ケイ酸塩からなる板状異物を誘電泳動によって分離し、スラリー中の板状異物が除去される、請求項1~7のいずれか1項に記載の磁気ディスク用基板の製造方法。 The plate-like foreign material in the slurry is removed in the removal treatment by separating the abrasive particles made of colloidal silica and the plate-like foreign material made of layered silicate by dielectrophoresis. A method for producing a magnetic disk substrate as described in 1. above.
  9.  磁気ディスク用基板の製造方法であって、
     一対の研磨パッドで基板を挟み、前記研磨パッドと前記基板の間にコロイダルシリカからなる研磨砥粒を含むスラリーを供給して、前記研磨パッドと前記基板を相対的に摺動させることにより、前記基板の両主表面を研磨する研磨処理を含み、
     前記研磨処理に用いられるスラリーは、交流電圧を印加することで電場強度の分布が不均一な電場を発生させることができる形状を有する電極間にスラリー原液を通過させることにより、前記スラリー原液中に含まれる層状ケイ酸塩からなる板状異物に対して正の誘電泳動又は負の誘電泳動を生じさせ、前記板状異物が前記電極間を通過するのを阻害して前記板状異物を前記スラリー原液から除去したものである、ことを特徴とする磁気ディスク用基板の製造方法。
    A method for manufacturing a magnetic disk substrate, comprising:
    By sandwiching a substrate between a pair of polishing pads, supplying a slurry containing abrasive grains made of colloidal silica between the polishing pad and the substrate, and sliding the polishing pad and the substrate relatively, Including a polishing process for polishing both main surfaces of the substrate;
    The slurry used in the polishing treatment is passed into the slurry stock solution by passing the slurry stock solution between electrodes having a shape capable of generating an electric field with non-uniform electric field intensity distribution by applying an alternating voltage. A positive dielectrophoresis or a negative dielectrophoresis is caused to a plate-like foreign substance composed of a layered silicate contained therein, and the plate-like foreign substance is inhibited from passing between the electrodes, thereby causing the plate-like foreign substance to flow into the slurry. A method for producing a magnetic disk substrate, wherein the substrate is removed from a stock solution.
  10.  円孔を有する一対の主表面と、円孔を形成する内周端面と、外周端面と、を有する磁気ディスク用基板であって、
     前記主表面は、最大径が100nm以上の層状ケイ酸塩からなる板状異物の付着数が、2個/枚未満である、ことを特徴とする磁気ディスク用基板。
    A magnetic disk substrate having a pair of main surfaces having circular holes, an inner peripheral end surface forming a circular hole, and an outer peripheral end surface,
    The main surface is a magnetic disk substrate characterized in that the number of plate-like foreign substances made of layered silicate having a maximum diameter of 100 nm or more is less than 2 / sheet.
PCT/JP2015/076048 2014-09-12 2015-09-14 Method for manufacture of substrate for magnetic disk and substrate for magnetic disk WO2016039482A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580047901.9A CN106605264A (en) 2014-09-12 2015-09-14 Method for manufacture of substrate for magnetic disk and substrate for magnetic disk
JP2016547813A JPWO2016039482A1 (en) 2014-09-12 2015-09-14 Manufacturing method of magnetic disk substrate and magnetic disk substrate
SG11201701758RA SG11201701758RA (en) 2014-09-12 2015-09-14 Method for manufacturing magnetic-disk substrate and magnetic-disk substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2014/074329 2014-09-12
PCT/JP2014/074329 WO2016038747A1 (en) 2014-09-12 2014-09-12 Method for manufacturing substrate for magnetic disk

Publications (1)

Publication Number Publication Date
WO2016039482A1 true WO2016039482A1 (en) 2016-03-17

Family

ID=55458531

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/074329 WO2016038747A1 (en) 2014-09-12 2014-09-12 Method for manufacturing substrate for magnetic disk
PCT/JP2015/076048 WO2016039482A1 (en) 2014-09-12 2015-09-14 Method for manufacture of substrate for magnetic disk and substrate for magnetic disk

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074329 WO2016038747A1 (en) 2014-09-12 2014-09-12 Method for manufacturing substrate for magnetic disk

Country Status (5)

Country Link
JP (1) JPWO2016039482A1 (en)
CN (1) CN106605264A (en)
MY (1) MY178489A (en)
SG (1) SG11201701758RA (en)
WO (2) WO2016038747A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072422A (en) * 1998-08-25 2000-03-07 Daiken Kagaku Kogyo Kk Method for refining carbon nano tube and apparatus therefor
JP2003107099A (en) * 2001-09-27 2003-04-09 Japan Science & Technology Corp Microchip and device for classifying fine particles
JP2005334865A (en) * 2004-01-19 2005-12-08 Hiroshima Univ Solid particle classifier and solid particle classification method utilizing the same
JP2009087439A (en) * 2007-09-28 2009-04-23 Hoya Corp Manufacturing method of glass substrate for magnetic disk
JP2010179395A (en) * 2009-02-04 2010-08-19 Fuji Electric Device Technology Co Ltd Manufacturing method for glass substrate
JP2011173958A (en) * 2010-02-23 2011-09-08 Tokyo Electron Ltd Method for producing slurry, slurry, grinding method and grinding apparatus
JP2013170119A (en) * 2012-02-23 2013-09-02 Asahi Glass Co Ltd Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010079948A (en) * 2008-09-24 2010-04-08 Hoya Glass Disk Thailand Ltd Method of manufacturing glass substrate for magnetic disk
JP5484782B2 (en) * 2009-04-30 2014-05-07 花王株式会社 Manufacturing method of abrasive slurry
WO2011007820A1 (en) * 2009-07-15 2011-01-20 国立大学法人名古屋工業大学 Particle recovery method and particle recovery apparatus
JP6142352B2 (en) * 2012-12-18 2017-06-07 日立化成株式会社 Classification device, classification method, and classification particle manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000072422A (en) * 1998-08-25 2000-03-07 Daiken Kagaku Kogyo Kk Method for refining carbon nano tube and apparatus therefor
JP2003107099A (en) * 2001-09-27 2003-04-09 Japan Science & Technology Corp Microchip and device for classifying fine particles
JP2005334865A (en) * 2004-01-19 2005-12-08 Hiroshima Univ Solid particle classifier and solid particle classification method utilizing the same
JP2009087439A (en) * 2007-09-28 2009-04-23 Hoya Corp Manufacturing method of glass substrate for magnetic disk
JP2010179395A (en) * 2009-02-04 2010-08-19 Fuji Electric Device Technology Co Ltd Manufacturing method for glass substrate
JP2011173958A (en) * 2010-02-23 2011-09-08 Tokyo Electron Ltd Method for producing slurry, slurry, grinding method and grinding apparatus
JP2013170119A (en) * 2012-02-23 2013-09-02 Asahi Glass Co Ltd Method for preparing silica solution, polishing liquid containing silica solution prepared by the method for preparing silica solution, and method for manufacturing glass substrate for magnetic recording medium using the polishing liquid

Also Published As

Publication number Publication date
WO2016038747A1 (en) 2016-03-17
MY178489A (en) 2020-10-14
SG11201701758RA (en) 2017-04-27
CN106605264A (en) 2017-04-26
JPWO2016039482A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP2009087441A (en) Manufacturing method of glass substrate for magnetic disk, and manufacturing method of magnetic disk
WO2013046583A1 (en) Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
CN111094502B (en) Polishing liquid, method for producing glass substrate, and method for producing magnetic disk
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
WO2016039482A1 (en) Method for manufacture of substrate for magnetic disk and substrate for magnetic disk
JP6392610B2 (en) Manufacturing method of magnetic disk substrate
JP6431543B2 (en) Manufacturing method of magnetic disk substrate
JP2015067507A (en) Method for producing colloidal silica abrasive and method for producing glass substrate for magnetic disk
JP6286566B2 (en) Manufacturing method of magnetic disk substrate
JP6374522B2 (en) Magnetic disk substrate manufacturing method, magnetic disk manufacturing method, filtering device, and polishing liquid manufacturing method
JP2010238298A (en) Method for manufacturing glass substrate for magnetic disk
WO2013146090A1 (en) Method for manufacturing glass substrate for magnetic disk
JP6558771B2 (en) Manufacturing method of magnetic disk substrate
JP6280561B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2012090755A1 (en) Method for producing glass substrate for recording medium
JP5782041B2 (en) Manufacturing method of glass substrate for hard disk
WO2016042619A1 (en) Production method for magnetic disk substrate
WO2016051539A1 (en) Process for producing substrate for magnetic disk
JP2011138589A (en) Method for manufacturing glass substrate for magnetic disk and magnetic recording medium
JP2013080533A (en) Manufacturing method of glass substrate for magnetic disk and method for manufacturing magnetic disk
WO2012090597A1 (en) Method for producing glass substrate for recording medium
JP2015225687A (en) Manufacturing method of magnetic disk glass substrate
JP2016181313A (en) Manufacturing method of substrate for magnetic disk
JP2011076647A (en) Method for manufacturing glass substrate for magnetic disk
JP2016091578A (en) Manufacturing method for magnetic disk substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839841

Country of ref document: EP

Kind code of ref document: A1