WO2016043052A1 - Optical sensor module and method for manufacturing same - Google Patents

Optical sensor module and method for manufacturing same Download PDF

Info

Publication number
WO2016043052A1
WO2016043052A1 PCT/JP2015/074951 JP2015074951W WO2016043052A1 WO 2016043052 A1 WO2016043052 A1 WO 2016043052A1 JP 2015074951 W JP2015074951 W JP 2015074951W WO 2016043052 A1 WO2016043052 A1 WO 2016043052A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
emitting element
cavity
light emitting
Prior art date
Application number
PCT/JP2015/074951
Other languages
French (fr)
Japanese (ja)
Inventor
濱田 秀
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016043052A1 publication Critical patent/WO2016043052A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Definitions

  • the present invention relates to an optical sensor module in which a light emitting element and a light receiving element are mounted on a substrate, and a manufacturing method thereof.
  • an optical sensor module in which a light emitting element and a light receiving element are mounted on a substrate, and the light emitting element and the light receiving element are covered with an optical element such as a lens (for example, Patent Document 1). , 2).
  • a light shielding member is provided between the light emitting element and the light receiving element, and the light emitted from the light emitting element by the light shielding member is prevented from directly entering the light receiving element.
  • the light shielding member is formed on the substrate using, for example, an injection molding method, there is a problem that the assembling method becomes complicated.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an optical sensor module capable of shielding light between a light emitting element and a light receiving element while suppressing cost, and a method for manufacturing the same. There is.
  • an optical sensor module includes a substrate, a cavity for a light emitting element provided on the substrate and recessed in the thickness direction, and a light receiving element provided on the substrate and recessed in the thickness direction.
  • a cavity, a light emitting element provided in the substrate for emitting light from the surface side of the substrate through the light emitting element cavity, and receiving light incident from the surface side of the substrate provided in the substrate through the light receiving element cavity A light-receiving element, a light-transmitting optical element provided in a portion covering the light-emitting element and the light-receiving element, and the light-emitting element cavity and the light-receiving element cavity are separated from each other of the substrate. And a wall surface portion that blocks light between the light emitting element cavity and the light receiving element cavity, and is output by the light emitting element. Light has been configured to detect the detection object by receiving light reflected by the light receiving element by the detection object.
  • the light-emitting element cavity and the light-receiving element cavity are isolated from each other by the wall surface portion formed of a part of the substrate. For this reason, it is possible to shield light between the light emitting element cavity and the light receiving element cavity by the wall surface of the substrate without using a light shielding member separate from the substrate. As a result, it is possible to prevent the light emitted from the light emitting element from directly entering the light receiving element without being reflected by the detection object, and thus it is possible to suppress erroneous detection of the detection object based on such stray light.
  • the light emitting element cavity and the light receiving element cavity are isolated from each other by using the wall surface of the substrate. For this reason, since a light shielding member separate from the substrate is not used to shield light between the light emitting element and the light receiving element, the components can be simplified and the assembling method can be simplified, thereby reducing the cost. can do.
  • the light-emitting element cavity and the light-receiving element cavity each include a through-hole penetrating the substrate, and the light-emitting element is flip-chip mounted on the back side of the substrate from the light-emitting element cavity.
  • the light receiving element is flip-chip mounted on the back side of the substrate with respect to the light receiving element cavity.
  • the light emitting element is flip-chip mounted on the back side of the substrate from the light emitting element cavity
  • the light receiving element is flip chip mounted on the back side of the substrate from the light receiving element cavity.
  • each cavity is a through-hole penetrating the substrate
  • the light emitting element and the light receiving element can be mounted on the back side of the substrate even when light is emitted or received from the surface side of the substrate.
  • the light emitting element and the light receiving element are flip-chip mounted, the mounting area can be reduced and the mounting density can be improved as compared with the case where each element is mounted using, for example, wire bonding.
  • a bottomed element receiving hole for receiving the light emitting element and the light receiving element is provided on the back side of the substrate, and the light emitting element cavity and the light receiving element cavity are formed at the bottom of the element receiving hole.
  • the light emitting element and the light receiving element are sealed by a non-translucent and insulating sealing member filled in the element accommodation hole.
  • each cavity opens at the bottom of the element accommodation hole.
  • the light emitting element mounted in the element receiving hole can emit light toward the detection target through the light emitting element cavity.
  • the light receiving element mounted in the element receiving hole can receive the light reflected by the detection object through the light receiving element cavity.
  • each element can be sealed in the state which insulated the periphery by filling the element accommodation hole with the sealing member.
  • the light emitting element and the light receiving element are sealed by the non-translucent sealing member, the light emitting element and the light receiving element can be shielded from light by the sealing member. Thereby, it can prevent that the light radiate
  • a conductive member having a ground potential is provided on the back side of the substrate so as to cover the sealing member.
  • the conductive member having the ground potential is provided so as to cover the sealing member.
  • a conductive shield layer can be formed on the optical sensor module, so that even when unnecessary noise such as electromagnetic waves is incident on the light emitting element and the light receiving element from the outside, such noise is shielded from the shield layer. Can be shut off.
  • the cavity for the light emitting element comprises a bottomed hole opened on the surface side of the substrate, and the light emitting element is flip-chip mounted on the bottom of the bottomed hole.
  • the light emitting element cavity is a bottomed hole opened on the surface side of the substrate
  • the light emitting element can be flip-chip mounted on the substrate using the bottom of the bottomed hole.
  • the mounting area can be reduced and the mounting density can be improved as compared with the case where the light emitting element is mounted by, for example, wire bonding.
  • a method for manufacturing an optical sensor module according to the present invention includes a bottomed element receiving hole opened on the back side of a substrate, a light emitting element cavity opened through the bottom of the element receiving hole and opened on the front side of the substrate, and a light receiving device.
  • a first step of forming an element cavity on the substrate, and a light emitting element is flip-chip mounted at a position of the light emitting element cavity at a bottom portion of the element receiving hole of the substrate, and the light receiving element cavity is positioned at the position of the light receiving element cavity.
  • the light emitting element and the light receiving element are each flip-chip mounted on the bottom of the element receiving hole opened on the back side of the substrate.
  • each cavity is a through-hole penetrating the substrate
  • each element can be mounted on the back surface side of each cavity in the substrate.
  • the mounting area can be reduced and the mounting density can be improved as compared with the case where each element is mounted using, for example, wire bonding.
  • the light emitting element cavity and the light receiving element cavity can be separated from each other by the wall surface portion of the substrate. it can. For this reason, it is possible to shield light between the light emitting element cavity and the light receiving element cavity by the wall surface portion without using a light shielding member separate from the substrate. As a result, it is possible to prevent the light emitted from the light emitting element from directly entering the light receiving element without being reflected by the detection object, and thus it is possible to suppress erroneous detection of the detection object based on such stray light.
  • the light emitting element cavity and the light receiving element cavity are isolated from each other by using the wall surface of the substrate. For this reason, since a light shielding member separate from the substrate is not used to shield light between the light emitting element and the light receiving element, the components can be simplified and the assembling method can be simplified, thereby reducing the cost. can do.
  • each cavity opens at the bottom of the element accommodation hole.
  • the light emitting element mounted in the element receiving hole can emit light toward the detection target through the light emitting element cavity.
  • the light receiving element mounted in the element receiving hole can receive the light reflected by the detection object through the light receiving element cavity.
  • each element can be sealed in the state which insulated the periphery by filling the element accommodation hole with the sealing member.
  • the light shielding element and the light receiving element can be shielded from light by the sealing member. Therefore, it can prevent that the light radiate
  • a method of manufacturing an optical sensor module according to the present invention includes a bottomed light emitting element cavity opened on a front surface side of a substrate, a bottomed element housing hole opened on a back surface side of the substrate, and a bottom portion of the element housing hole.
  • a second step of mounting a third step of sealing the light receiving element by filling the element receiving hole of the substrate with a non-translucent and insulating sealing member, and for the light emitting element of the substrate
  • a fourth step of flip-chip mounting the light emitting element on the bottom of the cavity and a fifth step of providing a light-transmitting optical element covering the light emitting element and the light receiving element on the surface side of the substrate; It is in having.
  • the light receiving element is flip-chip mounted on the bottom of the element receiving hole opened on the back side of the substrate.
  • the light receiving element cavity is a through-hole penetrating the substrate
  • the light receiving element can be mounted on the back side of the substrate with respect to the light receiving element cavity.
  • the cavity for light emitting elements is a bottomed hole opened on the surface side of the substrate
  • the light emitting element can be flip-chip mounted on the substrate using the bottom of the bottomed hole.
  • the mounting area can be reduced and the mounting density can be improved as compared with the case where each element is mounted using, for example, wire bonding.
  • the light emitting element cavity and the light receiving element cavity can be separated from each other by the wall surface portion. For this reason, it is possible to shield light between the light emitting element cavity and the light receiving element cavity by the wall surface of the substrate without using a light shielding member separate from the substrate. As a result, it is possible to prevent the light emitted from the light emitting element from directly entering the light receiving element without being reflected by the detection object, and thus it is possible to suppress erroneous detection of the detection object based on such stray light.
  • the light emitting element cavity and the light receiving element cavity are isolated from each other by using the wall surface of the substrate. For this reason, since a light shielding member separate from the substrate is not used to shield light between the light emitting element and the light receiving element, the components can be simplified and the assembling method can be simplified, thereby reducing the cost. can do.
  • the light receiving element is mounted in the element receiving hole and sealed with an insulating sealing member. Accordingly, the light receiving element can be sealed in a state where the periphery is insulated by filling the element accommodation hole with the sealing member.
  • the light receiving element is sealed by the non-translucent sealing member, the periphery of the light receiving element can be shielded by the sealing member. Thereby, for example, even when ambient disturbance light is incident on the light receiving element from the back side of the substrate, such disturbance light can be blocked by the sealing member.
  • FIG. 2 is a cross-sectional view of the optical sensor module as seen from the direction of arrows II-II in FIG. It is sectional drawing of the position similar to FIG. 2 which shows the aggregate substrate used for the manufacturing method of the optical sensor module by 1st Embodiment. It is sectional drawing of the aggregate substrate which shows the formation process of the cavity for light emitting elements, and the cavity for light receiving elements. It is sectional drawing of the same position as FIG. 4 which shows the flip chip mounting process of a light emitting element and a light receiving element. It is sectional drawing of the position similar to FIG. 4 which shows the sealing process by a sealing member.
  • FIG. 4 It is sectional drawing of the position similar to FIG. 4 which shows an optical element mounting process. It is sectional drawing which shows the optical sensor module by the 2nd Embodiment of this invention. It is sectional drawing which shows the optical sensor module by the 3rd Embodiment of this invention. It is sectional drawing of the position similar to FIG. 4 which shows the formation process of the cavity for light emitting elements and the cavity for light receiving elements by 3rd Embodiment. It is sectional drawing of the position similar to FIG. 4 which shows the flip chip mounting process of the light receiving element by 3rd Embodiment. It is sectional drawing of the position similar to FIG. 4 which shows the sealing process by a sealing member. It is sectional drawing of the position similar to FIG.
  • FIG. 4 which shows the flip chip mounting process of the light emitting element by 3rd Embodiment. It is sectional drawing of the position similar to FIG. 4 which shows the optical element mounting process by 3rd Embodiment. It is sectional drawing which shows the optical sensor module by the 4th Embodiment of this invention.
  • FIG. 1 to FIG. 7 show a first embodiment of the present invention.
  • the optical sensor module 1 according to the first embodiment includes a substrate 2, a light emitting element cavity 5, a light receiving element cavity 6, a wall surface portion 7, an element receiving hole 8, a light emitting element 9, a light receiving element 10, a sealing member 11, An optical element 12 and the like are provided.
  • the substrate 2 includes insulating layers 3A to 3F, conductor layers 4A to 4G, and the like.
  • the surface 2A of the substrate 2 is a component mounting surface on which an optical element 12 described later is mounted.
  • the total thickness of the substrate 2 is, for example, 0.2 to 1.0 mm.
  • the substrate 2 includes a plurality of (for example, six layers) insulating layers 3A to 3F.
  • the insulating layers 3A to 3F are made of, for example, a thermosetting resin or a thermoplastic resin mainly composed of epoxy, and are laminated in the thickness direction of the substrate 2.
  • the insulating layers 3A to 3F are not limited to organic materials such as resins, and may be formed of inorganic materials such as ceramics. Further, although the substrate 2 is exemplified as including six insulating layers 3A to 3F, it may include one to four insulating layers, or may include five or more insulating layers.
  • the substrate 2 includes a plurality of (for example, seven) conductor layers 4A to 4G, and the conductor layers 4A to 4G and the insulating layers 3A to 3F are alternately stacked.
  • the conductor layers 4A to 4G are connected to external signal electrodes or ground electrodes (both not shown).
  • the conductor layers 4A to 4G are formed of a thin-film conductor pattern made of a conductive metal material such as copper.
  • the conductor layers 4A to 4G are not necessarily provided in seven layers, and may be provided in one to six layers or in seven or more layers.
  • the light-emitting element cavity 5 is provided on the surface side of the substrate 2 and is formed of a rectangular through-hole penetrating the insulating layers 3A and 3B of the substrate 2.
  • the light-emitting element cavity 5 is recessed in the thickness direction from the surface 2A of the substrate 2 to the bottom 8B of the element housing hole 8 described later.
  • the light-emitting element cavity 5 has a front-side opening 5A that opens to the front side of the substrate 2 and a back-side opening 5B that opens to the bottom 8B of the element housing hole 8, and the inside thereof is a peripheral wall surface 5C. Covered by.
  • the light emitting element cavity 5 constitutes a light transmission path for radiating light emitted from a light emitting element 9 described later toward the optical element 12.
  • the light receiving element cavity 6 is provided on the front surface side of the substrate 2, similarly to the light emitting element cavity 5, and is formed of a rectangular through hole penetrating the insulating layers 3 A and 3 B of the substrate 2.
  • the light receiving element cavity 6 is recessed in the thickness direction from the surface 2A of the substrate 2 to the bottom 8B of the element receiving hole 8 described later.
  • the light-receiving element cavity 6 and the light-emitting element cavity 5 are provided at positions adjacent to each other with a wall surface portion 7 described later on the surface side of the substrate 2.
  • the light receiving element cavity 6 has a front surface side opening 6A that opens to the front surface side of the substrate 2 and a back surface side opening 6B that opens to the bottom 8B of the element housing hole 8, and the inside thereof is a peripheral wall surface 6C. Covered by.
  • the light receiving element cavity 6 forms a light transmission path that guides reflected light to the light receiving element 10 when the detection object Obj reflects light emitted from the light emitting element 9 described later.
  • the wall surface portion 7 is formed by a part of the substrate 2, and is provided on the surface side of the substrate 2 so as to isolate the light emitting element cavity 5 and the light receiving element cavity 6. That is, the wall surface portion 7 is a part of the substrate 2 and is formed by a portion sandwiched between the peripheral wall surface 5C of the light emitting element cavity 5 and the peripheral wall surface 6C of the light receiving element cavity 6.
  • the wall surface portion 7 is composed of the insulating layers 3A and 3B of the substrate 2 and has a function as a light blocking member that blocks light between the light emitting element cavity 5 and the light receiving element cavity 6. For this reason, the wall surface portion 7 blocks light that is emitted from the light emitting element 9 described later from being directly incident on the light receiving element 10 without being reflected by the detection object Obj.
  • the element receiving hole 8 is provided on the back side of the substrate 2 (lower side in FIG. 1) and below the light emitting element cavity 5 and the light receiving element cavity 6.
  • the element housing hole 8 is a rectangular bottomed hole that is recessed in the thickness direction from the back surface 2B of the substrate 2 to the light emitting element cavity 5 and the light receiving element cavity 6 and penetrates through the insulating layers 3C to 3F of the substrate 2. ing.
  • the opening 8 ⁇ / b> A of the element accommodation hole 8 is located in the insulating layer 3 ⁇ / b> F of the substrate 2 and opens to the back surface 2 ⁇ / b> B of the substrate 2. At this time, the opening area of the opening 8A is larger than the opening areas of the back surface side openings 5B and 6B of the cavities 5 and 6.
  • the bottom 8B of the element housing hole 8 is formed by the insulating layers 3A and 3B of the substrate 2.
  • the bottom 8B is provided with a light-emitting element cavity 5 and a light-receiving element cavity 6 penetrating therethrough, and a back-side opening 5B of the light-emitting element cavity 5 and a back-side opening 6B of the light-receiving element cavity 6 are opened. Yes.
  • the peripheral wall surface 8C of the element housing hole 8 surrounds the light-emitting element cavity 5 and the light-receiving element cavity 6 and is disposed outside these.
  • the element accommodation hole 8 forms an accommodation hole for mounting a light emitting element 9 and a light receiving element 10 described later on the substrate 2.
  • the element receiving hole 8 constitutes a stepped hole together with the light emitting element cavity 5 and the light receiving element cavity 6.
  • the light emitting element 9 is provided in the element receiving hole 8 below the light emitting element cavity 5.
  • the light emitting element 9 is flipped by using the conductive bump 9A and the insulating bump sealant 9B on the back surface of the insulating layer 3B on the back side of the light emitting element cavity 5 of the substrate 2. Chip mounted.
  • a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used as the light emitting element 9, for example, a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used.
  • the light emitting element 9 is connected to the detection object Obj from the surface side of the substrate 2 through the light emitting element cavity 5 and the optical element 12 based on a signal input from the conductor pattern of the conductor layer 4C of the substrate 2 via the bump 9A. Light is emitted toward.
  • the light receiving element 10 is provided in the element receiving hole 8 below the light receiving element cavity 6.
  • the light receiving element 10 is flipped on the back surface of the insulating layer 3B on the back side of the light receiving element cavity 6 of the substrate 2 by using the conductive bumps 10A and the insulating bump sealant 10B. Chip mounted.
  • a photodiode (PD), a phototransistor, or the like is used as the light receiving element 10.
  • the light receiving element 10 receives light reflected from the detection object Obj and incident from the surface side of the substrate 2 through the optical element 12 and the light receiving element cavity 6, and detects the detection object Obj. Then, the light receiving element 10 converts the received light into an electrical signal and outputs it to the conductor pattern of the conductor layer 4C via the bump 10A.
  • the sealing member 11 is filled in the element accommodation hole 8 and seals the light emitting element 9 and the light receiving element 10.
  • the sealing member 11 is formed of an insulating resin material such as an epoxy resin, which is non-translucent and does not transmit any visible light or infrared light, for example. Thereby, the sealing member 11 prevents the light emitted from the light emitting element 9 from directly entering the light receiving element 10 through the sealing member 11 without being reflected by the detection object Obj. It is what makes.
  • the optical element 12 is located on the surface side of the substrate 2 and is provided at a portion covering the light emitting element 9 and the light receiving element 10.
  • the optical element 12 has a curved surface shape having a diffusing or condensing effect, and is mounted on the insulating layer 3A on the surface side of the substrate 2 using an adhesive material such as a thermosetting UV resin.
  • the optical element 12 is composed of, for example, a light-transmitting optical lens.
  • a convex lens 12A having a substantially hemispherical shape protruding upward is formed in a portion covering the light emitting element 9, and a flat portion is formed in a portion covering the light receiving element 10. 12B is formed.
  • the optical element 12 radiates the light emitted from the light emitting element 9 to the outside through the convex lens 12A. Further, the optical element 12 causes the light reflected by the detection object Obj to enter the light receiving element 10 through the flat portion 12B.
  • the optical element 12 is provided with a flat portion 12B having a flat surface at a position corresponding to the light receiving element 10.
  • the present invention is not limited to this, and a convex lens may be provided at a position corresponding to the light receiving element 10 to collect light incident from the outside on the light receiving element 10.
  • the electronic component 13 is composed of, for example, an integrated circuit component in which active elements and passive elements are integrated, and is mounted in the substrate 2.
  • the electronic component 13 is connected to the conductor pattern of the conductor layer 4E of the substrate 2 using, for example, a conductive bonding material such as solder. Thereby, a low frequency signal, a drive voltage signal, a control signal, etc. are input into the electronic component 13 from the outside through the conductor layer 4E.
  • FIG. 3 and FIG. 4 show a collective substrate preparation step as a first step.
  • a collective substrate 14 having a plurality of sub-substrates 15 formed in a matrix is prepared.
  • the collective substrate 14 is cut at the position of the dividing line D, whereby the plurality of sub-substrates 15 on which the light emitting element 9 and the light receiving element 10 are mounted are separated, and the optical sensor module 1 is formed.
  • the dividing line D is a boundary line of the region of each child substrate 15.
  • the sub board 15 corresponds to the board 2 of the optical sensor module 1.
  • the collective substrate 14 has an insulating layer 16F described later on the upper side (upper side in FIG. 4) and the insulating layer 16A on the lower side (lower side in FIG. 4). It is arranged to be. That is, the collective substrate 14 from the first step to the third step is arranged upside down with respect to the finished optical sensor module 1.
  • the collective substrate 14 is formed by stacking the insulating layers 16A to 16F and the conductor layers 17A to 17G.
  • the insulating layers 16A and 16B have light emitting element cavities 18 and light receiving element cavities 19 that pass through a bottom portion 21A of an element housing hole 21 described later and open on the surface side of the collective substrate 14 (lower side in FIG. 4). Is formed.
  • a wall surface portion 20 is formed by the insulating layers 16 ⁇ / b> A and 16 ⁇ / b> B.
  • a bottomed element accommodating hole 21 having an opening on the back surface side (upper side in FIG.
  • the collective substrate 14 and having a bottom portion 21A is formed on the insulating layer 16B. Furthermore, the electronic component 22 is mounted on the insulating layers 16C and 16D. The electronic component 22 is electrically connected to the conductor pattern of the conductor layer 17E using a conductive bonding material such as solder.
  • the insulating layers 16A to 16F, the conductor layers 17A to 17G, the light emitting element cavity 18, the light receiving element cavity 19, the wall surface part 20, the element receiving hole 21, the bottom part 21A, and the electronic component 22 are the same as those of the optical sensor module 1. It corresponds to the insulating layers 3A to 3F, the conductor layers 4A to 4G, the light emitting element cavity 5, the light receiving element cavity 6, the wall surface part 7, the element accommodating hole 8, the bottom part 8B, and the electronic component 13, respectively.
  • FIG. 5 shows a flip chip mounting process as the second process.
  • the light emitting element 23 and the light receiving element 24 are flip chip mounted on the bottom 21 ⁇ / b> A of the element receiving hole 21 of the collective substrate 14.
  • bumps 23A and 24A made of a conductive material such as gold or solder are formed on the electrodes provided on the surfaces of the light emitting element 23 and the light receiving element 24, for example.
  • the front and back surfaces of the light emitting element 23 and the light receiving element 24 are reversed, and the elements 23 and 24 face-down so as to close the cavities 18 and 19 are placed on the collective substrate 14.
  • the light emitting element 23 is disposed at a position covering the light emitting element cavity 18 in a direction in which the light emitting surface faces the light emitting element cavity 18.
  • the light receiving element 24 is arranged at a position covering the light receiving element cavity 19 in a direction in which the light receiving surface faces the light receiving element cavity 19.
  • the electrode of the light emitting element 23 is formed on the light emitting surface.
  • the electrode of the light receiving element 24 is formed on the light receiving surface.
  • the light emitting element 23, the light receiving element 24, the bumps 23A and 24A, and the bump sealing agents 23B and 24B are the light emitting element 9, the light receiving element 10, the bumps 9A and 10A, and the bump sealing agents 9B and 10B of the optical sensor module 1, respectively. Correspond to each.
  • FIG. 6 shows a sealing member filling step as a third step.
  • the sealing member filling process subsequent to the flip chip mounting process the element housing holes 21 of the collective substrate 14 are filled with the sealing member 25 so as to cover the light emitting elements 23 and the light receiving elements 24.
  • a sealing member 25 made of an insulating resin material such as an epoxy resin that does not transmit both visible light and infrared light is filled in the element accommodation hole 21 of the collective substrate 14. After curing, the top surface portion is polished. As a result, the light emitting element 23 and the light receiving element 24 are embedded in the element receiving hole 21 by the sealing member 25.
  • the sealing member 25 corresponds to the sealing member 11 of the optical sensor module 1.
  • FIG. 7 shows an optical element arranging step as the fourth step.
  • the optical element 26 having translucency is arranged on the surface side of the collective substrate 14.
  • the top and bottom of the collective substrate 14 are reversed so that the insulating layer 16A is on the upper side (upper side in FIG. 7) and the insulating layer 16F is on the lower side (lower side in FIG. 7).
  • the optical element 26 is mounted on the insulating layer 16A on the surface side of the collective substrate 14 using an adhesive material such as a thermosetting UV resin.
  • the optical element 26 includes a convex lens 26 ⁇ / b> A and a flat portion 26 ⁇ / b> B, the convex lens 26 ⁇ / b> A is disposed at a position covering the light emitting element 23, and the flat portion 26 ⁇ / b> B is disposed at a position covering the light receiving element 24.
  • the optical element 26, the convex lens 26A, and the flat portion 26B correspond to the optical element 12, the convex lens 12A, and the flat portion 12B of the optical sensor module 1, respectively.
  • the collective substrate 14 is cut along the dividing line D using a dicer or the like, and the child substrates 15 are individually separated.
  • a plurality of photosensor modules 1 on which the light emitting element 9 and the light receiving element 10 are mounted are manufactured by being divided into the sub board 15 from the collective board 14.
  • the light-emitting element cavity 5 and the light-receiving element cavity 6 are isolated from each other by the wall surface portion 7. For this reason, the light-emitting element cavity 5 and the light-receiving element cavity 6 can be shielded from light by the wall surface portion 7 of the substrate 2 without using a light shielding member separate from the substrate 2. As a result, the light emitted from the light emitting element 9 is prevented from being directly incident on the light receiving element 10 without being reflected by the detection object Obj, thereby suppressing the erroneous detection of the detection object Obj based on such stray light. be able to.
  • the components can be simplified and the assembling method can be simplified, and the cost can be reduced.
  • the light emitting element 9 and the light receiving element 10 are flip-chip mounted on the back surface side of the cavities 5 and 6 of the substrate 2, respectively.
  • the cavities 5 and 6 are through holes penetrating the substrate 2
  • the light emitting element 9 and the light receiving element 10 are disposed on the back side of the substrate 2 even when light is emitted or received from the front surface side of the substrate 2.
  • the light emitting element 9 and the light receiving element 10 are flip-chip mounted, the mounting area can be reduced and the mounting density can be improved as compared with the case where the elements 9 and 10 are mounted using, for example, wire bonding. it can.
  • the cavities 5 and 6 are open to the bottom 8B of the element accommodation hole 8. Thereby, the light emitting element 9 mounted in the element accommodating hole 8 can emit light toward the detection target Obj through the light emitting element cavity 5. Further, the light receiving element 10 mounted in the element receiving hole 8 can receive the light reflected on the detection object Obj through the light receiving element cavity 6.
  • each element 9 and 10 are respectively mounted in the element receiving holes 8 and sealed with a sealing member 11 having insulating properties. Thereby, each element 9 and 10 can be sealed in the state which insulated the circumference
  • the light emitting element 9 and the light receiving element 10 are sealed by the non-translucent sealing member 11, it is possible to shield the light emitting element 9 and the light receiving element 10 from light by the sealing member 11.
  • the light emitting element 9 emits light from other than the light emitting surface.
  • the light receiving element 10 has light receiving sensitivity with respect to other than the light receiving surface. Even in such a case, the light emitted from the light emitting element 9 inside the element receiving hole 8 is prevented from directly entering the light receiving element 10 without being reflected by the detection object Obj, and the background noise of the light receiving element 10 is prevented. Etc. can be reduced.
  • the element receiving hole 21 is opened on the back side of the collective substrate 14.
  • the light-emitting element 23 and the light-receiving element 24 are flipped into the element receiving hole 21 by reversing the top of the collective substrate 14 and setting the back side of the collective substrate 14 to the upper side.
  • the optical element 26 can be mounted on the surface of the collective substrate 14 by reversing the top of the collective substrate 14 so that the surface side of the collective substrate 14 is the upper side.
  • FIG. 8 shows a second embodiment of the present invention.
  • a feature of the second embodiment is that a conductive member having a ground potential is provided on the substrate. Note that in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
  • the optical sensor module 31 according to the second embodiment is substantially the same as the optical sensor module 1 according to the first embodiment.
  • the substrate 2, the light-emitting element cavity 5, the light-receiving element cavity 6, the wall surface portion 7, and the element housing A hole 8, a light emitting element 9, a light receiving element 10, a sealing member 11, an optical element 12, and the like are provided.
  • the optical sensor module 31 is provided with a conductive member 32 on the lower side of the substrate 2.
  • the optical sensor module 31 according to the second embodiment is different from the optical sensor module 1 according to the first embodiment.
  • the conductive member 32 is provided on the back side of the substrate 2 at a position covering the sealing member 11 filled in the element accommodation hole 8.
  • the conductive member 32 is bonded to the insulating layer 3F of the substrate 2 using a conductive adhesive such as a silver paste, an anisotropic conductive paste, or the like.
  • the conductive member 32 is made of, for example, a material mainly made of metal such as stainless steel, and is electrically connected to a later-described ground electrode 33 and held at a ground potential. As a result, the conductive member 32 gives the optical sensor module 31 an electromagnetic shielding effect.
  • the thickness of the conductive member 32 is preferably in the range of 0.05 to 0.5 mm, for example.
  • the ground electrode 33 is provided on the insulating layer 3F of the substrate 2 and is electrically connected to the conductive member 32 via a conductive adhesive or the like.
  • the ground electrode 33 can be connected to an external ground (not shown) and is held at the ground potential.
  • the optical sensor module 31 is provided with a conductive member 32 having a ground potential so as to cover the sealing member 11. Thereby, since a conductive shield layer can be formed in the photosensor module 31, it is possible to prevent noise such as electromagnetic waves from the outside from entering the photosensor module 31.
  • FIGS. 9 to 14 show a third embodiment of the present invention.
  • the feature of the third embodiment resides in that the light emitting element cavity is formed by a bottomed hole opened on the surface side of the substrate. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the optical sensor module 41 according to the third embodiment is substantially the same as the optical sensor module 1 according to the first embodiment.
  • the optical sensor module 41 is provided with a light emitting element cavity 42 having a bottomed hole opened on the surface side of the substrate 2.
  • the optical sensor module 41 according to the third embodiment is different from the optical sensor module 1 according to the first embodiment.
  • the light emitting element cavity 42 is provided on the surface side of the substrate 2 (upper side in FIG. 9), and is recessed in the thickness direction from the surface 2A of the substrate 2 to the insulating layer 3F.
  • the light emitting element cavity 42 is a rectangular bottomed hole and penetrates the insulating layers 3A to 3E, and the back side of the substrate 2 is closed by the insulating layer 3F.
  • the light-emitting element cavity 42 has a surface-side opening 42A that opens to the surface of the substrate 2 and a bottom 42B that is the bottom of the bottomed hole, and the inside thereof is covered with a peripheral wall surface 42C.
  • the light emitting element cavity 42 accommodates a light emitting element 45 to be described later, and emits light emitted from the light emitting element 45 through the front surface side opening 42A toward the optical element 12.
  • the wall surface portion 43 is formed by a part of the substrate 2, and is provided on the surface side of the substrate 2 so as to isolate the light emitting element cavity 42 and the light receiving element cavity 6. That is, the wall surface portion 43 is a part of the substrate 2 and is formed by a portion sandwiched between the peripheral wall surface 42C of the light emitting element cavity 42 and the peripheral wall surface 6C of the light receiving element cavity 6.
  • the wall surface portion 43 is constituted by the insulating layers 3A to 3E of the substrate 2, and has a function as a light blocking member that blocks light between the light emitting element cavity 42 and the light receiving element cavity 6.
  • the element receiving hole 44 is provided on the back side (lower side in FIG. 9) of the substrate 2 and below the light receiving element cavity 6.
  • the element receiving hole 44 is a rectangular bottomed hole that is recessed in the thickness direction from the back surface 2B of the substrate 2 to the back surface side opening 6B of the light receiving element cavity 6 and penetrates the insulating layers 3C to 3F of the substrate 2. ing.
  • the opening 44 ⁇ / b> A of the element accommodation hole 44 is located on the insulating layer 3 ⁇ / b> F of the substrate 2 and opens on the back surface 2 ⁇ / b> B of the substrate 2.
  • the bottom portion 44B of the element accommodation hole 44 is located in the insulating layer 3B of the substrate 2 and opens to the back surface side opening 6B of the light receiving element cavity 6. At this time, the opening area of the opening 44 ⁇ / b> A is larger than the opening area of the back surface side opening 6 ⁇ / b> B of the light receiving element cavity 6.
  • the bottom 44B of the element housing hole 44 is formed by the insulating layers 3A and 3B of the substrate 2.
  • the bottom 44B is provided with a light receiving element cavity 6 therethrough, and a back surface side opening 6B of the light receiving element cavity 6 is opened.
  • the peripheral wall surface 44 ⁇ / b> C of the element receiving hole 44 surrounds the light receiving element cavity 6 and is disposed outside these.
  • This element accommodation hole 44 forms an accommodation hole for mounting the light receiving element 10 on the substrate 2.
  • the element receiving hole 44 forms a stepped hole together with the light receiving element cavity 6.
  • the light emitting element 45 is provided in the light emitting element cavity 42.
  • a light emitting surface is provided on the front surface of the light emitting element 45, and an electrode for external connection is provided on the back surface of the light emitting element 45.
  • the light-emitting surface and the electrode surface of the light-emitting element 45 are disposed on opposite surfaces.
  • the light emitting element 45 is flip-chip mounted on the bottom portion 42B of the light emitting element cavity 42 using a conductive bump 45A and an insulating bump sealant 45B.
  • a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used as the light emitting element 45.
  • the light emitting element 45 emits light from the surface side of the substrate 2 toward the detection object Obj through the light emitting element cavity 42 and the optical element 12 based on a signal input from the conductor layer 4F of the substrate 2 via the bump 45A. Is emitted.
  • FIG. 10 shows a collective substrate preparation step as a first step.
  • the collective substrate preparation step as in the first embodiment, the collective substrate 14 in which a plurality of sub-substrates 15 are formed in a matrix is prepared.
  • the collective substrate 14 is cut at the position of the dividing line D, whereby the plurality of sub-substrates 15 mounted with the light emitting element 45 and the light receiving element 10 are separated, and the optical sensor module 41 is formed.
  • the dividing line D is a boundary line of the region of each child substrate 15.
  • the sub board 15 corresponds to the board 2 of the optical sensor module 41.
  • the collective substrate 14 has an insulating layer 16F described later on the upper side (upper side in FIG. 10) and the insulating layer 16A on the lower side (lower side in FIG. 10). It is arranged to be. That is, the collective substrate 14 from the first step to the third step is arranged upside down with respect to the finished optical sensor module 41.
  • the collective substrate 14 is formed by stacking the insulating layers 16A to 16F and the conductor layers 17A to 17G.
  • a bottomed light-emitting element cavity 46 having an opening on the surface side (lower side in FIG. 10) of the collective substrate 14 and having a bottom portion 46A is formed on the insulating layer 16F.
  • a light receiving element cavity 19 is formed which penetrates a bottom portion 48A of an element housing hole 48 to be described later and opens on the surface side (lower side in FIG. 10) of the collective substrate 14. .
  • a wall surface portion 47 is formed by the insulating layers 16A to 16E.
  • a bottomed element receiving hole 48 having an opening on the back surface side (the upper side in FIG. 10) of the collective substrate 14 and having a bottom portion 48A is formed on the insulating layer 16B.
  • an electronic component 22 is mounted. The electronic component 22 is electrically connected to the conductor pattern of the conductor layer 17E using a conductive bonding material such as solder.
  • the light emitting element cavity 46, the bottom 46A, the wall surface 47, the element receiving hole 48, and the bottom 48A are the light emitting element cavity 42, the bottom 42B, the wall surface 43, the element receiving hole 44, and the bottom of the optical sensor module 41. 44B respectively.
  • FIG. 11 shows a light receiving element mounting step as a second step.
  • the light receiving elements 24 are flip-chip mounted in the element receiving holes 48 of the collective substrate 14.
  • a bump 24 ⁇ / b> A is formed by applying a conductive material such as gold or solder to the electrodes provided on the surface of the light receiving element 24.
  • the front and back surfaces of the light receiving element 24 are reversed, the light receiving element 24 is placed on the collective substrate 14 so as to block the light receiving element cavity 19, and the bumps 24A are formed on the conductor pattern (electrode) of the conductor layer 17C.
  • Join join.
  • a bump sealant 24 ⁇ / b> B is sealed in the gap between the collective substrate 14 and the light receiving element 24.
  • the light receiving element 24 is disposed at a position covering the light receiving element cavity 19 in a direction in which the light receiving surface faces the light receiving element cavity 19.
  • FIG. 12 shows a sealing member filling step as a third step.
  • the sealing member filling step subsequent to the light receiving element mounting step the element receiving holes 48 of the collective substrate 14 are filled with the sealing member 25 so as to cover the light receiving elements 24.
  • a sealing member 25 made of an insulating resin material such as an epoxy resin that transmits neither visible light nor infrared light is filled in the element accommodation hole 48 of the collective substrate 14. After curing, the top surface portion is polished. Thereby, the light receiving element 24 is embedded in the element receiving hole 48 by the sealing member 25.
  • FIG. 13 shows a light emitting element mounting process as a fourth process.
  • the light emitting element 49 is flip-chip mounted in the light emitting element cavity 46 of the collective substrate 14.
  • the top and bottom of the collective substrate 14 are reversed so that the insulating layer 16A is on the upper side (upper side in FIG. 13) and the insulating layer 16F is on the lower side (lower side in FIG. 13).
  • bumps 49 ⁇ / b> A made of a conductive material are formed on the electrodes provided on the back surface of the light emitting element 49.
  • the light emitting element 49 is inserted into the light emitting element cavity 46, the light emitting element 49 is placed on the collective substrate 14, and the bump 49A is bonded to the conductor pattern (electrode) of the conductor layer 17F. Thereafter, a bump sealant 49 ⁇ / b> B made of an insulating resin material is sealed in the gap between the collective substrate 14 and the light emitting element 49.
  • the light emitting element 49 is arranged in a direction in which the light emitting surface faces the surface side of the collective substrate 14.
  • the light emitting element 49, the bump 49A, and the bump sealant 49B correspond to the light emitting element 45, the bump 45A, and the bump sealant 45B of the optical sensor module 41, respectively.
  • FIG. 14 shows an optical element arranging step as the fifth step.
  • the optical element 26 having translucency is arranged on the surface side of the collective substrate 14.
  • the optical element 26 is mounted on the insulating layer 16A on the surface side of the collective substrate 14 using an adhesive material such as a thermosetting UV resin.
  • the convex lens 26 ⁇ / b> A of the optical element 26 is disposed at a position covering the light emitting element 49
  • the flat portion 26 ⁇ / b> B of the optical element 26 is disposed at a position covering the light receiving element 24.
  • the collective substrate 14 is cut along the dividing line D using a dicer or the like, and the child substrates 15 are individually separated. As a result, a plurality of optical sensor modules 41 mounted on the light emitting element 45 and the light receiving element 10 are manufactured.
  • the light emitting element cavity 42 is a bottomed hole opened on the surface side of the substrate 2
  • the light emitting element 45 is flip-chip mounted on the substrate 2 using the bottom 42 B of the light emitting element cavity 42. can do.
  • the element accommodating hole 48 is opened on the back side of the collective substrate 14.
  • the light receiving element 24 can be mounted in the element receiving hole 48 by turning the collective substrate 14 upside down and setting the back side of the collective substrate 14 to the upper side.
  • the light-emitting element cavity 46 is opened on the surface side of the collective substrate 14.
  • the light emitting element 26 can be mounted in the light emitting element cavity 46 by turning the surface of the collective substrate 14 upside down with the top of the collective substrate 14 turned upside down.
  • FIG. 15 shows a fourth embodiment of the present invention.
  • the feature of the fourth embodiment resides in that a light receiving element and a light receiving element are mounted on the back surface of the substrate and sealed with a sealing member without providing an element accommodation hole in the substrate. Note that in the fourth embodiment, identical symbols are assigned to configurations identical to those in the first embodiment described above, and descriptions thereof are omitted.
  • the optical sensor module 51 according to the fourth embodiment includes the substrate 52, the light emitting element 9, the light receiving element 10, the sealing member 53, the optical element 12, and the like, almost the same as the optical sensor module 1 according to the first embodiment. I have. However, the optical sensor module 51 has the light emitting element 9 and the light receiving element 10 mounted on the back surface side of the substrate 52 without providing an element accommodation hole. In this respect, the optical sensor module 51 according to the fourth embodiment is different from the optical sensor module 1 according to the first embodiment.
  • the substrate 52 includes a plurality (eg, two layers) of insulating layers 53A and 53B and a plurality (eg, three layers) of conductor layers 54A to 54C.
  • the conductor layers 54A to 54C and the insulating layers 53A and 53B are alternately stacked.
  • the back surface of the substrate 52 is a flat surface. Cavities 5 and 6 penetrating the substrate 52 are opened on the back surface of the substrate 52.
  • the light emitting element 9 and the light receiving element 10 are provided at positions corresponding to the cavities 5 and 6.
  • the light-emitting element 9 and the light-receiving element 10 are flip-chip mounted on the back surface of the substrate 52 using bumps 9A and 10A and bump sealants 9B and 10B. Further, a wall surface portion 7 is formed on the substrate 52 between the light emitting element cavity 5 and the light receiving element cavity 6.
  • the conductor layer 54C is connected to an external signal electrode or a ground electrode (both not shown) via an electrode post 56 and an external electrode 57 described later.
  • the sealing member 55 is provided on the back side of the substrate 52, and the light emitting element 9 and the light receiving element 10 are sealed therein. As with the sealing member 11 of the first embodiment, the sealing member 55 is non-translucent and does not transmit any visible light or infrared light, and uses an insulating resin material such as an epoxy resin. Is formed.
  • the sealing member 55 is provided with a plurality of electrode posts 56 (only two are shown).
  • the electrode post 56 is formed by, for example, forming a through hole penetrating the sealing member 55 by laser processing or the like and then providing copper plating, a conductive paste, or the like in the through hole.
  • One end side of the electrode post 56 is connected to the conductor layer 54C through a conductive bonding layer 56A.
  • an external electrode 57 (bump) made of solder or the like is provided on the other end side of the electrode post 56, and the external electrode 57 is exposed on the back side of the sealing member 55.
  • the fourth embodiment it is possible to obtain substantially the same function and effect as in the first embodiment.
  • the light shielding element 55 shields light between the light emitting element 9 and the light receiving element 10. Can do. Thereby, the light emitted from the light emitting element 9 can be prevented from directly entering the light receiving element 10 without being reflected by the detection object Obj, and the background noise of the light receiving element 10 can be reduced.
  • the light emitting element 9 and the light receiving element 10 are flip-chip mounted on the insulating layer 53B of the substrate 52 and sealed with a sealing member 55. Thereby, the light emitting element 9 and the light receiving element 10 can be provided in the board
  • the light-emitting element cavity 5 and the light-receiving element cavity 6 have a rectangular shape.
  • the present invention is not limited to this, and the shapes of the light-emitting element cavity and the light-receiving element cavity are not limited to a rectangular shape, and may be, for example, a circular shape.
  • the light emitting element cavity 42 is constituted by a bottomed hole having a bottom portion 42 B, and the light receiving element cavity 6 is constituted by a through hole penetrating the substrate 2.
  • the present invention is not limited to this, and for example, the light emitting element cavity may be configured by a through hole penetrating the substrate, and the light receiving element cavity may be configured by a bottomed hole having a bottom.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

A substrate (2) of an optical sensor module (1) is provided with a cavity (5) for light emitting element, a cavity (6) for light receiving element, a wall surface part (7), an element containing hole (8) and the like. In the element containing hole (8), a light emitting element (9) is flip-chip mounted at the position of the cavity (5) for light emitting element and a light receiving element (10) is flip-chip mounted at the position of the cavity (6) for light receiving element. The element containing hole (8) is filled with a sealing material (11) that seals the light emitting element (9) and the light receiving element (10). An optical element (12) is provided on the front surface of the substrate (2) so as to cover the light emitting element (9) and the light receiving element (10). The wall surface part (7) is formed of a part of the substrate (2), and blocks light between the cavity (5) for light emitting element and the cavity (6) for light receiving element.

Description

光センサモジュール及びその製造方法Optical sensor module and manufacturing method thereof
 本発明は、基板に発光素子及び受光素子を実装した光センサモジュール及びその製造方法に関するものである。 The present invention relates to an optical sensor module in which a light emitting element and a light receiving element are mounted on a substrate, and a manufacturing method thereof.
 一般に、光センサモジュールとして、基板に、発光素子と受光素子とを実装し、該発光素子と受光素子とをレンズ等の光学素子で覆う構成としたものが知られている(例えば、特許文献1,2参照)。 In general, an optical sensor module is known in which a light emitting element and a light receiving element are mounted on a substrate, and the light emitting element and the light receiving element are covered with an optical element such as a lens (for example, Patent Document 1). , 2).
特開2010-34189号公報JP 2010-34189 A 特開2012-190934号公報JP 2012-190934 A
 このような光センサモジュールでは、発光素子と受光素子との間に遮光部材を設け、該遮光部材によって発光素子から出射された光が受光素子に直接入射することを防止している。しかしながら、このような構成では、発光素子と受光素子との間で光を遮断する遮光部材を基板とは別個に設ける必要があり、部材自体のコスト及び組立のコストが上昇するという問題がある。また、例えば射出成型法等を用いて遮光部材を基板上に作成すると、組立方法が複雑となってしまうという問題もある。 In such an optical sensor module, a light shielding member is provided between the light emitting element and the light receiving element, and the light emitted from the light emitting element by the light shielding member is prevented from directly entering the light receiving element. However, in such a configuration, it is necessary to provide a light shielding member that blocks light between the light emitting element and the light receiving element separately from the substrate, and there is a problem that the cost of the member itself and the cost of assembly increase. Further, when the light shielding member is formed on the substrate using, for example, an injection molding method, there is a problem that the assembling method becomes complicated.
 本発明は前述の問題に鑑みなされたものであり、本発明の目的は、コストを抑制しつつ、発光素子と受光素子との間を遮光することができる光センサモジュール及びその製造方法を提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an optical sensor module capable of shielding light between a light emitting element and a light receiving element while suppressing cost, and a method for manufacturing the same. There is.
 (1).上記課題を解決するために、本発明による光センサモジュールは、基板と、前記基板に設けられ厚さ方向に凹陥した発光素子用キャビティと、前記基板に設けられ厚さ方向に凹陥した受光素子用キャビティと、前記基板に設けられ前記発光素子用キャビティを通じて前記基板の表面側から光を出射する発光素子と、前記基板に設けられ前記受光素子用キャビティを通じて前記基板の表面側から入射した光を受光する受光素子と、前記発光素子及び前記受光素子を覆う部位に設けられた透光性を有する光学素子と、前記発光素子用キャビティと前記受光素子用キャビティとの間を隔絶して前記基板の一部によって形成され、前記発光素子用キャビティと前記受光素子用キャビティとの間で光を遮断する壁面部と、を備え、前記発光素子により出射された光が、検出対象物によって反射された光を前記受光素子で受光することによって前記検出対象物を検出する構成としている。 (1). In order to solve the above problems, an optical sensor module according to the present invention includes a substrate, a cavity for a light emitting element provided on the substrate and recessed in the thickness direction, and a light receiving element provided on the substrate and recessed in the thickness direction. A cavity, a light emitting element provided in the substrate for emitting light from the surface side of the substrate through the light emitting element cavity, and receiving light incident from the surface side of the substrate provided in the substrate through the light receiving element cavity A light-receiving element, a light-transmitting optical element provided in a portion covering the light-emitting element and the light-receiving element, and the light-emitting element cavity and the light-receiving element cavity are separated from each other of the substrate. And a wall surface portion that blocks light between the light emitting element cavity and the light receiving element cavity, and is output by the light emitting element. Light has been configured to detect the detection object by receiving light reflected by the light receiving element by the detection object.
 本発明によれば、発光素子用キャビティと受光素子用キャビティとの間は、基板の一部からなる壁面部により隔絶されている。このため、基板とは別個の遮光部材を用いることなく、発光素子用キャビティと受光素子用キャビティとの間を基板の壁面部により遮光することができる。この結果、発光素子から出射された光が検出対象物に反射せずに受光素子に直接入射することを防止するので、このような迷光に基づく検出対象物の誤検出を抑制することができる。 According to the present invention, the light-emitting element cavity and the light-receiving element cavity are isolated from each other by the wall surface portion formed of a part of the substrate. For this reason, it is possible to shield light between the light emitting element cavity and the light receiving element cavity by the wall surface of the substrate without using a light shielding member separate from the substrate. As a result, it is possible to prevent the light emitted from the light emitting element from directly entering the light receiving element without being reflected by the detection object, and thus it is possible to suppress erroneous detection of the detection object based on such stray light.
 また、基板の壁面部を用いて発光素子用キャビティと受光素子用キャビティとの間を隔絶する。このため、発光素子と受光素子との間を遮光するために、基板とは別個の遮光部材を用いないので、構成部品の簡素化及び組立方法の容易化を図ることができ、ひいてはコストを抑制することができる。 Also, the light emitting element cavity and the light receiving element cavity are isolated from each other by using the wall surface of the substrate. For this reason, since a light shielding member separate from the substrate is not used to shield light between the light emitting element and the light receiving element, the components can be simplified and the assembling method can be simplified, thereby reducing the cost. can do.
 (2).本発明では、前記発光素子用キャビティ及び前記受光素子用キャビティは、前記基板を貫通した貫通穴からなり、前記発光素子は、前記基板のうち前記発光素子用キャビティよりも裏面側にフリップチップ実装され、前記受光素子は、前記基板のうち前記受光素子用キャビティよりも裏面側にフリップチップ実装されている。 (2). In the present invention, the light-emitting element cavity and the light-receiving element cavity each include a through-hole penetrating the substrate, and the light-emitting element is flip-chip mounted on the back side of the substrate from the light-emitting element cavity. The light receiving element is flip-chip mounted on the back side of the substrate with respect to the light receiving element cavity.
 本発明によれば、発光素子は、基板のうち発光素子用キャビティよりも裏面側にフリップチップ実装され、受光素子は、基板のうち受光素子用キャビティよりも裏面側にフリップチップ実装されている。この場合、各キャビティは基板を貫通した貫通穴であるので、基板の表面側から光の出射または受光を行うときでも、基板の裏面側に発光素子及び受光素子を実装することができる。また、発光素子及び受光素子はフリップチップ実装されるので、例えばワイヤボンディング等を用いて各素子を実装する場合に比べて、実装面積を小さくでき、実装密度を向上することができる。 According to the present invention, the light emitting element is flip-chip mounted on the back side of the substrate from the light emitting element cavity, and the light receiving element is flip chip mounted on the back side of the substrate from the light receiving element cavity. In this case, since each cavity is a through-hole penetrating the substrate, the light emitting element and the light receiving element can be mounted on the back side of the substrate even when light is emitted or received from the surface side of the substrate. Further, since the light emitting element and the light receiving element are flip-chip mounted, the mounting area can be reduced and the mounting density can be improved as compared with the case where each element is mounted using, for example, wire bonding.
 (3).本発明では、前記基板の裏面側には、前記発光素子及び前記受光素子を収容する有底の素子収容穴を設け、前記発光素子用キャビティ及び前記受光素子用キャビティは、前記素子収容穴の底部に開口し、前記発光素子及び前記受光素子は、前記素子収容穴に充填された非透光性及び絶縁性を有する封止部材によって封止されている。 (3). In the present invention, a bottomed element receiving hole for receiving the light emitting element and the light receiving element is provided on the back side of the substrate, and the light emitting element cavity and the light receiving element cavity are formed at the bottom of the element receiving hole. The light emitting element and the light receiving element are sealed by a non-translucent and insulating sealing member filled in the element accommodation hole.
 本発明によれば、各キャビティは素子収容穴の底部に開口している。これにより、素子収容穴内に実装された発光素子は発光素子用キャビティを介して光を検出対象物に向けて出射できる。また、素子収容穴内に実装された受光素子は受光素子用キャビティを介して検出対象物に反射した光を受光できる。 According to the present invention, each cavity opens at the bottom of the element accommodation hole. Thereby, the light emitting element mounted in the element receiving hole can emit light toward the detection target through the light emitting element cavity. Further, the light receiving element mounted in the element receiving hole can receive the light reflected by the detection object through the light receiving element cavity.
 また、発光素子及び受光素子は素子収容穴にそれぞれ実装され、絶縁性を有する封止部材によって封止されている。これにより、素子収容穴に封止部材を充填することにより、周囲を絶縁した状態で各素子を封止することができる。 Further, the light emitting element and the light receiving element are respectively mounted in the element receiving holes and sealed with an insulating sealing member. Thereby, each element can be sealed in the state which insulated the periphery by filling the element accommodation hole with the sealing member.
 また、発光素子及び受光素子は非透光性の封止部材により封止されているので、封止部材により発光素子と受光素子との間を遮光することができる。これにより、発光素子から出射された光が検出対象物に反射せずに受光素子に直接入射することを防止することができる。 In addition, since the light emitting element and the light receiving element are sealed by the non-translucent sealing member, the light emitting element and the light receiving element can be shielded from light by the sealing member. Thereby, it can prevent that the light radiate | emitted from the light emitting element injects into a light receiving element directly, without reflecting on a detection target object.
 (4).本発明では、前記基板の裏面側には、前記封止部材を覆ってグランド電位の導電性部材を設けている。 (4). In the present invention, a conductive member having a ground potential is provided on the back side of the substrate so as to cover the sealing member.
 本発明によれば、封止部材を覆ってグランド電位の導電性部材を設けている。これにより、光センサモジュールに導電性のシールド層を形成することができるので、発光素子や受光素子に対して外部から電磁波等の不要なノイズが入射されるときでも、このようなノイズをシールド層で遮断することができる。 According to the present invention, the conductive member having the ground potential is provided so as to cover the sealing member. As a result, a conductive shield layer can be formed on the optical sensor module, so that even when unnecessary noise such as electromagnetic waves is incident on the light emitting element and the light receiving element from the outside, such noise is shielded from the shield layer. Can be shut off.
 (5).本発明では、前記発光素子用キャビティは、前記基板の表面側に開口した有底穴からなり、前記発光素子は、前記有底穴の底部にフリップチップ実装されている。 (5). In the present invention, the cavity for the light emitting element comprises a bottomed hole opened on the surface side of the substrate, and the light emitting element is flip-chip mounted on the bottom of the bottomed hole.
 本発明によれば、発光素子用キャビティは、基板の表面側に開口した有底穴であるので、有底穴の底部を利用して発光素子を基板にフリップチップ実装することができる。また、発光素子は基板にフリップチップ実装されるので、例えばワイヤボンディング等により発光素子を実装する場合に比べて、実装面積を小さくでき、実装密度を向上することができる。 According to the present invention, since the light emitting element cavity is a bottomed hole opened on the surface side of the substrate, the light emitting element can be flip-chip mounted on the substrate using the bottom of the bottomed hole. Further, since the light emitting element is flip-chip mounted on the substrate, the mounting area can be reduced and the mounting density can be improved as compared with the case where the light emitting element is mounted by, for example, wire bonding.
 (6).本発明による光センサモジュールの製造方法は、基板の裏面側に開口した有底の素子収容穴と、前記素子収容穴の底部を貫通して前記基板の表面側に開口した発光素子用キャビティ及び受光素子用キャビティとを前記基板に形成する第1工程と、前記基板の素子収容穴の底部には、前記発光素子用キャビティの位置に発光素子をフリップチップ実装し、前記受光素子用キャビティの位置に受光素子をフリップチップ実装する第2工程と、前記基板の素子収容穴には、非透光性及び絶縁性を有する封止部材を充填して前記発光素子及び前記受光素子を封止する第3工程と、前記基板の表面側には、前記発光素子及び前記受光素子を覆って透光性を有する光学素子を設ける第4工程と、を備えることにある。 (6). A method for manufacturing an optical sensor module according to the present invention includes a bottomed element receiving hole opened on the back side of a substrate, a light emitting element cavity opened through the bottom of the element receiving hole and opened on the front side of the substrate, and a light receiving device. A first step of forming an element cavity on the substrate, and a light emitting element is flip-chip mounted at a position of the light emitting element cavity at a bottom portion of the element receiving hole of the substrate, and the light receiving element cavity is positioned at the position of the light receiving element cavity. A second step of flip-chip mounting the light-receiving element, and a third element for sealing the light-emitting element and the light-receiving element by filling an element-accommodating hole in the substrate with a non-translucent and insulating sealing member. And a fourth step of providing a light-transmitting optical element so as to cover the light emitting element and the light receiving element on the surface side of the substrate.
 本発明によれば、発光素子及び受光素子は基板の裏面側に開口した素子収容穴の底部にそれぞれフリップチップ実装されている。この場合、各キャビティは基板を貫通した貫通穴であるので、基板のうち各キャビティよりも裏面側に各素子を実装することができる。また、発光素子及び受光素子は基板にフリップチップ実装されるので、例えばワイヤボンディング等を用いて各素子を実装する場合に比べて、実装面積を小さくでき、実装密度を向上することができる。 According to the present invention, the light emitting element and the light receiving element are each flip-chip mounted on the bottom of the element receiving hole opened on the back side of the substrate. In this case, since each cavity is a through-hole penetrating the substrate, each element can be mounted on the back surface side of each cavity in the substrate. Further, since the light emitting element and the light receiving element are flip-chip mounted on the substrate, the mounting area can be reduced and the mounting density can be improved as compared with the case where each element is mounted using, for example, wire bonding.
 また、基板に、基板の表面側に開口した発光素子用キャビティと受光素子用キャビティとを形成することにより、発光素子用キャビティと受光素子用キャビティとの間を基板の壁面部により隔絶することができる。このため、基板とは別個の遮光部材を用いることなく、発光素子用キャビティと受光素子用キャビティとの間を壁面部により遮光することができる。この結果、発光素子から出射された光が検出対象物に反射せずに受光素子に直接入射することを防止するので、このような迷光に基づく検出対象物の誤検出を抑制することができる。 Further, by forming the light emitting element cavity and the light receiving element cavity opened on the front surface side of the substrate, the light emitting element cavity and the light receiving element cavity can be separated from each other by the wall surface portion of the substrate. it can. For this reason, it is possible to shield light between the light emitting element cavity and the light receiving element cavity by the wall surface portion without using a light shielding member separate from the substrate. As a result, it is possible to prevent the light emitted from the light emitting element from directly entering the light receiving element without being reflected by the detection object, and thus it is possible to suppress erroneous detection of the detection object based on such stray light.
 また、基板の壁面部を用いて発光素子用キャビティと受光素子用キャビティとの間を隔絶する。このため、発光素子と受光素子との間を遮光するために、基板とは別個の遮光部材を用いないので、構成部品の簡素化及び組立方法の容易化を図ることができ、ひいてはコストを抑制することができる。 Also, the light emitting element cavity and the light receiving element cavity are isolated from each other by using the wall surface of the substrate. For this reason, since a light shielding member separate from the substrate is not used to shield light between the light emitting element and the light receiving element, the components can be simplified and the assembling method can be simplified, thereby reducing the cost. can do.
 また、各キャビティは素子収容穴の底部に開口している。これにより、素子収容穴内に実装された発光素子は発光素子用キャビティを介して光を検出対象物に向けて出射できる。また、素子収容穴内に実装された受光素子は受光素子用キャビティを介して検出対象物に反射した光を受光できる。 Also, each cavity opens at the bottom of the element accommodation hole. Thereby, the light emitting element mounted in the element receiving hole can emit light toward the detection target through the light emitting element cavity. Further, the light receiving element mounted in the element receiving hole can receive the light reflected by the detection object through the light receiving element cavity.
 また、発光素子及び受光素子は素子収容穴にそれぞれ実装され、絶縁性を有する封止部材によって封止されている。これにより、素子収容穴に封止部材を充填することにより、周囲を絶縁した状態で各素子を封止することができる。 Further, the light emitting element and the light receiving element are respectively mounted in the element receiving holes and sealed with an insulating sealing member. Thereby, each element can be sealed in the state which insulated the periphery by filling the element accommodation hole with the sealing member.
 さらに、発光素子及び受光素子は非透光性の封止部材により封止されているので、封止部材により発光素子と受光素子との間を遮光することができる。これにより、発光素子から出射された光が検出対象物に反射せずに受光素子に直接入射することを防止することができる。 Furthermore, since the light emitting element and the light receiving element are sealed by the non-transparent sealing member, the light shielding element and the light receiving element can be shielded from light by the sealing member. Thereby, it can prevent that the light radiate | emitted from the light emitting element injects into a light receiving element directly, without reflecting on a detection target object.
 (7).本発明による光センサモジュールの製造方法は、基板の表面側に開口した有底の発光素子用キャビティと、基板の裏面側に開口した有底の素子収容穴と、前記素子収容穴の底部を貫通して前記基板の表面側に開口した受光素子用キャビティとを前記基板に形成する第1工程と、前記基板の素子収容穴の底部には、前記受光素子用キャビティの位置に受光素子をフリップチップ実装する第2工程と、前記基板の素子収容穴には、非透光性及び絶縁性を有する封止部材を充填して前記受光素子を封止する第3工程と、前記基板の発光素子用キャビティの底部には、発光素子をフリップチップ実装する第4工程と、前記基板の表面側には、前記発光素子及び前記受光素子を覆って透光性を有する光学素子を設ける第5工程と、を備えることにある。 (7). A method of manufacturing an optical sensor module according to the present invention includes a bottomed light emitting element cavity opened on a front surface side of a substrate, a bottomed element housing hole opened on a back surface side of the substrate, and a bottom portion of the element housing hole. A first step of forming a light receiving element cavity opened on the surface side of the substrate in the substrate; and flip-chip the light receiving element at the position of the light receiving element cavity at the bottom of the element receiving hole of the substrate. A second step of mounting, a third step of sealing the light receiving element by filling the element receiving hole of the substrate with a non-translucent and insulating sealing member, and for the light emitting element of the substrate A fourth step of flip-chip mounting the light emitting element on the bottom of the cavity, and a fifth step of providing a light-transmitting optical element covering the light emitting element and the light receiving element on the surface side of the substrate; It is in having.
 本発明によれば、受光素子は基板の裏面側に開口した素子収容穴の底部にフリップチップ実装されている。この場合、受光素子用キャビティは基板を貫通した貫通穴であるので、基板のうち受光素子用キャビティよりも裏面側に受光素子を実装することができる。また、発光素子用キャビティは、基板の表面側に開口した有底穴であるので、有底穴の底部を利用して発光素子を基板にフリップチップ実装することができる。この結果、発光素子及び受光素子は基板にフリップチップ実装されるので、例えばワイヤボンディング等を用いて各素子を実装する場合に比べて、実装面積を小さくでき、実装密度を向上することができる。 According to the present invention, the light receiving element is flip-chip mounted on the bottom of the element receiving hole opened on the back side of the substrate. In this case, since the light receiving element cavity is a through-hole penetrating the substrate, the light receiving element can be mounted on the back side of the substrate with respect to the light receiving element cavity. Moreover, since the cavity for light emitting elements is a bottomed hole opened on the surface side of the substrate, the light emitting element can be flip-chip mounted on the substrate using the bottom of the bottomed hole. As a result, since the light emitting element and the light receiving element are flip-chip mounted on the substrate, the mounting area can be reduced and the mounting density can be improved as compared with the case where each element is mounted using, for example, wire bonding.
 また、基板に、基板の表面側に開口した発光素子用キャビティと受光素子用キャビティとを形成することにより、発光素子用キャビティと受光素子用キャビティとの間を壁面部により隔絶することができる。このため、基板とは別個の遮光部材を用いることなく、発光素子用キャビティと受光素子用キャビティとの間を基板の壁面部により遮光することができる。この結果、発光素子から出射された光が検出対象物に反射せずに受光素子に直接入射することを防止するので、このような迷光に基づく検出対象物の誤検出を抑制することができる。 Further, by forming the light emitting element cavity and the light receiving element cavity opened on the surface side of the substrate on the substrate, the light emitting element cavity and the light receiving element cavity can be separated from each other by the wall surface portion. For this reason, it is possible to shield light between the light emitting element cavity and the light receiving element cavity by the wall surface of the substrate without using a light shielding member separate from the substrate. As a result, it is possible to prevent the light emitted from the light emitting element from directly entering the light receiving element without being reflected by the detection object, and thus it is possible to suppress erroneous detection of the detection object based on such stray light.
 また、基板の壁面部を用いて発光素子用キャビティと受光素子用キャビティとの間を隔絶する。このため、発光素子と受光素子との間を遮光するために、基板とは別個の遮光部材を用いないので、構成部品の簡素化及び組立方法の容易化を図ることができ、ひいてはコストを抑制することができる。 Also, the light emitting element cavity and the light receiving element cavity are isolated from each other by using the wall surface of the substrate. For this reason, since a light shielding member separate from the substrate is not used to shield light between the light emitting element and the light receiving element, the components can be simplified and the assembling method can be simplified, thereby reducing the cost. can do.
 また、受光素子は素子収容穴に実装され、絶縁性を有する封止部材によって封止されている。これにより、素子収容穴に封止部材を充填することにより、周囲を絶縁した状態で受光素子を封止することができる。 In addition, the light receiving element is mounted in the element receiving hole and sealed with an insulating sealing member. Accordingly, the light receiving element can be sealed in a state where the periphery is insulated by filling the element accommodation hole with the sealing member.
 さらに、受光素子は非透光性の封止部材により封止されているので、封止部材により受光素子の周囲を遮光することができる。これにより、例えば周囲の外乱光が基板の裏面側から受光素子に入射するときでも、このような外乱光の入射を封止部材によって遮ることができる。 Furthermore, since the light receiving element is sealed by the non-translucent sealing member, the periphery of the light receiving element can be shielded by the sealing member. Thereby, for example, even when ambient disturbance light is incident on the light receiving element from the back side of the substrate, such disturbance light can be blocked by the sealing member.
本発明の第1の実施の形態による光センサモジュールを示す断面図である。It is sectional drawing which shows the optical sensor module by the 1st Embodiment of this invention. 光センサモジュールを図1中の矢示II-II方向からみた断面図である。FIG. 2 is a cross-sectional view of the optical sensor module as seen from the direction of arrows II-II in FIG. 第1の実施の形態による光センサモジュールの製造方法に用いる集合基板を示す図2と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 2 which shows the aggregate substrate used for the manufacturing method of the optical sensor module by 1st Embodiment. 発光素子用キャビティと受光素子用キャビティとの形成工程を示す集合基板の断面図である。It is sectional drawing of the aggregate substrate which shows the formation process of the cavity for light emitting elements, and the cavity for light receiving elements. 発光素子及び受光素子のフリップチップ実装工程を示す図4と同様な位置の断面図である。It is sectional drawing of the same position as FIG. 4 which shows the flip chip mounting process of a light emitting element and a light receiving element. 封止部材による封止工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows the sealing process by a sealing member. 光学素子実装工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows an optical element mounting process. 本発明の第2の実施の形態による光センサモジュールを示す断面図である。It is sectional drawing which shows the optical sensor module by the 2nd Embodiment of this invention. 本発明の第3の実施の形態による光センサモジュールを示す断面図である。It is sectional drawing which shows the optical sensor module by the 3rd Embodiment of this invention. 第3の実施の形態による発光素子用キャビティと受光素子用キャビティとの形成工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows the formation process of the cavity for light emitting elements and the cavity for light receiving elements by 3rd Embodiment. 第3の実施の形態による受光素子のフリップチップ実装工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows the flip chip mounting process of the light receiving element by 3rd Embodiment. 封止部材による封止工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows the sealing process by a sealing member. 第3の実施の形態による発光素子のフリップチップ実装工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows the flip chip mounting process of the light emitting element by 3rd Embodiment. 第3の実施の形態による光学素子実装工程を示す図4と同様な位置の断面図である。It is sectional drawing of the position similar to FIG. 4 which shows the optical element mounting process by 3rd Embodiment. 本発明の第4の実施の形態による光センサモジュールを示す断面図である。It is sectional drawing which shows the optical sensor module by the 4th Embodiment of this invention.
 以下、本発明の実施の形態による光センサモジュールについて、図面を参照しつつ詳細に説明する。 Hereinafter, an optical sensor module according to an embodiment of the present invention will be described in detail with reference to the drawings.
 まず、図1ないし図7に本発明の第1の実施の形態を示す。第1の実施の形態による光センサモジュール1は、基板2、発光素子用キャビティ5、受光素子用キャビティ6、壁面部7、素子収容穴8、発光素子9、受光素子10、封止部材11、光学素子12等を備えている。 First, FIG. 1 to FIG. 7 show a first embodiment of the present invention. The optical sensor module 1 according to the first embodiment includes a substrate 2, a light emitting element cavity 5, a light receiving element cavity 6, a wall surface portion 7, an element receiving hole 8, a light emitting element 9, a light receiving element 10, a sealing member 11, An optical element 12 and the like are provided.
 基板2は、絶縁層3A~3F、導体層4A~4G等を備えている。基板2の表面2Aは、後述の光学素子12が実装される部品実装面になっている。また、基板2の総厚は、例えば、0.2~1.0mmである。 The substrate 2 includes insulating layers 3A to 3F, conductor layers 4A to 4G, and the like. The surface 2A of the substrate 2 is a component mounting surface on which an optical element 12 described later is mounted. The total thickness of the substrate 2 is, for example, 0.2 to 1.0 mm.
 基板2は、複数(例えば6層)の絶縁層3A~3Fを備えている。絶縁層3A~3Fは、例えばエポキシ系を主体とする熱硬化性樹脂や熱可塑性樹脂等によって形成され、基板2の厚さ方向に向けて積層されている。なお、絶縁層3A~3Fは、樹脂等の有機材料に限らず、例えばセラミックス等の無機材料によって形成してもよい。また、基板2は、6層の絶縁層3A~3Fを備える場合を例示したが、1層ないし4層の絶縁層を備えてもよく、5層以上の絶縁層を備えてもよい。 The substrate 2 includes a plurality of (for example, six layers) insulating layers 3A to 3F. The insulating layers 3A to 3F are made of, for example, a thermosetting resin or a thermoplastic resin mainly composed of epoxy, and are laminated in the thickness direction of the substrate 2. The insulating layers 3A to 3F are not limited to organic materials such as resins, and may be formed of inorganic materials such as ceramics. Further, although the substrate 2 is exemplified as including six insulating layers 3A to 3F, it may include one to four insulating layers, or may include five or more insulating layers.
 また、基板2は、複数(例えば7層)の導体層4A~4Gを備え、導体層4A~4Gと絶縁層3A~3Fは、交互に積み重ねて形成されている。導体層4A~4Gは、外部の信号電極またはグランド電極(いずれも図示せず)に接続されている。導体層4A~4Gは、例えば銅等の導電性金属材料からなる薄膜の導体パターンによって形成されている。なお、導体層4A~4Gは、必ずしも7層設ける必要はなく、1層ないし6層設けてもよく、7層以上設けてもよい。 The substrate 2 includes a plurality of (for example, seven) conductor layers 4A to 4G, and the conductor layers 4A to 4G and the insulating layers 3A to 3F are alternately stacked. The conductor layers 4A to 4G are connected to external signal electrodes or ground electrodes (both not shown). The conductor layers 4A to 4G are formed of a thin-film conductor pattern made of a conductive metal material such as copper. The conductor layers 4A to 4G are not necessarily provided in seven layers, and may be provided in one to six layers or in seven or more layers.
 発光素子用キャビティ5は、基板2の表面側に設けられ、基板2の絶縁層3A,3Bを貫通した矩形状の貫通穴からなっている。発光素子用キャビティ5は、基板2の表面2Aから後述の素子収容穴8の底部8Bまで厚さ方向に凹陥している。この発光素子用キャビティ5は、基板2の表面側に開口する表面側開口部5Aを有すると共に、素子収容穴8の底部8Bに開口する裏面側開口部5Bを有し、その内部が周壁面5Cによって覆われている。発光素子用キャビティ5は、後述の発光素子9から出射された光を光学素子12に向けて放射する光透過路を構成している。 The light-emitting element cavity 5 is provided on the surface side of the substrate 2 and is formed of a rectangular through-hole penetrating the insulating layers 3A and 3B of the substrate 2. The light-emitting element cavity 5 is recessed in the thickness direction from the surface 2A of the substrate 2 to the bottom 8B of the element housing hole 8 described later. The light-emitting element cavity 5 has a front-side opening 5A that opens to the front side of the substrate 2 and a back-side opening 5B that opens to the bottom 8B of the element housing hole 8, and the inside thereof is a peripheral wall surface 5C. Covered by. The light emitting element cavity 5 constitutes a light transmission path for radiating light emitted from a light emitting element 9 described later toward the optical element 12.
 受光素子用キャビティ6は、発光素子用キャビティ5と同様に、基板2の表面側に設けられ、基板2の絶縁層3A,3Bを貫通した矩形状の貫通穴からなっている。受光素子用キャビティ6は、基板2の表面2Aから後述の素子収容穴8の底部8Bまで厚さ方向に凹陥している。このとき、受光素子用キャビティ6と発光素子用キャビティ5とは、基板2の表面側で後述の壁面部7を挟んで、隣合う位置に設けられている。この受光素子用キャビティ6は、基板2の表面側に開口する表面側開口部6Aを有すると共に、素子収容穴8の底部8Bに開口する裏面側開口部6Bを有し、その内部が周壁面6Cによって覆われている。受光素子用キャビティ6は、後述の発光素子9から出射された光を検出対象物Objが反射したときの反射光を受光素子10に導く光透過路を構成している。 The light receiving element cavity 6 is provided on the front surface side of the substrate 2, similarly to the light emitting element cavity 5, and is formed of a rectangular through hole penetrating the insulating layers 3 A and 3 B of the substrate 2. The light receiving element cavity 6 is recessed in the thickness direction from the surface 2A of the substrate 2 to the bottom 8B of the element receiving hole 8 described later. At this time, the light-receiving element cavity 6 and the light-emitting element cavity 5 are provided at positions adjacent to each other with a wall surface portion 7 described later on the surface side of the substrate 2. The light receiving element cavity 6 has a front surface side opening 6A that opens to the front surface side of the substrate 2 and a back surface side opening 6B that opens to the bottom 8B of the element housing hole 8, and the inside thereof is a peripheral wall surface 6C. Covered by. The light receiving element cavity 6 forms a light transmission path that guides reflected light to the light receiving element 10 when the detection object Obj reflects light emitted from the light emitting element 9 described later.
 壁面部7は、基板2の一部によって形成され、基板2の表面側で、発光素子用キャビティ5と受光素子用キャビティ6との間を隔絶して設けられている。即ち、壁面部7は、基板2の一部であって、発光素子用キャビティ5の周壁面5Cと受光素子用キャビティ6の周壁面6Cとに挟まれた部分によって形成されている。この壁面部7は、基板2の絶縁層3A,3Bにより構成され、発光素子用キャビティ5と受光素子用キャビティ6との間で光を遮断する遮光部材としての機能を有している。このため、壁面部7は、後述の発光素子9から出射された光が、検出対象物Objに反射されずに、受光素子10に直接的に入射するのを遮断している。 The wall surface portion 7 is formed by a part of the substrate 2, and is provided on the surface side of the substrate 2 so as to isolate the light emitting element cavity 5 and the light receiving element cavity 6. That is, the wall surface portion 7 is a part of the substrate 2 and is formed by a portion sandwiched between the peripheral wall surface 5C of the light emitting element cavity 5 and the peripheral wall surface 6C of the light receiving element cavity 6. The wall surface portion 7 is composed of the insulating layers 3A and 3B of the substrate 2 and has a function as a light blocking member that blocks light between the light emitting element cavity 5 and the light receiving element cavity 6. For this reason, the wall surface portion 7 blocks light that is emitted from the light emitting element 9 described later from being directly incident on the light receiving element 10 without being reflected by the detection object Obj.
 素子収容穴8は、基板2の裏面側(図1中の下側)で発光素子用キャビティ5と受光素子用キャビティ6との下側に位置して設けられている。素子収容穴8は、基板2の裏面2Bから発光素子用キャビティ5及び受光素子用キャビティ6まで厚さ方向に凹陥し、基板2の絶縁層3C~3Fを貫通した矩形状の有底穴からなっている。素子収容穴8の開口部8Aは、基板2の絶縁層3Fに位置して、基板2の裏面2Bに開口している。このとき、開口部8Aの開口面積は、キャビティ5,6の裏面側開口部5B,6Bの開口面積よりも大きくなっている。 The element receiving hole 8 is provided on the back side of the substrate 2 (lower side in FIG. 1) and below the light emitting element cavity 5 and the light receiving element cavity 6. The element housing hole 8 is a rectangular bottomed hole that is recessed in the thickness direction from the back surface 2B of the substrate 2 to the light emitting element cavity 5 and the light receiving element cavity 6 and penetrates through the insulating layers 3C to 3F of the substrate 2. ing. The opening 8 </ b> A of the element accommodation hole 8 is located in the insulating layer 3 </ b> F of the substrate 2 and opens to the back surface 2 </ b> B of the substrate 2. At this time, the opening area of the opening 8A is larger than the opening areas of the back surface side openings 5B and 6B of the cavities 5 and 6.
 また、素子収容穴8の底部8Bは、基板2の絶縁層3A,3Bによって形成されている。底部8Bには、発光素子用キャビティ5及び受光素子用キャビティ6が貫通して設けられ、発光素子用キャビティ5の裏面側開口部5B及び受光素子用キャビティ6の裏面側開口部6Bが開口している。このため、素子収容穴8の周壁面8Cは、発光素子用キャビティ5及び受光素子用キャビティ6を取り囲んで、これらの外側に配置されている。この素子収容穴8は、後述の発光素子9及び受光素子10を基板2に実装するための収容穴をなすものである。ここで、素子収容穴8は、発光素子用キャビティ5及び受光素子用キャビティ6と共に段付穴を構成している。 The bottom 8B of the element housing hole 8 is formed by the insulating layers 3A and 3B of the substrate 2. The bottom 8B is provided with a light-emitting element cavity 5 and a light-receiving element cavity 6 penetrating therethrough, and a back-side opening 5B of the light-emitting element cavity 5 and a back-side opening 6B of the light-receiving element cavity 6 are opened. Yes. For this reason, the peripheral wall surface 8C of the element housing hole 8 surrounds the light-emitting element cavity 5 and the light-receiving element cavity 6 and is disposed outside these. The element accommodation hole 8 forms an accommodation hole for mounting a light emitting element 9 and a light receiving element 10 described later on the substrate 2. Here, the element receiving hole 8 constitutes a stepped hole together with the light emitting element cavity 5 and the light receiving element cavity 6.
 発光素子9は、発光素子用キャビティ5の下側で素子収容穴8内に設けられている。ここで、発光素子9は、基板2のうち発光素子用キャビティ5よりも裏面側である絶縁層3Bの裏面に、導電性のバンプ9Aと、絶縁性のバンプ封止剤9Bとを用いてフリップチップ実装されている。発光素子9は、例えば発光ダイオード(LED)、レーザダイオード(LD)、面発光レーザ(VCSEL)が用いられる。この発光素子9は、基板2の導体層4Cの導体パターンからバンプ9Aを介して入力された信号に基づいて、発光素子用キャビティ5、光学素子12を通じて基板2の表面側から検出対象物Objに向けて光を出射する。 The light emitting element 9 is provided in the element receiving hole 8 below the light emitting element cavity 5. Here, the light emitting element 9 is flipped by using the conductive bump 9A and the insulating bump sealant 9B on the back surface of the insulating layer 3B on the back side of the light emitting element cavity 5 of the substrate 2. Chip mounted. As the light emitting element 9, for example, a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used. The light emitting element 9 is connected to the detection object Obj from the surface side of the substrate 2 through the light emitting element cavity 5 and the optical element 12 based on a signal input from the conductor pattern of the conductor layer 4C of the substrate 2 via the bump 9A. Light is emitted toward.
 受光素子10は、受光素子用キャビティ6の下側で素子収容穴8内に設けられている。ここで、受光素子10は、基板2のうち受光素子用キャビティ6よりも裏面側である絶縁層3Bの裏面に、導電性のバンプ10Aと、絶縁性のバンプ封止剤10Bとを用いてフリップチップ実装されている。受光素子10は、例えばフォトダイオード(PD)、フォトトランジスタ等が用いられる。この受光素子10は、検出対象物Objに反射して基板2の表面側から光学素子12、受光素子用キャビティ6を通じて入射した光を受光し、検出対象物Objを検出する。そして、受光素子10は、受光した光を電気信号に変換して、バンプ10Aを介して導体層4Cの導体パターンに出力する。 The light receiving element 10 is provided in the element receiving hole 8 below the light receiving element cavity 6. Here, the light receiving element 10 is flipped on the back surface of the insulating layer 3B on the back side of the light receiving element cavity 6 of the substrate 2 by using the conductive bumps 10A and the insulating bump sealant 10B. Chip mounted. As the light receiving element 10, for example, a photodiode (PD), a phototransistor, or the like is used. The light receiving element 10 receives light reflected from the detection object Obj and incident from the surface side of the substrate 2 through the optical element 12 and the light receiving element cavity 6, and detects the detection object Obj. Then, the light receiving element 10 converts the received light into an electrical signal and outputs it to the conductor pattern of the conductor layer 4C via the bump 10A.
 封止部材11は、素子収容穴8内に充填され、発光素子9及び受光素子10を封止している。封止部材11は、例えば可視光及び赤外光のいずれをも透過させない非透光性で、エポキシ樹脂等の絶縁性樹脂材料を用いて形成されている。これにより、封止部材11は、発光素子9から出射された光が検出対象物Objに反射せずに、封止部材11を通過して直接的に受光素子10に入射するのを防ぐ遮光部材をなすものである。 The sealing member 11 is filled in the element accommodation hole 8 and seals the light emitting element 9 and the light receiving element 10. The sealing member 11 is formed of an insulating resin material such as an epoxy resin, which is non-translucent and does not transmit any visible light or infrared light, for example. Thereby, the sealing member 11 prevents the light emitted from the light emitting element 9 from directly entering the light receiving element 10 through the sealing member 11 without being reflected by the detection object Obj. It is what makes.
 光学素子12は、基板2の表面側に位置して、発光素子9及び受光素子10を覆う部位に設けられている。光学素子12は、拡散または集光効果をもつ曲面形状を有し、基板2の表面側である絶縁層3A上に熱硬化UV樹脂等の接着材料を用いて実装されている。この光学素子12は、例えば透光性を有する光学レンズにより構成され、発光素子9を覆う部位には上方に突出した略半球形状の凸レンズ12Aが形成され、受光素子10を覆う部位には平坦部12Bが形成されている。光学素子12は、発光素子9から出射された光を、凸レンズ12Aを通じて外部に放射する。また、光学素子12は、検出対象物Objに反射した光を、平坦部12Bを通じて受光素子10に入射する。 The optical element 12 is located on the surface side of the substrate 2 and is provided at a portion covering the light emitting element 9 and the light receiving element 10. The optical element 12 has a curved surface shape having a diffusing or condensing effect, and is mounted on the insulating layer 3A on the surface side of the substrate 2 using an adhesive material such as a thermosetting UV resin. The optical element 12 is composed of, for example, a light-transmitting optical lens. A convex lens 12A having a substantially hemispherical shape protruding upward is formed in a portion covering the light emitting element 9, and a flat portion is formed in a portion covering the light receiving element 10. 12B is formed. The optical element 12 radiates the light emitted from the light emitting element 9 to the outside through the convex lens 12A. Further, the optical element 12 causes the light reflected by the detection object Obj to enter the light receiving element 10 through the flat portion 12B.
 なお、光学素子12は、受光素子10と対応した位置に表面が平坦面となった平坦部12Bを設けるものとした。しかし、本発明はこれに限らず、受光素子10と対応した位置に凸レンズを設け、外部から入射される光を受光素子10に集光させてもよい。また、単一の光学素子12で発光素子9及び受光素子10の両方を覆う構成としたが、別個の光学素子で発光素子9及び受光素子10をそれぞれ覆う構成としてもよい。 The optical element 12 is provided with a flat portion 12B having a flat surface at a position corresponding to the light receiving element 10. However, the present invention is not limited to this, and a convex lens may be provided at a position corresponding to the light receiving element 10 to collect light incident from the outside on the light receiving element 10. Moreover, although it was set as the structure which covers both the light emitting element 9 and the light receiving element 10 with the single optical element 12, it is good also as a structure which covers the light emitting element 9 and the light receiving element 10 with a separate optical element, respectively.
 電子部品13は、例えば能動素子、受動素子を集積化した集積回路部品によって構成され、基板2内に実装されている。この電子部品13は、例えばはんだ等の導電性接合材料を用いて基板2の導体層4Eの導体パターンに接続されている。これにより、電子部品13には、導体層4Eを通じて外部から低周波信号、駆動電圧信号、制御信号等が入力される。 The electronic component 13 is composed of, for example, an integrated circuit component in which active elements and passive elements are integrated, and is mounted in the substrate 2. The electronic component 13 is connected to the conductor pattern of the conductor layer 4E of the substrate 2 using, for example, a conductive bonding material such as solder. Thereby, a low frequency signal, a drive voltage signal, a control signal, etc. are input into the electronic component 13 from the outside through the conductor layer 4E.
 次に、図3ないし図7を用いて、光センサモジュール1の製造方法について説明する。 Next, a method for manufacturing the optical sensor module 1 will be described with reference to FIGS.
 まず、図3及び図4に、第1工程としての集合基板準備工程を示す。集合基板準備工程では、複数の子基板15がマトリックス状に形成された集合基板14を用意する。後述するように、集合基板14は分割線Dの位置で切断されることによって、発光素子9及び受光素子10を実装した複数個の子基板15が分離され、光センサモジュール1が形成される。このため、分割線Dは、各子基板15の領域の境界線となっている。また、子基板15は、光センサモジュール1の基板2に対応する。この場合、第1工程から後述の第3工程までは、集合基板14は後述の絶縁層16Fが上側(図4中の上側)となり、絶縁層16Aが下側(図4中の下側)となるように配置されている。即ち、第1工程から第3工程までの集合基板14は、完成品の光センサモジュール1とは天地が逆に配置されている。 First, FIG. 3 and FIG. 4 show a collective substrate preparation step as a first step. In the collective substrate preparation step, a collective substrate 14 having a plurality of sub-substrates 15 formed in a matrix is prepared. As will be described later, the collective substrate 14 is cut at the position of the dividing line D, whereby the plurality of sub-substrates 15 on which the light emitting element 9 and the light receiving element 10 are mounted are separated, and the optical sensor module 1 is formed. For this reason, the dividing line D is a boundary line of the region of each child substrate 15. Further, the sub board 15 corresponds to the board 2 of the optical sensor module 1. In this case, from the first step to the third step described later, the collective substrate 14 has an insulating layer 16F described later on the upper side (upper side in FIG. 4) and the insulating layer 16A on the lower side (lower side in FIG. 4). It is arranged to be. That is, the collective substrate 14 from the first step to the third step is arranged upside down with respect to the finished optical sensor module 1.
 このとき、集合基板14は、絶縁層16A~16Fと、導体層17A~17Gとを積み重ねて形成されている。絶縁層16A,16Bには、後述の素子収容穴21の底部21Aを貫通して集合基板14の表面側(図4中の下側)に開口した発光素子用キャビティ18及び受光素子用キャビティ19が形成されている。ここで、発光素子用キャビティ18と受光素子用キャビティ19との間は、絶縁層16A,16Bにより壁面部20が形成されている。また、絶縁層16C~16Fには、集合基板14の裏面側(図4中の上側)に開口し、絶縁層16B上に底部21Aを有する有底の素子収容穴21が形成されている。さらに、絶縁層16C,16Dには、電子部品22が実装されている。電子部品22は、はんだ等の導電性接合材料を用いて導体層17Eの導体パターンと電気的に接続されている。 At this time, the collective substrate 14 is formed by stacking the insulating layers 16A to 16F and the conductor layers 17A to 17G. The insulating layers 16A and 16B have light emitting element cavities 18 and light receiving element cavities 19 that pass through a bottom portion 21A of an element housing hole 21 described later and open on the surface side of the collective substrate 14 (lower side in FIG. 4). Is formed. Here, between the light emitting element cavity 18 and the light receiving element cavity 19, a wall surface portion 20 is formed by the insulating layers 16 </ b> A and 16 </ b> B. Further, in the insulating layers 16C to 16F, a bottomed element accommodating hole 21 having an opening on the back surface side (upper side in FIG. 4) of the collective substrate 14 and having a bottom portion 21A is formed on the insulating layer 16B. Furthermore, the electronic component 22 is mounted on the insulating layers 16C and 16D. The electronic component 22 is electrically connected to the conductor pattern of the conductor layer 17E using a conductive bonding material such as solder.
 この場合、絶縁層16A~16F、導体層17A~17G、発光素子用キャビティ18、受光素子用キャビティ19、壁面部20、素子収容穴21、底部21A、電子部品22は、光センサモジュール1の、絶縁層3A~3F、導体層4A~4G、発光素子用キャビティ5、受光素子用キャビティ6、壁面部7、素子収容穴8、底部8B、電子部品13にそれぞれ対応する。 In this case, the insulating layers 16A to 16F, the conductor layers 17A to 17G, the light emitting element cavity 18, the light receiving element cavity 19, the wall surface part 20, the element receiving hole 21, the bottom part 21A, and the electronic component 22 are the same as those of the optical sensor module 1. It corresponds to the insulating layers 3A to 3F, the conductor layers 4A to 4G, the light emitting element cavity 5, the light receiving element cavity 6, the wall surface part 7, the element accommodating hole 8, the bottom part 8B, and the electronic component 13, respectively.
 図5に、第2工程としてのフリップチップ実装工程を示す。集合基板準備工程に続くフリップチップ実装工程では、集合基板14の素子収容穴21の底部21Aに、発光素子23及び受光素子24をフリップチップ実装する。具体的には、発光素子23及び受光素子24の表面に設けられた電極に、例えば金、はんだ等の導電性材料からなるバンプ23A,24Aを形成する。この状態で発光素子23及び受光素子24の表面と裏面とを反転して、キャビティ18,19を塞ぐようにフェースダウンした素子23,24を集合基板14に載置する。そして、これらの素子23,24に荷重や超音波振動を加えてバンプ23A,24Aを溶融させ、導体層17Cの導体パターン(電極)に接合する。その後、集合基板14と発光素子23及び受光素子24との隙間に、絶縁樹脂材料からなるバンプ封止剤23B,24B(アンダーフィル)を樹脂封入する。 FIG. 5 shows a flip chip mounting process as the second process. In the flip chip mounting process subsequent to the collective substrate preparation process, the light emitting element 23 and the light receiving element 24 are flip chip mounted on the bottom 21 </ b> A of the element receiving hole 21 of the collective substrate 14. Specifically, bumps 23A and 24A made of a conductive material such as gold or solder are formed on the electrodes provided on the surfaces of the light emitting element 23 and the light receiving element 24, for example. In this state, the front and back surfaces of the light emitting element 23 and the light receiving element 24 are reversed, and the elements 23 and 24 face-down so as to close the cavities 18 and 19 are placed on the collective substrate 14. Then, a load or ultrasonic vibration is applied to these elements 23 and 24 to melt the bumps 23A and 24A, and are bonded to the conductor pattern (electrode) of the conductor layer 17C. Thereafter, bump sealing agents 23B and 24B (underfill) made of an insulating resin material are sealed in the gap between the collective substrate 14 and the light emitting element 23 and the light receiving element 24.
 この場合、発光素子23は、発光素子用キャビティ18を覆う位置で、発光面が発光素子用キャビティ18を向く方向に配置する。また、受光素子24は、受光素子用キャビティ19を覆う位置で、受光面が受光素子用キャビティ19を向く方向に配置する。このため、発光素子23の電極は、発光面に形成されている。受光素子24の電極は、受光面に形成されている。ここで、発光素子23、受光素子24、バンプ23A,24A、バンプ封止剤23B,24Bは、光センサモジュール1の発光素子9、受光素子10、バンプ9A,10A、バンプ封止剤9B,10Bにそれぞれ対応する。 In this case, the light emitting element 23 is disposed at a position covering the light emitting element cavity 18 in a direction in which the light emitting surface faces the light emitting element cavity 18. The light receiving element 24 is arranged at a position covering the light receiving element cavity 19 in a direction in which the light receiving surface faces the light receiving element cavity 19. For this reason, the electrode of the light emitting element 23 is formed on the light emitting surface. The electrode of the light receiving element 24 is formed on the light receiving surface. Here, the light emitting element 23, the light receiving element 24, the bumps 23A and 24A, and the bump sealing agents 23B and 24B are the light emitting element 9, the light receiving element 10, the bumps 9A and 10A, and the bump sealing agents 9B and 10B of the optical sensor module 1, respectively. Correspond to each.
 図6に、第3工程としての封止部材充填工程を示す。フリップチップ実装工程に続く封止部材充填工程では、集合基板14の素子収容穴21に、発光素子23及び受光素子24を覆って封止部材25を充填する。具体的には、例えば可視光及び赤外光のいずれをも透過させない非透光性でエポキシ樹脂等の絶縁性樹脂材料からなる封止部材25を、集合基板14の素子収容穴21に充填して硬化させた後、その天面部分を研磨する。これにより、発光素子23及び受光素子24は、封止部材25により素子収容穴21内に埋設される。ここで、封止部材25は、光センサモジュール1の封止部材11に対応する。 FIG. 6 shows a sealing member filling step as a third step. In the sealing member filling process subsequent to the flip chip mounting process, the element housing holes 21 of the collective substrate 14 are filled with the sealing member 25 so as to cover the light emitting elements 23 and the light receiving elements 24. Specifically, for example, a sealing member 25 made of an insulating resin material such as an epoxy resin that does not transmit both visible light and infrared light is filled in the element accommodation hole 21 of the collective substrate 14. After curing, the top surface portion is polished. As a result, the light emitting element 23 and the light receiving element 24 are embedded in the element receiving hole 21 by the sealing member 25. Here, the sealing member 25 corresponds to the sealing member 11 of the optical sensor module 1.
 図7に、第4工程としての光学素子配置工程を示す。封止部材充填工程に続く光学素子配置工程では、集合基板14の表面側に透光性を有する光学素子26を配置する。具体的には、第4工程では、集合基板14の天地を逆にし、絶縁層16Aが上側(図7中の上側)となり、絶縁層16Fが下側(図7中の下側)となるように配置する。そして、光学素子26を、集合基板14の表面側である絶縁層16A上に熱硬化UV樹脂等の接着材料を用いて実装する。ここで、光学素子26は凸レンズ26Aと平坦部26Bとを備える共に、凸レンズ26Aが発光素子23を覆う位置に配置され、平坦部26Bが受光素子24を覆う位置に配置される。ここで、光学素子26、凸レンズ26A、平坦部26Bは、光センサモジュール1の光学素子12、凸レンズ12A、平坦部12Bにそれぞれ対応する。 FIG. 7 shows an optical element arranging step as the fourth step. In the optical element arranging step subsequent to the sealing member filling step, the optical element 26 having translucency is arranged on the surface side of the collective substrate 14. Specifically, in the fourth step, the top and bottom of the collective substrate 14 are reversed so that the insulating layer 16A is on the upper side (upper side in FIG. 7) and the insulating layer 16F is on the lower side (lower side in FIG. 7). To place. Then, the optical element 26 is mounted on the insulating layer 16A on the surface side of the collective substrate 14 using an adhesive material such as a thermosetting UV resin. Here, the optical element 26 includes a convex lens 26 </ b> A and a flat portion 26 </ b> B, the convex lens 26 </ b> A is disposed at a position covering the light emitting element 23, and the flat portion 26 </ b> B is disposed at a position covering the light receiving element 24. Here, the optical element 26, the convex lens 26A, and the flat portion 26B correspond to the optical element 12, the convex lens 12A, and the flat portion 12B of the optical sensor module 1, respectively.
 光学素子配置工程に続く分割工程では、ダイサー等を用いて集合基板14を分割線Dに沿って切断し、子基板15を個別に分離する。これにより、集合基板14から子基板15に分割され、発光素子9及び受光素子10が実装された複数個の光センサモジュール1が製造される。 In the dividing step subsequent to the optical element arranging step, the collective substrate 14 is cut along the dividing line D using a dicer or the like, and the child substrates 15 are individually separated. As a result, a plurality of photosensor modules 1 on which the light emitting element 9 and the light receiving element 10 are mounted are manufactured by being divided into the sub board 15 from the collective board 14.
 かくして、第1の実施の形態によれば、発光素子用キャビティ5と受光素子用キャビティ6との間は、壁面部7により隔絶されている。このため、基板2とは別個の遮光部材を用いることなく、発光素子用キャビティ5と受光素子用キャビティ6との間を基板2の壁面部7により遮光することができる。この結果、発光素子9から出射された光が検出対象物Objに反射せずに受光素子10に直接入射することを防止するので、このような迷光に基づく検出対象物Objの誤検出を抑制することができる。 Thus, according to the first embodiment, the light-emitting element cavity 5 and the light-receiving element cavity 6 are isolated from each other by the wall surface portion 7. For this reason, the light-emitting element cavity 5 and the light-receiving element cavity 6 can be shielded from light by the wall surface portion 7 of the substrate 2 without using a light shielding member separate from the substrate 2. As a result, the light emitted from the light emitting element 9 is prevented from being directly incident on the light receiving element 10 without being reflected by the detection object Obj, thereby suppressing the erroneous detection of the detection object Obj based on such stray light. be able to.
 また、基板2の壁面部7を用いて発光素子用キャビティ5と受光素子用キャビティ6との間を隔絶し、各キャビティ5,6の間を遮光するために、基板2とは別個の遮光部材を用いないので、構成部品の簡素化及び組立方法の容易化を図ることができ、ひいてはコストを抑制することができる。 Further, in order to isolate the light-emitting element cavity 5 from the light-receiving element cavity 6 using the wall surface portion 7 of the substrate 2 and to shield light between the cavities 5 and 6, a light shielding member separate from the substrate 2. Therefore, the components can be simplified and the assembling method can be simplified, and the cost can be reduced.
 また、発光素子9及び受光素子10は、基板2のうち各キャビティ5,6よりも裏面側にそれぞれフリップチップ実装されている。この場合、各キャビティ5,6は基板2を貫通した貫通穴であるので、基板2の表面側から光の出射または受光を行うときでも、基板2の裏面側に発光素子9及び受光素子10を実装することができる。また、発光素子9及び受光素子10はフリップチップ実装されるので、例えばワイヤボンディング等を用いて各素子9,10を実装する場合に比べて、実装面積を小さくでき、実装密度を向上することができる。 Further, the light emitting element 9 and the light receiving element 10 are flip-chip mounted on the back surface side of the cavities 5 and 6 of the substrate 2, respectively. In this case, since the cavities 5 and 6 are through holes penetrating the substrate 2, the light emitting element 9 and the light receiving element 10 are disposed on the back side of the substrate 2 even when light is emitted or received from the front surface side of the substrate 2. Can be implemented. Further, since the light emitting element 9 and the light receiving element 10 are flip-chip mounted, the mounting area can be reduced and the mounting density can be improved as compared with the case where the elements 9 and 10 are mounted using, for example, wire bonding. it can.
 また、各キャビティ5,6は素子収容穴8の底部8Bに開口している。これにより、素子収容穴8内に実装された発光素子9は発光素子用キャビティ5を介して光を検出対象物Objに向けて出射できる。また、素子収容穴8内に実装された受光素子10は受光素子用キャビティ6を介して検出対象物Objに反射した光を受光できる。 The cavities 5 and 6 are open to the bottom 8B of the element accommodation hole 8. Thereby, the light emitting element 9 mounted in the element accommodating hole 8 can emit light toward the detection target Obj through the light emitting element cavity 5. Further, the light receiving element 10 mounted in the element receiving hole 8 can receive the light reflected on the detection object Obj through the light receiving element cavity 6.
 また、発光素子9及び受光素子10は素子収容穴8にそれぞれ実装され、絶縁性を有する封止部材11によって封止されている。これにより、素子収容穴8に封止部材11を充填することにより、周囲を絶縁した状態で各素子9,10を封止することができる。 Further, the light emitting element 9 and the light receiving element 10 are respectively mounted in the element receiving holes 8 and sealed with a sealing member 11 having insulating properties. Thereby, each element 9 and 10 can be sealed in the state which insulated the circumference | surroundings by filling the element accommodating hole 8 with the sealing member 11.
 また、発光素子9及び受光素子10は非透光性の封止部材11により封止されているので、封止部材11により発光素子9と受光素子10との間を遮光することができる。ここで、発光素子9が発光面以外からも光を放射するものがある。また、受光素子10が受光面以外に対して受光感度を有するものもある。このような場合でも、素子収容穴8の内部で発光素子9から出射された光が検出対象物Objに反射せずに受光素子10に直接入射することを防止し、受光素子10のバックグランドノイズ等を低減することができる。 Further, since the light emitting element 9 and the light receiving element 10 are sealed by the non-translucent sealing member 11, it is possible to shield the light emitting element 9 and the light receiving element 10 from light by the sealing member 11. Here, there is one in which the light emitting element 9 emits light from other than the light emitting surface. In some cases, the light receiving element 10 has light receiving sensitivity with respect to other than the light receiving surface. Even in such a case, the light emitted from the light emitting element 9 inside the element receiving hole 8 is prevented from directly entering the light receiving element 10 without being reflected by the detection object Obj, and the background noise of the light receiving element 10 is prevented. Etc. can be reduced.
 また、素子収容穴21は集合基板14の裏面側に開口している。これにより、光センサモジュール1を製造するときに、集合基板14の天地を逆にして集合基板14の裏面側を上側とすることにより、発光素子23及び受光素子24を素子収容穴21内にフリップチップ実装することができる。さらに、集合基板14の天地を逆にして集合基板14の表面側を上側とすることにより、光学素子26を集合基板14の表面上に実装することができる。 Further, the element receiving hole 21 is opened on the back side of the collective substrate 14. Thereby, when manufacturing the optical sensor module 1, the light-emitting element 23 and the light-receiving element 24 are flipped into the element receiving hole 21 by reversing the top of the collective substrate 14 and setting the back side of the collective substrate 14 to the upper side. Can be mounted on a chip. Furthermore, the optical element 26 can be mounted on the surface of the collective substrate 14 by reversing the top of the collective substrate 14 so that the surface side of the collective substrate 14 is the upper side.
 次に、図8に、本発明の第2の実施の形態を示す。第2の実施の形態の特徴は、基板にグランド電位の導電性部材を設けることにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。 Next, FIG. 8 shows a second embodiment of the present invention. A feature of the second embodiment is that a conductive member having a ground potential is provided on the substrate. Note that in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
 第2の実施の形態による光センサモジュール31は、第1の実施の形態による光センサモジュール1とほぼ同様に、基板2、発光素子用キャビティ5、受光素子用キャビティ6、壁面部7、素子収容穴8、発光素子9、受光素子10、封止部材11、光学素子12等を備えている。但し、光センサモジュール31は、基板2の下側に導電性部材32を設けている。この点で、第2の実施の形態による光センサモジュール31は、第1の実施の形態による光センサモジュール1とは異なっている。 The optical sensor module 31 according to the second embodiment is substantially the same as the optical sensor module 1 according to the first embodiment. The substrate 2, the light-emitting element cavity 5, the light-receiving element cavity 6, the wall surface portion 7, and the element housing A hole 8, a light emitting element 9, a light receiving element 10, a sealing member 11, an optical element 12, and the like are provided. However, the optical sensor module 31 is provided with a conductive member 32 on the lower side of the substrate 2. In this respect, the optical sensor module 31 according to the second embodiment is different from the optical sensor module 1 according to the first embodiment.
 導電性部材32は、基板2の裏面側で、素子収容穴8に充填した封止部材11を覆う位置に設けられている。この導電性部材32は、銀ペースト等の導電性接着剤や異方性導電性ペースト等を用いて、基板2の絶縁層3Fと接合されている。導電性部材32は、例えばステンレス等の金属を主体とする材料により形成され、後述のグランド電極33と電気的に接続されグランド電位に保持されている。この結果、導電性部材32は、光センサモジュール31に電磁シールド効果をもたせている。ここで、導電性部材32の厚さ寸法は、例えば0.05~0.5mmの範囲内にあることが好ましい。 The conductive member 32 is provided on the back side of the substrate 2 at a position covering the sealing member 11 filled in the element accommodation hole 8. The conductive member 32 is bonded to the insulating layer 3F of the substrate 2 using a conductive adhesive such as a silver paste, an anisotropic conductive paste, or the like. The conductive member 32 is made of, for example, a material mainly made of metal such as stainless steel, and is electrically connected to a later-described ground electrode 33 and held at a ground potential. As a result, the conductive member 32 gives the optical sensor module 31 an electromagnetic shielding effect. Here, the thickness of the conductive member 32 is preferably in the range of 0.05 to 0.5 mm, for example.
 グランド電極33は、基板2の絶縁層3Fに設けられ、導電性部材32とは導電性接着剤等を介して電気的に接続されている。また、グランド電極33は、外部のグランド(図示せず)に接続可能になっていて、グランド電位に保持されている。 The ground electrode 33 is provided on the insulating layer 3F of the substrate 2 and is electrically connected to the conductive member 32 via a conductive adhesive or the like. The ground electrode 33 can be connected to an external ground (not shown) and is held at the ground potential.
 かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。光センサモジュール31は、封止部材11を覆ってグランド電位の導電性部材32を設けている。これにより、光センサモジュール31に導電性のシールド層を形成することができるので、光センサモジュール31の内部に外部からの電磁波等のようなノイズが入射するのを抑制することができる。 Thus, in the second embodiment, substantially the same operational effects as in the first embodiment can be obtained. The optical sensor module 31 is provided with a conductive member 32 having a ground potential so as to cover the sealing member 11. Thereby, since a conductive shield layer can be formed in the photosensor module 31, it is possible to prevent noise such as electromagnetic waves from the outside from entering the photosensor module 31.
 次に、図9ないし図14に、本発明の第3の実施の形態を示す。第3の実施の形態の特徴は、発光素子用キャビティを基板の表面側に開口した有底穴によって形成したことにある。なお、第3の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。 Next, FIGS. 9 to 14 show a third embodiment of the present invention. The feature of the third embodiment resides in that the light emitting element cavity is formed by a bottomed hole opened on the surface side of the substrate. Note that in the third embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and descriptions thereof are omitted.
 第3の実施の形態による光センサモジュール41は、第1の実施の形態による光センサモジュール1とほぼ同様に、基板2、発光素子用キャビティ42、受光素子用キャビティ6、発光素子45、受光素子10、封止部材11、光学素子12、壁面部43、素子収容穴44等を備えている。但し、光センサモジュール41は、基板2の表面側に開口した有底穴からなる発光素子用キャビティ42を設けている。この点で、第3の実施の形態による光センサモジュール41は、第1の実施の形態による光センサモジュール1とは異なっている。 The optical sensor module 41 according to the third embodiment is substantially the same as the optical sensor module 1 according to the first embodiment. The substrate 2, the light emitting element cavity 42, the light receiving element cavity 6, the light emitting element 45, and the light receiving element. 10, a sealing member 11, an optical element 12, a wall surface portion 43, an element accommodation hole 44, and the like. However, the optical sensor module 41 is provided with a light emitting element cavity 42 having a bottomed hole opened on the surface side of the substrate 2. In this respect, the optical sensor module 41 according to the third embodiment is different from the optical sensor module 1 according to the first embodiment.
 発光素子用キャビティ42は、基板2の表面側(図9中の上側)に設けられ、基板2の表面2Aから絶縁層3Fまで厚さ方向に凹陥している。発光素子用キャビティ42は、矩形状の有底穴であり、絶縁層3A~3Eを貫通すると共に、基板2の裏面側が絶縁層3Fによって閉塞されている。この発光素子用キャビティ42は、基板2の表面側に開口する表面側開口部42Aと有底穴の底となる底部42Bとを有し、その内部が周壁面42Cによって覆われている。発光素子用キャビティ42は、後述の発光素子45を収容し、表面側開口部42Aを介して発光素子45から出射された光を光学素子12に向けて放射するものである。 The light emitting element cavity 42 is provided on the surface side of the substrate 2 (upper side in FIG. 9), and is recessed in the thickness direction from the surface 2A of the substrate 2 to the insulating layer 3F. The light emitting element cavity 42 is a rectangular bottomed hole and penetrates the insulating layers 3A to 3E, and the back side of the substrate 2 is closed by the insulating layer 3F. The light-emitting element cavity 42 has a surface-side opening 42A that opens to the surface of the substrate 2 and a bottom 42B that is the bottom of the bottomed hole, and the inside thereof is covered with a peripheral wall surface 42C. The light emitting element cavity 42 accommodates a light emitting element 45 to be described later, and emits light emitted from the light emitting element 45 through the front surface side opening 42A toward the optical element 12.
 壁面部43は、基板2の一部によって形成され、基板2の表面側で、発光素子用キャビティ42と受光素子用キャビティ6との間を隔絶して設けられている。即ち、壁面部43は、基板2の一部であって、発光素子用キャビティ42の周壁面42Cと受光素子用キャビティ6の周壁面6Cとに挟まれた部分によって形成されている。この壁面部43は、基板2の絶縁層3A~3Eにより構成され、発光素子用キャビティ42と受光素子用キャビティ6との間で光を遮断する遮光部材としての機能を有している。 The wall surface portion 43 is formed by a part of the substrate 2, and is provided on the surface side of the substrate 2 so as to isolate the light emitting element cavity 42 and the light receiving element cavity 6. That is, the wall surface portion 43 is a part of the substrate 2 and is formed by a portion sandwiched between the peripheral wall surface 42C of the light emitting element cavity 42 and the peripheral wall surface 6C of the light receiving element cavity 6. The wall surface portion 43 is constituted by the insulating layers 3A to 3E of the substrate 2, and has a function as a light blocking member that blocks light between the light emitting element cavity 42 and the light receiving element cavity 6.
 素子収容穴44は、基板2の裏面側(図9中の下側)で、受光素子用キャビティ6の下側に位置して設けられている。素子収容穴44は、基板2の裏面2Bから受光素子用キャビティ6の裏面側開口部6Bまで厚さ方向に凹陥し、基板2の絶縁層3C~3Fを貫通した矩形状の有底穴からなっている。素子収容穴44の開口部44Aは、基板2の絶縁層3Fに位置して、基板2の裏面2Bに開口している。また、素子収容穴44の底部44Bは、基板2の絶縁層3Bに位置して、受光素子用キャビティ6の裏面側開口部6Bに開口している。このとき、開口部44Aの開口面積は、受光素子用キャビティ6の裏面側開口部6Bの開口面積よりも大きくなっている。 The element receiving hole 44 is provided on the back side (lower side in FIG. 9) of the substrate 2 and below the light receiving element cavity 6. The element receiving hole 44 is a rectangular bottomed hole that is recessed in the thickness direction from the back surface 2B of the substrate 2 to the back surface side opening 6B of the light receiving element cavity 6 and penetrates the insulating layers 3C to 3F of the substrate 2. ing. The opening 44 </ b> A of the element accommodation hole 44 is located on the insulating layer 3 </ b> F of the substrate 2 and opens on the back surface 2 </ b> B of the substrate 2. The bottom portion 44B of the element accommodation hole 44 is located in the insulating layer 3B of the substrate 2 and opens to the back surface side opening 6B of the light receiving element cavity 6. At this time, the opening area of the opening 44 </ b> A is larger than the opening area of the back surface side opening 6 </ b> B of the light receiving element cavity 6.
 また、素子収容穴44の底部44Bは、基板2の絶縁層3A,3Bによって形成されている。底部44Bには、受光素子用キャビティ6が貫通して設けられ、受光素子用キャビティ6の裏面側開口部6Bが開口している。このため、素子収容穴44の周壁面44Cは、受光素子用キャビティ6を取り囲んで、これらの外側に配置されている。この素子収容穴44は、受光素子10を基板2に実装するための収容穴をなすものである。ここで、素子収容穴44は、受光素子用キャビティ6と共に段付穴を構成している。 The bottom 44B of the element housing hole 44 is formed by the insulating layers 3A and 3B of the substrate 2. The bottom 44B is provided with a light receiving element cavity 6 therethrough, and a back surface side opening 6B of the light receiving element cavity 6 is opened. For this reason, the peripheral wall surface 44 </ b> C of the element receiving hole 44 surrounds the light receiving element cavity 6 and is disposed outside these. This element accommodation hole 44 forms an accommodation hole for mounting the light receiving element 10 on the substrate 2. Here, the element receiving hole 44 forms a stepped hole together with the light receiving element cavity 6.
 発光素子45は、発光素子用キャビティ42内に設けられている。ここで、発光素子45の表面には発光面が設けられると共に、発光素子45の裏面には外部に接続するための電極が設けられている。このため、発光素子45の発光面と電極面とは、互いに反対側の面に配置されている。発光素子45は、発光素子用キャビティ42の底部42Bに、導電性のバンプ45Aと、絶縁性のバンプ封止剤45Bとを用いてフリップチップ実装されている。発光素子45は、例えば発光ダイオード(LED)、レーザダイオード(LD)、面発光レーザ(VCSEL)が用いられる。この発光素子45は、基板2の導体層4Fからバンプ45Aを介して入力された信号に基づいて、発光素子用キャビティ42、光学素子12を通じて基板2の表面側から検出対象物Objに向けて光を出射する。 The light emitting element 45 is provided in the light emitting element cavity 42. Here, a light emitting surface is provided on the front surface of the light emitting element 45, and an electrode for external connection is provided on the back surface of the light emitting element 45. For this reason, the light-emitting surface and the electrode surface of the light-emitting element 45 are disposed on opposite surfaces. The light emitting element 45 is flip-chip mounted on the bottom portion 42B of the light emitting element cavity 42 using a conductive bump 45A and an insulating bump sealant 45B. As the light emitting element 45, for example, a light emitting diode (LED), a laser diode (LD), or a surface emitting laser (VCSEL) is used. The light emitting element 45 emits light from the surface side of the substrate 2 toward the detection object Obj through the light emitting element cavity 42 and the optical element 12 based on a signal input from the conductor layer 4F of the substrate 2 via the bump 45A. Is emitted.
 次に、図10ないし図14を用いて、光センサモジュール41の製造方法について説明する。 Next, a method for manufacturing the optical sensor module 41 will be described with reference to FIGS.
 まず、図10に、第1工程としての集合基板準備工程を示す。集合基板準備工程では、第1の実施の形態と同様に、複数の子基板15がマトリックス状に形成された集合基板14を用意する。後述するように、集合基板14は分割線Dの位置で切断されることによって、発光素子45及び受光素子10を実装した複数個の子基板15が分離され、光センサモジュール41が形成される。このため、分割線Dは、各子基板15の領域の境界線となっている。また、子基板15は、光センサモジュール41の基板2に対応する。この場合、第1工程から後述の第3工程までは、集合基板14は後述の絶縁層16Fが上側(図10中の上側)となり、絶縁層16Aが下側(図10中の下側)となるように配置されている。即ち、第1工程から第3工程までの集合基板14は、完成品の光センサモジュール41とは天地が逆に配置されている。 First, FIG. 10 shows a collective substrate preparation step as a first step. In the collective substrate preparation step, as in the first embodiment, the collective substrate 14 in which a plurality of sub-substrates 15 are formed in a matrix is prepared. As will be described later, the collective substrate 14 is cut at the position of the dividing line D, whereby the plurality of sub-substrates 15 mounted with the light emitting element 45 and the light receiving element 10 are separated, and the optical sensor module 41 is formed. For this reason, the dividing line D is a boundary line of the region of each child substrate 15. Further, the sub board 15 corresponds to the board 2 of the optical sensor module 41. In this case, from the first step to the third step described later, the collective substrate 14 has an insulating layer 16F described later on the upper side (upper side in FIG. 10) and the insulating layer 16A on the lower side (lower side in FIG. 10). It is arranged to be. That is, the collective substrate 14 from the first step to the third step is arranged upside down with respect to the finished optical sensor module 41.
 このとき、集合基板14は、絶縁層16A~16Fと、導体層17A~17Gとを積み重ねて形成されている。絶縁層16A~16Eには、集合基板14の表面側(図10中の下側)に開口し、絶縁層16F上に底部46Aを有する有底の発光素子用キャビティ46が形成されている。また、絶縁層16A,16Bには、後述の素子収容穴48の底部48Aを貫通して集合基板14の表面側(図10中の下側)に開口した受光素子用キャビティ19が形成されている。ここで、発光素子用キャビティ46と受光素子用キャビティ19との間は、絶縁層16A~16Eにより壁面部47が形成されている。さらに、絶縁層16C~16Fには、集合基板14の裏面側(図10中の上側)に開口し、絶縁層16B上に底部48Aを有する有底の素子収容穴48が形成され、絶縁層16C,16Dには、電子部品22が実装されている。電子部品22は、はんだ等の導電性接合材料を用いて導体層17Eの導体パターンと電気的に接続されている。 At this time, the collective substrate 14 is formed by stacking the insulating layers 16A to 16F and the conductor layers 17A to 17G. In the insulating layers 16A to 16E, a bottomed light-emitting element cavity 46 having an opening on the surface side (lower side in FIG. 10) of the collective substrate 14 and having a bottom portion 46A is formed on the insulating layer 16F. Further, in the insulating layers 16A and 16B, a light receiving element cavity 19 is formed which penetrates a bottom portion 48A of an element housing hole 48 to be described later and opens on the surface side (lower side in FIG. 10) of the collective substrate 14. . Here, between the light-emitting element cavity 46 and the light-receiving element cavity 19, a wall surface portion 47 is formed by the insulating layers 16A to 16E. Further, in the insulating layers 16C to 16F, a bottomed element receiving hole 48 having an opening on the back surface side (the upper side in FIG. 10) of the collective substrate 14 and having a bottom portion 48A is formed on the insulating layer 16B. , 16D, an electronic component 22 is mounted. The electronic component 22 is electrically connected to the conductor pattern of the conductor layer 17E using a conductive bonding material such as solder.
 この場合、発光素子用キャビティ46、底部46A、壁面部47、素子収容穴48、底部48Aは、光センサモジュール41の、発光素子用キャビティ42、底部42B、壁面部43、素子収容穴44、底部44Bにそれぞれ対応する。 In this case, the light emitting element cavity 46, the bottom 46A, the wall surface 47, the element receiving hole 48, and the bottom 48A are the light emitting element cavity 42, the bottom 42B, the wall surface 43, the element receiving hole 44, and the bottom of the optical sensor module 41. 44B respectively.
 図11に、第2工程としての受光素子実装工程を示す。集合基板準備工程に続く受光素子実装工程では、集合基板14の素子収容穴48に、受光素子24をフリップチップ実装する。具体的には、受光素子24の表面に設けられた電極に、例えば金、はんだ等の導電性材料を塗布してバンプ24Aを形成する。この状態で受光素子24の表面と裏面とを反転して、受光素子用キャビティ19を塞ぐように受光素子24を集合基板14に載置し、バンプ24Aを導体層17Cの導体パターン(電極)に接合する。その後、集合基板14と受光素子24との隙間に、バンプ封止剤24Bを樹脂封入する。この場合、受光素子24は、受光素子用キャビティ19を覆う位置で、受光面が受光素子用キャビティ19を向く方向に配置する。 FIG. 11 shows a light receiving element mounting step as a second step. In the light receiving element mounting step subsequent to the collective substrate preparation step, the light receiving elements 24 are flip-chip mounted in the element receiving holes 48 of the collective substrate 14. Specifically, a bump 24 </ b> A is formed by applying a conductive material such as gold or solder to the electrodes provided on the surface of the light receiving element 24. In this state, the front and back surfaces of the light receiving element 24 are reversed, the light receiving element 24 is placed on the collective substrate 14 so as to block the light receiving element cavity 19, and the bumps 24A are formed on the conductor pattern (electrode) of the conductor layer 17C. Join. Thereafter, a bump sealant 24 </ b> B is sealed in the gap between the collective substrate 14 and the light receiving element 24. In this case, the light receiving element 24 is disposed at a position covering the light receiving element cavity 19 in a direction in which the light receiving surface faces the light receiving element cavity 19.
 図12に、第3工程としての封止部材充填工程を示す。受光素子実装工程に続く封止部材充填工程では、集合基板14の素子収容穴48に、受光素子24を覆って封止部材25を充填する。具体的には、例えば可視光及び赤外光のいずれをも透過させない非透光性でエポキシ樹脂等の絶縁性樹脂材料からなる封止部材25を、集合基板14の素子収容穴48に充填して硬化させた後、その天面部分を研磨する。これにより、受光素子24は、封止部材25により素子収容穴48内に埋設される。 FIG. 12 shows a sealing member filling step as a third step. In the sealing member filling step subsequent to the light receiving element mounting step, the element receiving holes 48 of the collective substrate 14 are filled with the sealing member 25 so as to cover the light receiving elements 24. Specifically, for example, a sealing member 25 made of an insulating resin material such as an epoxy resin that transmits neither visible light nor infrared light is filled in the element accommodation hole 48 of the collective substrate 14. After curing, the top surface portion is polished. Thereby, the light receiving element 24 is embedded in the element receiving hole 48 by the sealing member 25.
 図13に、第4工程としての発光素子実装工程を示す。封止部材充填工程に続く発光素子実装工程では、集合基板14の発光素子用キャビティ46に、発光素子49をフリップチップ実装する。具体的には、第4工程では、集合基板14の天地を逆にし、絶縁層16Aが上側(図13中の上側)となり、絶縁層16Fが下側(図13中の下側)となるように配置する。そして、発光素子49の裏面に設けられた電極に、導電性材料からなるバンプ49Aを形成する。この状態で、発光素子49を発光素子用キャビティ46に挿入し、発光素子49を集合基板14に載置し、バンプ49Aを導体層17Fの導体パターン(電極)に接合する。その後、集合基板14と発光素子49との隙間に、絶縁樹脂材料からなるバンプ封止剤49Bを樹脂封入する。この場合、発光素子49は、発光面が集合基板14の表面側を向く方向に配置する。ここで、発光素子49、バンプ49A、バンプ封止剤49Bは、それぞれ光センサモジュール41の発光素子45、バンプ45A、バンプ封止剤45Bに対応する。 FIG. 13 shows a light emitting element mounting process as a fourth process. In the light emitting element mounting process following the sealing member filling process, the light emitting element 49 is flip-chip mounted in the light emitting element cavity 46 of the collective substrate 14. Specifically, in the fourth step, the top and bottom of the collective substrate 14 are reversed so that the insulating layer 16A is on the upper side (upper side in FIG. 13) and the insulating layer 16F is on the lower side (lower side in FIG. 13). To place. Then, bumps 49 </ b> A made of a conductive material are formed on the electrodes provided on the back surface of the light emitting element 49. In this state, the light emitting element 49 is inserted into the light emitting element cavity 46, the light emitting element 49 is placed on the collective substrate 14, and the bump 49A is bonded to the conductor pattern (electrode) of the conductor layer 17F. Thereafter, a bump sealant 49 </ b> B made of an insulating resin material is sealed in the gap between the collective substrate 14 and the light emitting element 49. In this case, the light emitting element 49 is arranged in a direction in which the light emitting surface faces the surface side of the collective substrate 14. Here, the light emitting element 49, the bump 49A, and the bump sealant 49B correspond to the light emitting element 45, the bump 45A, and the bump sealant 45B of the optical sensor module 41, respectively.
 図14に、第5工程としての光学素子配置工程を示す。封止部材充填工程に続く光学素子配置工程では、集合基板14の表面側に透光性を有する光学素子26を配置する。具体的には、第5工程では、光学素子26を、集合基板14の表面側である絶縁層16A上に熱硬化UV樹脂等の接着材料を用いて実装する。ここで、光学素子26の凸レンズ26Aは発光素子49を覆う位置に配置され、光学素子26の平坦部26Bは受光素子24を覆う位置に配置される。 FIG. 14 shows an optical element arranging step as the fifth step. In the optical element arranging step subsequent to the sealing member filling step, the optical element 26 having translucency is arranged on the surface side of the collective substrate 14. Specifically, in the fifth step, the optical element 26 is mounted on the insulating layer 16A on the surface side of the collective substrate 14 using an adhesive material such as a thermosetting UV resin. Here, the convex lens 26 </ b> A of the optical element 26 is disposed at a position covering the light emitting element 49, and the flat portion 26 </ b> B of the optical element 26 is disposed at a position covering the light receiving element 24.
 光学素子配置工程に続く分割工程では、ダイサー等を用いて集合基板14を分割線Dに沿って切断し、子基板15を個別に分離する。これにより、集合基板14から子基板15に分割され、発光素子45及び受光素子10実装された複数個の光センサモジュール41が製造される。 In the dividing step subsequent to the optical element arranging step, the collective substrate 14 is cut along the dividing line D using a dicer or the like, and the child substrates 15 are individually separated. As a result, a plurality of optical sensor modules 41 mounted on the light emitting element 45 and the light receiving element 10 are manufactured.
 かくして、第3の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。光センサモジュール41では、発光素子用キャビティ42は、基板2の表面側に開口した有底穴であるので、発光素子用キャビティ42の底部42Bを利用して発光素子45を基板2にフリップチップ実装することができる。 Thus, in the third embodiment, substantially the same operational effects as in the first embodiment can be obtained. In the optical sensor module 41, since the light emitting element cavity 42 is a bottomed hole opened on the surface side of the substrate 2, the light emitting element 45 is flip-chip mounted on the substrate 2 using the bottom 42 B of the light emitting element cavity 42. can do.
 また、素子収容穴48は集合基板14の裏面側に開口している。これにより、光センサモジュール41を製造するときに、集合基板14の天地を逆にして集合基板14の裏面側を上側とすることにより、受光素子24を素子収容穴48内に実装することができる。さらに、発光素子用キャビティ46は、集合基板14の表面側に開口している。これにより、集合基板14の天地を逆にして集合基板14の表面側を上側とすることにより、発光素子26を発光素子用キャビティ46内に実装することができる。 Further, the element accommodating hole 48 is opened on the back side of the collective substrate 14. Thereby, when manufacturing the optical sensor module 41, the light receiving element 24 can be mounted in the element receiving hole 48 by turning the collective substrate 14 upside down and setting the back side of the collective substrate 14 to the upper side. . Further, the light-emitting element cavity 46 is opened on the surface side of the collective substrate 14. Thus, the light emitting element 26 can be mounted in the light emitting element cavity 46 by turning the surface of the collective substrate 14 upside down with the top of the collective substrate 14 turned upside down.
 次に、図15に、本発明の第4の実施の形態を示す。第4の実施の形態の特徴は、基板内に素子収容穴を設けず、基板の裏面に発光素子及び受光素子を実装して封止部材で封止する構成としたことにある。なお、第4の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。 Next, FIG. 15 shows a fourth embodiment of the present invention. The feature of the fourth embodiment resides in that a light receiving element and a light receiving element are mounted on the back surface of the substrate and sealed with a sealing member without providing an element accommodation hole in the substrate. Note that in the fourth embodiment, identical symbols are assigned to configurations identical to those in the first embodiment described above, and descriptions thereof are omitted.
 第4の実施の形態による光センサモジュール51は、第1の実施の形態による光センサモジュール1とほぼ同様に、基板52、発光素子9、受光素子10、封止部材53、光学素子12等を備えている。但し、光センサモジュール51は、素子収容穴を設けずに、基板52の裏面側に発光素子9及び受光素子10を実装している。この点で、第4の実施の形態による光センサモジュール51は、第1の実施の形態による光センサモジュール1とは異なっている。 The optical sensor module 51 according to the fourth embodiment includes the substrate 52, the light emitting element 9, the light receiving element 10, the sealing member 53, the optical element 12, and the like, almost the same as the optical sensor module 1 according to the first embodiment. I have. However, the optical sensor module 51 has the light emitting element 9 and the light receiving element 10 mounted on the back surface side of the substrate 52 without providing an element accommodation hole. In this respect, the optical sensor module 51 according to the fourth embodiment is different from the optical sensor module 1 according to the first embodiment.
 基板52は、複数(例えば2層)の絶縁層53A,53Bと複数(例えば3層)の導体層54A~54Cとを備えている。この導体層54A~54Cと絶縁層53A,53Bとは、交互に積み重ねて形成されている。ここで、基板52の裏面は平坦面となっている。この基板52の裏面には基板52を貫通するキャビティ5,6が開口している。基板52の絶縁層53Bの裏面には、キャビティ5,6と対応した位置に発光素子9及び受光素子10が設けられている。 The substrate 52 includes a plurality (eg, two layers) of insulating layers 53A and 53B and a plurality (eg, three layers) of conductor layers 54A to 54C. The conductor layers 54A to 54C and the insulating layers 53A and 53B are alternately stacked. Here, the back surface of the substrate 52 is a flat surface. Cavities 5 and 6 penetrating the substrate 52 are opened on the back surface of the substrate 52. On the back surface of the insulating layer 53B of the substrate 52, the light emitting element 9 and the light receiving element 10 are provided at positions corresponding to the cavities 5 and 6.
 これらの発光素子9及び受光素子10は、バンプ9A,10Aとバンプ封止剤9B,10Bとを用いて基板52の裏面にフリップチップ実装されている。また、基板52には、発光素子用キャビティ5と受光素子用キャビティ6との間に位置して壁面部7が形成されている。導体層54Cは、後述の電極ポスト56、外部電極57を介して、外部の信号電極またはグランド電極(いずれも図示せず)に接続されている。 The light-emitting element 9 and the light-receiving element 10 are flip-chip mounted on the back surface of the substrate 52 using bumps 9A and 10A and bump sealants 9B and 10B. Further, a wall surface portion 7 is formed on the substrate 52 between the light emitting element cavity 5 and the light receiving element cavity 6. The conductor layer 54C is connected to an external signal electrode or a ground electrode (both not shown) via an electrode post 56 and an external electrode 57 described later.
 封止部材55は、基板52の裏面側に設けられ、その内部に発光素子9及び受光素子10が封止されている。封止部材55は、第1の実施の形態の封止部材11と同様に、例えば可視光及び赤外光のいずれをも透過させない非透光性で、エポキシ樹脂等の絶縁性樹脂材料を用いて形成されている。 The sealing member 55 is provided on the back side of the substrate 52, and the light emitting element 9 and the light receiving element 10 are sealed therein. As with the sealing member 11 of the first embodiment, the sealing member 55 is non-translucent and does not transmit any visible light or infrared light, and uses an insulating resin material such as an epoxy resin. Is formed.
 封止部材55には、複数(2個のみ図示)の電極ポスト56が設けられている。この電極ポスト56は、例えばレーザ加工等によって封止部材55を貫通する貫通孔を形成した後、貫通孔に銅めっきや導電ペースト等を設けることによって形成されている。電極ポスト56の一端側は、導電性の接合層56Aを介して導体層54Cに接続されている。一方、電極ポスト56の他端側には、はんだ等からなる外部電極57(バンプ)が設けられ、外部電極57は、封止部材55の裏面側に露出している。 The sealing member 55 is provided with a plurality of electrode posts 56 (only two are shown). The electrode post 56 is formed by, for example, forming a through hole penetrating the sealing member 55 by laser processing or the like and then providing copper plating, a conductive paste, or the like in the through hole. One end side of the electrode post 56 is connected to the conductor layer 54C through a conductive bonding layer 56A. On the other hand, an external electrode 57 (bump) made of solder or the like is provided on the other end side of the electrode post 56, and the external electrode 57 is exposed on the back side of the sealing member 55.
 かくして、第4の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。光センサモジュール51では、発光素子9及び受光素子10は非透光性の封止部材55により封止されているので、封止部材55により発光素子9と受光素子10との間を遮光することができる。これにより、発光素子9から出射された光が検出対象物Objに反射せずに受光素子10に直接入射することを防止し、受光素子10のバックグランドノイズ等を低減することができる。 Thus, in the fourth embodiment, it is possible to obtain substantially the same function and effect as in the first embodiment. In the optical sensor module 51, since the light emitting element 9 and the light receiving element 10 are sealed by the non-transparent sealing member 55, the light shielding element 55 shields light between the light emitting element 9 and the light receiving element 10. Can do. Thereby, the light emitted from the light emitting element 9 can be prevented from directly entering the light receiving element 10 without being reflected by the detection object Obj, and the background noise of the light receiving element 10 can be reduced.
 また、発光素子9及び受光素子10は、基板52の絶縁層53Bにフリップチップ実装され、封止部材55により封止されている。これにより、素子収容穴を設けずに、発光素子9及び受光素子10を基板52に設けることができる。 The light emitting element 9 and the light receiving element 10 are flip-chip mounted on the insulating layer 53B of the substrate 52 and sealed with a sealing member 55. Thereby, the light emitting element 9 and the light receiving element 10 can be provided in the board | substrate 52, without providing an element accommodation hole.
 なお、前記第1の実施の形態では、発光素子用キャビティ5及び受光素子用キャビティ6の形状を矩形状とする構成とした。しかし、本発明はこれに限らず、発光素子用キャビティ及び受光素子用キャビティの形状は矩形状に限らず、例えば、円形状としてもよい。このことは、第2,第3,第4の実施の形態でも同様である。 In the first embodiment, the light-emitting element cavity 5 and the light-receiving element cavity 6 have a rectangular shape. However, the present invention is not limited to this, and the shapes of the light-emitting element cavity and the light-receiving element cavity are not limited to a rectangular shape, and may be, for example, a circular shape. The same applies to the second, third, and fourth embodiments.
 また、前記第3の実施の形態では、発光素子用キャビティ42は底部42Bを有する有底穴からなる構成とし、受光素子用キャビティ6は基板2を貫通する貫通穴からなる構成とした。しかし、本発明はこれに限らず、例えば、発光素子用キャビティは基板を貫通する貫通穴からなる構成とし、受光素子用キャビティは底部を有する有底穴からなる構成としてもよい。 Further, in the third embodiment, the light emitting element cavity 42 is constituted by a bottomed hole having a bottom portion 42 B, and the light receiving element cavity 6 is constituted by a through hole penetrating the substrate 2. However, the present invention is not limited to this, and for example, the light emitting element cavity may be configured by a through hole penetrating the substrate, and the light receiving element cavity may be configured by a bottomed hole having a bottom.
 1,31,41,51 光センサモジュール
 2,52 基板
 5,18,42,46 発光素子用キャビティ
 6,19 受光素子用キャビティ
 7,20,43,47 壁面部
 8,21,44,48 素子収容穴
 8B,21A,44B,48A 底部
 9,23,45,49 発光素子
 10,24 受光素子
 11,25,55 封止部材
 12,26 光学素子
 32 導電性部材
1, 31, 41, 51 Optical sensor module 2, 52 Substrate 5, 18, 42, 46 Cavity for light emitting element 6, 19 Cavity for light receiving element 7, 20, 43, 47 Wall portion 8, 21, 44, 48 Element accommodation Hole 8B, 21A, 44B, 48A Bottom 9, 23, 45, 49 Light emitting element 10, 24 Light receiving element 11, 25, 55 Sealing member 12, 26 Optical element 32 Conductive member

Claims (7)

  1.  基板と、
     前記基板に設けられ厚さ方向に凹陥した発光素子用キャビティと、
     前記基板に設けられ厚さ方向に凹陥した受光素子用キャビティと、
     前記基板に設けられ前記発光素子用キャビティを通じて前記基板の表面側から光を出射する発光素子と、
     前記基板に設けられ前記受光素子用キャビティを通じて前記基板の表面側から入射した光を受光する受光素子と、
     前記発光素子及び前記受光素子を覆う部位に設けられた透光性を有する光学素子と、
     前記発光素子用キャビティと前記受光素子用キャビティとの間を隔絶して前記基板の一部によって形成され、前記発光素子用キャビティと前記受光素子用キャビティとの間で光を遮断する壁面部と、を備え、
     前記発光素子により出射された光が、検出対象物によって反射された光を前記受光素子で受光することによって前記検出対象物を検出する光センサモジュール。
    A substrate,
    A cavity for a light emitting element provided in the substrate and recessed in the thickness direction;
    A cavity for a light receiving element provided in the substrate and recessed in the thickness direction;
    A light-emitting element that is provided on the substrate and emits light from the surface side of the substrate through the light-emitting element cavity;
    A light receiving element that is provided on the substrate and receives light incident from the surface side of the substrate through the light receiving element cavity;
    An optical element having translucency provided in a portion covering the light emitting element and the light receiving element;
    A wall portion that is formed by a part of the substrate so as to separate the light emitting element cavity and the light receiving element cavity, and that blocks light between the light emitting element cavity and the light receiving element cavity; With
    The optical sensor module which detects the said detection target object by receiving the light in which the light radiate | emitted by the said light emitting element reflected the detection target object with the said light receiving element.
  2.  前記発光素子用キャビティ及び前記受光素子用キャビティは、前記基板を貫通した貫通穴からなり、
     前記発光素子は、前記基板のうち前記発光素子用キャビティよりも裏面側にフリップチップ実装され、
     前記受光素子は、前記基板のうち前記受光素子用キャビティよりも裏面側にフリップチップ実装されてなる請求項1に記載の光センサモジュール。
    The light emitting element cavity and the light receiving element cavity are formed of through holes penetrating the substrate,
    The light emitting element is flip-chip mounted on the back side of the light emitting element cavity of the substrate,
    The optical sensor module according to claim 1, wherein the light receiving element is flip-chip mounted on a back surface side of the light receiving element cavity in the substrate.
  3.  前記基板の裏面側には、前記発光素子及び前記受光素子を収容する有底の素子収容穴を設け、
     前記発光素子用キャビティ及び前記受光素子用キャビティは、前記素子収容穴の底部に開口し、
     前記発光素子及び前記受光素子は、前記素子収容穴に充填された非透光性及び絶縁性を有する封止部材によって封止されてなる請求項2に記載の光センサモジュール。
    On the back side of the substrate, a bottomed element housing hole for housing the light emitting element and the light receiving element is provided,
    The light emitting element cavity and the light receiving element cavity open to the bottom of the element receiving hole,
    The optical sensor module according to claim 2, wherein the light emitting element and the light receiving element are sealed by a non-translucent and insulating sealing member filled in the element accommodation hole.
  4.  前記基板の裏面側には、前記封止部材を覆ってグランド電位の導電性部材を設けてなる請求項3に記載の光センサモジュール。 4. The optical sensor module according to claim 3, wherein a conductive member having a ground potential is provided on the back side of the substrate so as to cover the sealing member.
  5.  前記発光素子用キャビティは、前記基板の表面側に開口した有底穴からなり、
     前記発光素子は、前記有底穴の底部にフリップチップ実装されてなる請求項1に記載の光センサモジュール。
    The light emitting element cavity comprises a bottomed hole opened on the surface side of the substrate,
    The optical sensor module according to claim 1, wherein the light emitting element is flip-chip mounted on a bottom portion of the bottomed hole.
  6.  基板の裏面側に開口した有底の素子収容穴と、前記素子収容穴の底部を貫通して前記基板の表面側に開口した発光素子用キャビティ及び受光素子用キャビティとを前記基板に形成する第1工程と、
     前記基板の素子収容穴の底部には、前記発光素子用キャビティの位置に発光素子をフリップチップ実装し、前記受光素子用キャビティの位置に受光素子をフリップチップ実装する第2工程と、
     前記基板の素子収容穴には、非透光性及び絶縁性を有する封止部材を充填して前記発光素子及び前記受光素子を封止する第3工程と、
     前記基板の表面側には、前記発光素子及び前記受光素子を覆って透光性を有する光学素子を設ける第4工程と、
     を備えた光センサモジュールの製造方法。
    A bottomed element receiving hole opened on the back side of the substrate and a light emitting element cavity and a light receiving element cavity opened through the bottom of the element receiving hole and opened on the front side of the substrate are formed on the substrate. 1 process,
    A second step of flip-chip mounting the light emitting element at the position of the light emitting element cavity at the bottom of the element receiving hole of the substrate and flip chip mounting the light receiving element at the position of the light receiving element cavity;
    A third step of sealing the light-emitting element and the light-receiving element by filling the element-accommodating hole of the substrate with a non-translucent and insulating sealing member;
    A fourth step of providing a light-transmitting optical element on the surface side of the substrate so as to cover the light-emitting element and the light-receiving element;
    A method for manufacturing an optical sensor module comprising:
  7.  基板の表面側に開口した有底の発光素子用キャビティと、基板の裏面側に開口した有底の素子収容穴と、前記素子収容穴の底部を貫通して前記基板の表面側に開口した受光素子用キャビティとを前記基板に形成する第1工程と、
     前記基板の素子収容穴の底部には、前記受光素子用キャビティの位置に受光素子をフリップチップ実装する第2工程と、
     前記基板の素子収容穴には、非透光性及び絶縁性を有する封止部材を充填して前記受光素子を封止する第3工程と、
     前記基板の発光素子用キャビティの底部には、発光素子をフリップチップ実装する第4工程と、
     前記基板の表面側には、前記発光素子及び前記受光素子を覆って透光性を有する光学素子を設ける第5工程と、
     を備えた光センサモジュールの製造方法。
    A bottomed light emitting element cavity opened on the front surface side of the substrate, a bottomed element receiving hole opened on the back surface side of the substrate, and a light receiving opening opened on the front surface side of the substrate through the bottom of the element receiving hole A first step of forming an element cavity on the substrate;
    A second step of flip-chip mounting the light receiving element at the position of the light receiving element cavity at the bottom of the element receiving hole of the substrate;
    A third step of sealing the light receiving element by filling a non-translucent and insulating sealing member in the element accommodation hole of the substrate;
    A fourth step of flip-chip mounting the light emitting element on the bottom of the light emitting element cavity of the substrate;
    A fifth step of providing a light-transmitting optical element on the surface side of the substrate so as to cover the light-emitting element and the light-receiving element;
    A method for manufacturing an optical sensor module comprising:
PCT/JP2015/074951 2014-09-16 2015-09-02 Optical sensor module and method for manufacturing same WO2016043052A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-187817 2014-09-16
JP2014187817 2014-09-16

Publications (1)

Publication Number Publication Date
WO2016043052A1 true WO2016043052A1 (en) 2016-03-24

Family

ID=55533092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074951 WO2016043052A1 (en) 2014-09-16 2015-09-02 Optical sensor module and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016043052A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231296A1 (en) * 2021-04-29 2022-11-03 주식회사 라이팩 Method for manufacturing optical sensor package and optical sensor package

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133752U (en) * 1988-03-07 1989-09-12
JPH0661522A (en) * 1992-08-04 1994-03-04 Sharp Corp Reflection type photocoupler
JPH10132558A (en) * 1996-10-25 1998-05-22 Olympus Optical Co Ltd Optical semiconductor device
JP2014107372A (en) * 2012-11-27 2014-06-09 Taiyo Yuden Co Ltd Circuit module and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133752U (en) * 1988-03-07 1989-09-12
JPH0661522A (en) * 1992-08-04 1994-03-04 Sharp Corp Reflection type photocoupler
JPH10132558A (en) * 1996-10-25 1998-05-22 Olympus Optical Co Ltd Optical semiconductor device
JP2014107372A (en) * 2012-11-27 2014-06-09 Taiyo Yuden Co Ltd Circuit module and manufacturing method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022231296A1 (en) * 2021-04-29 2022-11-03 주식회사 라이팩 Method for manufacturing optical sensor package and optical sensor package
KR20220148481A (en) * 2021-04-29 2022-11-07 주식회사 라이팩 Manufacturing method of light sensor package and light sensor package
KR102515244B1 (en) * 2021-04-29 2023-03-29 주식회사 라이팩 Manufacturing method of light sensor package and light sensor package

Similar Documents

Publication Publication Date Title
US10340397B2 (en) Optical sensor device
CN106024772B (en) Proximity and ranging sensor
JP5736253B2 (en) Optical sensor device
US20080219673A1 (en) Optical Transceiver with Reduced Height
JP4349978B2 (en) Optical semiconductor package and manufacturing method thereof
KR101457069B1 (en) Optical proximity sensor with ambient light sensor
JP6626974B2 (en) Optical sensor package, optical sensor device, and electronic module
JP2011146752A (en) Side view light-emitting diode and manufacturing method of side view light-emitting diode
TWI521671B (en) The package structure of the optical module
US10593823B2 (en) Optical apparatus
WO2017099022A1 (en) Sensor substrate and sensor device
JP2010114114A (en) Reflection-type photointerrupter
JP4426279B2 (en) Infrared data communication module
TW201640644A (en) Optical sensing device and manufacturing method for optical device
KR101543563B1 (en) Optoelectronic semi-conductor component
KR101457827B1 (en) Method for producing an optoelectronic semiconductor component
WO2016043052A1 (en) Optical sensor module and method for manufacturing same
CN104396026A (en) Light source-integrated optical sensor
JP7023724B2 (en) Package and electronics
JP6070933B2 (en) Optical device and method for manufacturing optical device
JP2017092352A (en) Light-receiving/emitting device and manufacturing method of light-receiving/emitting device
CN102969388A (en) Integrated sensing packaging structure
KR20130008907A (en) Semiconductor package
JP7257288B2 (en) Optical sensor package, multi-cavity wiring board, optical sensor device and electronic module
WO2018147222A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15841306

Country of ref document: EP

Kind code of ref document: A1