WO2016041905A1 - Flächenlichtmodulator mit einem wärmeabfuhrblock mit integrierten federarmen - Google Patents

Flächenlichtmodulator mit einem wärmeabfuhrblock mit integrierten federarmen Download PDF

Info

Publication number
WO2016041905A1
WO2016041905A1 PCT/EP2015/070970 EP2015070970W WO2016041905A1 WO 2016041905 A1 WO2016041905 A1 WO 2016041905A1 EP 2015070970 W EP2015070970 W EP 2015070970W WO 2016041905 A1 WO2016041905 A1 WO 2016041905A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmd chip
heat dissipation
circuit board
light modulator
modulator according
Prior art date
Application number
PCT/EP2015/070970
Other languages
English (en)
French (fr)
Inventor
Jürgen Ehinger
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Publication of WO2016041905A1 publication Critical patent/WO2016041905A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to area light modulator (SLM) with a printed circuit board, which is provided with tracks for contacting a DMD chip, the DMD chip under a pre ⁇ voltage on its side facing the circuit board with his encircling edge is supported on a housing, which has an opening surrounded by the peripheral edge of the DMD chip-free opening, wherein the DMD chip is supported with its other side, if necessary via an interposer on one side of the circuit board, with a Heat removal element, which is arranged on the side opposite the DMD chip side of the circuit board and wherein the package of conductor ⁇ plate, possibly interposer and DMD chip is held on the housing by a screw connection between the heat dissipation element and the housing.
  • SLM area light modulator
  • the DMD chip DMD Digital Micromirror Device
  • the housing and, on the other hand, the DMD chip on its side facing the printed circuit board must be cooled. If an interposer is present, the electrical connection of the DMD chip to the printed circuit board is established via this contact springs.
  • the object of the invention is to provide a surface light modulator of the type mentioned, which is simple and constructed with few components and allows good heat dissipation from the DMD chip.
  • circuit board and possibly the interposer each have a passage opening through which a heat dissipation block of the heat ⁇ discharge element protrudes, wherein the heat dissipation element is acted upon by a spring force such that the heat dissipation drove block with its DMD chip facing end face on the DMD chip is held under spring tension in abutment.
  • the heat removal block holds the heat removal block securely in contact with the DMD chip.
  • the heat dissipation block may be formed with a relatively large cross section, so that a good heat dissipation is given.
  • a heat conducting paste or a heat conducting foil can be arranged between the end face of the heat removal block and the DMD chip, which can consist of an in particular curable elastomer.
  • the DMD chip may have contact contact elements, which are held with a certain force in contact with the conductor tracks of the circuit board ⁇ .
  • This certain force is so high that the DMD chip can still be displaced parallel to the circuit board in order to align it with a light beam guided through the surface modulator.
  • a simple and space-saving design is achieved in that the heat dissipation element has a plurality of free parallel to the circuit board spring arms whose free ends are connected by the screw connection to the housing and hold by the heat dissipation block under bias on the DMD chip in abutment. Since no longer separate spring loading of the DMD chip against the housing and the heat removal element on the DMD chip he ⁇ is required, a reduction of the required components, the space, the weight and the assembly effort is achieved. This also fewer assembly errors are possible and kept the cost of the area light modulator low.
  • the heat dissipation element, the printed circuit board, the DMD chip and possibly the interposer can be connected to one another to a pre-assembly in which the heat dissipation block is held with his DMD chip facing end face on the DMD chip under Fe ⁇ dervorschreib in the system and the Pre-assembly unit is connectable to the housing.
  • the heat removal element may have a plurality of rigid arms or second spring arms which are free parallel to the printed circuit board and whose free ends can be connected by a second screw connection to a counter element which, with a plurality of support points, prestresses the DMD chip against the DMD Chip facing end face of a stabilization plate applied.
  • Screw connection are connected to the housing, by which the pre-assembly is held under pretension on second support points of the housing in abutment, so this bias is only used to attach the mounting unit to the housing. This allows this bias to be kept so low that the DMD chip can easily be slid parallel to the PCB to align it with a light beam passing through the patch modulator.
  • the spring arms and / or the rigid arms or second spring arms may preferably be arranged distributed uniformly around the heat dissipation element and thus generate a directed in the direction of movement of the heat dissipation block spring force.
  • the spring arms and / or the rigid arms or second spring arms may be arranged on the DMD chip opposite end portion of the heat dissipation block at a distance from the plane of the circuit board.
  • the heat dissipation element and, if appropriate, the spring arms and / or second spring arms may be made of a well blazelei ⁇ Tenden metal, in particular aluminum or an aluminum alloy ⁇ .
  • the heat dissipation element via an insulating layer on the circuit board in abutment, wherein for ease of installation, the insulating layer is preferably an insulating film.
  • Figure 1 is a perspective sectional view of a first
  • Figure 2 is a perspective sectional view of a second
  • Embodiment of a surface light modulator Embodiment of a surface light modulator.
  • the illustrated surface light modulators have a printed circuit board 1 with arranged thereon but not shown interconnects for contacting and arranged thereon electrical and electronic components for driving a DMD chip 2.
  • the DMD chip 2 is supported on its one side with its peripheral edge 5 at second support points 21 on a housing 4.
  • the peripheral edge 5 surrounds the active part of the DMD chip 2. According to approximately the area enclosed by the peripheral edge 5, the housing 4 has an opening 6 which is covered by an optical element 7.
  • an interposer 3 is arranged, via which a contacting of the DMD chip 2 takes place with the conductor tracks of the printed circuit board 1.
  • a through opening 8 is formed in the printed circuit board 1.
  • a disposed on the side facing away from the DMD chip 2 side of the printed circuit board 1 heat dissipation element 9 made of aluminum has a heat dissipation block 10 which is with its the DMD chip 2 facing ⁇ end face on the DMD chip 2 in abutment. An existing between this end face of the heat dissipation block 10 and the DMD chip 2 gap is filled with a cured thermal paste 11.
  • the heat-dissipating element 9 On the side of the printed circuit board 1 facing away from the DMD chip 2, the heat-dissipating element 9 has two stabilizing plates 12, 13 extending parallel to one another and parallel to the printed circuit board 1, which are connected to one another by the heat-dissipating block 10 and form a large heat-dissipating surface.
  • the printed circuit board 1 more distant stabilizing plate 13 has a plurality of pairs of first spring arms 14, wherein the spring arms of a pair extending diametrically to each other.
  • the free ends of the first spring arms 14 are curved toward the printed circuit board 1 and have holes at their free end regions. Through these holes protrude screws 15, the passed through corresponding through holes in the circuit board 1 and screwed into threaded bores of the housing 4 a ⁇ .
  • an insulating film 16 is disposed between the circuit board and the heat dissipation element 9 and the spring arms 14.
  • the heat dissipation ⁇ element 9, the circuit board 1, the DMD chip 2 and the interposer 3 are connected to a pre-assembly.
  • the heat removal element 9 in addition to the first spring arms 14 further comprises a plurality of pairs of second spring arms 17, wherein the spring arms 17 of a pair also extend diametrically opposite each other.
  • the free ends of the second spring arms 17 have screw-through bores 20 at their free end regions. Through these holes 20 protrude screws, not shown, a second screw connection, which are passed through corresponding through holes in the circuit board 1 and the interposer 3 and screwed into threaded holes of a counter element 18 of the.
  • the radially outwardly of the DMD chip 2 arranged counter element 18 has radially inwardly projecting support points 19, in which the DMD chip 2 rests with its peripheral edge 5.
  • the screws of the second screw connection not only hold the parts of the pre-assembly unit together, but also hold the heat-removal block 10 with its end face facing the DMD chip 2 against the DMD chip 2 under spring pretension.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Die Erfindung bezieht sich auf Flächenlichtmodulator (SLM) mit einer Leiterplatte 1, die mit Leiterbahnen zur Kontaktierung eines DMD-Chips 2 versehen ist, wobei der DMD-Chip 2 unter einer Vorspannung an seiner der Leiterplatte 1 zugewandten Seite mit seinem umlaufenden Rand 5 an einem Gehäuse 4 abgestützt ist, das eine den von dem umlaufenden Rand 5 umschlossenen Bereich des DMD-Chips 2 freilassende Öffnung 6 aufweist. Dabei ist der DMD-Chip 2 mit seiner anderen Seite ggf. über einen Interposer 3 an der einen Seite der Leiterplatte 1 abgestützt. Mit einem Wärmeabfuhrelement 9, das auf der dem DMD-Chip 2 entgegengesetzten Seite der Leiterplatte 1 angeordnet ist und wobei durch eine Schraubenverbindung zwischen dem Wärmeabfuhrelement 9 und dem Gehäuse 4 das Paket aus Leiterplatte 1, ggf. Interposer 3 und DMD-Chip 2 an dem Gehäuse 4 gehalten wird. Die Leiterplatte 1 und ggf. der Interposer 3 weisen jeweils eine Durchführöffnung 8 auf, durch die ein Wärmeabfuhrblock 10 des Wärmeabfuhrelements 9 hindurchragt, wobei das Wärmeabfuhrelement 9 von einer Federkraft derart beaufschlagt ist, dass der Wärmeabfuhrblock 10 mit seiner dem DMD-Chip 2 zugewandten Stirnfläche an dem DMD-Chip 2 unter Federvorspannung in Anlage gehalten ist.

Description

Beschreibung
FLÄCHENLICHTMODULATOR MIT EINEM WÄRMEABFUHRBLOCK MIT INTEGRIERTEN FEDERARMEN Die Erfindung bezieht sich auf Flächenlichtmodulator (SLM) mit einer Leiterplatte, die mit Leiterbahnen zur Kontaktierung eines DMD-Chips versehen ist, wobei der DMD-Chip unter einer Vor¬ spannung an seiner der Leiterplatte zugewandten Seite mit seinem umlaufenden Rand an einem Gehäuse abgestützt ist, das eine den von dem umlaufenden Rand umschlossenen Bereich des DMD-Chips freilassende Öffnung aufweist, wobei der DMD-Chip mit seiner anderen Seite ggf. über einen Interposer an der einen Seite der Leiterplatte abgestützt ist, mit einem Wärmeabfuhrelement, das auf der dem DMD-Chip entgegengesetzten Seite der Leiterplatte angeordnet ist und wobei durch eine Schraubenverbindung zwischen dem Wärmeabfuhrelement und dem Gehäuse das Paket aus Leiter¬ platte, ggf. Interposer und DMD-Chip an dem Gehäuse gehalten wird . Bei einem derartigen Flächenlichtmodulator (SLM Spatial Light Modulator) muss zum einen der DMD-Chip (DMD Digital Micromirror Device) gegen das Gehäuse gedrückt und zum anderen der DMD-Chip auf seiner der Leiterplatte zugewandten Kontaktierungsseite gekühlt werden. Ist ein Interposer vorhanden, wird über diesen mittels Kontaktfedern die elektrische Verbindung des DMD-Chips mit der Leiterplatte hergestellt.
Aufgabe der Erfindung ist es, einen Flächenlichtmodulator der eingangs genannten Art zu schaffen, der einfach und mit wenigen Bauteilen aufgebaut ist und eine gute Wärmeabfuhr von dem DMD-Chip ermöglicht.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Leiterplatte und ggf. der Interposer jeweils eine Durchführ- Öffnung aufweisen, durch die ein Wärmeabfuhrblock des Wärme¬ abfuhrelements hindurchragt, wobei das Wärmeabfuhrelement von einer Federkraft derart beaufschlagt ist, dass der Wärmeab- fuhrblock mit seiner dem DMD-Chip zugewandten Stirnfläche an dem DMD-Chip unter Federvorspannung in Anlage gehalten ist.
Durch diese Ausbildung wird durch die Federvorspannung der Wärmeabfuhrblock in sicherer Anlage an dem DMD-Chip gehalten.
Bei Vorhandensein eines Interposers erfolgt auch dessen Anlage- kraftbeaufschlagung durch dieselbe genannte Federvorspannung. Der Wärmeabfuhrblock kann mit relativ großem Querschnitt ausgebildet sein, so dass eine gute Wärmeableitung gegeben ist. Dabei kann der Teil des Wärmeabfuhrelements, der sich auf der dem DMD-Chip abgewandten Seite der Leiterplatte befindet, gro߬ flächig ausbildbar sein, so dass die Wärme über eine große Oberfläche des Wärmeabfuhrelements gut in die Umgebung abgegeben wird .
Um die Wärme des DMD-Chips gut in den Wärmeabfuhrblock abzuleiten kann zwischen der Stirnfläche des Wärmeabfuhrblocks und dem DMD-Chip eine Wärmeleitpaste oder eine Wärmeleitfolie angeordnet sein, die aus einem insbesondere aushärtbaren Elastomer bestehen kann .
Der DMD-Chip kann Berührungskontaktelemente aufweisen, die mit einer bestimmten Kraft in Anlage an den Leiterbahnen der Leiter¬ platte gehalten sind.
Diese bestimmte Kraft ist so hoch, dass der DMD-Chip noch parallel zur Leiterplatte verschoben werden kann, um ihn gegenüber einem durch den Flächenmodulator geführten Lichtstrahl auszurichten.
Eine einfache und Bauraum sparende Ausbildung wird dadurch erreicht, dass das Wärmeabfuhrelement mehrere parallel zur Leiterplatte freiragende Federarme aufweist, deren freie Enden durch die Schraubenverbindung mit dem Gehäuse verbunden sind und durch die der Wärmeabfuhrblock unter Vorspannung an dem DMD-Chip in Anlage halten. Da nicht mehr separate Federbeaufschlagungen des DMD-Chips gegen das Gehäuse und des Wärmeabfuhrelements an dem DMD-Chip er¬ forderlich sind, wird eine Reduzierung der erforderlichen Bauteile, des Bauraums, des Gewichts und des Montageaufwands erreicht. Damit sind auch weniger Montagefehler möglich und die Kosten für den Flächenlichtmodulator gering gehalten.
Das Wärmeabfuhrelement, die Leiterplatte, der DMD-Chip und ggf. der Interposer können zu einer Vormontageeinheit miteinander verbunden sein, bei der der Wärmeabfuhrblock mit seiner dem DMD-Chip zugewandten Stirnfläche an dem DMD-Chip unter Fe¬ dervorspannung in Anlage gehalten ist und die Vormontageeinheit mit dem Gehäuse verbindbar ist.
Dies vereinfacht die Montage des Flächenlichtmodulators .
Zur Bauteil- und Montageaufwandreduzierung kann dabei das Wärmeabfuhrelement mehrere parallel zur Leiterplatte freira- gende starre Arme oder zweite Federarme aufweisen, deren freie Enden durch eine zweite Schraubverbindung mit einen Gegenelement verbindbar sind, das mit mehreren Abstützstellen den DMD-Chip unter Vorspannung gegen die dem DMD-Chip zugewandte Stirnfläche einer Stabilisationsplatte beaufschlagt.
Weist das Wärmeabfuhrelement mehrere parallel zur Leiterplatte freiragende Federarme auf, deren freie Enden durch die
Schraubenverbindung mit dem Gehäuse verbunden sind, durch die die Vormontageeinheit unter Vorspannung an zweiten Abstützstellen des Gehäuses in Anlage gehalten ist, so dient diese Vorspannung nur zur Befestigung der Montageeinheit an dem Gehäuse. Dies erlaubt es diese Vorspannung so gering zu halten, dass der DMD-Chip leicht parallel zur Leiterplatte verschoben werden kann, um ihn gegenüber einem durch den Flächenmodulator geführten Lichtstrahl auszurichten. Die Federarme und/oder die starren Arme oder zweiten Federarme können vorzugsweise um das Wärmeabfuhrelement gleichmäßig verteilt angeordnet sein und so eine in Bewegungsrichtung des Wärmeabfuhrblocks gerichtete Federkraft erzeugen.
Dabei können die Federarme und/oder die starren Arme oder zweiten Federarme an dem dem DMD-Chip entgegengesetzten Endbereich des Wärmeabfuhrblocks in einem Abstand zur Ebene der Leiterplatte angeordnet sein.
Separat zu montierende Federelemente sind nicht erforderlich, wenn die Federarme und/oder die starren Arme oder zweiten Federarme einteilig mit dem Wärmeabfuhrelement ausgebildet sind.
Zur guten Wärmeabfuhr können das Wärmeabfuhrelement und ggf. die Federarme und/oder zweiten Federarme aus einem gut wärmelei¬ tenden Metall, insbesondere aus Aluminium oder einer Aluminium¬ legierung bestehen.
Um einen elektrischen Kontakt zwischen dem Wärmeabfuhrelement und den Leiterbahnen der Leiterplatte zu vermeiden kann das Wärmeabfuhrelement über eine Isolierschicht an der Leiterplatte in Anlage sein, wobei zur einfachen Montage die Isolierschicht vorzugsweise eine Isolierfolie ist.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben . Es zeigen:
Figur 1 eine perspektivische Schnittdarstellung eines ersten
Ausführungsbeispiels eines Flächenlichtmodulators
Figur 2 eine perspektivische Schnittdarstellung eines zweiten
Ausführungsbeispiels eines Flächenlichtmodulators.
Die dargestellten Flächenlichtmodulatoren weisen eine Leiter¬ platte 1 mit darauf angeordneten aber nicht dargestellten Leiterbahnen zur Kontaktierung sowie mit darauf angeordneten elektrischen und elektronischen Komponenten zur Ansteuerung eines DMD-Chips 2 auf. Der DMD-Chip 2 ist an seiner einen Seite mit seinem umlaufenden Rand 5 an zweiten Abstützstellen 21 an einem Gehäuse 4 abgestützt. Der umlaufende Rand 5 umschließt den aktiven Teil des DMD-Chips 2. Entsprechend etwa dem von dem umlaufenden Rand 5 umschlossenen Bereich weist das Gehäuse 4 eine Öffnung 6 auf, die durch ein optisches Element 7 abgedeckt ist.
Zwischen der einen Seite der Leiterplatte 1 und dem DMD-Chip 2 ist ein Interposer 3 angeordnet, über den eine Kontaktierung des DMD-Chips 2 mit den Leiterbahnen der Leiterplatte 1 erfolgt.
Mit der Öffnung 6 des Gehäuses 4 fluchtend ist in der Leiterplatte 1 eine Durchführöffnung 8 ausgebildet.
Ein auf der dem DMD-Chip 2 abgewandten Seite der Leiterplatte 1 angeordnetes Wärmeabfuhrelement 9 aus Aluminium weist einen Wärmeabfuhrblock 10 auf, der mit seiner dem DMD-Chip 2 zuge¬ wandten Stirnfläche an dem DMD-Chip 2 in Anlage ist. Ein zwischen dieser Stirnfläche des Wärmeabfuhrblocks 10 und dem DMD-Chip 2 vorhandener Spalt ist mit einer ausgehärteten Wärmeleitpaste 11 ausgefüllt .
Auf der dem DMD-Chip 2 abgewandte Seite der Leiterplatte 1 weist das Wärmeabfuhrelement 9 zwei im Abstand parallel zueinander sowie parallel zur Leiterplatte 1 sich erstreckende Stabili- sationsplatten 12, 13 auf, die durch dem Wärmeabfuhrblock 10 miteinander verbunden sind und eine große Wärmeabgabefläche bilden .
Die der Leiterplatte 1 entferntere Stabilisationsplatte 13 weist mehrere Paare erste Federarme 14 auf, wobei die Federarme eines Paares sich diametral zueinander erstrecken. Die freien Enden der ersten Federarme 14 sind zur Leiterplatte 1 hin geschwungen und weisen an ihren freien Endbereichen Bohrungen auf. Durch diese Bohrungen ragen Schrauben 15, die durch entsprechende Durchführbohrungen in der Leiterplatte 1 hindurchgeführt und in Gewindebohrungen des Gehäuses 4 ein¬ geschraubt sind. Auf der dem DMD-Chip 2 abgewandten Seite der Leiterplatte 1 ist zwischen der Leiterplatte und dem Wärmeabfuhrelement 9 und dessen Federarmen 14 eine Isolierfolie 16 angeordnet.
Bei dem Ausführungsbeispiel der Figur 1 wird durch die in die Gewindebohrungen des Gehäuses 4 eingeschraubten Schrauben 15 über die Federarme 14 das Wärmeabfuhrelement 9 mit seinem Wärmeabfuhrbock 10 gegen den DMD-Chip 2 gespannt, so dass der Wärmeabfuhrblock an dem DMD-Chip 2 und der DMD-Chip 2 an dem Gehäuse 4 unter federnder Vorspannung in Anlage ist.
Bei dem Ausführungsbeispiel der Figur 2 sind das Wärmeabfuhr¬ element 9, die Leiterplatte 1, der DMD-Chip 2 und der Interposer 3 zu einer Vormontageeinheit miteinander verbunden. Dazu weist das Wärmeabfuhrelement 9 neben den ersten Federarmen 14 weiterhin mehrere Paare zweite Federarme 17 auf, wobei die Federarme 17 eines Paares sich ebenfalls diametral zueinander erstrecken.
Die freien Enden der zweiten Federarme 17 weisen an ihren freien Endbereichen Schraubendurchführbohrungen 20 auf. Durch diese Bohrungen 20 ragen nicht dargestellte Schrauben einer zweiten Schraubenverbindung, die durch entsprechende Durchführbohrungen in der Leiterplatte 1 und dem Interposer 3 hindurchgeführt und in Gewindebohrungen eines Gegenelements 18 des eingeschraubt sind. Das radial außerhalb des DMD-Chips 2 angeordnete Gegen- element 18 weist radial nach innen ragende Abstützstellen 19 auf, an denen der DMD-Chip 2 mit seinem umlaufenden Rand 5 anliegt. Durch die Schrauben der zweiten Schraubenverbindung werden nicht nur die Teile der Vormontageeinheit zusammengehalten sondern auch der Wärmeabfuhrblock 10 mit seiner dem DMD-Chip 2 zuge- wandten Stirnfläche an dem DMD-Chip 2 unter Federvorspannung in Anlage gehalten.

Claims

Flachenlichtmodulator (SLM) mit einer Leiterplatte (1), die mit Leiterbahnen zur Kontaktierung eines DMD-Chips (2) versehen ist, wobei der DMD-Chip (2) unter einer Vorspannung an seiner der Leiterplatte (1) zugewandten Seite mit seinem umlaufenden Rand (5) an einem Gehäuse (4) abgestützt ist, das eine den von dem umlaufenden Rand (5) umschlossenen Bereich des DMD-Chips (2) freilassende Öffnung (6) auf¬ weist, wobei der DMD-Chip (2) mit seiner anderen Seite ggf. über einen Interposer (3) an der einen Seite der Lei¬ terplatte (1) abgestützt ist, mit einem Wärmeabfuhrelement (9), das auf der dem DMD-Chip (2) entgegengesetzten Seite der Leiterplatte (1) angeordnet ist und wobei durch eine Schraubenverbindung zwischen dem Wärmeabfuhrelement (9) und dem Gehäuse (4) das Paket aus Leiterplatte (1), ggf. Interposer (3) und DMD-Chip (2) an dem Gehäuse (4) gehalten wird, d a d u r c h g e k e n n z e i c h n e t , dass die Leiterplatte (1) und ggf. der Interposer (3) jeweils eine Durchführöffnung (8) aufweisen, durch die ein Wärmeab¬ fuhrblock (10) des Wärmeabfuhrelements (9) hindurchragt, wobei das Wärmeabfuhrelement (9) von einer Federkraft derart beaufschlagt ist, dass der Wärmeabfuhrblock (10) mit seiner dem DMD-Chip (2) zugewandten Stirnfläche an dem DMD-Chip (2) unter Federvorspannung in Anlage gehalten ist.
Flächenlichtmodulator nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass zwischen der Stirnfläche des Wärmeabfuhrblocks (10) und dem DMD-Chip (2) eine Wärmeleitpaste (11) oder eine Wärmeleitfolie angeordnet ist .
3. Flächenlichtmodulator nach Anspruch 2, d a d u r c h
g e k e n n z e i c h n e t , dass die Wärmeleitpaste oder die Wärmeleitfolie aus einem Elastomer besteht. Flächenlichtmodulator nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t , dass der DMD-Chip (2) Berührungskontaktelemente aufweist, die mit einer bestimmten Kraft in Anlage an den Leiterbahnen der Leiterplatte (1) gehalten sind.
Flächenlichtmodulator nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Wärmeabfuhrelement (9) mehrere parallel zur Leiter¬ platte (1) freiragende Federarme (14) aufweist, deren freie Enden durch die Schraubenverbindung mit dem Gehäuse (4) verbunden sind und durch die der Wärmeabfuhrblock (10) unter Vorspannung an dem DMD-Chip (2) in Anlage halten. 6. Flächenlichtmodulator nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass das Wär¬ meabfuhrelement (9), die Leiterplatte (1), der DMD-Chip (2) und ggf. der Interposer (3) zu einer Vormontageeinheit miteinander verbunden sind, bei der der Wärmeabfuhrblock (10) mit seiner dem DMD-Chip (2) zugewandten Stirnfläche an dem DMD-Chip (2) unter Federvorspannung in Anlage gehalten ist und die Vormontageeinheit mit dem Gehäuse (4) verbindbar ist . 7. Flächenlichtmodulator nach Anspruch 6, d a d u r c h
g e k e n n z e i c h n e t , dass das Wärmeabfuhrelement (9) mehrere parallel zur Leiterplatte (1) freiragende starre Arme oder zweite Federarme (17) aufweist, deren freie Enden durch eine zweite Schraubverbindung mit einen Ge¬ genelement (18) verbindbar sind, das mit mehreren Ab¬ stützstellen (19) den DMD-Chip (2) unter Vorspannung gegen die dem DMD-Chip (2) zugewandte Stirnfläche einer Sta- bilisationsplatte (12) beaufschlagt.
Flächenlichtmodulator nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass das Wärmeabfuhrelement (9) mehrere parallel zur Leiterplatte (1) freiragende Federarme (14) aufweist, deren freie Enden durch die Schraubenverbindung mit dem Gehäuse (4) verbunden sind, durch die die Vormontageeinheit unter Vorspannung an zweiten Abstützstellen (21) des Gehäuses (4) in Anlage gehalten ist.
Flächenlichtmodulator nach einem der Ansprüche 5 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass die Fe¬ derarme (14) und/oder die starren Arme oder zweiten Fe¬ derarme (17) an dem dem DMD-Chip (2) entgegengesetzten Endbereich des Wärmeabfuhrblocks (10) in einem Abstand zur Ebene der Leiterplatte (1) angeordnet sind.
10. Flächenlichtmodulator nach einem der Ansprüche 5 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass die Fe¬ derarme (14) und/oder die starren Arme oder zweiten Fe¬ derarme (17) einteilig mit dem Wärmeabfuhrelement (9) ausgebildet sind.
Flächenlichtmodulator nach einem der Ansprüche 5 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass das Wär¬ meabfuhrelement (9) und ggf. die Federarme (14) und/oderdie starren Arme oder zweiten Federarme (17) aus einem gut wärmeleitenden Metall bestehen.
Flächenlichtmodulator nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass das Wärmeabfuhrelement (9) und ggf. die Federarme (14) und/oder zweiten Federarme (17) aus Aluminium oder einer Aluminiumlegierung bestehen.
Flächenlichtmodulator nach einem der vorhergehenden An¬ sprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Wärmeabfuhrelement (9) über eine Isolierschicht an der Leiterplatte (1) in Anlage ist. Flächenlichtmodulator nach Anspruch 13, d a d u r c h g e k e n n z e i c h n e t , dass die Isolierschicht eine Isolierfolie (16) ist.
PCT/EP2015/070970 2014-09-15 2015-09-14 Flächenlichtmodulator mit einem wärmeabfuhrblock mit integrierten federarmen WO2016041905A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218480.0 2014-09-15
DE102014218480.0A DE102014218480A1 (de) 2014-09-15 2014-09-15 Flächenlichtmodulator

Publications (1)

Publication Number Publication Date
WO2016041905A1 true WO2016041905A1 (de) 2016-03-24

Family

ID=54148482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/070970 WO2016041905A1 (de) 2014-09-15 2015-09-14 Flächenlichtmodulator mit einem wärmeabfuhrblock mit integrierten federarmen

Country Status (2)

Country Link
DE (1) DE102014218480A1 (de)
WO (1) WO2016041905A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703932C1 (ru) * 2018-10-10 2019-10-22 Петров Владимир Анатольевич Способ монтажа полупроводниковых элементов
CN113900324A (zh) * 2021-09-30 2022-01-07 歌尔光学科技有限公司 Dmd组件结构、组装方法和投影光机
WO2022252223A1 (zh) * 2021-06-04 2022-12-08 海能达通信股份有限公司 一种散热装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504652A (en) * 1994-09-16 1996-04-02 Apple Computer, Inc. Unitary heat sink for integrated circuits
US5912773A (en) * 1997-03-21 1999-06-15 Texas Instruments Incorporated Apparatus for spatial light modulator registration and retention
US20030063247A1 (en) * 2001-08-03 2003-04-03 Satyan Kalyandurg Heat sink attachment
US20060176453A1 (en) * 2004-11-04 2006-08-10 Funai Electric Co., Ltd. Projector
US20060227514A1 (en) * 2005-04-08 2006-10-12 Samsung Electronics Co., Ltd. Digital micro-mirror device (DMD) assembly for an optical projection system
US20060261457A1 (en) * 2005-05-18 2006-11-23 Texas Instruments Incorporated Package for an integrated circuit
US20090135564A1 (en) * 2007-11-27 2009-05-28 Coretronic Corporation Digital micromirror device module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116855A (ja) * 1990-09-06 1992-04-17 Nec Corp 集積回路
KR101166448B1 (ko) * 2004-03-19 2012-07-19 톰슨 라이센싱 비디오 프로세서 정렬 클램핑 스프링

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504652A (en) * 1994-09-16 1996-04-02 Apple Computer, Inc. Unitary heat sink for integrated circuits
US5912773A (en) * 1997-03-21 1999-06-15 Texas Instruments Incorporated Apparatus for spatial light modulator registration and retention
US20030063247A1 (en) * 2001-08-03 2003-04-03 Satyan Kalyandurg Heat sink attachment
US20060176453A1 (en) * 2004-11-04 2006-08-10 Funai Electric Co., Ltd. Projector
US20060227514A1 (en) * 2005-04-08 2006-10-12 Samsung Electronics Co., Ltd. Digital micro-mirror device (DMD) assembly for an optical projection system
US20060261457A1 (en) * 2005-05-18 2006-11-23 Texas Instruments Incorporated Package for an integrated circuit
US20090135564A1 (en) * 2007-11-27 2009-05-28 Coretronic Corporation Digital micromirror device module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703932C1 (ru) * 2018-10-10 2019-10-22 Петров Владимир Анатольевич Способ монтажа полупроводниковых элементов
WO2022252223A1 (zh) * 2021-06-04 2022-12-08 海能达通信股份有限公司 一种散热装置及电子设备
CN113900324A (zh) * 2021-09-30 2022-01-07 歌尔光学科技有限公司 Dmd组件结构、组装方法和投影光机

Also Published As

Publication number Publication date
DE102014218480A1 (de) 2016-03-17

Similar Documents

Publication Publication Date Title
EP0873673B1 (de) Steuergerät bestehend aus mindestens zwei gehäuseteilen
DE102012000996B4 (de) Anordnung mit einer Leiterplatte und Bauelementen
DE102016119631B4 (de) Leistungshalbleitermodul mit einem Druckeinleitkörper und Anordnung hiermit
EP2194769B1 (de) Leistungshalbleitermodul mit vorgespannter Hilfskontaktfeder
WO2016041905A1 (de) Flächenlichtmodulator mit einem wärmeabfuhrblock mit integrierten federarmen
DE3627372C2 (de)
WO2009027483A1 (de) ELEKTRISCHE ANSCHLUßVORRICHTUNG FÜR LEITENDE KONTAKTE, INSBESONDERE MESSERKONTAKTE
DE102010063387A1 (de) Schaltungsanordnung mit mindestens zwei Teilmoduln
DE60226110T2 (de) Haltevorrichtung mit mindestens zwei elektronischen Bauteilen auf gegenüberliegenden Seiten einer Schaltplatine aufgebracht
DE102020209923B3 (de) Schaltungsträgeranordnung und Verfahren zum Herstellen einer solchen Schaltungsträgeranordnung
DE112012001924T5 (de) Elektronische Steuergerät-Baugruppe und Fahrzeug mit derselben
DE102015222874B4 (de) System aus Gehäuse und Leiterplatte zum mechanischen Fixieren des Gehäuses
DE102008053429B4 (de) Kontaktelement und Vebinder
DE102015213916B4 (de) Leistungshalbleitermodulanordnung
DE102007001415A1 (de) Fixierungselement für Leiterplatten
DE10246577A1 (de) Leiterplatte mit Metallgehäuse
DE202005020842U1 (de) Elastisches Befestigungselement zur Befestigung einer Leiterplatte auf einer Montageplatte
DE102016213049A1 (de) Anordnung und Verringerung des Schwingungsverhaltens von elektronischen Bauteilen
EP3499563A1 (de) Leistungshalbleitermodul und verfahren zur kraftschlüssigen anordnung eines leistungshalbleitermoduls
EP1575347B1 (de) Federblech in einem Gehäuse als Abschirmung für ein elektronisches hochfrequenztechnisches Gerät
DE102012219145A1 (de) Elektronikanordnung mit reduzierter Toleranzkette
EP3100600B1 (de) Elektrisches modul mit spanneinrichtung
DE102017117667A1 (de) Leistungshalbleitermodul mit einer auf eine Schalteinrichtung einwirkender Druckeinrichtung
DE202009018077U1 (de) Leistungselektronikanordnung
DE102021129117A1 (de) Leiterplattenanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15766432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15766432

Country of ref document: EP

Kind code of ref document: A1