JP2005334865A - Solid particle classifier and solid particle classification method utilizing the same - Google Patents

Solid particle classifier and solid particle classification method utilizing the same Download PDF

Info

Publication number
JP2005334865A
JP2005334865A JP2005009923A JP2005009923A JP2005334865A JP 2005334865 A JP2005334865 A JP 2005334865A JP 2005009923 A JP2005009923 A JP 2005009923A JP 2005009923 A JP2005009923 A JP 2005009923A JP 2005334865 A JP2005334865 A JP 2005334865A
Authority
JP
Japan
Prior art keywords
suspension
solid
solid fine
fine particle
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005009923A
Other languages
Japanese (ja)
Inventor
Hideto Yoshida
英人 吉田
Kosaku Yamada
功作 山田
Nobuyoshi Asai
信義 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hayakawa Rubber Co Ltd
Hiroshima University NUC
Makino Corp
Original Assignee
Hayakawa Rubber Co Ltd
Hiroshima University NUC
Makino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hayakawa Rubber Co Ltd, Hiroshima University NUC, Makino Corp filed Critical Hayakawa Rubber Co Ltd
Priority to JP2005009923A priority Critical patent/JP2005334865A/en
Publication of JP2005334865A publication Critical patent/JP2005334865A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid particle classifier with a simple structure capable of effectively classifying the huge amount of solid particles and a solid particle classification method utilizing the same. <P>SOLUTION: The solid particle classifier is used for classifying the solid particles in a suspension using a settling tank, and comprises a suspension supply means for continuously supplying the suspension to the settling tank, a pair of electrodes immersed in the tank and space apart from each other to constitute a suspension passage by a space formed by the spaced-apart electrodes, a direct current power source for applying a voltage to the electrodes and a supernatant portion recovery means for continuously recovering the supernatant portion of the suspension passing through the passage. The solid particle classification method employs the classifier to control the pH concentration of the suspension and performs the classification by regulating direct voltage in response to the zeta potential of the solid particle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、沈降分級式の固体微粒子分級装置に係り、特に沈降槽内を流れる懸濁液に直流電圧を印加しつつ分級を行う固体微粒子分級装置及びこれを利用した固体微粒子分級方法に関する。   The present invention relates to a sedimentation type solid particulate classifier, and more particularly to a solid particulate classification device that performs classification while applying a direct current voltage to a suspension flowing in a sedimentation tank, and a solid particulate classification method using the same.

分散媒体中に分散する固体微粒子群を所定の粒子群に分級する技術は、固体微粒子に作用する遠心力を利用するもの、静電力を利用するもの及び重力を利用するもの等がある。さらに、これらを利用した分級装置又は方法には、分散媒体として液体を利用するもの又はガスを利用もの、静電力を利用するものには固体微粒子に直流電圧を印加するも又は交番電圧を印加するもの等種々の装置又は方法がある。   Techniques for classifying solid fine particle groups dispersed in a dispersion medium into predetermined particle groups include those using centrifugal force acting on solid fine particles, those using electrostatic force, and those using gravity. Further, in the classifying apparatus or method using these, a DC voltage or an alternating voltage is applied to the solid fine particles for those using a liquid or gas as a dispersion medium and those using an electrostatic force. There are various devices or methods.

このような固体微粒子分級装置又は方法の中で、液体を分散媒体とし固体微粒子に作用する重力を利用した沈降分級式の固体微粒子分級装置は、簡単な構造で、大量に分級処理をすることができる利点を有する。このような固体微粒子分級装置として、例えば特許文献1に、静置槽内に、固体粒子を含む処理液を供給し、処理液中の固体粒子のうち、終端速度が高い固体粒子を底面に向かって沈降させて、底面中央に設けた下部排出口から取り出し、終端速度の低い固体粒子を上昇させて、上部排出口から取り出す浮遊沈降式分離装置において、静置槽内への処理液の供給を、静置槽の同一の水平断面内に、均一に分散配置した複数の供給ノズルから行うようにした沈降分級式の固体微粒子分級装置が提案されている。   Among such solid fine particle classifiers or methods, a sedimentation type solid fine particle classifier utilizing gravity acting on solid fine particles using a liquid as a dispersion medium has a simple structure and can perform a large amount of classification treatment. Has the advantage of being able to. As such a solid fine particle classifier, for example, in Patent Document 1, a treatment liquid containing solid particles is supplied into a stationary tank, and among the solid particles in the treatment liquid, solid particles having a high terminal velocity are directed toward the bottom surface. In a floating sedimentation type separation device that takes out from the lower discharge port provided in the center of the bottom surface, raises the solid particles having a low terminal velocity, and takes out from the upper discharge port, supply the processing liquid into the stationary tank. There has been proposed a sedimentation type solid fine particle classifier that is configured to perform from a plurality of supply nozzles uniformly distributed in the same horizontal section of a stationary tank.

一方、液体を分散媒体とし直流電圧を印加することによって固体微粒子に作用する静電力を利用する静電分級式の固体微粒子分級装置又は方法は、固体微粒子自体が有する電位・電荷と印加する電圧との作用・効果を利用することによって精度の高い分級を行うことができる利点を有する。このような固体微粒子分級方法として、特許文献2に、微粒子材料を分散媒体中に分散させた分散液を水槽に充填し、水槽中に陰極および陽極を配設し、上記電極間に直流電圧を印加して電極間に発生した電場により微粒子材料からなる分散粒子から選択的に大粒径粒子を電極板上に付着させ、大粒径粒子を除去する分級方法が提案されている。   On the other hand, an electrostatic classification type solid fine particle classification apparatus or method that uses electrostatic force acting on solid fine particles by applying a DC voltage using a liquid as a dispersion medium is a method in which the potential and charge of the solid fine particles themselves and the voltage to be applied This has the advantage of being able to classify with high accuracy by utilizing the action and effect of. As such a solid fine particle classification method, Patent Document 2 discloses that a dispersion liquid in which a fine particle material is dispersed in a dispersion medium is filled in a water tank, a cathode and an anode are disposed in the water tank, and a DC voltage is applied between the electrodes. There has been proposed a classification method in which large particle diameter particles are selectively adhered on an electrode plate from dispersed particles made of a fine particle material by applying an electric field generated between the electrodes, and the large particle diameter particles are removed.

また、特許文献3には、粒子を含む溶液が流れることができる流路と、上記流路の所定領域において上記流路を横断する方向に電界或いは磁界を生じさせ上記粒子を偏向させる偏向手段と、上記流路内において上記偏向手段により上記粒子が寄せられる偏向側に配置され、該粒子を捕らえることができる粒子捕捉部とを備えた粒子分離機構が提案されている。   Patent Document 3 discloses a flow path through which a solution containing particles can flow, and a deflecting unit that deflects the particles by generating an electric field or a magnetic field in a direction crossing the flow path in a predetermined region of the flow path. There has been proposed a particle separation mechanism provided with a particle trapping part that is arranged on the deflection side where the particles are attracted by the deflection means in the flow path and can capture the particles.

特開2003-24819号公報JP 2003-24819 A 特開平5-40084号公報JP-A-5-40084 特開2002-233792号公報JP 2002-233792 JP

しかしながら、このような従来の沈降分級式の固体微粒子分級装置又は方法は、一般に分級精度が劣るという問題がある。一方、静電分級式の固体微粒子分級装置又は方法は、一般に大量の固体微粒子の分級を行うには適していない。また、特許文献2に提案された固体微粒子分級方法は、粒径の大きな固体微粒子ほど分散媒体中を移動しやすいという現象により、粗粒が製品へ混入するのを防止するため、予め複数回にわたって粗粒の除去をしなければならないという問題がある。特許文献3に提案された固体微粒子分級機構は、特殊な構造の粒子捕捉部を設けなければならないという問題がある。   However, such a conventional sedimentation classification type solid fine particle classification apparatus or method has a problem that the classification accuracy is generally poor. On the other hand, an electrostatic classification type solid fine particle classification apparatus or method is generally not suitable for classifying a large amount of solid fine particles. In addition, the solid fine particle classification method proposed in Patent Document 2 is a plurality of times in advance in order to prevent coarse particles from being mixed into a product due to the phenomenon that solid fine particles having a larger particle size are more easily moved in the dispersion medium. There is a problem that coarse grains must be removed. The solid fine particle classification mechanism proposed in Patent Document 3 has a problem that a particle trapping part having a special structure must be provided.

本発明は、かかる従来の問題点に鑑みてなされたものであって、簡単な構造で大量の固体微粒子の分級を効果的に行うことができる固体微粒子分級装置及びこれを利用した固体微粒子分級方法を提供することを目的とする。   The present invention has been made in view of such conventional problems, and is capable of effectively classifying a large amount of solid fine particles with a simple structure, and a solid fine particle classification method using the same. The purpose is to provide.

本発明者等は、固体微粒子が分散した懸濁液を、沈降槽内に流動させることにより分級を行う沈降分級式技術に、直流電圧を印加しつつ分級を行う静電分級式の技術を組み合わせることにより、固体微粒子に作用する重力、静電力及び水流を利用することができ、懸濁液中の固体微粒子を大量にかつ高精度で分級することができるという知見を得て本発明を完成させた。なお、以下に方向又は位置に関して用いる上又は下とは、重力の方向を基準として上又は下にあることを意味する。   The inventors of the present invention combine a sedimentation classification technique that performs classification by flowing a suspension in which solid fine particles are dispersed in a sedimentation tank, and an electrostatic classification technique that performs classification while applying a DC voltage. Therefore, the present invention has been completed by obtaining the knowledge that gravity, electrostatic force and water flow acting on the solid fine particles can be used, and that the solid fine particles in the suspension can be classified in large quantities with high accuracy. It was. In the following description, the term “upper or lower” used in relation to the direction or position means that it is above or below the direction of gravity.

本発明に係る固体微粒子分級装置は、請求項1に示すように、沈降槽を用いて懸濁液中の固体微粒子の分級を行う固体微粒子分級装置であって、沈降槽に懸濁液を連続供給する懸濁液供給手段、前記沈降槽内に浸漬された互いに離隔されその離隔空間を前記懸濁液の流路とする一対の電極、該一対の電極に電圧を印加する直流電源及び前記流路を通った懸濁液の上澄み部分を回収する上澄み部回収手段、を有してなる。上記固体微粒子分級装置においては、請求項2に示すように、さらに懸濁液の濃縮部分を回収する濃縮部回収手段を設けるのが好ましい。   The solid fine particle classifying device according to the present invention is a solid fine particle classifying device for classifying solid fine particles in a suspension using a sedimentation tank as shown in claim 1, and the suspension is continuously provided in the sedimentation tank. Suspension supply means for supplying, a pair of electrodes immersed in the settling tank and spaced apart from each other as a flow path for the suspension, a direct current power source for applying a voltage to the pair of electrodes, and the flow And a supernatant recovery means for recovering a supernatant portion of the suspension that has passed through the passage. In the solid fine particle classifier, as shown in claim 2, it is preferable to further provide a concentrating part recovery means for recovering a concentrated part of the suspension.

また、上記固体微粒子分級装置において、沈降槽に懸濁液を連続供給する懸濁液供給手段は、請求項3に示すように、分散媒体と固体微粒子を攪拌して懸濁液を生成する攪拌槽、前記懸濁液に超音波を照射して前記固体微粒子を分散させる超音波分散装置、該超音波を照射された懸濁液を懸濁液供給管を通じて前記沈降槽に連続供給するポンプ及び流量調整装置からなるものが好ましく、上記懸濁液供給管は、請求項4に示すように、その端部に多数の懸濁液供給口を備え沈降槽内に突出する分配管を有するのが好ましい。   Further, in the solid fine particle classifier, the suspension supply means for continuously supplying the suspension to the sedimentation tank is, as shown in claim 3, stirring the dispersion medium and the solid fine particles to produce a suspension. A tank, an ultrasonic dispersion device for irradiating the suspension with ultrasonic waves to disperse the solid fine particles, a pump for continuously supplying the suspension irradiated with the ultrasonic waves to the settling tank through a suspension supply pipe, and Preferably, the suspension supply pipe has a distribution pipe that has a large number of suspension supply ports at its end and protrudes into the settling tank, as shown in claim 4. preferable.

また、上記固体微粒子分級装置の懸濁液が沈降槽に入流する懸濁液供給口側部分は、請求項5に示すように、沈降槽の入口側部分は、前記沈降槽に流入した懸濁液がその流れの方向に流路を次第に拡大するように形成されてなるのが好ましく、また請求項6に示すように、懸濁液供給管が沈降槽に開口する懸濁液供給口の上部、または上部及び下部に清浄水を供給する清浄水供給口が設けられているのが好ましい。さらに、請求項7に示すように、濁液供給口と清浄水供給口との間に沈降槽から懸濁液が流れる方向に突出する隔離板が設けられているのが好ましい。   Further, the suspension supply port side portion into which the suspension of the solid fine particle classifier flows into the sedimentation tank is as shown in claim 5, and the inlet side portion of the sedimentation tank is the suspension that has flowed into the sedimentation tank. It is preferable that the liquid is formed so as to gradually expand the flow path in the direction of the flow, and as shown in claim 6, the upper part of the suspension supply port where the suspension supply pipe opens into the settling tank Alternatively, it is preferable that a clean water supply port for supplying clean water to the upper and lower portions is provided. Furthermore, as shown in claim 7, it is preferable that a separator projecting in the direction in which the suspension flows from the sedimentation tank is provided between the turbid liquid supply port and the clean water supply port.

上記固体微粒子分級装置において、懸濁液の上澄み部分を回収する上澄み部回収手段は、請求項8に示すように、沈降槽の出口側部分の上部に設けられた上排出口、これに連通する上排出管及び流量計を有してなるのが好ましい。懸濁液の濃縮部分を回収する濃縮部回収手段は、請求項9に示すように、沈降槽の出口側部分に設けられ上排出口の下部に設けられた下排出口、これに連通する下排出管及び流量計を有してなるのが好ましい。   In the solid particulate classifier, the supernatant recovery means for recovering the supernatant part of the suspension communicates with an upper discharge port provided at the upper part of the outlet side part of the settling tank, as shown in claim 8. It is preferable to have an upper discharge pipe and a flow meter. As shown in claim 9, the concentrating part recovery means for recovering the concentrated part of the suspension is provided at the outlet side part of the sedimentation tank and provided at the lower part of the upper outlet, and the lower part communicating with the lower part. It preferably has a discharge pipe and a flow meter.

また、沈降槽内の一対の電極間の流路を通過した懸濁液を排出させる沈降槽の排出側部分には、請求項10に示すように、上排出口と下排出口との間にあって懸濁液の上澄み部分と濃縮部分をそれぞれ上排出口と下排出口に導く誘導部材が設けられるのが好ましく、請求項11に示すように、沈降槽の上排出口の前面に多孔板が設けられているのが好ましい。   Further, as shown in claim 10, the discharge side portion of the settling tank that discharges the suspension that has passed through the flow path between the pair of electrodes in the settling tank is between the upper discharge port and the lower discharge port. Preferably, a guide member is provided for guiding the supernatant portion and the concentrated portion of the suspension to the upper discharge port and the lower discharge port, respectively. As shown in claim 11, a porous plate is provided in front of the upper discharge port of the settling tank. It is preferred that

さらに、請求項12に示すように、沈降槽は懸濁液の流れる方向に向かって傾斜するように設けられているのが好ましく、請求項13に示すように、沈降槽の底部、又は一対の電極のうち下側電極の上部に堆積したスラリーを排出する排出装置が設けられているのが好ましい。   Furthermore, as shown in claim 12, the sedimentation tank is preferably provided so as to incline toward the direction in which the suspension flows, and as shown in claim 13, the bottom of the sedimentation tank, or a pair of It is preferable that a discharge device for discharging the slurry deposited on the upper part of the lower electrode among the electrodes is provided.

上記固体微粒子分級装置において、沈降槽内に浸漬して設けられる一対の電極は、請求項14に示すように、多孔金属板からなるのが好ましく、請求項15に示すように、この一対の電極に印加される電圧の極性を切り換えることができる切り換えスイッチが設けられているのが好ましい。   In the solid fine particle classifier, the pair of electrodes provided by being immersed in the settling tank is preferably made of a porous metal plate as shown in claim 14, and the pair of electrodes is shown in claim 15. It is preferable that a change-over switch capable of switching the polarity of the voltage applied to is provided.

また、請求項16に示すように、一対の電極の下側に配設される電極の上面にフィルタが設けられているのが好ましく、請求項17に示すように、一対の電極から発生するガスの捕集・脱気装置が設けられているのが好ましい。   Further, as shown in claim 16, it is preferable that a filter is provided on the upper surface of the electrodes disposed below the pair of electrodes, and as shown in claim 17, gas generated from the pair of electrodes It is preferable that a collection / deaeration device is provided.

さらに、上記固体微粒子分級装置には、請求項18に示すように、懸濁液の上澄み部分を溢流させた上澄み液を回収及び還流させる液循環装置が設けられているのが好ましい。   Further, the solid fine particle classifier is preferably provided with a liquid circulation device for collecting and refluxing the supernatant liquid overflowing the supernatant portion of the suspension, as shown in claim 18.

本発明に係る固体微粒子分級方法は、請求項19に示すように、懸濁液のpH濃度を調整した後に分級を行う方法である。さらに、請求項20に示すように、固体微粒子の分級に際し、一対の電極に印加する電圧を懸濁液中の固体微粒子のゼータ電位に応じて調整して分級を行う方法である。   The solid fine particle classification method according to the present invention is a method for performing classification after adjusting the pH concentration of a suspension, as shown in claim 19. Furthermore, according to the twentieth aspect of the invention, the classification is performed by adjusting the voltage applied to the pair of electrodes in accordance with the zeta potential of the solid fine particles in the suspension when classifying the solid fine particles.

本発明に係る固体微粒子分級装置によれば、簡単な構造で大量の固体微粒子の分級を高い精度で行うことができる。また、本発明に係る固体微粒子分級方法によれば、固体微粒子の分級を効率的に行うことができる。   According to the solid fine particle classifying apparatus according to the present invention, a large amount of solid fine particles can be classified with high accuracy with a simple structure. Moreover, according to the solid fine particle classification method of the present invention, the solid fine particles can be classified efficiently.

以下に、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る一実施例である固体微粒子分級装置の模式図を示す。この例では、固体微粒子分級装置は、沈降槽11と、沈降槽11に懸濁液65を連続供給する懸濁液供給手段30、沈降槽内に浸漬された互いに離隔されその離隔空間を懸濁液65の流路60とする一対の電極21、22、該一対の電極21、22に電圧を印加する直流電源25、流路60を通った懸濁液65の上澄み部分を回収する上澄み部回収手段14、を有している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram of a solid fine particle classifying apparatus according to an embodiment of the present invention. In this example, the solid fine particle classifier includes a settling tank 11, suspension supplying means 30 for continuously supplying the suspension 65 to the settling tank 11, and the separated space immersed in the settling tank. A pair of electrodes 21 and 22 as a flow path 60 of the liquid 65, a DC power source 25 that applies a voltage to the pair of electrodes 21 and 22, a supernatant portion recovery that recovers a supernatant portion of the suspension 65 that has passed through the flow path 60 Means 14.

沈降槽11は、懸濁液65を満たすことができ、懸濁液65が流入する入口側部分と、その懸濁液65を排出する出口側部分と、沈降槽11内部に配設された一対の電極21、22を有するものであればその形状及び形態を問わない。図1の例では断面が矩形の水平床式の形状・形態をしているが、この沈降槽11は、図2に示すように、円筒形・垂直式の形状・形態を有するものであってもよい。図2の例では、円筒形の沈降槽11内に外筒電極211と内筒電極221からなる一対の電極を有している。すなわち、沈降槽11の形状及び形態は、分級される固体微粒子の特性、処理量等を考慮して最適なものが選択される。   The settling tank 11 can fill the suspension 65, and includes an inlet side portion into which the suspension 65 flows, an outlet side portion from which the suspension 65 is discharged, and a pair disposed inside the settling tank 11. As long as the electrodes 21 and 22 are provided, the shape and form are not limited. In the example of FIG. 1, the shape and form of a horizontal floor type having a rectangular cross section is shown. However, as shown in FIG. 2, the settling tank 11 has a cylindrical and vertical form and form. Also good. In the example of FIG. 2, a cylindrical settling tank 11 has a pair of electrodes including an outer cylinder electrode 211 and an inner cylinder electrode 221. That is, the optimum shape and form of the sedimentation tank 11 are selected in consideration of the characteristics of solid fine particles to be classified, the processing amount, and the like.

沈降槽11の入口側部分には、懸濁液供給口121が設けられ、懸濁液供給口121は懸濁液供給管12に連通している。また、この沈降槽11には懸濁液供給口121を挟むように清浄水供給口131(下清浄水供給口131A、上清浄水供給口131B)が設けられ、清浄水供給管13(それぞれ下清浄水供給管13A、上清浄水供給管13B)に連通している。下清浄水供給口131Aからの沈降槽11への清浄水の供給により、以下に説明するように、沈降槽11底部への微粒の堆積を防止することができ、上清浄水供給口131Bからの沈降槽11への清浄水の供給により懸濁液65の上澄み部分への粗粒の混入を防止することができる。なお下清浄水供給口131A及び上清浄水供給口131Bのそれぞれの開口面積、沈降槽11底部からの設置位置等は処理する固体微粒子の特性、処理量等によって最適な値が採用される。   A suspension supply port 121 is provided at the inlet side portion of the settling tank 11, and the suspension supply port 121 communicates with the suspension supply pipe 12. The settling tank 11 is provided with a clean water supply port 131 (a lower clean water supply port 131A and an upper clean water supply port 131B) so as to sandwich the suspension supply port 121, and a clean water supply pipe 13 The clean water supply pipe 13A communicates with the upper clean water supply pipe 13B). By supplying clean water from the lower clean water supply port 131A to the settling tank 11, as described below, it is possible to prevent the accumulation of fine particles on the bottom of the settling tank 11, and from the upper clean water supply port 131B. By supplying clean water to the settling tank 11, it is possible to prevent coarse particles from being mixed into the supernatant of the suspension 65. It should be noted that optimum values are adopted for the opening area of the lower clean water supply port 131A and the upper clean water supply port 131B, the installation position from the bottom of the settling tank 11, etc., depending on the characteristics of the solid fine particles to be processed, the processing amount, and the like.

さらに、沈降槽11の入口側部分には、下清浄水供給口131Aと懸濁液供給口121との間、および懸濁液供給口121と上清浄水供給口131Bとの間に、懸濁液65が流れる方向に沈降槽11の壁部から突出する隔離板16(下隔離板16A及び上隔離板16B)が設けられている。これにより、懸濁液65及び清浄水の流れが層流状態になりやすくなる。なお、隔離板16は沈降槽11への取り付け角度を変化させることができるようになっているのがよい。   Further, the inlet side portion of the sedimentation tank 11 is suspended between the lower clean water supply port 131A and the suspension supply port 121, and between the suspension supply port 121 and the upper clean water supply port 131B. Separating plates 16 (a lower separating plate 16A and an upper separating plate 16B) protruding from the wall portion of the settling tank 11 are provided in the direction in which the liquid 65 flows. Thereby, the flow of the suspension 65 and the clean water easily becomes a laminar flow state. In addition, it is preferable that the separating plate 16 can change the attachment angle to the settling tank 11.

一方、沈降槽11の一対の電極21、22に挟まれた空間に続く沈降槽11の出口側部分には、分級された懸濁液65の上澄み部分(通常製品として回収される部分で、所定の平均粒子径以下の粒度の細粒、微粒を含む部分)を沈降槽11から排出し回収する上澄み部回収手段14が設けられている。すなわち、上澄み部回収手段14は、沈降槽11の出口側部分の上部に設けられた上排出口142、上排出管141及び流量計(図示せず)を有してなり、懸濁液65の上澄み部分が、上排出口142、上排出管141及び流量計を通じて連続的に排出・回収されるようになっている。   On the other hand, at the outlet side portion of the sedimentation tank 11 that follows the space sandwiched between the pair of electrodes 21 and 22 of the sedimentation tank 11, the supernatant portion of the classified suspension 65 (the portion that is recovered as a normal product is a predetermined portion). Supernatant portion collecting means 14 is provided for discharging and collecting fine particles having a particle size equal to or smaller than the average particle diameter of particles and the fine particles) from the sedimentation tank 11. That is, the supernatant recovery means 14 has an upper discharge port 142, an upper discharge pipe 141 and a flow meter (not shown) provided at the upper part of the outlet side portion of the settling tank 11, and the suspension 65 The supernatant portion is continuously discharged and collected through the upper discharge port 142, the upper discharge pipe 141 and the flow meter.

さらに、図1の例では、上排出口142の下部に懸濁液65の濃縮部分(通常は廃棄される部分で、目的とする平均粒子径を超える粗粒及び粗大粒を含む部分)を回収する手段が設けられている。すなわち、上排出口142の下部に設けられた下排出口152、下排出管151及び流量計(図示せず)を有してなる濃縮部回収手段15が設けられており、懸濁液65の濃縮部分は、排出口152、下排出管151及び流量計を通じて連続的に排出・回収されるようになっている。これにより、連続的に分級を行うことができる。また、分級精度の向上を図ることができる。なお、上記上排出口142及び下排出口152の沈降槽11の底面からの高さ位置、開口面積等は、固体微粒子の性状、分級範囲、処理する懸濁液の量等によって最適なものが採用される。   Further, in the example of FIG. 1, the concentrated portion of the suspension 65 (usually a portion that is discarded and includes coarse and coarse particles that exceed the target average particle size) is recovered at the bottom of the upper discharge port 142. Means are provided. That is, a concentration unit recovery means 15 having a lower discharge port 152, a lower discharge tube 151 and a flow meter (not shown) provided at the lower part of the upper discharge port 142 is provided, and the suspension 65 The concentrated portion is continuously discharged and collected through the discharge port 152, the lower discharge pipe 151 and the flow meter. Thereby, classification can be performed continuously. In addition, classification accuracy can be improved. The height position of the upper discharge port 142 and the lower discharge port 152 from the bottom surface of the sedimentation tank 11, the opening area, etc. are optimal depending on the properties of the solid fine particles, the classification range, the amount of suspension to be processed, etc. Adopted.

また、沈降槽11の出口側部分には、図1に示すように、上排出口142と下排出口152との間に懸濁液65の上澄み部分と濃縮部分をそれぞれ上排出口142と下排出口152に導く誘導部材17が、沈降槽11の壁面から流路60の上流方向に伸延するように設けられている。これにより、分級精度の向上を図ることができる。   Further, as shown in FIG. 1, the supernatant portion and the concentrated portion of the suspension 65 are placed between the upper discharge port 142 and the lower discharge port 152 at the outlet side portion of the settling tank 11, respectively. A guide member 17 that leads to the discharge port 152 is provided so as to extend from the wall surface of the settling tank 11 in the upstream direction of the flow path 60. Thereby, the classification accuracy can be improved.

このような沈降槽11に、懸濁液65を連続供給する懸濁液供給手段30が設けられている。この懸濁液供給手段30は、図1に示すように、分散媒体67と固体微粒子66を攪拌して懸濁液65を生成する攪拌槽31、懸濁液65に超音波を照射して固体微粒子66を分散させる超音波分散装置37、超音波を照射された懸濁液65を懸濁液供給管12を通じて沈降槽11に連続供給するポンプ33及び流量調整装置35を有してなる。本懸濁液供給手段30により、所定の懸濁液65が懸濁液供給管12及び懸濁液供給口121を通じて沈降槽11に供給される。   In such a sedimentation tank 11, suspension supply means 30 for continuously supplying the suspension 65 is provided. As shown in FIG. 1, the suspension supply means 30 is a solid tank by irradiating the suspension 65 with ultrasonic waves, stirring the dispersion medium 67 and the solid fine particles 66 to generate the suspension 65. An ultrasonic dispersion device 37 that disperses the fine particles 66, a pump 33 that continuously supplies the suspension 65 irradiated with ultrasonic waves to the sedimentation tank 11 through the suspension supply pipe 12, and a flow rate adjustment device 35 are provided. The suspension supply means 30 supplies a predetermined suspension 65 to the sedimentation tank 11 through the suspension supply pipe 12 and the suspension supply port 121.

攪拌槽31は分散媒体67と固体微粒子66からなる原料スラリ−を混合分散させるのに用いられ、超音波分散装置37は固体微粒子66を均一に分散させるのに用いられる。超音波分散装置37は、図1の例では懸濁液供給管12の途中に設けてあるが、攪拌槽11の入口部に設けるのがよい。ポンプ33は、固体微粒子66が均一に分散した原料スラリ−を沈降槽11へ供給するのに用いられ、供給される原料スラリ−の供給量は、流量調整装置35により一定量に保たれる。   The stirring tank 31 is used to mix and disperse the raw material slurry composed of the dispersion medium 67 and the solid fine particles 66, and the ultrasonic dispersion device 37 is used to uniformly disperse the solid fine particles 66. The ultrasonic dispersion device 37 is provided in the middle of the suspension supply pipe 12 in the example of FIG. 1, but is preferably provided at the inlet of the stirring tank 11. The pump 33 is used to supply the raw material slurry in which the solid fine particles 66 are uniformly dispersed to the settling tank 11, and the supply amount of the supplied raw material slurry is kept constant by the flow rate adjusting device 35.

図1の例では、この懸濁液供給手段30に、さらに、以下の清浄水供給手段40が付設されている。すなわち、清浄水を満たした水タンク41、ポンプ43及び流量緒調整装置45を有してなる清浄水供給手段40が付設されており、清浄水供給管13(下清浄水供給管13A、下清浄水供給管13B)及び清浄水供給口131(下清浄水供給口131A、上清浄水供給口131B)を通じて懸濁液供給口121の下部及び上部から所定量の清浄水が供給されるようになっている。これにより、以下に説明するように分級精度を向上させることができる。   In the example of FIG. 1, the following clean water supply means 40 is further attached to the suspension supply means 30. That is, a clean water supply means 40 having a water tank 41 filled with clean water, a pump 43, and a flow rate adjusting device 45 is attached, and the clean water supply pipe 13 (the bottom clean water supply pipe 13A, the bottom clean water A predetermined amount of clean water is supplied from the lower and upper portions of the suspension supply port 121 through the water supply pipe 13B) and the clean water supply port 131 (the lower clean water supply port 131A and the upper clean water supply port 131B). ing. Thereby, the classification accuracy can be improved as described below.

上記水タンク41、ポンプ43及び流量調整装置45は公知のものを使用することができる。流量緒調整装置45は、下清浄水供給口131Aと上清浄水供給口131Bから流入する清浄水の流量をそれぞれ独自に制御できるようになっている。なお、清浄水は、懸濁液供給口121の下部からのみ供給されるようにすることができ、また、まったく供給されないようにすることができる。製品として要求される分級の精度、処理する懸濁液の処理量等により最適なものが選択される。   As the water tank 41, the pump 43, and the flow rate adjusting device 45, known ones can be used. The flow rate adjusting device 45 can independently control the flow rates of clean water flowing from the lower clean water supply port 131A and the upper clean water supply port 131B. The clean water can be supplied only from the lower part of the suspension supply port 121, or can be prevented from being supplied at all. The optimum one is selected according to the classification accuracy required for the product, the throughput of the suspension to be treated, and the like.

本固体微粒子分級装置に設けられる一対の電極は、図1に示すように、沈降槽11の上部に設けられた平板状の電極21と、底部に設けられた平板状の電極22からなる。一対の電極21、22には直流電圧を印加することができる直流電源25が設けられている。電極21と電極22とに挟まれた空間部は、懸濁液供給口121から流入する懸濁液65、清浄水供給口131A及び131Bから流入する清浄水が流れる流路60になっており、懸濁液65と清浄水との混合水は流路60内を通って上排出口142及び下排出口152から排出されるようになっている。   As shown in FIG. 1, the pair of electrodes provided in the present solid fine particle classifier includes a plate-like electrode 21 provided at the top of the settling tank 11 and a plate-like electrode 22 provided at the bottom. The pair of electrodes 21 and 22 is provided with a DC power source 25 capable of applying a DC voltage. The space portion sandwiched between the electrode 21 and the electrode 22 is a suspension 65 flowing from the suspension supply port 121, and a flow path 60 through which clean water flowing from the clean water supply ports 131A and 131B flows, The mixed water of the suspension 65 and clean water passes through the flow path 60 and is discharged from the upper discharge port 142 and the lower discharge port 152.

一対の電極21、22の形状は必ずしも平板状でなくてもよい。例えば、図2に示すように円筒状の外筒電極211、内筒電極221からなるものであってもよい。一対の電極21、22は、銅、アルミニウムの板、メッシュ材又は多孔板等から形成することができる。   The shape of the pair of electrodes 21 and 22 is not necessarily flat. For example, as shown in FIG. 2, a cylindrical outer cylinder electrode 211 and an inner cylinder electrode 221 may be used. The pair of electrodes 21 and 22 can be formed of a copper, aluminum plate, a mesh material, a porous plate, or the like.

本発明は、上述のように沈降分級式技術をベースとし、これに直流電圧を印加しつつ分級を行う静電分級式の技術を組み合わせた技術からなる。すなわち、本発明の分級は、一対の電極21、22が設けられた沈降槽11に懸濁液65を連続的に流し、通常製品となる上澄み部分と、沈降槽11の下部から回収され通常は廃棄される濃縮部分に連続的に分別することによって行われる。具体的には、上記の固体微粒子分級装置を使用して以下のように固体微粒子の分級が行われる。   The present invention is based on the sedimentation classification technique as described above, and is composed of a technique in which the electrostatic classification technique for performing classification while applying a DC voltage is combined. That is, in the classification of the present invention, the suspension 65 is continuously flowed to the sedimentation tank 11 provided with the pair of electrodes 21 and 22, and is usually recovered from the supernatant part as a normal product and the lower part of the sedimentation tank 11. This is done by continuously fractionating the concentrated part to be discarded. Specifically, the solid fine particles are classified using the solid fine particle classifier as described below.

まず、目的とする製品に応じた懸濁液65を準備するために、予め懸濁液の最適なpH濃度を検討する。図3は、シリカ微粒子の分級を行う場合に、懸濁液65のpH濃度と懸濁液65中のシリカ微粒子のゼータ電位との関係を調べたグラフを示す。図3によると、pH濃度は7.0から7.5になるとゼータ電位が-36mVから-51mVに急激に変化し、その後pH濃度がアルカリ側にずれるほどゼータ電位は徐々に低下(マイナス側)する。また、pH濃度が8.0〜9.5の範囲では、ゼータ電位の変化はほとんどなく、安定していることが分かる。すなわち、シリカ微粒子の分級においてはpH8.0〜9.5の懸濁液65を用い、これに直流電圧を印可することにより効果的にシリカ微粒子の分級をすることができることが分かる。なお、シリカ微粒子は、電気化学工業株式会社製のものを使用した。その平均粒子径は、4.1μmであった。平均粒子径は、堀場製作所製粒度分布測定機LA920を用いてレーザ回折法により測定した。ゼータ電位は、Malvern Instruments Ltd.製ゼ−タサイザ− 2000により測定した。懸濁液65のpH濃度の調整は、pH濃度7の懸濁液を用い水酸化ナトリウムの添加により行った。   First, in order to prepare the suspension 65 corresponding to the target product, the optimum pH concentration of the suspension is examined in advance. FIG. 3 is a graph showing the relationship between the pH concentration of the suspension 65 and the zeta potential of the silica particles in the suspension 65 when classifying the silica particles. According to FIG. 3, when the pH concentration is changed from 7.0 to 7.5, the zeta potential changes rapidly from -36 mV to -51 mV, and then the zeta potential gradually decreases (minus side) as the pH concentration shifts to the alkali side. Further, it can be seen that the zeta potential hardly changes in the pH concentration range of 8.0 to 9.5 and is stable. That is, it can be seen that the silica fine particles can be classified effectively by using a suspension 65 having a pH of 8.0 to 9.5 and applying a DC voltage thereto. The silica fine particles used were those manufactured by Denki Kagaku Kogyo Co., Ltd. The average particle size was 4.1 μm. The average particle size was measured by a laser diffraction method using a particle size distribution analyzer LA920 manufactured by Horiba. The zeta potential was measured with a Zetasizer 2000 from Malvern Instruments Ltd. The pH concentration of the suspension 65 was adjusted by adding sodium hydroxide using a suspension having a pH concentration of 7.

また、固体微粒子の分級に当たって、予め目的とする製品の平均粒子径の前後範囲にわたって固体微粒子が有するゼータ電位を測定し、そのゼータ電位に応じた直流電圧を懸濁液65に印加するのがよい。図4はアクリル樹脂の微粒子を分級する場合の例を示し、平均粒子径2.4〜5.2のアクリル樹脂の微粒子を純水の分散媒体に分散させた場合の、アクリル樹脂微粒子の平均粒子径とゼータ電位との関係を示すグラフである。図4によると、ゼータ電位は平均粒子径に比例していることが分かる。すなわち、懸濁液に印加する直流電圧を製品の粒径に応じて調整することにより、効率的な分級を行うことができることが分かる。なお、アクリル樹脂の微粒子は、早川ゴム株式会社製のものを使用した。分散媒体は純水を用い、
懸濁液のpH濃度は7であった。平均粒子径の測定、ゼータ電位の測定、懸濁液65のpH濃度の調整は図3の場合と同様に行った。
Further, in classifying the solid fine particles, it is preferable to measure the zeta potential of the solid fine particles in advance before and after the average particle diameter of the target product and apply a DC voltage corresponding to the zeta potential to the suspension 65. . FIG. 4 shows an example in which acrylic resin fine particles are classified. The average particle diameter and zeta potential of acrylic resin fine particles when acrylic resin fine particles having an average particle diameter of 2.4 to 5.2 are dispersed in a pure water dispersion medium. It is a graph which shows the relationship. According to FIG. 4, it can be seen that the zeta potential is proportional to the average particle size. That is, it can be seen that efficient classification can be performed by adjusting the DC voltage applied to the suspension according to the particle size of the product. The acrylic resin particles used were those manufactured by Hayakawa Rubber Co., Ltd. The dispersion medium is pure water,
The pH concentration of the suspension was 7. Measurement of the average particle diameter, measurement of the zeta potential, and adjustment of the pH concentration of the suspension 65 were performed in the same manner as in FIG.

つぎに、上記結果に基づき所定の懸濁液65を準備し、これを沈降槽11に連続供給する。すなわち、固体微粒子66と分散媒体67を攪拌槽31で攪拌し、これに超音波分散装置37により超音波を照射して固体微粒子66が分散媒体67に均一に分散された懸濁液65を生成し、ポンプ33及び流量調整装置35により懸濁液供給管12を通じて沈降槽11に懸濁液65を連続供給する。これとともに、懸濁液供給管12に連通する部分(図示せず)から、例えば水酸化ナトリウムを添加して懸濁液65のpH濃度を調整する。この際同時に、清浄水供給手段40により清浄水を下清浄水供給口131A、上清浄水供給口131Bより沈降槽11に供給する。懸濁液65及び清浄水は層流状態で沈降槽に供給されるのが好ましい。このため懸濁液65及び清浄水の流量は層流状態になるように調整する。   Next, based on the above result, a predetermined suspension 65 is prepared and continuously supplied to the sedimentation tank 11. That is, the solid fine particles 66 and the dispersion medium 67 are stirred in the stirring tank 31 and irradiated with ultrasonic waves by the ultrasonic dispersion device 37 to generate a suspension 65 in which the solid fine particles 66 are uniformly dispersed in the dispersion medium 67. Then, the suspension 65 is continuously supplied to the sedimentation tank 11 through the suspension supply pipe 12 by the pump 33 and the flow rate adjusting device 35. At the same time, from a portion (not shown) communicating with the suspension supply pipe 12, for example, sodium hydroxide is added to adjust the pH concentration of the suspension 65. At the same time, the clean water supply means 40 supplies clean water to the sedimentation tank 11 from the lower clean water supply port 131A and the upper clean water supply port 131B. The suspension 65 and clean water are preferably supplied to the settling tank in a laminar flow state. For this reason, the flow rates of the suspension 65 and the clean water are adjusted so as to be in a laminar flow state.

本発明においては、上述のように沈降槽11の入口側では、層流状態の懸濁液65の上下に層流状態の清浄水が流れるようになっている。このため、懸濁液65の層の下側を流れる清浄水の流れにより懸濁液65の中の微粒の降下を阻止し懸濁液65の濃縮部分への微粒の混入を防止することができる。さらに、懸濁液65の層の上側を流れる清浄水の流れにより懸濁液65の中の粗粒の舞い上がりを阻止し製品への粗粒の混入を防止することができる。これにより、分級精度の高い高品質の製品を高回収率で生産することができる。なお、上述のように、本例では、清浄水の供給は、懸濁液供給口121の上下から供給されるようになっているが、固体微粒子の性状によって製品への粗粒の混入が問題にならない場合は、懸濁液供給口121の下側にのみ清浄水を供給できるようにすることができる。   In the present invention, as described above, laminar clean water flows above and below the laminar suspension 65 on the inlet side of the settling tank 11. For this reason, the flow of the clean water flowing under the layer of the suspension 65 can prevent the particles from falling in the suspension 65 and prevent the particles from being mixed into the concentrated portion of the suspension 65. . Furthermore, the flow of clean water flowing above the layer of the suspension 65 can prevent the coarse particles from rising in the suspension 65 and prevent the coarse particles from being mixed into the product. Thereby, a high quality product with high classification accuracy can be produced with a high recovery rate. As described above, in this example, the clean water is supplied from above and below the suspension supply port 121. However, there is a problem that coarse particles are mixed into the product depending on the properties of the solid fine particles. If this is not the case, clean water can be supplied only to the lower side of the suspension supply port 121.

つぎに、一対の電極21、22に印加する直流電圧は、上述のように固体微粒子66のゼータ電位を考慮してその大きさが決められる。また、一対の電極21、22に印加する直流電圧の極性は、例えば、図3及び4に示すシリカ微粒子あるいはアクリル樹脂の微粒子のようにゼータ電位が負であるものは、通常は電極21を負極、電極22を正極とするのがよい。しかし、製品回収量を増大させるため、電極21を正極、電極22を負極とする場合もある。したがって、一対の電極21、22に印加する直流電圧の極性は、固体微粒子66の電気特性、生産効率等を考慮して選択されるので、容易に極性を変えることができるように直流電源25に極性切り換え用の切換スイッチが設けられているのがよい。   Next, the magnitude of the DC voltage applied to the pair of electrodes 21 and 22 is determined in consideration of the zeta potential of the solid fine particles 66 as described above. The polarity of the DC voltage applied to the pair of electrodes 21 and 22 is such that, for example, those having a negative zeta potential such as silica fine particles or acrylic resin fine particles shown in FIGS. The electrode 22 is preferably a positive electrode. However, in order to increase the product recovery amount, the electrode 21 may be a positive electrode and the electrode 22 may be a negative electrode. Therefore, the polarity of the DC voltage applied to the pair of electrodes 21 and 22 is selected in consideration of the electrical characteristics, production efficiency, etc. of the solid fine particles 66, so that the DC power source 25 can be easily changed in polarity. It is preferable to provide a changeover switch for switching the polarity.

この一対の電極21、22の間に挟まれた流路60を通過した懸濁液65は、濃縮部分のうちの粗大粒が沈降槽11の底部に堆積し、比較的大きな平均粒子径の固体微粒子(粗粒)を含む部分は、下排出口152より連続的に排出される。これにより沈降槽の上部の上排出口142より回収される懸濁液65の上澄み部分からは製品となる細粒が連続的に回収される。   The suspension 65 that has passed through the flow path 60 sandwiched between the pair of electrodes 21 and 22 has coarse particles in the concentrated portion deposited on the bottom of the sedimentation tank 11, and a solid having a relatively large average particle size. A portion containing fine particles (coarse particles) is continuously discharged from the lower discharge port 152. As a result, fine particles as a product are continuously recovered from the supernatant of the suspension 65 recovered from the upper discharge port 142 at the top of the settling tank.

懸濁液の上澄み部分を回収するに当たって、本固体微粒子分級装置には、上述のように、上排出口142と下排出口152との間に上澄み部分を上排出口142に導き、濃縮部分を下排出口152に導きやすくする誘導部材17が設けられている。これにより目標とする粒子をより多く含む懸濁液の上澄み部分が回収できるとともに、不要な粒子を含む濃縮部分の上澄み部分への混入を防止し、濃縮部分の速やかな排出を行うことができる。   In recovering the supernatant part of the suspension, the solid particulate classifier introduces the supernatant part between the upper outlet 142 and the lower outlet 152 to the upper outlet 142 as described above, and the concentrated part. A guiding member 17 is provided to facilitate guiding to the lower discharge port 152. As a result, the supernatant portion of the suspension containing more target particles can be recovered, and mixing into the supernatant portion of the concentrated portion containing unnecessary particles can be prevented, and the concentrated portion can be quickly discharged.

このような誘導部材17は、上記の機能を有するものであればよく、その形状や沈降槽11への取り付け位置等はその固体微粒子分級装置に最適なものが選ばれる。図1に示すように、沈降槽11の壁面から水平方向に伸延する誘導部材17のみならず、仰角又は伏角を有する誘導部材17を使用することができる。また、誘導部材17が沈降槽11の壁面取り付け部を支点にして上下に振動するようなものを使用することができる。さらに、図1に示すように、誘導部材17の先端部に屈曲部171を設けることができ、弧状の誘導部材17を使用することもできる。   Such a guide member 17 may be any member as long as it has the above-described function, and the shape, the attachment position to the sedimentation tank 11 and the like are selected optimal for the solid fine particle classifier. As shown in FIG. 1, not only the guide member 17 extending in the horizontal direction from the wall surface of the settling tank 11 but also a guide member 17 having an elevation angle or a dip angle can be used. In addition, it is possible to use the guide member 17 that vibrates up and down with the wall surface attachment portion of the settling tank 11 as a fulcrum. Further, as shown in FIG. 1, a bent portion 171 can be provided at the distal end portion of the guide member 17, and an arcuate guide member 17 can also be used.

また、懸濁液65の濃縮部分をより速やかに排出するためには、図1の一点鎖線で示すように沈降槽11を懸濁液65の流れる方向に向かって下方に傾斜するように設けるのがよい。なお、固体微粒子66の有する特性、懸濁液65に印加する直流電圧の大きさ及び極性によっては、沈降槽11は懸濁液65の流れる方向に向かって上方に傾斜するように設けるのがよい場合があり、沈降槽11の傾斜角θは、-90°<θ<90°の範囲で最適な値が選ばれる。   Further, in order to discharge the concentrated portion of the suspension 65 more quickly, the sedimentation tank 11 is provided so as to be inclined downward in the direction in which the suspension 65 flows, as shown by a one-dot chain line in FIG. Is good. Depending on the characteristics of the solid fine particles 66 and the magnitude and polarity of the DC voltage applied to the suspension 65, the settling tank 11 may be provided so as to be inclined upward in the direction in which the suspension 65 flows. In some cases, the inclination angle θ of the settling tank 11 is selected to be an optimal value in the range of −90 ° <θ <90 °.

上述のように、上記固体微粒子分級装置を使用して固体微粒子の分級を行うことにより、粗粒(粗大粒を含む)の混入がなく品質のよい、また目的とする細粒をより多く含む製品を得ることができる。しかしながら、本発明に係る固体微粒子分級装置は、上記に説明した実施例に限定されない。例えば、図2に示すような、懸濁液供給管12の端部に多数の懸濁液供給口126を備える分配管125が、沈降槽11の壁面から内部に突出するように設けるのがよい。また、図5に示すように、沈降槽11に入流した懸濁液65がその流れの方向に流路60を次第に拡大するように形成されてなるようにするのがよい。これらにより懸濁液65及び清浄水をより層流状態で供給することができる。なお、図2及び5に示す矢印は懸濁液65の流れる方向を示す。   As described above, by classifying solid fine particles using the above-mentioned solid fine particle classifier, there is no mixing of coarse particles (including coarse particles), and the quality is good, and the product contains more targeted fine particles. Can be obtained. However, the solid fine particle classifier according to the present invention is not limited to the above-described embodiments. For example, as shown in FIG. 2, a distribution pipe 125 having a large number of suspension supply ports 126 at the end of the suspension supply pipe 12 may be provided so as to protrude from the wall surface of the settling tank 11 to the inside. . In addition, as shown in FIG. 5, it is preferable that the suspension 65 flowing into the settling tank 11 is formed so as to gradually expand the flow path 60 in the direction of the flow. As a result, the suspension 65 and clean water can be supplied in a more laminar state. 2 and 5 indicate the direction in which the suspension 65 flows.

図6に示すように、懸濁液供給口121の前面に沈降槽11に流入した懸濁液65が沈降槽11の底部に向かうような誘導部材161を設けることができる。これにより、製品への粗粒の混入を防止することができる。   As shown in FIG. 6, a guide member 161 can be provided in front of the suspension supply port 121 such that the suspension 65 flowing into the sedimentation tank 11 faces the bottom of the sedimentation tank 11. Thereby, mixing of the coarse grain to a product can be prevented.

また、図7に示すように、沈降槽11の上排出口142と下排出口152の間の壁部を曲面壁172にすることにより、沈降槽11の出口側に設けられる誘導部材17の効果を発揮させることができる。さらに、図7に示すように、沈降槽11の上排出口142の前面に多孔板175を設けることができる。   In addition, as shown in FIG. 7, the wall portion between the upper discharge port 142 and the lower discharge port 152 of the settling tank 11 is a curved wall 172 so that the effect of the guide member 17 provided on the outlet side of the settling tank 11 is achieved. Can be demonstrated. Further, as shown in FIG. 7, a porous plate 175 can be provided in front of the upper discharge port 142 of the settling tank 11.

また、図7に示すように、懸濁液の上澄み部分から上澄み液を分離・回収し、再利用可能なようにすることができる。すなわち、上述の一対の電極21、22が配設された沈降槽11に懸濁液供給手段30を有する固体微粒子分級装置において、懸濁液65の上澄み部分を排出する領域に上澄み液を溢流させる堰176を設け、この上澄み液を循環させる循環回路73及びポンプ75を介して懸濁液供給管12に混入させることにより、上澄み液を再利用可能な液循環装置70を設けることができる。なお、上記の堰176に換え、沈降槽11の壁部173を、図8に示すように、上澄み液が溢流できるような形状にすることができる。   Further, as shown in FIG. 7, the supernatant can be separated and recovered from the supernatant of the suspension so that it can be reused. That is, in the solid particulate classifier having the suspension supply means 30 in the sedimentation tank 11 in which the pair of electrodes 21 and 22 are disposed, the supernatant liquid overflows into the region where the supernatant portion of the suspension 65 is discharged. By providing the weir 176 to be mixed and mixing the suspension liquid into the suspension supply pipe 12 via the circulation circuit 73 and the pump 75 for circulating the supernatant liquid, it is possible to provide the liquid circulation device 70 capable of reusing the supernatant liquid. Instead of the above weir 176, the wall 173 of the settling tank 11 can be shaped so that the supernatant liquid can overflow as shown in FIG.

さらに、一対の電極21、22のうち下方に配設される電極22の上面には、図9に示すように、フィルタ18を設けることができる。これにより、沈降槽の底部に堆積する粗粒又は粗大粒を含むスラリーの排出を容易に行うことができる。例えば、沈降槽11の底部側面に設けた清掃水管191からの水流により、フィルタ18上に堆積したスラリーを沈降槽11の底部反対側面に設けた回収管192から回収する排出装置19を設けることができる。なお、フィルタ18の材質は布、合成紙、フェルト等いずれのものであってもよい。   Further, a filter 18 can be provided on the upper surface of the electrode 22 disposed below the pair of electrodes 21 and 22, as shown in FIG. Thereby, discharge of the slurry containing coarse particles or coarse particles deposited on the bottom of the sedimentation tank can be easily performed. For example, it is possible to provide a discharge device 19 that recovers the slurry accumulated on the filter 18 from the recovery pipe 192 provided on the opposite side of the bottom of the settling tank 11 by the water flow from the cleaning water pipe 191 provided on the bottom side of the settling tank 11. it can. The material of the filter 18 may be any material such as cloth, synthetic paper, or felt.

また、固体微粒子分級装置の稼働中には、一対の電極21、22の近傍からガスが発生するから、このガスを捕集・脱気する捕集・脱気装置50を設けることができる。すなわち、図10に示す例では、電極21の近傍から発生するガスは、ポンプ51により配管53を通じて懸濁液65とともに脱気槽52に回収され、脱気槽52の内部で脱気されて外部に排出・回収されるようになっている。一方、電極22の近傍から発生するガスは、ポンプ55により配管57を通じて懸濁液65とともに脱気槽56に回収され、脱気槽56の内部で脱気されて外部に排出・回収されるようになっている。   Further, during operation of the solid particulate classifier, gas is generated from the vicinity of the pair of electrodes 21 and 22, and therefore a collection / deaeration device 50 for collecting and degassing this gas can be provided. That is, in the example shown in FIG. 10, the gas generated from the vicinity of the electrode 21 is collected in the deaeration tank 52 together with the suspension 65 through the pipe 53 by the pump 51, degassed inside the deaeration tank 52 and externally Are discharged and collected. On the other hand, the gas generated from the vicinity of the electrode 22 is collected in the deaeration tank 56 together with the suspension 65 through the pipe 57 by the pump 55, degassed inside the deaeration tank 56, and discharged and collected outside. It has become.

電極22の近傍から発生するガスの脱気・回収は、ガスによる懸濁液65の攪拌効果、固体微粒子の沈降阻止、沈降槽11の底部に堆積した粗大粒の巻き上げ等による分級精度の低下を防止することができるので好ましい。また、ガスが大きな気泡に成長しないように、電極22は、メッシュ部材又は多孔板から作成するのが好ましい。メッシュ部材又は多孔板の目開き寸法は、数mmから1cm程度がよい。   The degassing / recovery of the gas generated from the vicinity of the electrode 22 reduces the classification accuracy due to the stirring effect of the suspension 65 by the gas, the prevention of settling of the solid fine particles, and the winding of coarse particles accumulated at the bottom of the settling tank 11. This is preferable because it can be prevented. The electrode 22 is preferably made of a mesh member or a porous plate so that the gas does not grow into large bubbles. The opening size of the mesh member or the perforated plate is preferably about several mm to 1 cm.

図1に示す固体微粒子分級装置を用いて分級試験を行った。固体微粒子分級装置の沈降槽11は幅22cm、高さ4cm、長さ140cmであった。一対の電極21、22は、1mmの銅線で10mm角の開口を有する金網から成形したものを用いた。原料となる固体微粒子群は、平均粒子径5μmと8μmのアクリル樹脂の粒子を質量比1:1の割合で混合して調整した。この原料粉の粒度分布を図11に示す。その原料粉を純水に分散させて懸濁液65を作成した。懸濁液65は流速0.3リットル/分の速度で連続的に供給した。固体微粒子分級装置の稼働後60分間経過後に、上排出口142から回収された上澄み部分(製品)に存在するアクリル樹脂粒子の粒度分布を測定した。アクリル樹脂粒子の平均粒子径は、図3の場合と同様に、堀場製作所製粒度分布測定機LA920により測定し、粒度分布は、コールターカウンター法により測定した。なお、本試験は、清浄水の沈降槽11への供給を行わないで実施した。   A classification test was performed using the solid fine particle classifier shown in FIG. The sedimentation tank 11 of the solid fine particle classifier had a width of 22 cm, a height of 4 cm, and a length of 140 cm. The pair of electrodes 21 and 22 used was a 1 mm copper wire formed from a wire mesh having a 10 mm square opening. The solid fine particle group as a raw material was prepared by mixing acrylic resin particles having an average particle diameter of 5 μm and 8 μm at a mass ratio of 1: 1. The particle size distribution of this raw material powder is shown in FIG. The raw material powder was dispersed in pure water to prepare a suspension 65. The suspension 65 was continuously supplied at a flow rate of 0.3 liter / min. After 60 minutes from the operation of the solid fine particle classifier, the particle size distribution of the acrylic resin particles present in the supernatant portion (product) recovered from the upper outlet 142 was measured. The average particle diameter of the acrylic resin particles was measured with a particle size distribution measuring instrument LA920 manufactured by Horiba, Ltd. as in the case of FIG. 3, and the particle size distribution was measured by a Coulter counter method. This test was performed without supplying clean water to the sedimentation tank 11.

図12は、一対の電極21、22に100Vの直流電圧を印加した場合、図13は一対の電極21、22に直流電圧を印加しなかった場合の製品の粒度分布を示すグラフである。図12によると、平均粒子径8μmのアクリル樹脂の粒子が少なくなり、分級が進んでいることが分かる。これに対し、図13の場合は、平均粒子径8μmのアクリル樹脂の粒子が相当に残っており、分級があまり進んでいないことが分かる。   FIG. 12 is a graph showing the particle size distribution of the product when a DC voltage of 100 V is applied to the pair of electrodes 21 and 22, and FIG. 13 is a graph when the DC voltage is not applied to the pair of electrodes 21 and 22. According to FIG. 12, it can be seen that the number of acrylic resin particles having an average particle diameter of 8 μm is reduced and classification is progressing. On the other hand, in the case of FIG. 13, it can be seen that a considerable amount of acrylic resin particles having an average particle diameter of 8 μm remain, and the classification is not so advanced.

一対の電極21、22に開口率20%の銅製のパンチングメタルを用いこれに印加する電圧を50V及び100Vとし、他の条件は実施例1と同様にして分級試験を行った。図14に原料粉の粒度分布を示す。図15は、50Vの直流電圧を印加した場合の製品の粒度分布を示し、図16は100Vの直流電圧を印加した場合の製品の粒度分布を示すグラフである。図15によると、平均粒子径8μmのアクリル樹脂の粒子が非常に少なく分級が進んでおり、図16によると平均粒子径8μmのアクリル樹脂の粒子が存在せず分級が良好になされたことが分かる。   A pair of electrodes 21 and 22 were made of a copper punching metal having an aperture ratio of 20%, and the voltage applied thereto was set to 50 V and 100 V. The classification test was performed in the same manner as in Example 1 except for other conditions. FIG. 14 shows the particle size distribution of the raw material powder. FIG. 15 shows the particle size distribution of the product when a DC voltage of 50 V is applied, and FIG. 16 is a graph showing the particle size distribution of the product when a DC voltage of 100 V is applied. According to FIG. 15, the number of acrylic resin particles having an average particle diameter of 8 μm is very small, and the classification proceeds, and according to FIG. 16, it can be seen that the classification is good without the presence of acrylic resin particles having an average particle diameter of 8 μm. .

以上の試験結果によると、一対の電極21、22に印加する電圧の大きさ、電極21、22の形状等が分級精度と関係が深いことが分かる。また、図13と16を比較すると、一対の電極21、22にパンチングメタルを用いた図16の場合の方が、金網を用いた図13の場合より分級が進んでいるのは、パンチングメタルの方が金網の場合よりも全電極面積が大きいこと、および、パンチングメタルの方が金網の場合より電極部分に微細気泡が滞留して大きな気泡に成長しにくい構造になっているということが起因しているものと推測される。なお、100Vの直流電圧を印加したときの両電極間に流れた電流はいずれも48mA程度であるが、いずれの場合も両電極21、22の近傍に気泡の発生(バブリング)を確認することはできなかった。   According to the above test results, it can be seen that the magnitude of the voltage applied to the pair of electrodes 21 and 22 and the shape of the electrodes 21 and 22 are closely related to the classification accuracy. 13 and 16, when the punching metal is used for the pair of electrodes 21 and 22, classification is more advanced than the case of FIG. 13 using the wire mesh. This is because the total electrode area is larger than that of the metal mesh, and the punching metal has a structure in which fine bubbles are retained in the electrode portion and less likely to grow into larger bubbles than the metal mesh. It is presumed that The current flowing between both electrodes when a DC voltage of 100 V was applied was about 48 mA, but in any case, it was confirmed that bubbles were generated near both electrodes 21 and 22 (bubbling). could not.

シリカ微粒子を純水に分散させた懸濁液65を用いて分級試験を行った。本実施例では、懸濁液の下及び上部に清浄水を供給することにより分級を行った。懸濁液供給口121から沈降槽11への懸濁液の流入速度、下清浄水供給口131A及び上清浄水供給口131Bから沈降槽11への清浄水の流入速度は、ともに9.56×10-4m/sであった。図17は、シリカ微粒子原料粉の粒度分布と、印加する直流電圧の電圧を0V、5V及び10Vにして分級を行った場合の上排出口142から回収された細粒(製品)の粒度分布を示すグラフである。図17によると、直流電圧の印加、特に10Vの印加によって、良好な分級が行われることが分かる。なお、粒度分布の測定は実施例1と同様な方法で行った。一対の電極21、22は、ステンレス鋼板製のものを用いた。 A classification test was performed using a suspension 65 in which silica fine particles were dispersed in pure water. In this example, classification was performed by supplying clean water below and above the suspension. The inflow rate of the suspension from the suspension supply port 121 to the settling tank 11 and the inflow rate of the clean water from the lower clean water supply port 131A and the upper clean water supply port 131B to the settling tank 11 are both 9.56 × 10 − 4 m / s. FIG. 17 shows the particle size distribution of the silica fine particle raw material powder and the particle size distribution of the fine particles (product) recovered from the upper outlet 142 when classification is performed with the applied DC voltage being 0 V, 5 V and 10 V. It is a graph to show. According to FIG. 17, it can be seen that good classification is performed by application of a DC voltage, particularly by application of 10V. The particle size distribution was measured in the same manner as in Example 1. The pair of electrodes 21 and 22 were made of stainless steel plate.

本発明に係る固体微粒子分級装置を示す模式図である。It is a schematic diagram which shows the solid fine particle classification device which concerns on this invention. 図1の場合と沈降槽、一対の電極、懸濁液供給管の形態が異なる他の実施例の模式図である。It is the schematic diagram of the other Example from which the form of a sedimentation tank, a pair of electrode, and a suspension supply pipe | tube differs from the case of FIG. シリカ微粒子を純水に分散させた場合の、懸濁液のpH濃度とシリカ微粒子のゼータ電位との関係を示すグラフである。6 is a graph showing the relationship between the pH concentration of a suspension and the zeta potential of silica fine particles when silica fine particles are dispersed in pure water. アクリル樹脂の微粒子を純水に分散させた場合の、アクリル樹脂粒子の平均粒子径とゼータ電位との関係を示すグラフである。It is a graph which shows the relationship between the average particle diameter of an acrylic resin particle, and a zeta potential at the time of disperse | distributing the fine particle of an acrylic resin in a pure water. 沈降槽の入口側の形状が異なる他の実施例の模式図である。It is a schematic diagram of the other Example from which the shape of the entrance side of a sedimentation tank differs. 沈降槽の入口側に誘導部材を設けた例の模式図である。It is a schematic diagram of the example which provided the guidance member in the entrance side of a sedimentation tank. 沈降槽の上排出口の前面に多孔板を設け、さらに、懸濁液の上澄み部分の上澄み液を再利用可能とする実施例を示す模式図である。It is a schematic diagram which shows the Example which provides a perforated plate in the front surface of the upper discharge port of a sedimentation tank, and also makes the supernatant liquid of a supernatant part reusable. 図7のXX部分の断面図である。It is sectional drawing of the XX part of FIG. 一対の電極の下側に配設される電極の上面にフィルタが設けられ、さらに、フィルタ上部に堆積したスラリーを排出する排出装置が設けられた実施例の模式図である。It is a schematic diagram of the Example in which the filter was provided in the upper surface of the electrode arrange | positioned under a pair of electrode, and also the discharge apparatus which discharges | emits the slurry deposited on the filter upper part was provided. 一対の電極の近傍から発生するガスの捕集・脱気装置が設けられた実施例の模式図である。It is a schematic diagram of the Example provided with the collection / deaeration apparatus of the gas emitted from the vicinity of a pair of electrode. 実施例1の試験に用いた原料粉の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of raw material powder used in the test of Example 1. FIG. 金網製の電極を用い、一対の電極に印加する直流電圧を100Vとした場合の実施例1の試験結果を示すグラフである。It is a graph which shows the test result of Example 1 when the direct current voltage applied to a pair of electrodes is 100V using the electrode made from a metal mesh. 金網製の電極を用い、一対の電極に直流電圧を印加しなかった場合の実施例1の試験結果を示すグラフである。It is a graph which shows the test result of Example 1 at the time of using a wire-mesh electrode and not applying a DC voltage to a pair of electrodes. 実施例2の試験に用いた原料粉の粒度分布を示すグラフである。3 is a graph showing the particle size distribution of raw material powder used in the test of Example 2. FIG. パンチングメタル製の電極を用い、一対の電極に印加する直流電圧を50Vとした場合の実施例2の試験結果を示すグラフである。It is a graph which shows the test result of Example 2 when the direct voltage applied to a pair of electrodes is set to 50V using the electrode made from a punching metal. パンチングメタル製の電極を用い、一対の電極に印加する直流電圧を100Vとした場合の実施例2の試験結果を示すグラフである。It is a graph which shows the test result of Example 2 when the direct voltage applied to a pair of electrodes is 100V using the electrode made from a punching metal. 懸濁液の下及び上部に清浄水を供給することにより分級を行った実施例3の試験結果を示すグラフである。It is a graph which shows the test result of Example 3 which performed classification by supplying clean water under and the upper part of suspension.

符号の説明Explanation of symbols

11 沈降槽
12 懸濁液供給管
121 懸濁液供給口
125 分配管
126 多数の懸濁液供給口
13 清浄水供給管
13A 下清浄水供給管
13B 上清浄水供給管
131 清浄水供給口
131A 下清浄水供給口
131B 上清浄水供給口
14 上澄み部回収手段
141 上排出管
142 上排出口
15 濃縮部回収手段
151 下排出管
152 下排出口
16 隔離板
16A 下隔離板
16B 上隔離板
161 誘導部材
17 誘導部材
171 屈曲部
172 曲面壁
173 壁部
175 多孔板
176 堰
18 フィルタ
19 排出装置
191 清掃水管
192 回収管
21 電極
22 電極
211 外筒電極
221 内筒電極
25 直流電源
30 懸濁液供給手段
31 攪拌槽
33 ポンプ
35 流量調整装置
37 超音波分散装置
40 清浄水供給手段
41 水タンク
43 ポンプ
45 流量調整装置
50 捕集・脱気装置
51 ポンプ
52 脱気槽
53 配管
55 ポンプ
56 脱気槽
57 配管
60 流路
65 懸濁液
66 固体微粒子
67 分散媒体
70 液循環装置
73 循環回路
75 ポンプ
11 Settling tank
12 Suspension supply pipe
121 Suspension supply port
125 minutes piping
126 Multiple suspension supply ports
13 Clean water supply pipe
13A clean water supply pipe
13B Clean water supply pipe
131 Clean water supply port
131A Purified water supply port
131B Clean water supply port
14 Supernatant recovery means
141 Top discharge pipe
142 Upper outlet
15 Concentrator recovery means
151 Bottom discharge pipe
152 Bottom outlet
16 Separator
16A Bottom separator
16B upper separator
161 Guide member
17 Guide member
171 Bending part
172 Curved wall
173 Wall
175 perforated plate
176 weir
18 Filter
19 Discharge device
191 Cleaning water pipe
192 Recovery tube
21 electrodes
22 electrodes
211 outer cylinder electrode
221 Inner cylinder electrode
25 DC power supply
30 Suspension supply means
31 Mixing tank
33 Pump
35 Flow controller
37 Ultrasonic disperser
40 Clean water supply means
41 water tank
43 Pump
45 Flow controller
50 Collection and deaeration equipment
51 pump
52 Deaeration tank
53 Piping
55 Pump
56 Deaeration tank
57 Piping
60 channels
65 Suspension
66 Solid particles
67 Dispersion media
70 Liquid circulation device
73 Circulation circuit
75 pump

Claims (20)

沈降槽を用いて懸濁液中の固体微粒子の分級を行う固体微粒子分級装置であって、沈降槽に懸濁液を連続供給する懸濁液供給手段、前記沈降槽内に浸漬された互いに離隔されその離隔空間を前記懸濁液の流路とする一対の電極、該一対の電極に電圧を印加する直流電源及び前記流路を通った懸濁液の上澄み部分を連続的に回収する上澄み部回収手段、を有してなる固体微粒子分級装置。   A solid fine particle classification device for classifying solid fine particles in a suspension using a settling tank, the suspension supply means for continuously supplying the suspension to the settling tank, and the two separated from each other immersed in the settling tank A pair of electrodes having the separation space as a flow path for the suspension, a direct current power source for applying a voltage to the pair of electrodes, and a supernatant portion for continuously collecting a supernatant portion of the suspension that has passed through the flow path A solid fine particle classification device comprising a recovery means. 請求項1に記載の固体微粒子分級装置において、さらに連続的に懸濁液の濃縮部分を回収する濃縮部回収手段を設けたことを特徴とする固体微粒子分級装置。   2. The solid fine particle classifier according to claim 1, further comprising a concentration part collecting means for continuously collecting a concentrated part of the suspension. 請求項1又は2に記載の固体微粒子分級装置において、沈降槽に懸濁液を連続供給する懸濁液供給手段は、分散媒体と固体微粒子を攪拌して懸濁液を生成する攪拌槽、前記懸濁液に超音波を照射して前記固体微粒子を分散させる超音波分散装置、該超音波を照射された懸濁液を懸濁液供給管を通じて前記沈降槽に連続供給するポンプ及び流量調整装置からなるものであることを特徴とする固体微粒子分級装置。   3. The solid particle classification apparatus according to claim 1, wherein the suspension supply means for continuously supplying the suspension to the settling tank is a stirring tank for stirring the dispersion medium and the solid particles to generate a suspension. An ultrasonic dispersion device for irradiating a suspension with ultrasonic waves to disperse the solid fine particles, a pump for continuously supplying the suspension irradiated with the ultrasonic waves to the settling tank through a suspension supply pipe, and a flow rate adjusting device Solid particle classifier characterized by comprising the following. 請求項1〜3のいずれかに記載の固体微粒子分級装置において、懸濁液供給管はその端部に多数の懸濁液供給口を備えた沈降槽内に突出する分配管を有することを特徴とする固体微粒子分級装置。   The solid fine particle classification apparatus according to any one of claims 1 to 3, wherein the suspension supply pipe has a distribution pipe protruding into a sedimentation tank having a large number of suspension supply ports at its end. Solid fine particle classifier. 請求項1〜4のいずれかに記載の固体微粒子分級装置において、沈降槽の懸濁液が流入する入口側部分は、前記沈降槽に流入した懸濁液がその流れの方向に流路を次第に拡大するように形成されてなることを特徴とする固体微粒子分級装置。   5. The solid fine particle classification device according to claim 1, wherein the inlet side portion into which the suspension of the sedimentation tank flows is configured so that the suspension that has flowed into the sedimentation tank gradually moves the flow path in the direction of the flow. A solid fine particle classifying device formed so as to expand. 請求項1〜5のいずれかに記載の固体微粒子分級装置において、懸濁液供給管が沈降槽に開口する懸濁液供給口の上部、または上部及び下部に清浄水を供給する清浄水供給口が設けられていることを特徴とする固体微粒子分級装置。   6. The solid fine particle classification apparatus according to claim 1, wherein the suspension supply pipe supplies clean water to an upper portion of the suspension supply port that opens to the settling tank, or to an upper portion and a lower portion. A solid fine particle classifier. 請求項1〜6のいずれかに記載の固体微粒子分級装置において、懸濁液供給口と清浄水供給口との間に沈降槽から懸濁液が流れる方向に突出する隔離板が設けられていることを特徴とする固体微粒子分級装置。   In the solid particulate classification device according to any one of claims 1 to 6, a separator projecting in a direction in which the suspension flows from the settling tank is provided between the suspension supply port and the clean water supply port. A solid fine particle classifier. 請求項1〜7のいずれかに記載の固体微粒子分級装置において、懸濁液の上澄み部分を回収する上澄み部回収手段は、沈降槽の出口側部分の上部に設けられた上排出口、これに連通する上排出管及び流量計を有してなることを特徴とする固体微粒子分級装置。   The solid particulate classifier according to any one of claims 1 to 7, wherein the supernatant recovery means for recovering the supernatant portion of the suspension is an upper discharge port provided at an upper portion of the outlet side portion of the settling tank, A solid fine particle classifier having an upper discharge pipe and a flow meter communicating with each other. 請求項1〜8のいずれかに記載の固体微粒子分級装置において、懸濁液の濃縮部分を回収する濃縮部回収手段は、沈降槽の出口側部分に設けられ上排出口の下部に設けられた下排出口、これに連通する下排出管及び流量計を有してなることを特徴とする固体微粒子分級装置。   The solid particulate classifier according to any one of claims 1 to 8, wherein the concentration part recovery means for recovering the concentrated part of the suspension is provided at the outlet side part of the settling tank and at the lower part of the upper discharge port. A solid fine particle classifier comprising a lower discharge port, a lower discharge pipe communicating with the lower discharge port, and a flow meter. 請求項1〜9のいずれかに記載の固体微粒子分級装置において、沈降槽には上排出口と下排出口との間に懸濁液の上澄み部分と濃縮部分をそれぞれ上排出口と下排出口に導く誘導部材が設けられていることを特徴とする固体微粒子分級装置。   The solid particulate classifier according to any one of claims 1 to 9, wherein the sedimentation tank includes a supernatant portion and a concentrated portion of the suspension between an upper outlet and a lower outlet, respectively, an upper outlet and a lower outlet. A solid fine particle classifying device, characterized in that a guiding member is provided for guiding to a solid. 請求項1〜10のいずれかに記載の固体微粒子分級装置において、沈降槽の上排出口の前面に多孔板が設けられていることを特徴とする固体微粒子分級装置。   The solid particle classification device according to any one of claims 1 to 10, wherein a porous plate is provided in front of the upper discharge port of the sedimentation tank. 請求項1〜11のいずれかに記載の固体微粒子分級装置において、沈降槽は懸濁液の流れる方向に向かって傾斜するように設けられていることを特徴とする固体微粒子分級装置。   The solid particulate classifier according to any one of claims 1 to 11, wherein the sedimentation tank is provided so as to incline toward a direction in which the suspension flows. 請求項1〜12のいずれかに記載の固体微粒子分級装置において、沈降槽の底部、又は一対の電極のうち下側電極の上部に堆積したスラリーを排出する排出装置が設けられている特徴とする固体微粒子分級装置。   The solid particle classification device according to any one of claims 1 to 12, wherein a discharge device for discharging slurry deposited on a bottom portion of a sedimentation tank or an upper portion of a lower electrode of a pair of electrodes is provided. Solid fine particle classifier. 請求項1〜13のいずれかに記載の固体微粒子分級装置において、一対の電極は多孔金属板からなることを特徴とする固体微粒子分級装置。   14. The solid fine particle classifying apparatus according to claim 1, wherein the pair of electrodes are made of a porous metal plate. 請求項1〜14のいずれかに記載の固体微粒子分級装置において、直流電源には一対の電極に印加する電圧の極性を切り換える切換スイッチが設けられていることを特徴とする固体微粒子分級装置。   15. The solid particulate classifier according to claim 1, wherein the DC power source is provided with a changeover switch for switching the polarity of the voltage applied to the pair of electrodes. 請求項1〜15のいずれかに記載の固体微粒子分級装置において、一対の電極の下側に配設される電極の上面にフィルタが設けられていることを特徴とする固体微粒子分級装置。   16. The solid particle classification device according to claim 1, wherein a filter is provided on the upper surface of the electrodes disposed below the pair of electrodes. 請求項1〜16のいずれかに記載の固体微粒子分級装置において、一対の電極から発生するガスの捕集・脱気装置が設けられていることを特徴とする固体微粒子分級装置。   The solid particulate classifier according to any one of claims 1 to 16, further comprising a device for collecting and degassing gas generated from a pair of electrodes. 請求項1〜17のいずれかに記載の固体微粒子分級装置において、懸濁液の上澄み部分を溢流させた上澄み液を回収及び還流させる液循環装置が設けられていることを特徴とする固体微粒子分級装置。   18. The solid fine particle classifier according to claim 1, further comprising a liquid circulation device for collecting and refluxing the supernatant liquid overflowing the supernatant portion of the suspension. Classification device. 請求項1〜18のいずれかに記載の装置を使用し、懸濁液のpH濃度を調整した後に分級を行うことを特徴とする固体微粒子分級方法。   A method for classifying solid fine particles, wherein classification is performed after adjusting the pH concentration of the suspension using the apparatus according to claim 1. 請求項1〜18のいずれかに記載の装置を使用し、固体微粒子の分級に際し、一対の電極に印加する電圧を懸濁液中の固体微粒子のゼータ電位に応じて調整して分級を行うことを特徴とする固体微粒子分級方法。   Using the apparatus according to any one of claims 1 to 18, classification is performed by adjusting the voltage applied to the pair of electrodes according to the zeta potential of the solid fine particles in the suspension when classifying the solid fine particles. A method for classifying solid fine particles.
JP2005009923A 2004-01-19 2005-01-18 Solid particle classifier and solid particle classification method utilizing the same Pending JP2005334865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009923A JP2005334865A (en) 2004-01-19 2005-01-18 Solid particle classifier and solid particle classification method utilizing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004011059 2004-01-19
JP2005009923A JP2005334865A (en) 2004-01-19 2005-01-18 Solid particle classifier and solid particle classification method utilizing the same

Publications (1)

Publication Number Publication Date
JP2005334865A true JP2005334865A (en) 2005-12-08

Family

ID=35488996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009923A Pending JP2005334865A (en) 2004-01-19 2005-01-18 Solid particle classifier and solid particle classification method utilizing the same

Country Status (1)

Country Link
JP (1) JP2005334865A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084945A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Method and apparatus for processing mixed material
JPWO2011007820A1 (en) * 2009-07-15 2012-12-27 国立大学法人 名古屋工業大学 Particle recovery method and particle recovery apparatus
JP2013075275A (en) * 2011-09-30 2013-04-25 Hitachi Chemical Co Ltd Wet classification method and wet classification device
JP2013230452A (en) * 2012-04-03 2013-11-14 Hitachi Chemical Co Ltd Wet classification method
WO2014097395A1 (en) * 2012-12-18 2014-06-26 日立化成株式会社 Wet classifier, wet classification method and method for manufacturing classified particles
JP2014117670A (en) * 2012-12-18 2014-06-30 Hitachi Chemical Co Ltd Classifier, classification method and manufacturing method for classification grain
WO2016039482A1 (en) * 2014-09-12 2016-03-17 Hoya株式会社 Method for manufacture of substrate for magnetic disk and substrate for magnetic disk
WO2016038745A1 (en) * 2014-09-12 2016-03-17 Hoya株式会社 Method for manufacturing substrate for magnetic disk
KR102020615B1 (en) * 2018-12-19 2019-11-04 에이블메탈 주식회사 Appratus for classifying pb-free solder particles and method thereof
JP2020090703A (en) * 2018-12-05 2020-06-11 パナソニックIpマネジメント株式会社 Metal particle manufacturing device, metal particle manufacturing method, and metal particle classification method
WO2024057849A1 (en) * 2022-09-15 2024-03-21 株式会社村田製作所 Filtration material and method for producing multilayer ceramic capacitor using same

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861846A (en) * 1981-10-07 1983-04-13 Kuriintetsuku Kogyo:Kk Electrostatic oil purifier
JPH03110448A (en) * 1989-09-25 1991-05-10 Nippon Telegr & Teleph Corp <Ntt> Detection of magnetic fine particle in liquid and device
JPH0663360A (en) * 1991-11-29 1994-03-08 Gerhard Weber Method and device for continuous carrier-free deflecting electrophoresis
JPH06509745A (en) * 1991-08-19 1994-11-02 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for continuous separation of microscopic dielectric particle mixture and apparatus for carrying out the method
JPH0679734U (en) * 1993-04-14 1994-11-08 ゼオテック・エル・アール・シー株式会社 Recovery and reuse device for type lubricant
JPH08266891A (en) * 1995-04-03 1996-10-15 Hitachi Ltd Fine particle handling device
JPH11326155A (en) * 1998-05-20 1999-11-26 Hitachi Ltd Cell fractionating device
JP2000505545A (en) * 1996-01-31 2000-05-09 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Separation method and apparatus using dielectrophoresis and field flow fractionation
JP2000202325A (en) * 1999-01-20 2000-07-25 Agency Of Ind Science & Technol Separation of fine particle in dispersion, classification of fine particle, measuring of adsorption force of fine particle, and apparatus for implementing them
JP2002524229A (en) * 1998-09-07 2002-08-06 グラディポア リミテッド Micromolecule purification cassette
JP2004503775A (en) * 2000-06-14 2004-02-05 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Method and apparatus for the operation of combined magnetophoresis and dielectrophoresis of analyte mixtures
JP2005058840A (en) * 2003-08-19 2005-03-10 Sumitomo Heavy Ind Ltd Sludge concentrating method and sludge concentrating facility

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861846A (en) * 1981-10-07 1983-04-13 Kuriintetsuku Kogyo:Kk Electrostatic oil purifier
JPH03110448A (en) * 1989-09-25 1991-05-10 Nippon Telegr & Teleph Corp <Ntt> Detection of magnetic fine particle in liquid and device
JPH06509745A (en) * 1991-08-19 1994-11-02 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ. Method for continuous separation of microscopic dielectric particle mixture and apparatus for carrying out the method
JPH0663360A (en) * 1991-11-29 1994-03-08 Gerhard Weber Method and device for continuous carrier-free deflecting electrophoresis
JPH0679734U (en) * 1993-04-14 1994-11-08 ゼオテック・エル・アール・シー株式会社 Recovery and reuse device for type lubricant
JPH08266891A (en) * 1995-04-03 1996-10-15 Hitachi Ltd Fine particle handling device
JP2000505545A (en) * 1996-01-31 2000-05-09 ボード・オヴ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Separation method and apparatus using dielectrophoresis and field flow fractionation
JPH11326155A (en) * 1998-05-20 1999-11-26 Hitachi Ltd Cell fractionating device
JP2002524229A (en) * 1998-09-07 2002-08-06 グラディポア リミテッド Micromolecule purification cassette
JP2000202325A (en) * 1999-01-20 2000-07-25 Agency Of Ind Science & Technol Separation of fine particle in dispersion, classification of fine particle, measuring of adsorption force of fine particle, and apparatus for implementing them
JP2004503775A (en) * 2000-06-14 2004-02-05 ボード・オブ・リージェンツ,ザ・ユニヴァーシティ・オヴ・テキサス・システム Method and apparatus for the operation of combined magnetophoresis and dielectrophoresis of analyte mixtures
JP2005058840A (en) * 2003-08-19 2005-03-10 Sumitomo Heavy Ind Ltd Sludge concentrating method and sludge concentrating facility

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714823B2 (en) * 2009-01-23 2011-06-29 国立大学法人大阪大学 Method of processing the mixture
US8916049B2 (en) 2009-01-23 2014-12-23 Osaka University Method and apparatus for processing mixture
WO2010084945A1 (en) * 2009-01-23 2010-07-29 財団法人大阪産業振興機構 Method and apparatus for processing mixed material
JPWO2011007820A1 (en) * 2009-07-15 2012-12-27 国立大学法人 名古屋工業大学 Particle recovery method and particle recovery apparatus
JP2013075275A (en) * 2011-09-30 2013-04-25 Hitachi Chemical Co Ltd Wet classification method and wet classification device
JP2017056459A (en) * 2012-04-03 2017-03-23 日立化成株式会社 Wet classification method
JP2013230452A (en) * 2012-04-03 2013-11-14 Hitachi Chemical Co Ltd Wet classification method
WO2014097395A1 (en) * 2012-12-18 2014-06-26 日立化成株式会社 Wet classifier, wet classification method and method for manufacturing classified particles
JP2014117670A (en) * 2012-12-18 2014-06-30 Hitachi Chemical Co Ltd Classifier, classification method and manufacturing method for classification grain
WO2016039482A1 (en) * 2014-09-12 2016-03-17 Hoya株式会社 Method for manufacture of substrate for magnetic disk and substrate for magnetic disk
WO2016038745A1 (en) * 2014-09-12 2016-03-17 Hoya株式会社 Method for manufacturing substrate for magnetic disk
WO2016038747A1 (en) * 2014-09-12 2016-03-17 Hoya株式会社 Method for manufacturing substrate for magnetic disk
JPWO2016039482A1 (en) * 2014-09-12 2017-06-01 Hoya株式会社 Manufacturing method of magnetic disk substrate and magnetic disk substrate
JPWO2016038745A1 (en) * 2014-09-12 2017-06-29 Hoya株式会社 Manufacturing method of magnetic disk substrate
JP2020090703A (en) * 2018-12-05 2020-06-11 パナソニックIpマネジメント株式会社 Metal particle manufacturing device, metal particle manufacturing method, and metal particle classification method
KR102020615B1 (en) * 2018-12-19 2019-11-04 에이블메탈 주식회사 Appratus for classifying pb-free solder particles and method thereof
WO2024057849A1 (en) * 2022-09-15 2024-03-21 株式会社村田製作所 Filtration material and method for producing multilayer ceramic capacitor using same

Similar Documents

Publication Publication Date Title
JP2005334865A (en) Solid particle classifier and solid particle classification method utilizing the same
US20160016828A1 (en) Continuous flow electroflocculation water treatment system
US3032199A (en) Froth flotation system
US9102554B2 (en) Continuous flow electroflocculation water treatment system
ES2911302T3 (en) Method and system for the analysis of liquids containing solid matter and monitoring or control of processes containing said liquids
US4732661A (en) Electrolytic purification system
US4176038A (en) Water purification method and apparatus
US4053378A (en) Water purification method and apparatus
KR101109551B1 (en) Semiconductor Wastewater treatment plant
JP3226201B2 (en) Sedimentation classifier
WO2016005662A1 (en) Ore treatment apparatus and method
US5759390A (en) Particle separator
US4094755A (en) Water purification method
JP4825850B2 (en) Floating separator, rectifier, and split cell for rectifier
KR101947233B1 (en) Electrode for separating particles based on dielectrophoresis and electroosmosis, and an apparatus for separating particles including the same
JP5605802B2 (en) Flat membrane filtration device and flat membrane filtration method
JP5146939B2 (en) Flotation device with perforated plate
Faucher et al. A continuous‐flow surface flotation cell for the separation of scanty mineral samples based on wettability contrast
RU119630U1 (en) ELECTRIC DEHYDRATOR
KR20140057995A (en) Dissolved air flotation tank for uniformity of flow distribution
JPH08155464A (en) Electrode scale preventive method for electrolytic muddy water treatment apparatus
JP3467614B2 (en) Sewage treatment equipment
EP1225252A1 (en) High current density electrolytic decomposition process for copper
US11406918B2 (en) Adjustable particle separator system and method of using same
SU1756280A1 (en) Electric flotator

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050331

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050601

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802