WO2016042648A1 - 作業車両及び作業車両の制御方法 - Google Patents

作業車両及び作業車両の制御方法 Download PDF

Info

Publication number
WO2016042648A1
WO2016042648A1 PCT/JP2014/074749 JP2014074749W WO2016042648A1 WO 2016042648 A1 WO2016042648 A1 WO 2016042648A1 JP 2014074749 W JP2014074749 W JP 2014074749W WO 2016042648 A1 WO2016042648 A1 WO 2016042648A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
work vehicle
upper limit
vehicle
speed
Prior art date
Application number
PCT/JP2014/074749
Other languages
English (en)
French (fr)
Inventor
慎治 金子
由孝 小野寺
佳史 設楽
泰司 大岩
橋本 淳
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to PCT/JP2014/074749 priority Critical patent/WO2016042648A1/ja
Priority to JP2015551086A priority patent/JP5968559B1/ja
Priority to CN201480001946.8A priority patent/CN105612330A/zh
Priority to DE112014000162.7T priority patent/DE112014000162A5/de
Priority to US14/419,337 priority patent/US9540011B2/en
Publication of WO2016042648A1 publication Critical patent/WO2016042648A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18036Reversing
    • B60W30/18045Rocking, i.e. fast change between forward and reverse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/12Trucks; Load vehicles
    • B60W2300/121Fork lift trucks, Clarks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/04Vehicle stop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/30Wheel torque

Definitions

  • the present invention includes a variable displacement hydraulic pump driven by an engine, and a hydraulic motor that forms a closed circuit between the hydraulic pump and is driven by hydraulic oil discharged from the hydraulic pump.
  • the present invention relates to a vehicle and a work vehicle control method.
  • HST Hydro Static Transmission
  • the HST includes a variable displacement traveling hydraulic pump driven by an engine and a variable displacement hydraulic motor driven by hydraulic oil discharged from the traveling hydraulic pump in a main hydraulic circuit that is a closed circuit.
  • the vehicle is driven by transmitting the driving force of the hydraulic motor to the driving wheels.
  • a work vehicle such as a forklift moves backward or forward by operating the forward / reverse lever from the reverse side to the forward side during reverse travel, or by operating the forward / backward lever from the forward side to the reverse side during forward travel.
  • a switchback operation for increasing the forward travel or the reverse travel is performed (for example, Patent Document 1).
  • the engine speed is not limited with respect to the operation of the accelerator pedal during the switchback operation.
  • An object of the present invention is to suppress an increase in fuel consumption when a work vehicle equipped with an HST performs a switchback operation.
  • the present invention is a work vehicle including a work machine, wherein a closed circuit is formed between an engine, a variable displacement travel hydraulic pump driven by the engine, and the travel hydraulic pump, and the travel A hydraulic motor driven by hydraulic oil discharged from a hydraulic pump, a drive wheel driven by the hydraulic motor to cause the work vehicle to travel, and a traveling direction switching device for switching between forward and reverse of the work vehicle
  • the selection switch detects a reversing operation of the traveling direction switching device for reversing the traveling direction of the work vehicle while the work vehicle is traveling, the vehicle speed of the work vehicle is detected.
  • the upper limit of the rotational speed of the engine are set so that the upper limit increases as the absolute value of the vehicle speed approaches zero.
  • a control device for determining the upper limit of the rotational speed of the engine and a vehicle speed of the work vehicle.
  • the control device increases the vehicle speed from the vehicle speed having a larger absolute value to 0 than when the reversal operation is detected.
  • the upper limit of the rotation speed of the engine is set to be larger than that when the reversal operation is detected.
  • the controller sets the predetermined upper limit of the engine speed and the relationship when the reversing operation is detected when the reversing operation is detected when an abnormality occurs in the device that detects the vehicle speed. It is preferable to use the smaller one of the upper limit and the rotational speed of the engine obtained from the vehicle speed.
  • the relationship is that the upper limit of the rotational speed of the engine is 0 until the first vehicle speed, and the range up to 0 including the first vehicle speed is the absolute value of the vehicle speed. It is preferable that the upper limit of the rotational speed of the engine increases as it approaches zero.
  • the work vehicle is preferably a forklift.
  • the present invention forms a closed circuit between a work machine, an engine, a variable displacement travel hydraulic pump driven by the engine, and the travel hydraulic pump, and is discharged from the travel hydraulic pump.
  • the selection switch detects the reversal operation of the direction switching device, the relationship between the vehicle speed of the work vehicle and the upper limit of the rotational speed of the engine indicates that the absolute value of the vehicle speed is close to zero.
  • the present invention can suppress an increase in fuel consumption when a work vehicle equipped with an HST performs a switchback operation.
  • FIG. 1 is a diagram illustrating an overall configuration of a forklift according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the forklift 1 shown in FIG.
  • FIG. 3 is a diagram illustrating an example of the switchback operation.
  • FIG. 4 is a control block diagram of the control device.
  • FIG. 5 is a view showing a table for giving an upper limit to the rotational speed of the engine during the switchback operation of the forklift.
  • 6 is a graph showing the table shown in FIG.
  • FIG. 7 is a diagram showing a table used when neutral is selected during the switchback operation of the forklift.
  • FIG. 8 is a graph showing the table shown in FIG.
  • FIG. 1 is a diagram illustrating an overall configuration of a forklift 1 according to the present embodiment.
  • FIG. 2 is a block diagram showing a control system of the forklift 1 shown in FIG.
  • the forklift 1 includes a vehicle body 3 having a drive wheel 2a and a steered wheel 2b, a work implement 5, and a mechanical brake 9 that brakes the drive wheel 2a and the steered wheel 2b.
  • the forklift 1 has a front side from the driver seat ST toward the steering member HL, and a rear side from the steering member HL to the driver seat ST.
  • the work machine 5 is provided in front of the vehicle body 3.
  • the vehicle body 3 is provided with an engine 4 that is an example of an internal combustion engine, a variable displacement travel hydraulic pump 10 that drives the engine 4 as a drive source, and a work machine hydraulic pump 16.
  • the engine 4 is a diesel engine, for example, it is not limited to this.
  • An output shaft 4S of the engine 4 is connected to the traveling hydraulic pump 10 and the work machine hydraulic pump 16.
  • the traveling hydraulic pump 10 and the work machine hydraulic pump 16 are driven by the engine 4 via the output shaft 4S.
  • the drive wheel 2 a is driven by the power of the hydraulic motor 20.
  • the variable displacement type traveling hydraulic pump 10 and the variable displacement type hydraulic motor 20 are connected by a closed hydraulic circuit to form an HST.
  • the forklift 1 travels by HST.
  • both the traveling hydraulic pump 10 and the work machine hydraulic pump 16 have a swash plate 10S and a swash plate 16S, and the tilt angle between the swash plate 10S and the swash plate 16S is changed. As a result, the capacity changes.
  • the work machine 5 includes a lift cylinder 7 that lifts and lowers a fork 6 on which a load is placed, and a tilt cylinder 8 that tilts the fork 6.
  • the driver's seat of the vehicle body 3 includes a forward / reverse lever 42 a, an inching pedal (brake pedal) 40 a as a brake operation unit, an accelerator pedal 41 a as an accelerator operation unit, and a lift lever and a tilt lever for operating the work machine 5.
  • a work machine operation lever (not shown) is provided.
  • the inching pedal 40a operates the inching rate.
  • the accelerator pedal 41 a changes the amount of fuel supplied to the engine 4.
  • the inching pedal 40a and the accelerator pedal 41a are provided at positions where the operator of the forklift 1 can perform a stepping operation from the driver's seat. In FIG. 1, the inching pedal 40 a and the accelerator pedal 41 a are depicted in an overlapping state.
  • the forklift 1 includes a main hydraulic circuit 100.
  • the main hydraulic circuit 100 is a closed circuit including a traveling hydraulic pump 10, a hydraulic motor 20, and a hydraulic supply line 10a and a hydraulic supply line 10b that connect the two.
  • the traveling hydraulic pump 10 is a device that is driven by the engine 4 to discharge hydraulic oil.
  • the traveling hydraulic pump 10 is a variable displacement pump whose capacity can be changed by changing the swash plate tilt angle, for example.
  • the hydraulic motor 20 is rotationally driven by the hydraulic oil discharged from the traveling hydraulic pump 10.
  • the hydraulic motor 20 is, for example, a variable capacity hydraulic motor having a swash plate 20S and capable of changing the capacity by changing the swash plate tilt angle.
  • the hydraulic motor 20 may be a fixed capacity type hydraulic motor.
  • the output shaft 20a of the hydraulic motor 20 is connected to the drive wheel 2a via the transfer 20b.
  • the hydraulic motor 20 can drive the forklift 1 by rotationally driving the drive wheels 2a via the transfer 20b.
  • the hydraulic motor 20 can switch the rotation direction according to the supply direction of the hydraulic oil from the traveling hydraulic pump 10. By switching the rotation direction of the hydraulic motor 20, the forklift 1 can move forward or backward.
  • the forklift 1 moves forward, and when the hydraulic oil is supplied from the hydraulic supply line 10b to the hydraulic motor 20. It is assumed that the forklift 1 moves backward.
  • a portion connected to the hydraulic supply line 10a is an A port 10A
  • a portion connected to the hydraulic supply line 10b is a B port 10B.
  • the forklift 1 has a pump capacity setting unit 11, a motor capacity setting unit 21, and a charge pump 15.
  • the pump capacity setting unit 11 is provided in the traveling hydraulic pump 10.
  • the pump capacity setting unit 11 includes a forward pump electromagnetic proportional control valve 12, a reverse pump electromagnetic proportional control valve 13, and a pump capacity control cylinder 14.
  • a command signal is given to the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13 from a control device 30 described later.
  • the pump capacity setting unit 11 is operated by the pump capacity control cylinder 14 in accordance with a command signal given from the control device 30, and the swash plate tilt angle of the traveling hydraulic pump 10 is changed. The capacity of is changed.
  • the pump capacity control cylinder 14 has a piston 14a housed in a cylinder case 14C.
  • the piston 14a reciprocates in the cylinder case 14C when hydraulic oil is supplied to the space between the cylinder case 14C and the piston 14a.
  • the piston 14a is held at the neutral position when the swash plate tilt angle is zero. For this reason, even if the engine 4 rotates, the amount of hydraulic oil discharged from the traveling hydraulic pump 10 to the hydraulic pressure supply line 10a or the hydraulic pressure supply line 10b of the main hydraulic circuit 100 is zero.
  • a command signal for increasing the capacity of the traveling hydraulic pump 10 is given from the control device 30 to the forward pump electromagnetic proportional control valve 12.
  • a pump control pressure is applied to the pump displacement control cylinder 14 from the forward pump electromagnetic proportional control valve 12 in accordance with this command signal.
  • the piston 14a moves to the left in FIG.
  • the swash plate 10S of the traveling hydraulic pump 10 is tilted in the direction of discharging the hydraulic oil to the hydraulic supply line 10a in conjunction with this movement. .
  • the pump control pressure from the forward pump electromagnetic proportional control valve 12 increases, the moving amount of the piston 14a increases. For this reason, the amount of change in the tilt angle of the swash plate 10S in the traveling hydraulic pump 10 is also large. That is, when a command signal is given from the control device 30 to the forward pump electromagnetic proportional control valve 12, a pump control pressure corresponding to the command signal is given from the forward pump electromagnetic proportional control valve 12 to the pump displacement control cylinder 14. It is done.
  • the pump displacement control cylinder 14 is operated by the pump control pressure described above, the swash plate 10S of the traveling hydraulic pump 10 is inclined so that a predetermined amount of hydraulic oil can be discharged to the hydraulic pressure supply line 10a.
  • the hydraulic oil is discharged from the traveling hydraulic pump 10 to the hydraulic pressure supply line 10a, and the hydraulic motor 20 rotates in the forward direction.
  • the reverse pump electromagnetic proportional control valve 13 When the control device 30 gives a command signal for increasing the capacity of the traveling hydraulic pump 10 to the reverse pump electromagnetic proportional control valve 13, the reverse pump electromagnetic proportional control valve 13 generates a pump in response to the command signal. A pump control pressure is applied to the displacement control cylinder 14. Then, the piston 14a moves to the right side in FIG. When the piston 14a of the pump displacement control cylinder 14 moves to the right side in FIG. 2, the swash plate 10S of the traveling hydraulic pump 10 moves in a direction to discharge hydraulic oil to the hydraulic supply line 10b in conjunction with this movement. Tilt.
  • the amount of movement of the piston 14a increases as the pump control pressure supplied from the reverse pump electromagnetic proportional control valve 13 increases, the amount of change in the swash plate tilt angle of the traveling hydraulic pump 10 increases. That is, when a command signal is given from the control device 30 to the reverse pump electromagnetic proportional control valve 13, a pump control pressure corresponding to the command signal is given from the reverse pump electromagnetic proportional control valve 13 to the pump displacement control cylinder 14. It is done. Then, the operation of the pump displacement control cylinder 14 causes the swash plate 10S of the traveling hydraulic pump 10 to tilt so that a desired amount of hydraulic oil can be discharged to the hydraulic pressure supply line 10b. As a result, when the engine 4 rotates, hydraulic oil is discharged from the traveling hydraulic pump 10 to the hydraulic pressure supply line 10b, and the hydraulic motor 20 rotates in the reverse direction.
  • the motor capacity setting unit 21 is provided in the hydraulic motor 20.
  • the motor capacity setting unit 21 includes a motor electromagnetic proportional control valve 22, a motor cylinder control valve 23, and a motor capacity control cylinder 24.
  • motor control pressure is supplied from the motor electromagnetic proportional control valve 22 to the motor cylinder control valve 23 to control the motor capacity.
  • the cylinder 24 is activated.
  • the motor capacity control cylinder 24 operates, the swash plate tilt angle of the hydraulic motor 20 changes in conjunction with the movement of the motor capacity control cylinder 24. For this reason, the capacity
  • FIG. Specifically, the motor capacity setting unit 21 is configured such that the swash plate tilt angle of the hydraulic motor 20 decreases as the motor control pressure supplied from the motor electromagnetic proportional control valve 22 increases.
  • the charge pump 15 is driven by the engine 4.
  • the charge pump 15 supplies pump control pressure to the pump displacement control cylinder 14 via the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13 described above.
  • the charge pump 15 has a function of supplying motor control pressure to the motor cylinder control valve 23 via the motor electromagnetic proportional control valve 22.
  • the engine 4 drives the work machine hydraulic pump 16 in addition to the traveling hydraulic pump 10.
  • the work machine hydraulic pump 16 supplies hydraulic oil to a lift cylinder 7 and a tilt cylinder 8 that are work actuators for driving the work machine 5.
  • the forklift 1 includes an inching potentiometer (brake potentiometer) 40, an accelerator potentiometer 41, a forward / reverse lever switch 42, an engine rotation sensor 43, a vehicle speed sensor 46, pressure sensors 47A and 47B, a pressure sensor 48, and a temperature sensor 49.
  • the inching potentiometer 40 detects and outputs the operation amount when the inching pedal (brake pedal) 40a is operated.
  • the operation amount of the inching pedal 40a is the inching operation amount Is.
  • the inching operation amount Is output from the inching potentiometer 40 is input to the control device 30.
  • the inching operation amount Is may be referred to as an inching stroke Is.
  • the accelerator potentiometer 41 outputs the operation amount Aop of the accelerator pedal 41a when the accelerator pedal 41a is operated.
  • the operation amount Aop of the accelerator pedal 41a is also referred to as an accelerator opening Aop.
  • the accelerator opening Aop output from the accelerator potentiometer 41 is input to the control device 30.
  • the forward / reverse lever switch 42 is a selection switch for switching the traveling direction of the forklift 1 to forward or reverse.
  • the forward / reverse lever switch 42 is applied.
  • the forward / reverse lever 42a is a traveling direction switching device for switching the traveling direction of the forklift 1 to forward or reverse.
  • Information indicating the traveling direction of the forklift 1 selected by the forward / reverse lever switch 42 is given from the forward / reverse lever switch 42 to the control device 30 as the traveling direction command value DR.
  • the traveling direction command value DR indicates that F is forward, N is neutral, and R is reverse.
  • the traveling direction of the forklift 1 selected by the forward / reverse lever switch 42 includes both the direction in which the forklift 1 will travel and the direction in which the forklift 1 actually travels.
  • the engine rotation sensor 43 detects the actual rotation speed of the engine 4.
  • the rotation speed of the engine 4 detected by the engine rotation sensor 43 is the actual rotation speed Nr of the engine 4.
  • Information indicating the rotational speed Nr of the engine 4 is input to the control device 30.
  • the rotational speed of the engine 4 is the rotational speed of the output shaft 4S of the engine 4 per unit time.
  • the vehicle speed sensor 46 is a device that detects a speed at which the forklift 1 travels, that is, a vehicle speed Vc.
  • the pressure sensor 47A is provided in the hydraulic pressure supply line 10a and detects the pressure of the hydraulic oil in the hydraulic pressure supply line 10a.
  • the pressure sensor 47B is provided in the hydraulic pressure supply line 10b and detects the pressure of the hydraulic oil in the hydraulic pressure supply line 10b.
  • the pressure detected by the pressure sensor 47A corresponds to the pressure of hydraulic oil in the A port 10A of the traveling hydraulic pump 10.
  • the pressure detected by the pressure sensor 47B corresponds to the pressure of hydraulic oil in the B port 10B of the traveling hydraulic pump 10.
  • the control device 30 acquires the detection values of the pressure sensor 47A and the pressure sensor 47B and uses them in the work vehicle control method according to the present embodiment.
  • the pressure sensor 48 is a lift pressure detection device that detects a lift pressure in the lift cylinder 7, that is, a pressure of hydraulic oil in the lift cylinder 7.
  • the temperature sensor 49 is a temperature detection device that detects the temperature of hydraulic oil in the HST.
  • the control device 30 includes a processing unit 30C and a storage unit 30M.
  • the control device 30 is a device that includes, for example, a computer and executes various processes related to the control of the forklift 1.
  • the processing unit 30C is, for example, a device that combines a CPU (Central Processing Unit) and a memory.
  • the processing unit 30C controls the operation of the main hydraulic circuit 100 by reading a computer program stored in the storage unit 30M for controlling the main hydraulic circuit 100 and executing instructions described therein. .
  • the storage unit 30M stores the above-described computer program, data necessary for controlling the main hydraulic circuit 100, and the like.
  • the storage unit 30M is, for example, a ROM (Read Only Memory), a storage device, or a device that combines these.
  • the controller 30 is electrically connected to various sensors such as an inching potentiometer 40, an accelerator potentiometer 41, a forward / reverse lever switch 42, an engine rotation sensor 43, a vehicle speed sensor 46, and pressure sensors 47A and 47B. Based on the input signals from these various sensors, the control device 30 generates command signals for the forward pump electromagnetic proportional control valve 12 and the reverse pump electromagnetic proportional control valve 13, and generates the generated command signals respectively.
  • the electromagnetic proportional control valves 12, 13 and 22 are given.
  • the control device 30 shown in FIG. 2 executes the work vehicle control method according to the present embodiment when the forklift 1 performs a switchback operation.
  • the switchback operation is an operation of the forklift 1 when the actual traveling direction of the forklift 1 is different from the traveling direction defined by the traveling direction command value DR. For example, when the operator depresses the accelerator pedal 41a shown in FIG. 1 and the forklift 1 is advanced with the forward / reverse lever 42a as the forward F, the operation when the forward / reverse lever 42a is switched to the reverse R is switched back. Is the action.
  • FIG. 3 is a diagram illustrating an example of the switchback operation.
  • Such an operation is an example of a switchback operation.
  • FIG. 4 is a control block diagram of the control device 30.
  • the control device 30, more specifically the processing unit 30C executes the work machine control method according to the present embodiment during the switchback operation of the forklift 1.
  • the processing unit 30 ⁇ / b> C of the control device 30 includes a filter 31, a rotation speed limiting unit 32, a switching unit 33, and a small selection unit 34.
  • the filter 31 performs a filtering process on the vehicle speed Vc of the forklift 1 obtained from the vehicle speed sensor 46 and outputs the result.
  • the filter 31 is a temporary delay filter, and outputs the output value Vcf after passing through the filter 31 with the vehicle speed Vc acquired from the vehicle speed sensor 46 as an input value. Since the vehicle speed Vc may increase or decrease due to slip when the forklift 1 stops, the filter 31 reduces the increase or decrease of the vehicle speed Vc.
  • the output value Vcf is expressed by, for example, Expression (1).
  • F in Formula (1) is a cut-off frequency.
  • the cutoff frequency f is the reciprocal of the time constant ⁇ of the temporary delay.
  • ⁇ t is a control cycle of the control device 30.
  • Vcfb is the output value of the filter 31 in the previous cycle, that is, in the previous control cycle.
  • the cutoff frequency f is greater when the traveling direction command value DR output by the forward / reverse lever switch 42 is N than when the traveling direction command value DR is F or R.
  • Vcf Vc ⁇ 2 ⁇ ⁇ ⁇ f ⁇ ⁇ t / (2 ⁇ ⁇ ⁇ f ⁇ ⁇ t + 1) + Vcfb / (2 ⁇ ⁇ ⁇ f ⁇ ⁇ t + 1) (1)
  • FIG. 5 is a diagram showing a table 50 for giving an upper limit to the rotational speed Nr of the engine 4 during the switchback operation of the forklift 1.
  • FIG. 6 is a graph showing the table 50 shown in FIG.
  • the rotation speed limiter 32 acquires the output value Vcf of the filter 31 and the traveling direction command value DR of the forward / reverse lever switch 42.
  • the output value Vcf of the filter 31 corresponds to the vehicle speed Vc.
  • the rotational speed limiting unit 32 determines whether or not the forklift 1 is in a switchback operation from the output value Vcf and the traveling direction command value DR.
  • the rotation speed limiting unit 32 limits the rotation speed Nr of the engine 4 with respect to the operation of the accelerator pedal 41a by the operator.
  • the rotational speed limiting unit 32 determines the relationship between the vehicle speed Vc of the forklift 1 and the upper limit of the rotational speed Nr of the engine 4 during the switchback operation of the forklift 1, as the absolute value of the vehicle speed Vc approaches zero.
  • the setting has a range in which the upper limit is increased.
  • the table 50 shown in FIG. 5 is stored in the storage unit 30M of the control device 30 shown in FIG.
  • the table 50 shows that the upper limit Acmax is 0 until the vehicle speed Vc is -V3 and -V2, but when the vehicle speed Vc is -V1, the upper limit Acmax is A1, and when the vehicle speed Vc is 0, the upper limit Acmax is 100%, that is, no limit. ing. Since the vehicle speed Vc and the upper limit Acmax are set discretely in the table 50 shown in FIG. 5, the upper limit Acmax is obtained by interpolation, for example, in a portion where these do not exist. As a result, the relationship between the vehicle speed Vc during the switchback operation and the upper limit Acmax of the rotational speed Nr is as shown in FIG. Thus, the range where the vehicle speed Vc is closer to 0 than ⁇ V2 is the range where the upper limit Acmax increases as the absolute value of the vehicle speed Vc approaches 0.
  • the rotational speed Nr of the engine 4 is uniquely determined.
  • the upper limit of the rotational speed Nr is set by setting the upper limit of the accelerator opening Aop instead of the rotational speed Nr of the engine 4. Therefore, the upper limit Acmax of the table 50 is the upper limit of the accelerator opening Aop. For example, until the vehicle speed Vc is -V2, even if the accelerator pedal 41a is depressed 100%, the accelerator opening Aop is 0%. Therefore, the rotational speed Nr of the engine 4 is the rotational speed when the accelerator opening Aop is 0%. Limited.
  • the rotational speed limiting unit 32 determines whether the switchback operation is performed when the forward / reverse lever switch 42 detects the reverse operation of the forward / reverse lever 42a for reversing the traveling direction of the forklift 1. Can be determined. For example, when the forklift 1 is traveling forward, the forward / reverse lever 42a is moving forward. At this time, when the forward / reverse lever 42a is switched to reverse, that is, when reverse operation is performed, the switchback operation is in progress. It can be determined that there is.
  • the reversing operation is, for example, an operation given to the forward / reverse lever 42a in order to reverse the traveling direction of the forklift 1 from forward to backward or from backward to forward.
  • the rotation speed limiter 32 is connected to the filter 31 when the forward / reverse lever 42a is switched to forward or neutral while the forklift 1 is moving backward, or when the forward / backward lever 42a is switched to neutral while the forklift 1 is moving forward.
  • the vehicle speed acquired from the vehicle speed sensor 46 is multiplied by +1, and the vehicle speed acquired from the vehicle speed sensor 46 via the filter 31 is multiplied by -1 when the forward / reverse lever 42a is switched later while the forklift 1 is moving forward.
  • the rotational speed limiting unit 32 determines that the switchback operation is being performed, and when the forward / reverse lever 42a is switched to forward or neutral, the output value Vcf of the filter 31, that is, the vehicle speed Vc is multiplied by +1 to increase the table 50. To give. When the rotational speed limiter 32 determines that the switchback operation is being performed and the forward / reverse lever 42a is switched to the reverse travel, the output value Vcf of the filter 31, that is, the vehicle speed Vc is multiplied by ⁇ 1 to the table 50. give. Then, the rotation speed limiter 32 acquires the upper limit Acmax corresponding to the vehicle speed Vc given to the table 50 and outputs it to the small selector 34.
  • FIG. 7 is a diagram showing the table 51 used when neutral is selected during the switchback operation of the forklift 1.
  • FIG. 8 is a graph showing the table 51 shown in FIG.
  • the rotational speed limiter 32 starts from the vehicle speed having a larger absolute value than when the reverse operation is detected.
  • the upper limit Acmax is set to be larger than when the reversal operation is detected.
  • the upper limit Acmax is 100% from the vehicle speed ⁇ V4 to the range + V4, which has an absolute value larger than the absolute value of the vehicle speed ⁇ V3 of the table 50 shown in FIG.
  • the table 51 is stored in the storage unit 30M of the control device 30 shown in FIG.
  • the rotational speed limiter 32 uses the table 51 instead of the table 50 to obtain the upper limit Acmax of the rotational speed Nr of the engine 4. Since the upper limit Acmax is 100% in the range of the vehicle speed Vc wider than the table 50, the table 51 can suppress the decrease in the rotational speed Nr when the forward / reverse lever 42a is operated neutrally.
  • the table 51 is not limited to this, and as shown by the dotted line in FIG. 8, the upper limit Acmax gradually increases with an increase in the vehicle speed Vc in the range of the vehicle speed ⁇ V5 to ⁇ V4, and the range of the vehicle speed + V4 to + V5. Thus, the upper limit Acmax may be gradually decreased as the vehicle speed Vc increases.
  • a predetermined upper limit of the engine rotational speed (hereinafter referred to as a switch) Act) (referred to as the upper limit at back).
  • the accelerator opening Aop is used as the switchback upper limit Act.
  • the switchback upper limit Act is based on the relationship between the vehicle speed Vc and the upper limit Acmax of the rotational speed Nr when the reverse operation of the forward / reverse lever 42a is detected, that is, the minimum value A1 other than 0 of the upper limit Acmax set in the table 50. Is also a small value.
  • the control device 30 changes the forward command signal Fwc for the forward pump electromagnetic proportional control valve 12 and the reverse command signal Bkc for the reverse pump electromagnetic proportional control valve 13 shown in FIG.
  • the control device 30 decreases the reverse command signal Bkc and increases the forward command signal Fwc, and when the vehicle speed Vc reaches a certain value, the reverse command The signal Bkc is set to 0.
  • the control device 30 When the forward / reverse lever 42a is switched to reverse while the forklift 1 is moving forward, the control device 30 decreases the forward command signal Fwc and increases the reverse command signal Bkc, and when the vehicle speed Vc reaches a certain value, the control device 30 30 sets the forward command signal Fwc to 0. During the switchback operation, the switching unit 33 determines that the switchback is being performed until the reverse command signal Bkc or the forward command signal Fwc becomes zero.
  • the switching unit 33 When it is determined that the switchback is being performed, the switching unit 33 outputs the switchback upper limit Act of the engine rotation speed to the small selection unit 34.
  • the smaller one of the obtained upper limit Acmax is set as an engine rotational speed upper limit Nrmax which is the upper limit of the rotational speed Nr of the engine 4.
  • the control device 30 sets an upper limit of the rotational speed Nr of the engine 4 even when an abnormality occurs in the vehicle speed sensor 46, and the deceleration of the forklift 1 is lowered during the switchback operation. The possibility of doing so can be reduced.
  • the rotation speed limiter 32 determines whether the forklift 1 is in the switchback operation from the output value Vcf of the filter 31 corresponding to the vehicle speed Vc and the traveling direction command value DR. In other words, the rotation speed limiting unit 32 determines that the switchback operation is not performed when the vehicle speed changes from a positive value through 0 to a negative value or from a negative value through 0 to a positive value. .
  • the processing unit 30C of the control device 30 includes a fuel injection amount calculation unit 35.
  • the fuel injection amount calculation unit 35 determines the amount of fuel to be injected by the fuel injection injector 4I of the engine 4 based on the accelerator opening Aop detected by the accelerator potentiometer 41 and the rotation speed Nr of the engine 4 detected by the engine rotation sensor 43. Calculate the quantity.
  • the fuel injection amount calculation unit 35 acquires the engine rotation speed upper limit Nrmax from the small selection unit 34, and the fuel injection injector is within a range in which the upper limit value of the rotation speed Nr of the engine 4 does not exceed the engine rotation speed upper limit Nrmax.
  • a fuel injection amount Qf of 4I is calculated.
  • the fuel injection amount calculation unit 35 outputs a command value for the fuel injection amount Qf to the fuel injection injector 4I.
  • the fuel injector 4I injects fuel corresponding to the fuel injection amount Qf output from the fuel injection amount calculation unit 35 into the engine 4.
  • the vehicle speed Vc is set so that the upper limit Acmax of the rotational speed Nr of the engine 4 increases as the absolute value of the vehicle speed Vc of the forklift 1 approaches zero.
  • a relationship with the upper limit Acmax of the rotational speed Nr is set.
  • the upper limit Acmax of the rotational speed Nr of the engine 4 is increased as the absolute value of the vehicle speed Vc of the forklift 1 approaches 0, and when the vehicle speed Vc is 0, no upper limit Acmax is provided.
  • the control apparatus 30 can improve the responsiveness of the rotational speed increase of the engine 4 with respect to operation of the accelerator pedal 41a when the advancing direction of the forklift 1 is actually reversed. For this reason, the control device 30 can quickly increase the rotational speed Nr of the engine 4 at the timing when the traveling direction of the forklift 1 is switched, and can smoothly shift from backward to forward or forward to backward.
  • the upper limit Acmax of the rotational speed Nr of the engine 4 is not provided, so that the forklift 1 can quickly shift to the cargo handling operation after stopping.
  • the control device 30 detects the operation of the forward / reverse lever 42 a from the forward / reverse lever switch 42 while the forklift 1 is traveling.
  • the rotational speed limiter 32 of the control device 30 is set on the table 51 when the forward / reverse lever switch 42 detects that the forward / reverse lever 42a has been operated to reverse the traveling direction while the forklift 1 is traveling.
  • the vehicle speed Vc detected by the vehicle speed sensor 46 is given to the relationship between the vehicle speed Vc and the upper limit Acmax of the engine rotation speed Nr, and the corresponding upper limit Acmax is obtained and output to the small selection unit 34.
  • the switching unit 33 outputs the switchback upper limit Act to the small selection unit 34.
  • the small selection unit 34 sets the smaller one of the upper limit Acmax obtained by the rotation speed limiting unit 32 and the switchback upper limit Act output from the switching unit 33 as the engine rotation speed upper limit Nrmax.
  • the fuel injection amount calculation unit 35 acquires the engine rotation speed upper limit Nrmax from the small selection unit 34 and controls the engine 4 so that the upper limit value of the rotation speed Nr of the engine 4 does not exceed the engine rotation speed upper limit Nrmax.
  • the work vehicle may be a wheel loader, for example, as long as it is a work vehicle equipped with wheels, and is not limited to the forklift 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

 作業車両は、作業機と、エンジンと、前記エンジンによって駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータと、前記油圧モータによって駆動されて前記作業車両を走行させる駆動輪と、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の操作状態を検出する選択スイッチと、前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記選択スイッチが検出したら、前記作業車両の車速と前記エンジンの回転速度の上限との関係を、前記車速の絶対値が0に近づくにしたがって前記上限が大きくなる設定とし、設定された前記関係と前記作業車両の車速とから前記エンジンの回転速度の上限を求める制御装置と、を含む。

Description

作業車両及び作業車両の制御方法
 本発明は、エンジンによって駆動される可変容量型の油圧ポンプと、前記油圧ポンプとの間で閉回路を形成し、前記油圧ポンプから吐出された作動油によって駆動される油圧モータと、を有する作業車両及び作業車両の制御方法に関する。
 駆動源であるエンジンと、駆動輪との間にHST(Hydro Static Transmission:静油圧式動力伝達装置)と称される油圧駆動装置が設けられているフォークリフトがある。HSTは、閉回路である主油圧回路に、エンジンによって駆動される可変容量型の走行用油圧ポンプと、走行用油圧ポンプから吐出された作動油によって駆動される可変容量型の油圧モータとを備えており、油圧モータの駆動力を駆動輪に伝達することによって車両を走行させるものである。
 フォークリフトのような作業車両は、後進走行中に前後進レバーを後進側から前進側へ操作したり、前進走行中に前後進レバーを前進側から後進側へ操作したりすることにより、後進走行又は前進走行を減速させ停止した直後に、前進走行又は後進走行を増速させるスイッチバック動作が行われる(例えば、特許文献1)。
特開平6-58178号公報
 特許文献1に記載された技術は、スイッチバック動作中、アクセルペダルの操作に対してエンジンの回転速度が制限されていないため、燃料を無駄に消費する可能性がある。
 本発明は、HSTを備えた作業車両がスイッチバック動作をする際に、燃料消費量の増加を抑制することを目的とする。
 本発明は、作業機を備えた作業車両であり、エンジンと、前記エンジンによって駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータと、前記油圧モータによって駆動されて前記作業車両を走行させる駆動輪と、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の操作状態を検出する選択スイッチと、前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記選択スイッチが検出したら、前記作業車両の車速と前記エンジンの回転速度の上限との関係を、前記車速の絶対値が0に近づくにしたがって前記上限が大きくなる設定とし、設定された前記関係と前記作業車両の車速とから前記エンジンの回転速度の上限を求める制御装置と、を含む。
 前記制御装置は、前記作業車両の走行中に前記進行方向切替装置が中立に操作されたことを前記選択スイッチが検出したら、前記反転操作が検出された場合よりも絶対値が大きい車速から0までの範囲で、前記エンジンの回転速度の上限が、前記反転操作が検出された場合よりも大きくなる設定とすることが好ましい。
 前記制御装置は、前記車速を検出する装置の異常発生時に、前記反転操作が検出されると、予め定められたエンジン回転速度の上限と、前記反転操作が検出された場合の前記関係に設定されている上限及び前記車速から求められた前記エンジンの回転速度と、のうち小さい方を用いることが好ましい。
 前記反転操作が検出された場合の前記関係は、第1の車速までは前記エンジンの回転速度の上限が0であり、前記第1の車速を含み0までの範囲は、前記車速の絶対値が0に近づくにしたがって前記エンジンの回転速度の上限が大きくなることが好ましい。
 前記作業車両はフォークリフトであることが好ましい。
 本発明は、作業機と、エンジンと、前記エンジンによって駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータと、前記油圧モータによって駆動される駆動輪と、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の操作状態を検出する選択スイッチと、を備えた作業車両を制御するにあたって、前記作業車両の走行中に、前記進行方向切替装置の操作を検出することと、前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記選択スイッチが検出したら、前記作業車両の車速と前記エンジンの回転速度の上限との関係を、前記車速の絶対値が0に近づくにしたがって前記上限が大きくなる設定とすることと、設定された前記関係と前記作業車両の車速とから前記エンジンの回転速度の上限を求めることと、を含む、作業車両の制御方法である。
 本発明は、HSTを備えた作業車両がスイッチバック動作をする際に、燃料消費量の増加を抑制することができる。
図1は、本実施形態に係るフォークリフトの全体構成を示す図である。 図2は、図1に示されたフォークリフト1の制御系統を示すブロック図である。 図3は、スイッチバック動作の一例を示す図である。 図4は、制御装置の制御ブロック図である。 図5は、フォークリフトのスイッチバック動作中にエンジンの回転速度に上限を与えるためのテーブルを示す図である。 図6は、図5に示されたテーブルをグラフに表した図である。 図7は、フォークリフトのスイッチバック動作中に中立が選択された場合に用いられるテーブルを示す図である。 図8は、図7に示されたテーブルをグラフに表した図である。
 以下、図面を参照してこの発明を実施するための形態について説明する。
<フォークリフト>
 図1は、本実施形態に係るフォークリフト1の全体構成を示す図である。図2は、図1に示されたフォークリフト1の制御系統を示すブロック図である。フォークリフト1は、駆動輪2a及び操向輪2bを有した車体3と、作業機5と、駆動輪2a及び操向輪2bを制動する機械式ブレーキ9と、を有する。フォークリフト1は、運転席STから操舵部材HLへ向かう側が前であり、操舵部材HLから運転席STへ向かう側が後である。作業機5は、車体3の前方に設けられる。
 車体3には、内燃機関の一例であるエンジン4、エンジン4を駆動源として駆動する可変容量型の走行用油圧ポンプ10及び作業機油圧ポンプ16が設けられる。エンジン4は、例えばディーゼルエンジンであるが、これには限定されない。走行用油圧ポンプ10及び作業機油圧ポンプ16には、エンジン4の出力軸4Sが連結されている。走行用油圧ポンプ10及び作業機油圧ポンプ16は、出力軸4Sを介してエンジン4に駆動される。駆動輪2aは、油圧モータ20の動力で駆動される。可変容量型の走行用油圧ポンプ10と可変容量型の油圧モータ20とは閉じた油圧回路で連通されて、HSTを形成している。このように、フォークリフト1は、HSTによって走行する。本実施形態において、走行用油圧ポンプ10と作業機油圧ポンプ16とは、いずれも斜板10Sと斜板16Sとを有し、斜板10Sと斜板16Sとの傾転角が変更されることにより、容量が変化する。
 作業機5は、積荷を載置するフォーク6を昇降させるリフトシリンダ7及びフォーク6をチルトさせるチルトシリンダ8を有する。車体3の運転席には、前後進レバー42a、ブレーキ操作部としてのインチングペダル(ブレーキペダル)40a、アクセル操作部としてのアクセルペダル41a並びに作業機5を操作するためのリフトレバー及びチルトレバーを含む図示しない作業機操作レバーが設けられる。インチングペダル40aは、インチング率を操作する。アクセルペダル41aは、エンジン4への燃料供給量を変更する。インチングペダル40a及びアクセルペダル41aは、フォークリフト1のオペレータが、運転席から足踏み操作できる位置に設けられている。図1では、インチングペダル40aとアクセルペダル41aとが重なった状態で描かれている。
 図2に示されるように、フォークリフト1は、主油圧回路100を備えている。主油圧回路100は、走行用油圧ポンプ10と、油圧モータ20と、両者を接続する油圧供給管路10a及び油圧供給管路10bとを含んだ閉回路である。走行用油圧ポンプ10は、エンジン4によって駆動されて作動油を吐出する装置である。本実施形態において、走行用油圧ポンプ10は、例えば、斜板傾転角を変更することによって容量を変更することのできる可変容量型のポンプである。
 油圧モータ20は、走行用油圧ポンプ10から吐出された作動油によって回転駆動される。油圧モータ20は、例えば、斜板20Sを有し、斜板傾転角を変更することによって容量を変更することのできる可変容量型の油圧モータである。油圧モータ20は、固定容量型の油圧モータであってもよい。油圧モータ20は、その出力軸20aがトランスファ20bを介して駆動輪2aに接続されている。油圧モータ20は、トランスファ20bを介して駆動輪2aを回転駆動することで、フォークリフト1を走行させることができる。
 油圧モータ20は、走行用油圧ポンプ10からの作動油の供給方向に応じて回転方向を切り替えることが可能である。油圧モータ20の回転方向が切り替えられることにより、フォークリフト1は前進又は後進することができる。以下の説明においては、便宜上、油圧供給管路10aから油圧モータ20に作動油が供給された場合にフォークリフト1が前進し、油圧供給管路10bから油圧モータ20に作動油が供給された場合にフォークリフト1が後進するものとする。
 走行用油圧ポンプ10は、油圧供給管路10aに接続されている部分がAポート10A、油圧供給管路10bに接続されている部分がBポート10Bである。フォークリフト1の前進時には、Aポート10Aが作動油の吐出側となり、Bポート10Bが作動油の流入側となる。フォークリフト1の後進時には、Aポート10Aが作動油の流入側となり、Bポート10Bが作動油の吐出側となる。
 フォークリフト1は、ポンプ容量設定ユニット11、モータ容量設定ユニット21及びチャージポンプ15を有する。ポンプ容量設定ユニット11は、走行用油圧ポンプ10に設けられる。ポンプ容量設定ユニット11は、前進用ポンプ電磁比例制御バルブ12、後進用ポンプ電磁比例制御バルブ13及びポンプ容量制御シリンダ14を備える。ポンプ容量設定ユニット11は、前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13に、後述する制御装置30から指令信号が与えられる。ポンプ容量設定ユニット11は、制御装置30から与えられた指令信号に応じてポンプ容量制御シリンダ14が作動し、走行用油圧ポンプ10の斜板傾転角が変化することによって、走行用油圧ポンプ10の容量が変更される。
 ポンプ容量制御シリンダ14は、シリンダケース14C内にピストン14aが収納されている。ピストン14aは、シリンダケース14Cとピストン14aとの間の空間に作動油が供給されることによって、シリンダケース14C内を往復する。ポンプ容量制御シリンダ14は、斜板傾転角が0の状態において、ピストン14aが中立位置に保持されている。このため、エンジン4が回転しても、走行用油圧ポンプ10から主油圧回路100の油圧供給管路10a又は油圧供給管路10bへ吐出される作動油の量は0である。
 走行用油圧ポンプ10の斜板傾転角が0の状態から、例えば、前進用ポンプ電磁比例制御バルブ12に対して制御装置30から走行用油圧ポンプ10の容量を増大する旨の指令信号が与えられるとする。すると、この指令信号に応じて前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14にポンプ制御圧力が与えられる。その結果、ピストン14aは、図2において左側に移動する。ポンプ容量制御シリンダ14のピストン14aが図2において左側に移動すると、この動きに連動して走行用油圧ポンプ10の斜板10Sは、油圧供給管路10aに作動油を吐出する方向へ向けて傾く。
 前進用ポンプ電磁比例制御バルブ12からのポンプ制御圧力が増大するにしたがって、ピストン14aの移動量が大きくなる。このため、走行用油圧ポンプ10での斜板10Sの傾転角は、その変化量も大きなものとなる。つまり、前進用ポンプ電磁比例制御バルブ12に対して制御装置30から指令信号が与えられると、この指令信号に応じたポンプ制御圧力が前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に与えられる。前述したポンプ制御圧力によって、ポンプ容量制御シリンダ14が作動することにより、走行用油圧ポンプ10の斜板10Sが油圧供給管路10aに対して所定量の作動油を吐出できるように傾く。この結果、エンジン4が回転すれば、走行用油圧ポンプ10から油圧供給管路10aに作動油が吐出されて、油圧モータ20は前進方向に回転する。
 前述した状態において、前進用ポンプ電磁比例制御バルブ12に制御装置30から走行用油圧ポンプ10の容量を減少する旨の指令信号が与えられると、この指令信号に応じて前進用ポンプ電磁比例制御バルブ12からポンプ容量制御シリンダ14に供給されるポンプ制御圧力が減少する。このため、ポンプ容量制御シリンダ14のピストン14aは、中立位置に向かって移動する。この結果、走行用油圧ポンプ10の斜板傾転角が減少し、走行用油圧ポンプ10から油圧供給管路10aへの作動油の吐出量が減少する。
 制御装置30が、後進用ポンプ電磁比例制御バルブ13に対して走行用油圧ポンプ10の容量を増大する旨の指令信号を与えると、この指令信号に応じて後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に対してポンプ制御圧力が与えられる。すると、ピストン14aは、図2において右側に移動する。ポンプ容量制御シリンダ14のピストン14aが、図2において右側に移動すると、これに連動して走行用油圧ポンプ10の斜板10Sが油圧供給管路10bに対して作動油を吐出する方向へ向かって傾転する。
 後進用ポンプ電磁比例制御バルブ13から供給されるポンプ制御圧力が増大するにしたがってピストン14aの移動量が大きくなるため、走行用油圧ポンプ10の斜板傾転角の変化量は大きくなる。つまり、後進用ポンプ電磁比例制御バルブ13に対して制御装置30から指令信号が与えられると、この指令信号に応じたポンプ制御圧力が後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に与えられる。そして、ポンプ容量制御シリンダ14の作動により走行用油圧ポンプ10の斜板10Sが油圧供給管路10bに対して所望量の作動油を吐出できるように傾く。この結果、エンジン4が回転すると、走行用油圧ポンプ10から油圧供給管路10bに作動油が吐出されて、油圧モータ20は、後進方向に回転する。
 後進用ポンプ電磁比例制御バルブ13に対して制御装置30から走行用油圧ポンプ10の容量を減少する旨の指令信号が与えられると、この指令信号に応じて後進用ポンプ電磁比例制御バルブ13からポンプ容量制御シリンダ14に供給するポンプ制御圧力が減少し、ピストン14aが中立位置に向けて移動する。この結果、走行用油圧ポンプ10の斜板傾転角が減少するので、走行用油圧ポンプ10から油圧供給管路10bへ吐出される作動油の量が減少する。
 モータ容量設定ユニット21は、油圧モータ20に設けられる。モータ容量設定ユニット21は、モータ電磁比例制御バルブ22、モータ用シリンダ制御バルブ23及びモータ容量制御シリンダ24を備えている。モータ容量設定ユニット21では、モータ電磁比例制御バルブ22に制御装置30から指令信号が与えられると、モータ電磁比例制御バルブ22からモータ用シリンダ制御バルブ23にモータ制御圧力が供給されて、モータ容量制御シリンダ24が作動する。モータ容量制御シリンダ24が作動すると、モータ容量制御シリンダ24の動きに連動して油圧モータ20の斜板傾転角が変化することになる。このため、制御装置30からの指令信号に応じて油圧モータ20の容量が変更されることになる。具体的には、モータ容量設定ユニット21は、モータ電磁比例制御バルブ22から供給されるモータ制御圧力が増加するにしたがって、油圧モータ20の斜板傾転角が減少するようになっている。
 チャージポンプ15は、エンジン4によって駆動される。チャージポンプ15は、前述した前進用ポンプ電磁比例制御バルブ12及び後進用ポンプ電磁比例制御バルブ13を介してポンプ容量制御シリンダ14にポンプ制御圧力を供給する。チャージポンプ15は、モータ電磁比例制御バルブ22を介してモータ用シリンダ制御バルブ23にモータ制御圧力を供給する機能を有している。
 本実施形態において、エンジン4は、走行用油圧ポンプ10の他に、作業機油圧ポンプ16を駆動する。この作業機油圧ポンプ16は、作業機5を駆動するための作業用アクチュエータであるリフトシリンダ7及びチルトシリンダ8に作動油を供給する。
 フォークリフト1は、インチングポテンショメータ(ブレーキポテンショメータ)40、アクセルポテンショメータ41、前後進レバースイッチ42、エンジン回転センサ43、車速センサ46、圧力センサ47A、47B、圧力センサ48及び温度センサ49を備えている。
 インチングポテンショメータ40は、インチングペダル(ブレーキペダル)40aが操作された場合に、その操作量を検出して出力する。インチングペダル40aの操作量は、インチング操作量Isである。インチングポテンショメータ40が出力するインチング操作量Isは、制御装置30に入力される。以下において、インチング操作量IsをインチングストロークIsと称することもある。
 アクセルポテンショメータ41は、アクセルペダル41aが操作された場合に、アクセルペダル41aの操作量Aopを出力するものである。アクセルペダル41aの操作量Aopは、アクセル開度Aopともいう。アクセルポテンショメータ41が出力するアクセル開度Aopは、制御装置30に入力される。
 前後進レバースイッチ42は、フォークリフト1の進行方向を前進又は後進に切り替えるための選択スイッチである。本実施形態では、運転席から選択操作できる位置に設けた前後進レバー42aの操作により、前進と、中立と、後進との3つの進行方向を選択して、フォークリフト1の前進と後進とを切り換えることができる前後進レバースイッチ42を適用している。前後進レバー42aは、フォークリフト1の進行方向を前進又は後進に切り替えるための進行方向切替装置である。前後進レバースイッチ42によって選択されたフォークリフト1の進行方向を示す情報は、進行方向指令値DRとして前後進レバースイッチ42から制御装置30に与えられる。進行方向指令値DRは、Fが前進、Nが中立、Rが後進を示す。前後進レバースイッチ42が選択するフォークリフト1の進行方向は、これからフォークリフト1が進行する方向と、フォークリフト1が実際に進行している方向との両方を含む。
 エンジン回転センサ43は、エンジン4の実際の回転速度を検出するものである。エンジン回転センサ43によって検出されたエンジン4の回転速度は、実際のエンジン4の回転速度Nrである。エンジン4の回転速度Nrを示す情報は、制御装置30に入力される。エンジン4の回転速度は、単位時間あたりにおけるエンジン4の出力軸4Sの回転数である。車速センサ46は、フォークリフト1が走行するときの速度、すなわち車速Vcを検出する装置である。
 圧力センサ47Aは、油圧供給管路10aに設けられて、油圧供給管路10a内の作動油の圧力を検出する。圧力センサ47Bは、油圧供給管路10bに設けられて、油圧供給管路10b内の作動油の圧力を検出する。圧力センサ47Aが検出する圧力は、走行用油圧ポンプ10のAポート10A内における作動油の圧力に相当する。圧力センサ47Bが検出する圧力は、走行用油圧ポンプ10のBポート10B内における作動油の圧力に相当する。制御装置30は、圧力センサ47A及び圧力センサ47Bの検出値を取得し、本実施形態に係る作業車両の制御方法に用いる。圧力センサ48は、リフトシリンダ7内のリフト圧力、すなわちリフトシリンダ7内の作動油の圧力を検出するリフト圧力検出装置である。温度センサ49は、HST内の作動油の温度を検出する温度検出装置である。
 制御装置30は、処理部30Cと記憶部30Mとを含む。制御装置30は、例えば、コンピュータを備え、フォークリフト1の制御に関する各種の処理を実行する装置である。処理部30Cは、例えば、CPU(Central Processing Unit)とメモリとを組合せた装置である。処理部30Cは、記憶部30Mに記憶されている、主油圧回路100を制御するためのコンピュータプログラムを読み込んでこれに記述されている命令を実行することにより、主油圧回路100の動作を制御する。記憶部30Mは、前述したコンピュータプログラム及び主油圧回路100の制御に必要なデータ等を記憶している。記憶部30Mは、例えば、ROM(Read Only Memory)、ストレージデバイス又はこれらを組合せた装置である。
 制御装置30には、インチングポテンショメータ40、アクセルポテンショメータ41、前後進レバースイッチ42、エンジン回転センサ43、車速センサ46及び圧力センサ47A、47Bといった各種センサ類が電気的に接続されている。制御装置30は、これらの各種センサ類からの入力信号に基づいて、前進用ポンプ電磁比例制御バルブ12、後進用ポンプ電磁比例制御バルブ13の指令信号を生成し、かつ生成した指令信号をそれぞれの電磁比例制御バルブ12、13、22に与える。
<スイッチバック動作>
 図2に示される制御装置30は、フォークリフト1がスイッチバック動作を実行するときに本実施形態に係る作業車両の制御方法を実行する。スイッチバック動作とは、フォークリフト1の実際の進行方向と、進行方向指令値DRが規定する進行方向とが相違する場合におけるフォークリフト1の動作である。例えば、オペレータが図1に示すアクセルペダル41aを踏み、かつ前後進レバー42aを前進Fとしてフォークリフト1を前進させている状態で、前後進レバー42aを後進Rに切り替えたとき等の動作がスイッチバック動作である。
 図3は、スイッチバック動作の一例を示す図である。例えば、フォークリフト1が荷物PKを積載して後進(進行方向指令値DR=B)しているときの、あるタイミングで、オペレータが前後進レバー42aを後進から前進(進行方向指令値DR=F)に切り替える。すると、フォークリフト1は前進を開始する。このような動作がスイッチバック動作の一例である。
<制御装置30の制御ブロック>
 図4は、制御装置30の制御ブロック図である。制御装置30、より具体的には処理部30Cは、フォークリフト1のスイッチバック動作時に、本実施形態に係る作業機械の制御方法を実行する。制御装置30の処理部30Cは、フィルタ31と、回転速度制限部32と、切替部33と、小選択部34とを含む。
 フィルタ31は、車速センサ46から取得したフォークリフト1の車速Vcにフィルタ処理を施して出力する。本実施形態において、フィルタ31は一時遅れフィルタであり、車速センサ46から取得した車速Vcを入力値として、フィルタ31を通過した後の出力値Vcfを出力する。フォークリフト1が停止する際のスリップにより車速Vcが増減する可能性があるので、フィルタ31により車速Vcの増減を緩和する。
 出力値Vcfは、例えば、式(1)で表される。式(1)中のfはカットオフ周波数である。カットオフ周波数fは、一時遅れの時定数τの逆数である。Δtは、制御装置30の制御周期である。Vcfbは1周期前、すなわち前回の制御周期におけるフィルタ31の出力値である。本実施形態において、カットオフ周波数fは、前後進レバースイッチ42が出力する進行方向指令値DRがF又はRであるときよりも、Nであるときの方が大きくなっている。
 Vcf=Vc×2×π×f×Δt/(2×π×f×Δt+1)+Vcfb/(2×π×f×Δt+1)・・・(1)
 図5は、フォークリフト1のスイッチバック動作中にエンジン4の回転速度Nrに上限を与えるためのテーブル50を示す図である。図6は、図5に示されたテーブル50をグラフに表した図である。回転速度制限部32は、フィルタ31の出力値Vcfと、前後進レバースイッチ42の進行方向指令値DRとを取得する。フィルタ31の出力値Vcfは、車速Vcに対応する。回転速度制限部32は、出力値Vcfと、進行方向指令値DRとからフォークリフト1がスイッチバック動作か否かを判定する。そして、回転速度制限部32は、フォークリフト1がスイッチバック動作をするときには、オペレータによるアクセルペダル41aの操作に対するエンジン4の回転速度Nrを制限する。本実施形態において、回転速度制限部32は、フォークリフト1のスイッチバック動作時に、フォークリフト1の車速Vcとエンジン4の回転速度Nrの上限との関係を、車速Vcの絶対値が0に近づくにしたがって上限が大きくなる範囲を有する設定とする。
 図5に示されるテーブル50は、図2に示す制御装置30の記憶部30Mに記憶されている。テーブル50は、車速Vcが-V3及び-V2までは上限Acmaxが0であるが、車速Vcが-V1では上限AcmaxがA1、車速Vcが0のときには上限Acmaxが100%、すなわち制限なしとなっている。図5に示されるテーブル50には車速Vcと上限Acmaxが離散的に設定されているので、これらが存在しない部分は例えば補間によって上限Acmaxが求められる。結果として、スイッチバック動作中の車速Vcと回転速度Nrの上限Acmaxとの関係は、図6に示されるようになる。このように、車速Vcが-V2よりも0に近い範囲が、車速Vcの絶対値が0に近づくにしたがって上限Acmaxが大きくなる範囲である。
 アクセル開度Aopが定まると、エンジン4の回転速度Nrが一義的に定まる。このため、本実施形態ではエンジン4の回転速度Nrの代わりにアクセル開度Aopの上限を設定することにより、回転速度Nrの上限を設定する。したがって、テーブル50の上限Acmaxは、アクセル開度Aopの上限である。例えば、車速Vcが-V2までは、アクセルペダル41aを100%踏み込んでもアクセル開度Aopは0%となるので、エンジン4の回転速度Nrは、アクセル開度Aopが0%のときの回転速度に制限される。
 回転速度制限部32は、フォークリフト1の走行中に、フォークリフト1の進行方向を反転させるための前後進レバー42aの反転操作を前後進レバースイッチ42が検出したことにより、スイッチバック動作か否かを判定することができる。例えば、フォークリフト1が前進で走行しているとき、前後進レバー42aは前進になっているが、このときに前後進レバー42aが後進に切り換えられる、すなわち反転操作されると、スイッチバック動作中であると判定できる。反転操作は、例えば、フォークリフト1の進行方向を前進から後進又は後進から前進に反転させるために、前後進レバー42aに与えられる操作である。
 図2に示される車速センサ46は、フォークリフト1が前進しているときに正の値の車速Vcを出力し、フォークリフト1が後進しているときに負の値の車速Vcを出力する。回転速度制限部32は、フォークリフト1が後進中に前後進レバー42aが前進又は中立に切り換えられたとき又はフォークリフト1が前進中に前後進レバー42aが中立に切り替えられたときに、フィルタ31を介して車速センサ46から取得した車速に+1を乗じ、フォークリフト1が前進中に前後進レバー42aが後に切り換えられたときに、フィルタ31を介して車速センサ46から取得した車速に-1を乗じる。
 回転速度制限部32は、スイッチバック動作中であると判定し、かつ前後進レバー42aが前進又は中立に切り換えられた場合に、フィルタ31の出力値Vcf、すなわち車速Vcに+1を乗じてテーブル50に与える。回転速度制限部32は、スイッチバック動作中であると判定し、かつ前後進レバー42aが後進に切り換えられた場合に、フィルタ31の出力値Vcf、すなわち車速Vcに-1を乗じてテーブル50に与える。そして、回転速度制限部32は、テーブル50に与えた車速Vcに対応する上限Acmaxを取得して小選択部34に出力する。
 図7は、フォークリフト1のスイッチバック動作中に中立が選択された場合に用いられるテーブル51を示す図である。図8は、図7に示されたテーブル51をグラフに表した図である。回転速度制限部32は、フォークリフト1の走行中に前後進レバー42aが中立に操作されたことを前後進レバースイッチ42が検出したら、反転操作が検出された場合よりも絶対値が大きい車速から0までの範囲で、上限Acmaxが、反転操作が検出された場合よりも大きくなる設定とする。図7に示されるテーブル51では、図5に示されるテーブル50の車速-V3の絶対値よりも絶対値が大きい車速-V4から+V4の範囲まで、上限Acmaxが100%となっている。テーブル51は、図2に示す制御装置30の記憶部30Mに記憶されている。
 スイッチバック動作においては走行と荷役とが同時に行われるが、車速Vcが低くなってきたところで前後進レバー42aが中立に操作されるとエンジン4の回転速度Nrが低下する。このため、前後進レバー42aが中立に操作された場合、回転速度制限部32は、テーブル50に代えてテーブル51を用いてエンジン4の回転速度Nrの上限Acmaxを求める。テーブル51は、テーブル50よりも広い車速Vcの範囲で上限Acmaxが100%なので、前後進レバー42aが中立に操作されたときの回転速度Nrの低下を抑制できる。
 テーブル51は、図8の実線で示されるように、車速Vcが-V4以上+V4以下の範囲では上限Acmax=100%であり、車速Vcが-V4未満及び+V4よりも大きい範囲で上限Acmax=0%となっている。これに限定されず、テーブル51は、図8の点線で示されるように、車速-V5以上―V4以下の範囲で車速Vcの増加とともに上限Acmaxが徐々に増加し、車速+V4以上+V5以下の範囲で車速Vcの増加とともに上限Acmaxが徐々に減少するようにしてもよい。
 切替部33は、図2に示される車速センサ46に異常が発生した場合に、エンジン4の回転速度Nrの上限を設定するために用いられる。車速センサ46に異常が発生すると、車速センサ46からは車速Vc=0km/hが出力されるので、回転速度制限部32がテーブル50によって上限Acmaxを求めると、Acmax=100%となる。その結果、スイッチバック動作中におけるフォークリフト1の減速度が低下する可能性がある。
 車速センサ46の異常発生時でも、エンジン4の回転速度Nrの上限を設定するため、切替部33は、スイッチバック中であると判定した場合、予め定められたエンジン回転速度の上限(以下、スイッチバック時上限と称する)Actを出力する。本実施形態において、スイッチバック時上限Actは、アクセル開度Aopを用いている。スイッチバック時上限Actは、前後進レバー42aの反転操作が検出された場合の車速Vcと回転速度Nrの上限Acmaxとの関係、すなわちテーブル50に設定された上限Acmaxの0以外の最小値A1よりも小さい値である。
 スイッチバック動作中、制御装置30は、図2に示される前進用ポンプ電磁比例制御バルブ12に対する前進指令信号Fwcと後進用ポンプ電磁比例制御バルブ13に対する後進指令信号Bkcとを変更する。例えば、フォークリフト1の後進中、前後進レバー42aが前進に切り換えられると、制御装置30は、後進指令信号Bkcを小さくするとともに前進指令信号Fwcを大きくし、車速Vcがある値になると、後進指令信号Bkcを0にする。また、フォークリフト1の前進中、前後進レバー42aが後進に切り換えられると、制御装置30は、前進指令信号Fwcを小さくするとともに後進指令信号Bkcを大きくし、車速Vcがある値になると、制御装置30は、前進指令信号Fwcを0にする。スイッチバック動作中において、切替部33は、後進指令信号Bkc又は前進指令信号Fwcが0になるまでをスイッチバック中であると判定する。
 切替部33は、スイッチバック中であると判定した場合、エンジン回転速度のスイッチバック時上限Actを小選択部34に出力する。切替部33は、スイッチバック中以外であると判定した場合、テーブル50から求められた上限Acmaxが小選択部34で選択されるように、上限Acmax=100%を小選択部34に出力する。小選択部34は、スイッチバック時上限Act又は上限Acmax=100%と、前後進レバー42aの反転操作が検出された場合の車速Vcと回転速度Nrの上限Acmaxとの関係、すなわちテーブル50から求められた上限Acmaxと、のうち小さい方を、エンジン4の回転速度Nrの上限であるエンジン回転速度上限Nrmaxとする。
 切替部33及び小選択部34により、制御装置30は、車速センサ46に異常が発生した場合でも、エンジン4の回転速度Nrの上限を設定し、スイッチバック動作中におけるフォークリフト1の減速度が低下する可能性を低減できる。前述したように、回転速度制限部32は、車速Vcに対応するフィルタ31の出力値Vcfと、進行方向指令値DRとからフォークリフト1がスイッチバック動作か否かを判定する。すなわち、回転速度制限部32は、車速が正の値から0を経て負の値になった場合又は負の値から0を経て正の値になった場合に、スイッチバック動作ではないと判定する。これに対して、切替部33は、車速Vcの方向が切り替わるより前に、後進指令信号Bkc又は前進指令信号Fwcが0になったことにより、スイッチバック中ではないと判定して、上限Acmax=100%を小選択部34に出力する。このため、切替部33が上限Acmax=100%を小選択部34に出力した後、かつ車速Vc=0までにおいては、回転速度制限部32が求めた上限Acmaxが小選択部34で選択されることになる。
 本実施形態において、制御装置30の処理部30Cは、燃料噴射量演算部35を備える。燃料噴射量演算部35は、アクセルポテンショメータ41が検出したアクセル開度Aopと、エンジン回転センサ43が検出したエンジン4の回転速度Nrとに基づいて、エンジン4の燃料噴射インジェクタ4Iが噴射する燃料の量を演算する。このとき、燃料噴射量演算部35は、小選択部34からエンジン回転速度上限Nrmaxを取得して、エンジン4の回転速度Nrの上限値がエンジン回転速度上限Nrmaxを超えない範囲で、燃料噴射インジェクタ4Iの燃料噴射量Qfを演算する。燃料噴射量演算部35は、燃料噴射量Qfの指令値を燃料噴射インジェクタ4Iに出力する。燃料噴射インジェクタ4Iは、燃料噴射量演算部35から出力された燃料噴射量Qfに対応した燃料をエンジン4に噴射する。
 本実施形態において、フォークリフト1のスイッチバック動作中には、フォークリフト1の車速Vcの絶対値が0に近づくにしたがってエンジン4の回転速度Nrの上限Acmaxが大きくなる範囲を有するように、車速Vcと回転速度Nrの上限Acmaxとの関係が設定される。このようにすることで、制御装置30は、スイッチバック動作中にアクセルペダル41aが踏み込まれることによるスイッチバック動作中の加速の抑制を実現することができる。また、フォークリフト1のスイッチバック動作中には、エンジン4の回転速度Nrの上限Acmaxが設けられるので、制御装置30は、スイッチバック動作時における燃料消費量の増加を抑制できる。特に、本実施形態では、エンジン4の回転速度Nrが0に制限される範囲を有しているので、制御装置30は、スイッチバック動作時における燃料消費量の増加を効果的に抑制できる。
 また、フォークリフト1の車速Vcの絶対値が0に近づくにしたがってエンジン4の回転速度Nrの上限Acmaxを大きくし、さらに車速Vcが0のときには上限Acmaxを設けない。このようにすることにより、制御装置30は、フォークリフト1の進行方向が実際に反転したときにおけるアクセルペダル41aの操作に対するエンジン4の回転速度上昇の応答性を向上させることができる。このため、制御装置30は、フォークリフト1の走行方向が切り替わるタイミングにおいて、エンジン4の回転速度Nrを速やかに上昇させて、後進から前進又は前進から後進へ滑らかに移行させることができる。また、車速Vcが0のとき、エンジン4の回転速度Nrの上限Acmaxは設けられていないので、フォークリフト1は、停止した後、荷役動作に速やかに移行できる。
<制御例>
 制御装置30は、フォークリフト1の走行中に、前後進レバースイッチ42から前後進レバー42aの操作を検出する。制御装置30の回転速度制限部32は、フォークリフト1の走行中に、前後進レバー42aに対して進行方向を反転させる操作がなされたことを前後進レバースイッチ42が検出したら、テーブル51に設定された車速Vcとエンジンの回転速度Nrの上限Acmaxとの関係に、車速センサ46が検出した車速Vcを与えて、対応する上限Acmaxを求め、小選択部34に出力する。切替部33は、スイッチバック中であると判定した場合、スイッチバック時上限Actを小選択部34に出力する。小選択部34は、回転速度制限部32が求めた上限Acmaxと、切替部33から出力されたスイッチバック時上限Actとのうち小さい方を、エンジン回転速度上限Nrmaxとする。燃料噴射量演算部35は、小選択部34からエンジン回転速度上限Nrmaxを取得して、エンジン4の回転速度Nrの上限値がエンジン回転速度上限Nrmaxを超えないようにエンジン4を制御する。
 以上、本実施形態を説明したが、前述した内容により本実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組合せることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。作業車両は、ホイールを備えた作業車両であれば、例えばホイールローダーであってもよく、フォークリフト1に限定されない。
1 フォークリフト
4 エンジン
4I 燃料噴射インジェクタ
5 作業機
6 フォーク
10 走行用油圧ポンプ
10S 斜板
10a、10b 油圧供給管路
11 ポンプ容量設定ユニット
12 前進用ポンプ電磁比例制御バルブ
13 後進用ポンプ電磁比例制御バルブ
14 ポンプ容量制御シリンダ
15 チャージポンプ
16 作業機油圧ポンプ
20 油圧モータ
20S 斜板
21 モータ容量設定ユニット
30 制御装置
30C 処理部
30M 記憶部
31 フィルタ
32 回転速度制限部
33 切替部
34 小選択部
35 燃料噴射量演算部
41 アクセルポテンショメータ
41a アクセルペダル
42 前後進レバースイッチ
42a 前後進レバー
43 エンジン回転センサ
46 車速センサ
50 テーブル
51 テーブル
100 主油圧回路
 

Claims (6)

  1.  作業機を備えた作業車両であり、
     エンジンと、
     前記エンジンによって駆動される可変容量型の走行用油圧ポンプと、
     前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータと、
     前記油圧モータによって駆動されて前記作業車両を走行させる駆動輪と、
     前記作業車両の前進と後進とを切り替えるための進行方向切替装置の操作状態を検出する選択スイッチと、
     前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記選択スイッチが検出したら、前記作業車両の車速と前記エンジンの回転速度の上限との関係を、前記車速の絶対値が0に近づくにしたがって前記上限が大きくなる設定とし、設定された前記関係と前記作業車両の車速とから前記エンジンの回転速度の上限を求める制御装置と、
     を含む、作業車両。
  2.  前記制御装置は、
     前記作業車両の走行中に前記進行方向切替装置が中立に操作されたことを前記選択スイッチが検出したら、前記反転操作が検出された場合よりも絶対値が大きい車速から0までの範囲で、前記エンジンの回転速度の上限が、前記反転操作が検出された場合よりも大きくなる設定とする、請求項1に記載の作業車両。
  3.  前記制御装置は、
     前記車速を検出する装置の異常発生時に、前記反転操作が検出されると、予め定められたエンジン回転速度の上限と、前記反転操作が検出された場合の前記関係に設定されている上限及び前記車速から求められた前記エンジンの回転速度と、のうち小さい方を用いる、請求項1又は請求項2に記載の作業車両。
  4.  前記反転操作が検出された場合の前記関係は、第1の車速までは前記エンジンの回転速度の上限が0であり、前記第1の車速を含み0までの範囲は、前記車速の絶対値が0に近づくにしたがって前記エンジンの回転速度の上限が大きくなる、請求項1から請求項3のいずれか1項に記載の作業車両。
  5.  前記作業車両はフォークリフトである、請求項1から請求項4のいずれか1項に記載の作業車両。
  6.  作業機と、エンジンと、前記エンジンによって駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプとの間で閉回路を形成し、前記走行用油圧ポンプから吐出された作動油によって駆動される油圧モータと、前記油圧モータによって駆動される駆動輪と、前記作業車両の前進と後進とを切り替えるための進行方向切替装置の操作状態を検出する選択スイッチと、を備えた作業車両を制御するにあたって、
     前記作業車両の走行中に、前記進行方向切替装置の操作を検出することと、
     前記作業車両の走行中に、前記作業車両の進行方向を反転させるための前記進行方向切替装置の反転操作を前記選択スイッチが検出したら、前記作業車両の車速と前記エンジンの回転速度の上限との関係を、前記車速の絶対値が0に近づくにしたがって前記上限が大きくなる設定とすることと、
     設定された前記関係と前記作業車両の車速とから前記エンジンの回転速度の上限を求めることと、
     を含む、作業車両の制御方法。
     
PCT/JP2014/074749 2014-09-18 2014-09-18 作業車両及び作業車両の制御方法 WO2016042648A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/074749 WO2016042648A1 (ja) 2014-09-18 2014-09-18 作業車両及び作業車両の制御方法
JP2015551086A JP5968559B1 (ja) 2014-09-18 2014-09-18 作業車両及び作業車両の制御方法
CN201480001946.8A CN105612330A (zh) 2014-09-18 2014-09-18 作业车辆及作业车辆的控制方法
DE112014000162.7T DE112014000162A5 (de) 2014-09-18 2014-09-18 Arbeitsfahrzeug und Verfahren zum Steuern eines Arbeitsfahrzeugs
US14/419,337 US9540011B2 (en) 2014-09-18 2014-09-18 Work vehicle and method of controlling work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074749 WO2016042648A1 (ja) 2014-09-18 2014-09-18 作業車両及び作業車両の制御方法

Publications (1)

Publication Number Publication Date
WO2016042648A1 true WO2016042648A1 (ja) 2016-03-24

Family

ID=53058680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074749 WO2016042648A1 (ja) 2014-09-18 2014-09-18 作業車両及び作業車両の制御方法

Country Status (5)

Country Link
US (1) US9540011B2 (ja)
JP (1) JP5968559B1 (ja)
CN (1) CN105612330A (ja)
DE (1) DE112014000162A5 (ja)
WO (1) WO2016042648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7548361B2 (ja) 2019-10-31 2024-09-10 井関農機株式会社 作業車両

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593002B2 (en) * 2014-09-19 2017-03-14 Komatsu Ltd. Work vehicle, and control method for work vehicle
WO2016056079A1 (ja) * 2014-10-08 2016-04-14 株式会社小松製作所 作業車両及び作業車両の制御方法
JP2017031897A (ja) * 2015-08-03 2017-02-09 株式会社クボタ 作業車
JP6424267B1 (ja) * 2017-10-24 2018-11-14 小池酸素工業株式会社 走行台車
JP7152163B2 (ja) * 2018-02-14 2022-10-12 株式会社小松製作所 作業車両及び作業車両の制御方法
FI128300B (en) * 2018-09-03 2020-03-13 Rocla Oyj Truck control
DE102018216750A1 (de) * 2018-09-28 2020-04-02 Robert Bosch Gmbh Verfahren zur Steuerung einer Axialkolbenpumpe und Antriebseinheit mit einer derartigen Axialkolbenpumpe und hydrostatischer Fahrantrieb mit einer derartigen Antriebseinheit
JP7152629B2 (ja) * 2020-03-17 2022-10-12 日立建機株式会社 作業車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248975A (ja) * 1999-03-01 2000-09-12 Komatsu Ltd 作業車両のエンジン回転数制御装置
JP2006322413A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 産業車両の速度制御装置、産業車両、及び産業車両の速度制御方法
JP2009041533A (ja) * 2007-08-10 2009-02-26 Hitachi Constr Mach Co Ltd 作業機械の走行システム
JP2011002049A (ja) * 2009-06-19 2011-01-06 Tcm Corp 作業車両の原動機制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658178A (ja) 1992-08-07 1994-03-01 Toyota Autom Loom Works Ltd ラジアルシリンダ型可変容量ポンプ/モータを備えた産業車両の走行制御装置
US6684148B2 (en) * 2002-06-12 2004-01-27 Nacco Materials Handling Group, Inc. Transmission control system
JP2006007819A (ja) * 2004-06-22 2006-01-12 Kanzaki Kokyukoki Mfg Co Ltd 作業車両の速度制御方法
JP4404313B2 (ja) * 2004-12-07 2010-01-27 ヤンマー株式会社 作業車両の制御装置
JP4838820B2 (ja) * 2008-02-26 2011-12-14 三菱重工業株式会社 車両制御ユニット及び該ユニットを搭載した車両
JP5156693B2 (ja) * 2009-06-17 2013-03-06 日立建機株式会社 産業車両のエンジン回転数制御装置
JP5693152B2 (ja) * 2010-11-01 2015-04-01 ジヤトコ株式会社 車両の油圧制御装置
US9005081B2 (en) * 2011-09-30 2015-04-14 Caterpillar Inc. System and method for reduced track slippage
WO2013090543A1 (en) * 2011-12-15 2013-06-20 Ego-Gear, Llc A device to increase fuel economy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000248975A (ja) * 1999-03-01 2000-09-12 Komatsu Ltd 作業車両のエンジン回転数制御装置
JP2006322413A (ja) * 2005-05-20 2006-11-30 Toyota Industries Corp 産業車両の速度制御装置、産業車両、及び産業車両の速度制御方法
JP2009041533A (ja) * 2007-08-10 2009-02-26 Hitachi Constr Mach Co Ltd 作業機械の走行システム
JP2011002049A (ja) * 2009-06-19 2011-01-06 Tcm Corp 作業車両の原動機制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7548361B2 (ja) 2019-10-31 2024-09-10 井関農機株式会社 作業車両

Also Published As

Publication number Publication date
CN105612330A (zh) 2016-05-25
JP5968559B1 (ja) 2016-08-10
US9540011B2 (en) 2017-01-10
DE112014000162A5 (de) 2015-06-03
JPWO2016042648A1 (ja) 2017-04-27
US20160082966A1 (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5968559B1 (ja) 作業車両及び作業車両の制御方法
JP5775232B1 (ja) 作業車両及び作業車両の制御方法
US9624079B2 (en) Forklift and control method of forklift
WO2011027760A1 (ja) 作業車両
JP5902877B1 (ja) 作業車両及び作業車両の制御方法
JP7383104B2 (ja) 作業車両、及び、作業車両の制御方法
JP5707538B1 (ja) フォークリフト及びフォークリフトの制御方法
JP5898390B1 (ja) フォークリフト及びフォークリフトの制御方法
US9120658B2 (en) Forklift and control method of forklift
JP6335340B1 (ja) 作業機械
US9676600B2 (en) Forklift and control method of forklift
JP5341041B2 (ja) 油圧駆動式の車両、およびその制御方法と装置
US9221657B2 (en) Forklift and control method of forklift
JP5866489B1 (ja) 作業車両及び作業車両の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1120140001627

Country of ref document: DE

Ref document number: 112014000162

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14419337

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112014000162

Country of ref document: DE

Effective date: 20150603

ENP Entry into the national phase

Ref document number: 2015551086

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902247

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14902247

Country of ref document: EP

Kind code of ref document: A1