WO2016042747A1 - アンテナ及び無線通信装置 - Google Patents

アンテナ及び無線通信装置 Download PDF

Info

Publication number
WO2016042747A1
WO2016042747A1 PCT/JP2015/004640 JP2015004640W WO2016042747A1 WO 2016042747 A1 WO2016042747 A1 WO 2016042747A1 JP 2015004640 W JP2015004640 W JP 2015004640W WO 2016042747 A1 WO2016042747 A1 WO 2016042747A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
gap
antenna
antenna according
capacitance
Prior art date
Application number
PCT/JP2015/004640
Other languages
English (en)
French (fr)
Inventor
淳 内田
Original Assignee
Necプラットフォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necプラットフォームズ株式会社 filed Critical Necプラットフォームズ株式会社
Priority to CN201580049928.1A priority Critical patent/CN106688143A/zh
Priority to US15/506,811 priority patent/US10403976B2/en
Publication of WO2016042747A1 publication Critical patent/WO2016042747A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold

Definitions

  • the present invention relates to an antenna and a wireless communication device.
  • Patent Document 1 discloses a method for realizing an SRR antenna.
  • the antenna of a wireless communication terminal typified by a recent smart phone is not only small in size, but also has a contrivance of multi-frequency resonance such as two frequencies because communication is performed at a plurality of frequencies. It has been demanded. Therefore, Japanese Patent Application No. 2012-248169 discloses a method for supplying power simultaneously by arranging two SRR antenna elements that resonate at different frequencies as a technique corresponding to two frequencies using an SRR antenna.
  • An object of the present invention is to provide a small antenna that resonates at a plurality of frequencies.
  • An annular first conductor having a gap, a second conductor disposed inside the ring and having both ends connected to the first conductor and having a first gap, and the first conductor
  • a third conductor disposed in a region surrounded by the portion not including the gap and the second conductor and having both ends connected to the first conductor and having a second gap;
  • FIG. 3 is a diagram illustrating a configuration example of a first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the first embodiment.
  • It is a figure which shows the structural example of 2nd Embodiment. It is a figure which shows the modification of a structure of 2nd Embodiment. It is a figure which shows the structural example of 3rd Embodiment. It is a figure which shows the structural example of 3rd Embodiment.
  • FIG. 1A and FIG. 1B are diagrams showing the configuration of the present embodiment.
  • FIG. 1A is a view of the antenna forming surface as viewed from above
  • FIG. 1B is a cross-sectional view of the antenna forming surface as viewed from the side.
  • the antenna 1 is formed of a single-sided copper-clad substrate 20, and the single-sided copper-clad substrate 20 includes a copper foil layer 21 and a dielectric layer 22.
  • the antenna 1 is formed by peeling the copper foil along the desired antenna shape by etching or laser processing the copper foil layer 21.
  • An antenna formed by peeling a copper foil is shown in FIG. In FIG. 1A, the black portion is the copper foil portion, and the white portion is the portion where the copper foil is peeled off.
  • FIG. 2 is an enlarged view of FIG.
  • the antenna 1 has an opening 2 and an opening 3, and the opening 2 and the opening 3 are separated by a transmission line 5.
  • the transmission line 5 is connected to one terminal 41 of the feeding point 4 having two terminals located at one end outside the opening, and the other terminal 42 of the feeding point 4 is a copper adjacent to the feeding point 4.
  • the opening 2 has gaps 11 with a constant interval, and the auxiliary conductor 6 and the auxiliary conductor 7 are connected to the end of the conductor sandwiching the gap 11, and the auxiliary conductor 6 and the auxiliary conductor 7 are located inside the opening 2. It arrange
  • the high-frequency current fed to the feeding point 4 in FIG. 2 is transmitted to the area of the opening 2 and the opening 3 through the transmission line 5.
  • the characteristic impedance of the transmission line 5 is impedance matched with the radio circuit connected to the transmission line 5 and is, for example, 50 ohms.
  • the operation feeding point of the antenna 1 is the operation feeding point 8 shown in FIG. 2, and the transmission line 5 extends from the operation feeding point 8 to the feeding point 4 at an arbitrary position in the copper foil layer 21. Even if extended, the operation of the antenna does not change regardless of the position of the feeding point 4.
  • FIG. 1 the operation feeding point 8 shown in FIG. 2
  • the transmission line 5 from the operation feeding point 8 to the actual feeding point 4 is a coplanar line, but the outer conductor of the transmission line 5 in the same section is equipotential with the copper foil layer 21.
  • a transmission line other than the coplanar line such as a coaxial line soldered so as to be, may be used.
  • FIG. 3 is a diagram for explaining the operation of the antenna 1.
  • An operation feed point 8 is shown instead of the feed point 4 in FIG. 2, and the other configuration is the same as FIG.
  • FIG. 3 there is an A route that resonates at the first frequency, a B route that resonates at the second frequency, and a loop C that matches the characteristic impedance of the feeder line at the first and second frequencies. To do.
  • the operation of the antenna 1 will be described separately for the A route, the B route, and the loop C.
  • the gap 11 between the conductors exists on the route of the A route shown in FIG. 3, and the opposing portions of the auxiliary conductor 6 and the auxiliary conductor 7 located at both ends of the gap 11 generate capacitance.
  • This capacitance is proportional to the reciprocal of the distance between the auxiliary conductor 6 and the auxiliary conductor 7 and the area of the opposing portion of the auxiliary conductor 6 and the auxiliary conductor 7.
  • the area shown here is the product of the length of the opposing portion and the thickness of the copper foil layer. Note that the auxiliary conductor 7 is not necessary when it can be realized only by the capacitance of the conductor facing the gap 11.
  • the conductor length of the A route shown in FIG. When a high-frequency current is fed to the operational feeding point 8 in FIG. 3, the A route forms a series resonance circuit represented by an equivalent circuit in which the inductor 9 and the capacitor 10 are connected in series to the feeding point 17 shown in FIG.
  • the A route resonates at the first resonance frequency.
  • the resonance frequency of a series resonance circuit is inversely proportional to the square root of a value obtained by multiplying an inductance by a capacitance.
  • the first resonance frequency is inversely proportional to the square root of the value obtained by multiplying the reciprocal of the distance between the auxiliary conductor 6 and the auxiliary conductor 7, the area of the opposing portion of the auxiliary conductor 6 and the auxiliary conductor 7, and the conductor length of the A route. To do.
  • the antenna using the resonance of the A route described above is shown in the aforementioned Patent Document 1 and is called a split ring resonator antenna (SRR antenna).
  • SRR antenna split ring resonator antenna
  • the route is not necessarily limited to the SRR antenna.
  • the antenna of this embodiment has a B route that resonates at the second resonance frequency shown in FIG. 3 in addition to the A route that resonates at the first resonance frequency described above.
  • the B route shown in FIG. 3 has a gap 12 between the open end of the auxiliary conductor 6 and the copper foil layer 21 forming the opening 2, and a capacitance is generated in the gap 12. This capacitance is proportional to the reciprocal of the distance of the gap 12 between the tip of the auxiliary conductor 6 and the copper foil layer 21 around the opening 2 near the tip, and the opposing area of the conductors sandwiching the gap 12.
  • the conductor length of the B route causes an inductance.
  • the B route forms a series resonance circuit represented by the equivalent circuit shown in FIG. 4, and the B route resonates at the second resonance frequency.
  • the resonance frequency of the series resonance circuit is inversely proportional to the square root of the value obtained by multiplying the inductance by the capacitance.
  • the second resonance frequency is the reciprocal of the distance of the gap 12 between the tip of the auxiliary conductor 6 and the copper foil layer 21 around the opening 2 near the tip, the opposing area of the conductors sandwiching the gap 12, and It is inversely proportional to the square root of the value obtained by multiplying the conductor length of the B route.
  • the antenna 1 has two-frequency resonance characteristics derived from two different shapes, the A route and the B route.
  • the conductor length of the loop C causes an inductance between both terminals of the feeding point 8.
  • the antenna 1 performs impedance matching with the characteristic impedance of the feeder line connected to the feeder point 8 at the first frequency and the second frequency.
  • the design target is that the first frequency is f0, the second frequency is 2.7 ⁇ f0, and the reflection loss observed at the feeding point 8 at the first and second frequencies is ⁇ 10 dB or less.
  • Each dimension shown below is normalized with a spatial wavelength La corresponding to the resonance frequency f0 of the A route.
  • the thickness of La and copper foil shall be 0.00080 * La.
  • FIG. 6 is a graph in which the numerical calculation is performed based on these design values, and the impedance at the feeding point of the antenna 1 is displayed in the form of reflection loss (return loss). As shown in FIG. 6, the resonance occurs at the target first frequency (f0) and the second frequency (2.7 ⁇ f0), and the reflection loss at the first and second frequencies is equal to or lower than the target ⁇ 10 dB. .
  • the shape of the opening of the antenna is rectangular, but the shape of the opening can be designed in a shape other than a rectangle such as a circle or a polygon.
  • FIG. 7 is a diagram showing the configuration of the present embodiment.
  • the tip portion of the auxiliary conductor 7 is bent at the bent portion 13, and the tip portion from the bent portion 13 has a gap 12.
  • the equivalent circuit of the antenna shown in the second embodiment is the same as that shown in FIG. 4 shown in the first embodiment, and has series resonance.
  • the resonance frequency of series resonance is inversely proportional to the square root of the value obtained by multiplying the inductance by the capacitance. Therefore, when the capacitance generated in the gap 12 increases as the shape of the tip portion of the auxiliary conductor 7 changes, it is necessary to reduce the inductance in order to resonate at the same resonance frequency.
  • the inductance in FIGS. 7 and 3 is determined by the electrical length indicated by the A route shown in FIG. That is, when the capacitance generated in the gap 12 is increased, the antenna shape is reduced because the electrical length indicated by the A route in FIG. 3 must be reduced in order to resonate at the same frequency.
  • FIG. 9 is a diagram showing the configuration of the present embodiment.
  • the antenna configuration shown in FIG. 9 includes a chip component capacitor 15 between the tip of the auxiliary conductor 6 and the conductor 1 around the opening 2 adjacent to the auxiliary conductor 6. It differs from the antenna shape shown in FIG. [Description of operation]
  • a capacitance is generated in the gap 12 between the tip of the auxiliary conductor 6 and the copper foil layer 21 around the opening 2.
  • the antenna The external size can be reduced.
  • FIG. 11 is a diagram showing a configuration of the present embodiment.
  • the antenna 1 of FIG. 3 used in the description of the first embodiment is formed on the first conductor forming surface 31, and a dielectric layer having a certain thickness is sandwiched between the upper surfaces of the first conductor forming surface 31 and the first conductor forming surface 31.
  • Two conductor forming surfaces 32 are arranged. On the second conductor forming surface 32, a conductor shape is formed by removing the transmission line 5 and the feeding point 4 from the conductor shape of the antenna 1 shown in FIG.
  • the conductors of the first conductor forming surface 31 and the second conductor forming surface 32 are electrically connected through a plurality of through holes of the printed board, both conductors are kept at the same potential in terms of high frequency.
  • the first conductor forming surface 31 and the second conductor forming surface 32 are connected to each other through a plurality of through holes. This is equivalent to the antenna being formed by filling the interval 32 with the conductor. Therefore, the antenna of the fourth embodiment formed by connecting two conductor formation surfaces with through-holes has a larger gap 11 than the antenna of the first embodiment formed by only one conductor formation surface. Since the opposing area between the conductors is large, the capacitance is also large.
  • the capacitance of the gap 12 is larger in the antenna of the fourth embodiment than that of the first embodiment. As described in the description of the operation of the second embodiment, it is possible to reduce the outer shape of the antenna when the capacitance is large.
  • FIG. 12 is a diagram showing the configuration of the fifth embodiment.
  • an antenna 51 is disposed at a position close to the antenna 1.
  • the antenna 1 has the same configuration as that of the antenna 1 shown in the first embodiment, but the operation target frequency is the resonance frequency (hereinafter referred to as frequency F1) of the A route in FIG. 3 used in the description of the first embodiment.
  • the resonance of the B route is not the target frequency of the operation of the antenna 1.
  • the resonance frequency of the antenna 51 (hereinafter, frequency F51) is higher than that of the antenna 1.
  • the antenna 51 is depicted as a monopole antenna, but other types of antennas such as an SRR antenna may be used. [Description of operation] Next, the operation of this embodiment will be described with reference to FIG. 3, FIG. 12, and FIG.
  • the antenna 1 and the antenna 51 shown in FIG. 12 are electromagnetically coupled in space, and the presence of the antenna 1 may adversely affect the characteristics of the antenna 51.
  • an impedance adjustment circuit is formed between the antenna 1 and the feed line, and a circuit that matches the characteristic impedance of the feed line at the frequency F1 and has a high reactance at the frequency F51 is formed.
  • this method is difficult to realize unless the frequency F1 and the frequency F51 are sufficiently separated.
  • the impedance of the resonance frequency (frequency F1) of the A route hardly changes even when the shape of the B route described in the first embodiment is changed.
  • the impedance at the frequency F51 can be changed with the change in the shape of the B route. That is, by changing the inductance derived from the electrical length of the B route shown in FIG. 3 and the capacitance generated in the gap 12, the reactance at the frequency F51 of the antenna 1 can be designed to a high value, and the impedance can be close to an open state. I can do it.
  • FIG. 13 shows the impedance of the antenna 1 designed based on the above description by numerical analysis on the Smith chart. It is shown that the antenna 1 substantially matches the characteristic impedance of the transmission line at the frequency F1, and the impedance of the antenna 1 at the resonance frequency F51 of the antenna 51 is almost open with high reactance.
  • the electromagnetic coupling in the space between the antenna 1 and the antenna 51 becomes sparse, and the impedance at the frequency F1 of the antenna 1 is hardly changed, and the adverse effect of the antenna 1 on the characteristics of the antenna 51 is avoided. It becomes possible.
  • the antenna 1 includes an annular first conductor 62 having a gap 61, a first conductor 62 that is disposed inside the ring, has both ends connected to the first conductor 62, and has a first gap 63.
  • Two conductors 64 are provided.
  • the first conductor 62 is disposed in a region surrounded by a portion not including the gap 61 and the second conductor 64 and both ends thereof are connected to the first conductor 62, and the second gap
  • a third conductor 66 having 65 is provided.
  • the antenna 1 has a first value and a second value based on the above configuration.
  • the first value is a value obtained by multiplying the length of the outer periphery of the region surrounded by the portion including the gap 61 and the third conductor 66 in the first conductor 62 by the capacitance of the gap 61.
  • the second value is obtained by multiplying the length of the outer periphery of the region surrounded by the second conductor 64, the third conductor 66, and the first conductor 62 by the capacitance of the first gap 63. Value.
  • the antenna 1 in this embodiment differs in the 1st value and the 2nd value.
  • the antenna shown in the sixth embodiment can resonate at a plurality of frequencies with one element. Therefore, as shown in Japanese Patent Application No. 2012-248169, the antenna shown in the present embodiment is small and can handle a plurality of frequencies compared to the case where two elements are used to achieve two frequencies.
  • the auxiliary conductor 6 may be displaced from the end of the gap 11 toward the transmission line 5 and connected to the inner periphery of the opening as shown in FIG.
  • the operational feeding point 8 can be moved.
  • the auxiliary conductor 6 has a shape whose tip is bent from the bent portion 13 as shown in FIG.
  • it is formed by the conductor 1 around the tip portion 14 and the opening 2 by deforming the tip from the portion corresponding to the bent portion 13 into a shape that expands to the left and right like the tip portion 14 as shown in FIG. Capacitance can be increased.
  • the shape of the antenna 1 can be made smaller than the shape of the antenna 1 shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Details Of Aerials (AREA)

Abstract

 小型でかつ複数の周波数で共振するアンテナを提供するため、本発明のアンテナは、空隙を有する環状の第1の導体と、前記環の内部に配置されるとともに両端が前記第1の導体に接続され、第1の間隙を有する第2の導体と、前記第1の導体のうち前記空隙を含まない部分と前記第2の導体とで囲まれる領域に配置されるとともに両端が前記第1の導体に接続され、第2の間隙を有する第3の導体とを備え、前記第1の導体のうち前記空隙を含む部分と前記第3の導体とで囲まれる領域の外周の長さに前記空隙のキャパシタンスを乗じた値と、前記第2の導体と前記第3の導体と前記第1の導体とで囲まれる領域の外周の長さに前記第1の間隙のキャパシタンスを乗じた値とが異なる。

Description

アンテナ及び無線通信装置
 本発明は、アンテナ及び無線通信装置に関するものである。
 小型アンテナ素子として、スプリットリング共振器(Split Ring Resonator、以下SRR)を用いたSRRアンテナが実用化されている。特許文献1ではSRRアンテナの実現方法が開示されている。一方、近年のスマートホンに代表される無線通信端末のアンテナは、素子自体が小型であることの他に、通信が複数周波数で行われるために2周波数などの多周波数共振であることの工夫も求められている。そこで、特願2012-248169号において、SRRアンテナを用いて2周波数に対応する技術として、異なる周波数に共振するSRRアンテナ素子が2個並べて配置されて、同時に給電される方法が開示されている。
国際公開第2013/027824号
 特願2012-248169号に開示される方法では2周波数に対応するために、図15に示す例のように、異なる共振周波数のSRRアンテナ素子を2つ並べて配置するので、装置の小型化設計の支障となる。
 本発明の目的は、小型でかつ複数の周波数で共振するアンテナを提供することにある。
 空隙を有する環状の第1の導体と、前記環の内部に配置されるとともに両端が前記第1の導体に接続され、第1の間隙を有する第2の導体と、前記第1の導体のうち前記空隙を含まない部分と前記第2の導体とで囲まれる領域に配置されるとともに両端が前記第1の導体に接続され、第2の間隙を有する第3の導体とを備え、前記第1の導体のうち前記空隙を含む部分と前記第3の導体とで囲まれる領域の外周の長さに前記空隙のキャパシタンスを乗じた値と、前記第2の導体と前記第3の導体と前記第1の導体とで囲まれる領域の外周の長さに前記第1の間隙のキャパシタンスを乗じた値とが異なることを特徴とするアンテナを提供する。
 本発明によれば、小型でかつ複数の周波数で共振するアンテナを提供することが可能となる。
第1の実施形態の構成例を示す図である。 第1の実施形態の構成例を示す図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第1の実施形態の動作を説明する図である。 第2の実施形態の構成例を示す図である。 第2の実施形態の構成の変形例を示す図である。 第3の実施形態の構成例を示す図である。 第3の実施形態の構成例を示す図である。 第4の実施形態の構成例を示す図である。 第5の実施形態の構成例を示す図である。 第5の実施形態の動作を説明する図である。 第6の実施形態の構成例を示す図である。 関連する構成例を示す図である。 第1の実施形態の構成の変形例を示す図である。 第1の実施形態の構成の変形例を示す図である。 第6の実施形態の構成の変形例を示す図である。
[第1の実施形態]
[構成の説明]
 以下、図面を参照しつつ本発明の一実施形態を説明する。
 図1(a)および図1(b)は本実施形態の構成を示す図である。図1(a)はアンテナ形成面を上面から見た図であり、図1(b)はアンテナ形成面を横から見た断面図である。
 図1(a)および図1(b)に示すようにアンテナ1は片面銅張基板20で形成され、片面銅張基板20は銅箔層21と誘電体層22からなる。アンテナ1は、銅箔層21をエッチングやレーザー加工などで、所望のアンテナ形状に沿って銅箔を剥離して形成される。銅箔を剥離して形成したアンテナを図1(a)に示す。図1(a)で黒い部分が銅箔部分、白い部分は銅箔を剥離した部分である。
 図2は図1(a)の拡大図である。図2を参照すると、本アンテナ1は、開口部2と開口部3を有し、開口部2と開口部3は伝送線路5で隔離されている。そして、伝送線路5は、一端を開口部の外側に位置する2つの端子をもつ給電点4の1つの端子41と接続され、給電点4のもう1つの端子42は給電点4に近接する銅箔層21に接続される。さらに開口部2は一定間隔の空隙11を有し、この空隙11を挟む導体の端部には補助導体6と補助導体7が接続され、補助導体6と補助導体7は開口部2の内側で互いに対向するように配置される。
[動作の説明]
 次に本実施形態の動作について図を参照して説明する。
 図2における給電点4に給電された高周波電流は伝送線路5を通って、開口部2および開口部3の領域に伝送される。伝送線路5の特性インピーダンスは、伝送線路5に接続される無線回路とインピーダンス整合されており、例えば50オームである。ここで、アンテナ1の動作上の給電点は図2に示す動作上の給電点8であり、動作上の給電点8から銅箔層21内の任意の位置の給電点4まで伝送線路5によって延伸されても、給電点4の位置に関わらず、アンテナの動作は変化しない。尚、図2において、動作上の給電点8から実際の給電点4までの伝送線路5はコプレーナ線路で構成しているが、同区間の伝送線路5は外導体が銅箔層21と等電位となる様に半田付された同軸線など、コプレーナ線路以外の伝送線路であっても良い。
 図3はアンテナ1の動作を説明するための図である。図2に示す構成と異なる点は、図2における給電点4の代わりに動作上の給電点8を示していることであり、その他の構成は図2と同一である。図3を参照すると、第1の周波数に共振するAルート、第2の周波数に共振するBルート、第1の周波数および第2の周波数において給電線の特性インピーダンスと整合するためのループCが存在する。以下、アンテナ1の動作をAルート、Bルート、ループCに分けて説明する。
 図3に示したAルートの経路上に導体間の空隙11が存在し、この空隙11の両端に位置する補助導体6と補助導体7の対向部分がキャパシタンスを生じる。このキャパシタンスは補助導体6と補助導体7の間隔の距離の逆数と補助導体6と補助導体7の対向部分の面積に比例する。ここで示す面積は、対向部分の長さと銅箔層の厚みとを乗じたものである。尚、空隙11で対向する導体のキャパシタンスだけで実現可能な場合、補助導体7は不要である。
 また、図3に示したAルートの導体長はインダクタンスを生じる。そして、図3における動作上の給電点8に高周波電流を給電すると、Aルートは図4に示す給電点17にインダクタ9とキャパシタ10が直列接続された等価回路で表される直列共振回路を形成し、Aルートは第1の共振周波数で共振する。一般的に直列共振回路の共振周波数はインダクタンスにキャパシタンスを乗じた値の平方根に反比例する。
 従って、第1の共振周波数は補助導体6と補助導体7の間隔の距離の逆数と、補助導体6と補助導体7の対向部分の面積と、Aルートの導体長を乗じた値の平方根に反比例する。
 以上説明したAルートの共振を利用したアンテナは、前述の特許文献1に示され、スプリットリング共振器アンテナ(SRRアンテナ)と称される。
 尚、Aルートが上記の条件を満足すれば、必ずしもSRRアンテナに限定されるものではない。
 一方、本実施形態のアンテナは、上記で説明した第1の共振周波数に共振するAルートの他に、図3に示す第2の共振周波数に共振するBルートを有する。図3に示すBルートは、補助導体6の開放先端と開口部2を形成する銅箔層21との間隙12を有し、間隙12においてキャパシタンスを生じる。このキャパシタンスは補助導体6の先端と先端近くの開口部2の周囲の銅箔層21との間隙12の間隔の距離の逆数と、間隙12を挟む導体同士の対向面積に比例する。
 また、Bルートの導体長はインダクタンスを生じる。そして、図3における動作上の給電点8に高周波電流を給電すると、Bルートは図4に示す等価回路で表される直列共振回路を形成し、Bルートは第2の共振周波数で共振する。Aルートの説明と同様に、直列共振回路の共振周波数はインダクタンスにキャパシタンスを乗じた値の平方根に反比例する。
 従って、第2の共振周波数は補助導体6の先端と先端近くの開口部2の周囲の銅箔層21との間隙12の間隔の距離の逆数と、間隙12を挟む導体同士の対向面積と、Bルートの導体長を乗じた値の平方根に反比例する。
 このようにして、アンテナ1はAルートとBルートの2つの異なる形状に由来する、2周波数共振特性を有する。
 次に、ループCについて説明する。ループCの導体長は給電点8の両端子間にインダクタンスを生じる。このループCの導体長に由来するインダクタンスにより、アンテナ1は第1の周波数と第2の周波数において、給電点8に接続される給電線の特性インピーダンスとインピーダンス整合をする。
 以上、第1の実施形態におけるアンテナ1の動作を説明した。
 次に、アンテナ1の設計例を、図5と図6を参照して示す。
 設計目標は、第1の周波数をf0、第2の周波数を2.7×f0として、第1および第2の周波数における給電点8で観測する反射損失を-10dB以下とする。尚、以下に示す各寸法は、Aルートの共振周波数f0に対応する空間波長Laで正規化されている。
 図5に示す各寸法は Xa=0.088・La、Xb=0.044・La、Xc=0.026・La、Y=0.028・La、D=0.00080・La、とする。また、補助導体6と補助導体7および伝送線路5の幅はいずれも0.0040・Laとし、補助導体6の長さ L6=0.026・La、補助導体7の長さ L7=0.020・La、銅箔の厚みは0.00080・Laとする。
 これらの設計値に基づき数値計算を行い、アンテナ1の給電点におけるインピーダンスを反射損失(リターンロス)の形式で表示したグラフが図6である。図6に示す様に目標の第1の周波数(f0)と第2の周波数(2.7×f0)で共振し、第1および第2の周波数における反射損失は、目標の-10dB以下である。
 ここでは、図3に示すようにアンテナの開口部形状を矩形としたが、開口部の形状が円形や多角形など、矩形以外の形状でも設計可能である。
 以上説明したように、第1の実施形態に示すアンテナは、素子1個で複数の周波数で共振することが可能である。従って、特願2012-248169号に示されるように素子2個で2周波数対応を実現する場合と比べて、本実施形態に示すアンテナは小型で複数周波数に対応することが可能となる。
[第2の実施形態]
 次に、本発明の第2の実施形態について図面を参照して説明する。
[構成の説明]
 図7は本実施形態の構成を示す図である。図7のアンテナ形状と第1の実施形態の説明で用いた図3に示すアンテナ形状を比較すると、補助導体7の先端部分が屈曲部13で屈曲し、屈曲部13から先端部分が間隙12をはさんで開口部2の周囲と対向している。
[動作の説明]
 第1の実施形態で示した図3のアンテナ形状における間隙12と、図7の間隙12の間隔の距離が同じ寸法であっても、図7に示すアンテナ形状は図3に示すアンテナ形状と比べて補助導体7の先端が開口部3の周囲と対向している導体部分が大きい。従って、補助導体7の先端部分と開口部2の周囲との間で生じるキャパシタンスは、図7に示すアンテナ形状の方が図3に示すアンテナ形状より大きい。
 第2の実施形態に示すアンテナの等価回路は、第1の実施形態で示した図4と同一で、直列共振である。第1の実施形態で説明したように、直列共振の共振周波数はインダクタンスにキャパシタンスを乗じた値の平方根に反比例する。従って、補助導体7の先端部分の形状の変化に伴って、間隙12で生じるキャパシタンスが大きくなると、同一の共振周波数で共振するためにはインダクタンスを小さくする必要がある。ここで、図7および図3のインダクタンスは図3に示したAルートで示す電気長で決定される。つまり、間隙12で生じるキャパシタンスを大きくすると、同一周波数で共振する為には、図3のAルートで示す電気長を小さくする必要があるのでアンテナ形状は小さくなる。
 従って、第2の実施形態で示した図7のアンテナ形状は、第1の実施形態で示した図3のアンテナ形状と比べて小型化が可能となる。
[第3の実施形態]
 次に、本発明の第3の実施形態について図面を参照して説明する。
[構成の説明]
 図9は本実施形態の構成を示す図である。図9に示すアンテナ形状は、補助導体6の先端と補助導体6に近接する開口部2の周囲の導体1との間に、チップ部品のキャパシタ15を備えることが、第1の実施形態の説明で用いた図3に示すアンテナ形状と異なる。
[動作の説明]
 第1の実施形態では、補助導体6の先端と開口部2の周囲の銅箔層21との間隙12においてキャパシタンスが生じる。一方、第3の実施形態では、間隙12にチップ部品のキャパシタ15を装荷することにより、第1の実施形態に示したような間隙12を挟んだ導体間のキャパシタンスでは不足する場合にも、アンテナ外形の小型化が可能となる。
 尚、空隙11にチップ部品のキャパシタ16を装荷する方法が特許文献1に示されていて、図10に示すように間隙12と同様に空隙11のキャパシタンスをチップ部品のキャパシタ16とすることが可能である。
[第4の実施形態]
 次に、本発明の第4の実施形態について図面を参照して説明する。
[構成の説明]
 図11は本実施形態の構成を示す図である。第1の実施形態の説明で用いた図3のアンテナ1が第1の導体形成面31に形成され、第1の導体形成面31の上面に一定の厚さの誘電体層を挟んで、第2の導体形成面32が配置される。第2の導体形成面32には、図3に示したアンテナ1の導体形状から伝送線路5と給電点4を取り除いた導体形状が形成されている。
 また、第1の導体形成面31と第2の導体形成面32の導体同士は、プリント基板の複数のスルーホールで導通するために、両導体は高周波的に等電位に保たれる。
[動作の説明]
 第4の実施形態のアンテナは、複数のスルーホールで第1の導体形成面31と第2の導体形成面32が接続されているため、第1の導体形成面31と第2の導体形成面32の間隔が導体で満たされてアンテナが形成されていることと同等となる。従って、1面の導体形成面だけで形成した第1の実施形態のアンテナより、2面の導体形成面をスルーホールで接続して形成した第4の実施形態のアンテナの方が、空隙11の導体同士の対向面積は大きいためキャパシタンスも大きい。
 間隙12のキャパシタンスも同じ理由で、第1の実施形態のアンテナより第4の実施形態のアンテナの方が大きい。キャパシタンスが大きいとアンテナ外形を小さくすることが可能であることは、第2の実施形態の動作の説明で記した通りである。
 このようにして、第4の実施形態に示すアンテナは第1の実施形態に示すアンテナより小型化が可能となる。
[第5の実施形態]
 次に第5の実施形態について図面を参照して説明する。
[構成の説明]
 図12は第5の実施形態の構成を示す図である。
 図12で示すように、アンテナ1に近接する位置に、アンテナ51が配置されている。アンテナ1は第1の実施形態で示したアンテナ1と同一構成であるが、動作目的とする周波数は、第1の実施形態の説明で用いた図3のAルートの共振周波数(以下周波数F1)だけで、Bルートの共振はアンテナ1の動作目的の周波数ではない。また、アンテナ51の共振周波数(以下周波数F51)は、アンテナ1より高い周波数である。
 尚、図12ではアンテナ51をモノポールアンテナとして描いているが、SRRアンテナなどの他の形式のアンテナでも良い。
[動作の説明]
 次に本実施形態の動作について図3、図12および図13を参照して説明する。
 図12に示すアンテナ1とアンテナ51とは空間で電磁結合があり、アンテナ1の存在がアンテナ51の特性に悪影響を及ぼすことがある。この空間での電磁結合を回避するためには、周波数F51において、アンテナ1を高リアクタンスに設定する方法がある。
 例えば、アンテナ1と給電線路との間に、インピーダンス調整回路を構成し、周波数F1で給電線の特性インピーダンスに整合し、周波数F51で高リアクタンスとなる回路を形成するなどである。しかし、この方法は周波数F1と周波数F51が十分に離れていないと実現が困難である。
 図3から明らかな様に、アンテナ1は、第1の実施形態で説明したBルートの形状を変化してもAルートの共振周波数(周波数F1)のインピーダンスは殆ど変化しない。一方、Bルートの形状の変化に伴って、周波数F51におけるインピーダンスを変化させることが可能である。すなわち、図3に示すBルートの電気長に由来するインダクタンスと、間隙12で生じるキャパシタンスを変化させることで、アンテナ1の周波数F51におけるリアクタンスを高い値に設計し、開放に近いインピーダンスにすることが出来る。
 以上の説明に基づいて設計したアンテナ1の数値解析によるインピーダンスを、スミスチャート上に示したものが図13である。アンテナ1は周波数F1でほぼ伝送線路の特性インピーダンスに整合し、アンテナ51の共振周波数F51におけるアンテナ1のインピーダンスは、高リアクタンスでほぼ開放インピーダンスとなっている様子が示されている。
 このようにすることで、アンテナ1とアンテナ51の空間での電磁結合が疎になり、アンテナ1の周波数F1におけるインピーダンスは殆ど変化させることなく、アンテナ1がアンテナ51の特性に及ぼす悪影響を回避することが可能となる。
 尚、図13のアンテナ1の形状に対し、Aルートの導体長を変えずにBルートの導体長を長くすると、周波数F1を示す点は動かず、周波数F51を示す点はグラフの軌跡にほぼ沿って時計回りに移動する。また、開放インピーダンスに最も近い周波数はF15より高い周波数となる。
[第6の実施形態]
 次に、本発明の第6の実施形態について図14を参照して説明する。
 本実施形態におけるアンテナ1は、空隙61を有する環状の第1の導体62と、前記環の内部に配置されるとともに両端が前記第1の導体62に接続され、第1の間隙63を有する第2の導体64を備える。さらに、前記第1の導体62のうち前記空隙61を含まない部分と前記第2の導体64とで囲まれる領域に配置されるとともに両端が前記第1の導体62に接続され、第2の間隙65を有する第3の導体66を備える。
 そして、アンテナ1は上記構成に基づく第1の値と第2の値とを有する。
 第1の値は、前記第1の導体62のうち前記空隙61を含む部分と前記第3の導体66とで囲まれる領域の外周の長さに前記空隙61のキャパシタンスを乗じた値である。
 一方、第2の値は、前記第2の導体64と前記第3の導体66と前記第1の導体62とで囲まれる領域の外周の長さに前記第1の間隙63のキャパシタンスを乗じた値である。
 そして、本実施形態におけるアンテナ1は、第1の値と第2の値が異なる。
 このようにして、第6の実施形態に示すアンテナは、素子1個で複数の周波数で共振することが可能である。従って、特願2012-248169号に示されるように素子2個で2周波数対応を実現する場合と比べて、本実施形態に示すアンテナは小型で複数周波数に対応することが可能となる。
 以上、本発明の好適な実施形態を説明したが、上記実施形態に限定されるものではなく、次のように拡張または変形できる。
 例えば、本発明の第1の実施形態を変形して、図16に示すように補助導体6は、空隙11の端部から伝送線路5寄りにずれて開口内周に接続されても良い。
 また、本発明の第1の実施形態を変形して、図17に示すように伝送線路5をストリップ線路を開口内に延長することで、動作上の給電点8が移動可能である。
 或いは、本発明の第2の実施形態では、図7に示した様に補助導体6は屈曲部13から先端が屈曲する形状とした。一方、図8のように屈曲部13に相当する箇所から先端を先端部14のように左右に拡大した形状に変形することで、先端部14と開口部2の周囲の導体1で形成されるキャパシタンスを大きくすることができる。その結果、アンテナ1の形状は図7に示すアンテナ1の形状より小型にすることも可能である。
 さらに、本発明の第6の実施形態で説明した条件を満たせば、図18のような形状に変形して実現することも可能である。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年9月19日に出願された日本出願特願2014-190945を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1  アンテナ
 2  開口部
 3  開口部
 4  給電点
 5  伝送線路
 6  補助導体
 7  補助導体
 8  動作上の給電点
 9  インダクタ
 10  キャパシタ
 11  空隙
 12  間隙
 13  屈曲部
 14  先端部
 15  キャパシタ
 16  キャパシタ
 17  給電点
 20  片面銅張基板
 21  銅箔層
 22  誘電体層
 31  第1の導体形成面
 32  第2の導体形成面
 41  端子
 42  端子
 51  アンテナ
 61  空隙
 62  第1の導体
 63  第1の間隙
 64  第2の導体
 65  第2の間隙
 66  第3の導体

Claims (9)

  1.  空隙を有する環状の第1の導体と、
     前記環の内部に配置されるとともに両端が前記第1の導体に接続され、第1の間隙を有する第2の導体と、
     前記第1の導体のうち前記空隙を含まない部分と前記第2の導体とで囲まれる領域に配置されるとともに両端が前記第1の導体に接続され、第2の間隙を有する第3の導体とを備え、
     前記第1の導体のうち前記空隙を含む部分と前記第3の導体とで囲まれる領域の外周の長さに前記空隙のキャパシタンスを乗じた値と、前記第2の導体と前記第3の導体と前記第1の導体とで囲まれる領域の外周の長さに前記第1の間隙のキャパシタンスを乗じた値とが異なることを特徴とするアンテナ。
  2.  前記第1の導体のうち前記空隙を含む部分と前記第2の導体とで囲まれる領域に配置されるとともに両端が前記第1の導体に接続され、間隙を有する第4の導体を更に備えることを特徴とする請求項1に記載のアンテナ。
  3.  前記第2の導体及び前記第4の導体の各々の中心線が略同一方向であり、前記第2の導体と前記第4の導体とは前記空隙を挟んで配置されることを特徴とする請求項2に記載のアンテナ。
  4.  前記第1の間隙を挟んで対向する端部のうち前記第1の導体と接続する部分から近くない方に接続され、前記第1の導体と略平行に配置された屈曲導体部をさらに備えていることを特徴とする請求項1乃至請求項3のいずれかに記載のアンテナ。
  5.  前記第2の導体の間隙に接続されるチップ部品のキャパシタを備えることを特徴とする請求項1乃至請求項4のいずれかに記載のアンテナ。
  6.  板状の誘電体層上に積層した導電体層で前記各導体が形成されていることを特徴とする請求項1乃至請求項5のいずれかに記載のアンテナ。
  7.  空隙を有する環状の第5の導体と、
     前記第5の導体の環の内部に配置されるとともに両端が前記第5の導体に接続され、間隙を有する第6の導体とをさらに備え、
     前記第1、第2および第3の導体は第1の導体形成面に形成され、
     前記第5および第6の導体は前記第1の導体形成面と略平行な第2の導体形成面に形成され、
     前記第5の導体の環の内周の前記第1の導体形成面への正射影で囲まれる領域が、前記第1の導体の環の内周を含み、
     前記第1の導体と前記第5の導体とが導通している
    ことを特徴とする請求項1乃至請求項5のいずれかに記載のアンテナ。
  8.  前記第1及び第2の導体形成面の間は、前記導通のためのスルーホールが形成された誘電体層で充填されていることを特徴とする請求項7に記載のアンテナ。
  9.  請求項1乃至請求項8のいずれかに記載のアンテナを含む無線通信装置。
PCT/JP2015/004640 2014-09-19 2015-09-11 アンテナ及び無線通信装置 WO2016042747A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580049928.1A CN106688143A (zh) 2014-09-19 2015-09-11 天线和无线通信设备
US15/506,811 US10403976B2 (en) 2014-09-19 2015-09-11 Antenna and wireless communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014190945A JP6077507B2 (ja) 2014-09-19 2014-09-19 アンテナ及び無線通信装置
JP2014-190945 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016042747A1 true WO2016042747A1 (ja) 2016-03-24

Family

ID=55532804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004640 WO2016042747A1 (ja) 2014-09-19 2015-09-11 アンテナ及び無線通信装置

Country Status (4)

Country Link
US (1) US10403976B2 (ja)
JP (1) JP6077507B2 (ja)
CN (1) CN106688143A (ja)
WO (1) WO2016042747A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478016A (zh) * 2019-01-24 2020-07-31 广达电脑股份有限公司 移动装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659519B2 (ja) 2016-11-02 2020-03-04 株式会社東芝 アンテナ装置
JP6857314B2 (ja) * 2017-07-20 2021-04-14 三菱マテリアル株式会社 アンテナ装置
JP7015980B2 (ja) * 2017-07-20 2022-02-04 三菱マテリアル株式会社 アンテナ装置
CN110137671B (zh) * 2018-02-09 2020-11-24 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
CN112602236A (zh) * 2018-09-12 2021-04-02 日本航空电子工业株式会社 天线和通信装置
JP7216577B2 (ja) * 2019-03-05 2023-02-01 日本航空電子工業株式会社 アンテナ
JP7475126B2 (ja) 2019-10-29 2024-04-26 日本航空電子工業株式会社 アンテナ
JP7404031B2 (ja) 2019-10-29 2023-12-25 日本航空電子工業株式会社 アンテナ
JP7184436B2 (ja) * 2020-08-28 2022-12-06 Necプラットフォームズ株式会社 アンテナおよび無線通信装置
TWI765743B (zh) * 2021-06-11 2022-05-21 啓碁科技股份有限公司 天線結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463536A (en) * 2008-09-22 2010-03-24 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
WO2010035317A1 (ja) * 2008-09-24 2010-04-01 株式会社 東芝 無線通信装置とそのアンテナ
EP2280447A2 (en) * 2008-04-30 2011-02-02 ACE Technologies Corporation Broadband internal antenna using slow-wave structure
JP2013138296A (ja) * 2011-12-28 2013-07-11 Mitsumi Electric Co Ltd アンテナ装置
US20130249765A1 (en) * 2012-03-22 2013-09-26 Chi-Kang Su Wideband Antenna and Related Radio-Frequency Device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985114B2 (en) 2003-06-09 2006-01-10 Houkou Electric Co., Ltd. Multi-frequency antenna and constituting method thereof
TWI237419B (en) 2003-11-13 2005-08-01 Hitachi Ltd Antenna, method for manufacturing the same and portable radio terminal employing it
GB2415832B (en) * 2004-06-30 2008-03-26 Nokia Corp An antenna
TW200826353A (en) * 2006-12-04 2008-06-16 Benq Corp Antenna module and electronic device using the same
JP5531582B2 (ja) * 2009-11-27 2014-06-25 富士通株式会社 アンテナおよび無線通信装置
CN105896093B (zh) * 2011-08-24 2019-10-18 日本电气株式会社 天线和电子装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2280447A2 (en) * 2008-04-30 2011-02-02 ACE Technologies Corporation Broadband internal antenna using slow-wave structure
GB2463536A (en) * 2008-09-22 2010-03-24 Antenova Ltd Tuneable antennas suitable for portable digital television receivers
WO2010035317A1 (ja) * 2008-09-24 2010-04-01 株式会社 東芝 無線通信装置とそのアンテナ
JP2013138296A (ja) * 2011-12-28 2013-07-11 Mitsumi Electric Co Ltd アンテナ装置
US20130249765A1 (en) * 2012-03-22 2013-09-26 Chi-Kang Su Wideband Antenna and Related Radio-Frequency Device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478016A (zh) * 2019-01-24 2020-07-31 广达电脑股份有限公司 移动装置
CN111478016B (zh) * 2019-01-24 2021-08-24 广达电脑股份有限公司 移动装置

Also Published As

Publication number Publication date
US10403976B2 (en) 2019-09-03
CN106688143A (zh) 2017-05-17
US20170294952A1 (en) 2017-10-12
JP6077507B2 (ja) 2017-02-08
JP2016063449A (ja) 2016-04-25

Similar Documents

Publication Publication Date Title
JP6077507B2 (ja) アンテナ及び無線通信装置
US9825366B2 (en) Printed circuit board antenna and printed circuit board
US20130271333A1 (en) Slot antenna
JP2008271468A (ja) アンテナ装置
JP7122523B2 (ja) アンテナ装置
US20200295449A1 (en) Antenna device
US10461439B2 (en) Flexible polymer antenna with multiple ground resonators
US9960483B2 (en) Antenna, printed circuit board, and wireless communication device
EP2850692B1 (en) Method for creating a slot-line on a multilayer substrate and multilayer printed circuit comprising at least one slot-line realized according to said method and used as an isolating slot or antenna
US10211533B2 (en) Dual band printed antenna
JP6014071B2 (ja) 通信装置及びアンテナ装置
US9692131B2 (en) Antenna and the manufacturing method thereof
JP6059001B2 (ja) アンテナ装置
JP6393048B2 (ja) マルチバンドアンテナ
JP6178292B2 (ja) アンテナ装置
JP6201651B2 (ja) アンテナ装置およびアレイアンテナ装置
EP3226349B1 (en) Antenna and terminal
JP2017063364A (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841361

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15506811

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841361

Country of ref document: EP

Kind code of ref document: A1