WO2016041236A1 - 内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺 - Google Patents

内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺 Download PDF

Info

Publication number
WO2016041236A1
WO2016041236A1 PCT/CN2014/089375 CN2014089375W WO2016041236A1 WO 2016041236 A1 WO2016041236 A1 WO 2016041236A1 CN 2014089375 W CN2014089375 W CN 2014089375W WO 2016041236 A1 WO2016041236 A1 WO 2016041236A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
steel pipe
strength grade
low
waste concrete
Prior art date
Application number
PCT/CN2014/089375
Other languages
English (en)
French (fr)
Inventor
吴波
张强
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US15/512,068 priority Critical patent/US10087106B2/en
Publication of WO2016041236A1 publication Critical patent/WO2016041236A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/36Columns; Pillars; Struts of materials not covered by groups E04C3/32 or E04C3/34; of a combination of two or more materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of waste concrete recycling, and particularly relates to a high-strength regenerative mixed steel pipe ⁇ axial column and a construction process with local constraints .
  • concrete-filled steel tubular columns have the advantages of saving formwork, fast construction speed and high carrying capacity, and have been widely used in civil engineering construction at home and abroad.
  • a large number of tests have shown that the axial compression failure of concrete-filled steel tubular columns is mainly manifested by the drum-type failure mode that is severely bulged near the half-height of the column, while the lateral deformation of the column and the lower ends is relatively inconspicuous. The steel at both ends does not actually exert the lateral restraint.
  • the material layout can be adjusted by adjusting the material layout (ie, increasing the proportion of steel used near the half height of the column while reducing the proportion of steel used on the upper and lower ends of the column). Further optimization, which in turn improves its axial compression performance, but such technologies are rarely seen at present.
  • the prior art has a problem that the material layout of the steel tube concrete axial column is not reasonable, and the application range of the low-strength grade waste concrete needs to be expanded.
  • the object of the present invention is to overcome the existing Insufficient technology, providing high-strength regenerative hybrid steel pipe ⁇ axial column and construction process with local constraints, on the one hand, by appropriately reducing the wall thickness of the steel pipe of the concrete-filled steel column, and enhancing the lateral constraint near the half height of the column, The axial compression performance of the column is obviously improved when the steel volume is the same; on the other hand, by mixing the low-strength grade waste concrete block with the high-strength grade new concrete, the former can be applied to components and structures with high concrete strength requirements. , which greatly expands the application range of low-strength grade waste concrete.
  • a partially-strengthened high-strength regenerative hybrid steel pipe ⁇ axial compression column is provided with spiral stirrups or a plurality of transverse stirrups in the middle three-fifths of the inner diameter of the steel pipe, and the high-strength grade new concrete is alternately poured inside the steel pipe and the low-strength grade is placed.
  • Waste concrete block, high-strength grade new concrete has higher compressive strength than low-strength grade waste concrete compressive strength 30 ⁇ 90MPa.
  • the spiral stirrup is disposed within a height of three-fifths of the middle portion of the steel pipe, and the cross-section of the steel pipe is circular; or the horizontal stirrup is disposed within a three-thirds of the height of the middle portion of the steel pipe, and the two sides are densely spaced in the middle
  • the steel pipe has a circular or polygonal cross section.
  • the low-intensity grade waste concrete block is a waste concrete block after the old building, structure, road, bridge or dam is removed and the protective layer and all or part of the steel bar are removed.
  • the high-strength grade new concrete is natural aggregate concrete or recycled aggregate concrete, and the compressive strength is not less than 60 MPa. .
  • the low-strength grade waste concrete block has a feature size of not less than 100 mm.
  • the mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:4 ⁇ 1:1.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe ⁇ axle column includes the following steps:
  • the recycled mixed concrete-filled steel tube column can be used for the low-strength grade waste concrete to the components and structures with high concrete strength requirements, and expands the use range of low-strength grade waste concrete.
  • waste concrete blocks for pouring greatly simplifies the process of crushing, screening and purification of waste concrete recycling, saves a lot of manpower, time and energy, and can realize efficient recycling of waste concrete.
  • Figure 1a and Figure 1b are respectively Example 1 A transverse cross-sectional schematic view and a longitudinal cross-sectional view of a high-strength regenerative hybrid steel tubular rammed column with local constraints.
  • Figure 2a and Figure 2b are respectively Example 2 A transverse cross-sectional schematic view and a longitudinal cross-sectional view of a high-strength regenerative hybrid steel tubular rammed column with local constraints.
  • 3a and 3b are respectively the embodiment 3 A transverse cross-sectional schematic view and a longitudinal cross-sectional view of a high-strength regenerative hybrid steel tubular rammed column with local constraints.
  • the high-reinforced reclaimed mixed steel tubular shaft column with local constraints is included in the present invention, including steel pipe 1 , high-strength grade new concrete 2, low-strength grade waste concrete block 3, spiral stirrup 4, longitudinal stud reinforcement 6 .
  • the steel pipe has a circular cross section, an outer diameter of 300 mm, a wall thickness of 6 mm, and a length of the steel pipe.
  • the low-strength grade waste concrete block is a waste concrete block after the old building is demolished and the protective layer and all the steel bars are removed; the high-strength grade new concrete is natural aggregate concrete.
  • the characteristic size of the low-strength grade waste concrete block is The mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:1.5.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe ⁇ axle column includes the following steps:
  • the ultimate axial compression bearing capacity of the high-strength regenerative mixed steel pipe column without local constraints is about 5113kN, and the ultimate axial compression bearing capacity of the conventional reclaimed mixed steel pipe column without local constraints is 4328kN.
  • the amount of steel used in the above three columns is almost the same, but the axial load carrying capacity of the former is 16.5% higher than that of the middle, and the axial bearing capacity of the latter is 18.1% higher than that of the latter.
  • the former has higher axial bearing capacity than the latter. 37.6%.
  • the high-reinforced reclaimed mixed steel tubular shaft column with local constraints is included in the present invention, including steel pipe 1 , high-strength grade new concrete 2, low-strength grade waste concrete block 3, horizontal stirrups 5, longitudinal studs 6 .
  • the steel pipe has a circular cross section, an outer diameter of 300 mm, a wall thickness of 6 mm, and a length of the steel pipe.
  • the low-strength grade waste concrete block is a waste concrete block after the old building is demolished and the protective layer and all the steel bars are removed; the high-strength grade new concrete is natural aggregate concrete.
  • the characteristic size of the low-strength grade waste concrete block is The mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:1.5.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe ⁇ axle column includes the following steps:
  • (1) will be 26
  • the horizontal transverse stirrups are spot-welded together with the two longitudinal frame ribs, and then the two longitudinal frame ribs are hoisted so that the horizontal stirrups are placed within a height of three-fifths of the middle of the steel pipe, wherein the 1500 mm height is closely adjacent to the two Root stirrup, middle A total of 20 stirrups are arranged in the 900mm height range, the stirrup spacing is 49mm, and 3 stirrups are arranged on each side. The stirrup spacing is 150mm. Then, two longitudinal ribs are spot welded to the inner wall of the steel pipe;
  • the ultimate axial compression bearing capacity of the high-strength regenerative mixed steel pipe column without local constraints is about 5113kN, and the ultimate axial compression bearing capacity of the conventional reclaimed mixed steel pipe column without local constraints is 4328kN.
  • the amount of steel used in the three columns is almost the same, but the axial load carrying capacity of the former is 13.1% higher than that of the middle, and the axial bearing capacity of the latter is 18.1% higher than that of the latter.
  • the former has an increase of 36.6. % .
  • the high-strength regenerative mixed steel tubular shaft column with local constraints is included in the present invention, including steel pipe 1 , high-strength grade new concrete 2, low-strength grade waste concrete block 3, horizontal stirrups 5, longitudinal studs 6 .
  • the steel pipe has a square section with a side length of 300 mm, a wall thickness of 7 mm, and a length of the steel pipe.
  • the low-strength grade waste concrete block is a waste concrete block after the old building is demolished and the protective layer and all the steel bars are removed; the high-strength grade new concrete is natural aggregate concrete.
  • the characteristic size of the low-strength grade waste concrete block is The mass ratio of the low-strength grade waste concrete block to the high-strength grade new concrete is 1:2.
  • the construction process of the above-mentioned partially-constrained high-strength regenerative mixed steel pipe ⁇ axle column includes the following steps:
  • (1) will be 27
  • the horizontal transverse stirrups are spot-welded together with the two longitudinal frame ribs, and then the two longitudinal frame ribs are hoisted so that the horizontal stirrups are placed within a height of three-fifths of the middle of the steel pipe, and a total of 900 mm in the middle Arrangement 21
  • the root stirrups, the spacing of the stirrups is 45mm, and the three stirrups are arranged on both sides, and the distance between the stirrups is 150mm; then the two longitudinal support bars are spot welded to the inner wall of the steel pipe;
  • the ultimate axial compression bearing capacity of the high-strength regenerative hybrid steel pipe truss column with local constraints is about 8802 kN
  • the ultimate axial compression bearing capacity of conventional reclaimed mixed steel pipe columns without local constraints is about 5607kN. It can be seen from the calculation that the steel content of the three columns is almost the same, but the former has higher axial bearing capacity than the middle one. 8.9%, the middle one increased the axial bearing capacity by 44.1%, and the former increased the axial bearing capacity by 57.0%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

一种内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺。该轴压柱包括钢管(1)、高强度等级新混凝土(2)、低强度等级废旧混凝土块体(3)、螺旋箍筋(4)、纵向架立筋(6)。在钢管(1)内部中部设置螺旋箍筋(4)。钢管(1)内部交替浇筑高强度等级新混凝土(2)和投放低强度等级废旧混凝土块体(3)。高强度等级新混凝土(2)的抗压强度大于低强度等级废旧混凝土块体(3)的抗压强度30~90MPa。该轴压柱可拓展低强度等级废旧混凝土的应用范围。

Description

内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺
技术领域
本发明涉及废旧混凝土循环利用技术领域,具体涉及内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺
背景技术
相比常规钢筋混凝土柱,钢管混凝土柱具有节省模板、施工速度快、承载能力高等优点,在国内外土木建筑领域得到了广泛应用。但大量试验表明,钢管混凝土柱的轴压破坏主要表现为柱身半高处附近严重鼓出的腰鼓型破坏模式,而柱身上、下两端的横向变形却相对不明显,此时柱身上、下两端的的钢材实际上并未充分发挥横向约束作用。因此,在用钢量保持不变的情况下,可以通过调整材料布局(即加大柱身半高处附近的用钢比例,同时减少柱身上、下两端的用钢比例)对钢管混凝土柱做进一步优化,进而提高其轴压性能,但目前还鲜见此类技术。
由于天然砂石的开采破坏环境,同时既有建筑物和构筑物拆除产生的废旧混凝土直接运往郊外堆放填埋又会引发新的环境问题,因此废旧混凝土的循环再生利用已引起国内外广泛关注。一般来说,废旧混凝土由于建造年代较早,强度等级普遍偏低,以往也只是与强度等级相近的新混凝土混合使用,应用范围受到很大限制(如无法直接应用于高层、重载等结构),如何有效拓展低强度等级废旧混凝土的应用范围是一个亟待解决的问题。本发明发现将低强度等级废旧混凝土块体与高强度等级新混凝土混合使用,是解决该问题的一条有效途径。
综上所述,现有技术存在钢管混凝土轴压柱材料布局不够合理,以及低强度等级废旧混凝土的应用范围亟待拓展等问题。
发明内容
本发明的目的在于克服现有 技术的不足,提供内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺,一方面通过适当降低钢管混凝土柱的钢管壁厚,同时增强柱身半高处附近的横向约束,使得在用钢量相同的情况下柱的轴压性能明显提高;另一方面通过将低强度等级废旧混凝土块体与高强度等级新混凝土混合使用,使得前者可以应用于混凝土强度要求较高的构件和结构,从而大大拓展了低强度等级废旧混凝土的应用范围。
本发明实现上述目的的技术方案 为:
内设局部约束的高强化再生混合钢管砼轴压柱,在钢管内中部五分之三高度范围内设置螺旋箍筋或若干横向箍筋,钢管内部交替浇筑高强度等级新混凝土和投放低强度等级废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 30~90MPa 。
进一步优化实施的,所述螺旋箍筋设置在钢管内中部五分之三高度范围内,钢管截面为圆形;或横向箍筋设置在钢管内中部五分之三高度范围内,中间密两边疏,钢管截面为圆形或多边形。
进一步优化实施的,所述低强度等级废旧混凝土块体为旧有建筑物、构筑物、道路、桥梁或堤坝拆除并去除保护层和全部或部分钢筋之后的废旧混凝土块体。
进一步优化实施的,所述高强度等级新混凝土为天然骨料混凝土或再生骨料混凝土,且抗压强度不低于 60MPa 。
进一步优化实施的,所述低强度等级废旧混凝土块体的特征尺寸不低于 100mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:4~1:1 。
上述 内设局部约束的高强化再生混合钢管砼轴压柱的施工工艺,包括以下步骤:
( 1 )将螺旋箍筋或若干横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使螺旋箍筋或若干横向箍筋置于钢管内中部五分之三高度范围内,且采用横向箍筋时箍筋间距中间密两边疏,然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
本发明相对于现有技术具有如下的优点:
(1) 通过在钢管内中部设置螺旋箍筋或若干横向箍筋,进一步加强钢管混 凝土柱中部的横向约束,使得在用钢量相同的情况下钢管混凝土柱的轴压性 能明显提高。
(2) 利用低强度等级废旧混凝土块体与高强度等级新混凝土制作高强化 再生混合钢管混凝土柱,可将低强度等级废旧混凝土使用到混凝土强度要求较高的构件和结构中,扩大了低强度等级废旧混凝土的使用范围。
(3) 利用废旧混凝土块体进行浇筑,大大简化了废旧混凝土循环利用时的破碎、筛分、净化等处理过程,节省了大量人力、时间和能源,可实现废旧混凝土的高效循环利用。
附图说明
图 1a 和图 1b 分别为实施 例 1 的内设局部约束的高强化再生混合钢管砼轴压柱的横向剖面示意图和纵向剖面示意图。
图 2a 和图 2b 分别为实施例 2 的内设局部约束的高强化再生混合钢管砼轴压柱的横向剖面示意图和纵向剖面示意图。
图3a和图3b分别为实施例 3 的内设局部约束的高强化再生混合钢管砼轴压柱的横向剖面示意图和纵向剖面示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限 于此。
实施例 1 :
参见 图 1a 、图 1b ,本发 明的 内设局部约束的高强化再生混合钢管砼轴压柱 包括 钢管 1 、高强度等级新混凝土 2 、低强度等级废旧混凝土块体 3 、螺旋箍筋 4 、纵向架立筋 6 。所述钢管截面为圆形,外径 300mm ,壁厚 6mm ,钢管长度 3000mm ,钢材牌号 Q235 ,实测屈服强度 269.8MPa ,抗拉强度 407.7MPa ,钢管内部交替浇筑强度等级 70MPa 的新混凝土和投放强度等级 30MPa 的废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 40MPa ,高强度等级新混凝土与低强度等级废旧混凝土组合后抗压强度 48.8MPa 。在钢管内中部五分之三高度范围内均匀设置螺旋箍筋,螺旋箍筋采用直径 12mm 的 HRB335 级钢筋,总长度 21250mm 。纵向架立筋采用直径 8mm 的 HRB335 级钢筋,长度 3000mm 。低强度等级废旧混凝土块体为一座旧有建筑物拆除并去除保护层和全部钢筋之后的废旧混凝土块体;高强度等级新混凝土为天然骨料混凝土。低强度等级废旧混凝土块体的特征尺寸为 100~200mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:1.5 。
上述 内设局部约束的高强化再生混合钢管砼轴压柱的施工工艺,包括以下步骤:
( 1 )将螺旋箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使螺旋箍筋均匀置于钢管中部五分之三高度范围内,然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
为对比起见,取外径 300mm 、壁厚 7mm 、长度 3000mm 的相同材料圆钢管,不设螺旋箍筋,制作无局部约束的高强化再生混合钢管砼柱;同时取强度等级 35MPa 的新混凝土和强度等级 30MPa 的废旧混凝土块体,混合后抗压强度 33MPa ,制作无局部约束的常规再生混合钢管砼柱。研究得出,本实施例中内设局部约束的高强化再生混合钢管砼轴压柱的极限轴向受压承载力 5956kN ,无局部约束的高强化再生混合钢管砼柱的极限轴向受压承载力约 5113kN ,无局部约束的常规再生混合钢管砼柱的极限轴向受压承载力 4328kN ,通过计算可知上述三种柱的用钢量几乎相同,但前者比中者轴压承载力提高 16.5% ,中者比后者轴压承载力提高 18.1% ,前者比后者轴压承载力提高 37.6% 。
实施例 2 :
参见 图 2a 、图 2b ,本发 明的 内设局部约束的高强化再生混合钢管砼轴压柱 包括 钢管 1 、高强度等级新混凝土 2 、低强度等级废旧混凝土块体 3 、横向箍筋 5 、纵向架立筋 6 。所述钢管截面为圆形,外径 300mm ,壁厚 6mm ,钢管长度 3000mm ,钢材牌号 Q235 ,实测屈服强度 269.8MPa ,抗拉强度 407.7MPa ,钢管内部交替浇筑强度等级 70MPa 的新混凝土和投放强度等级 30MPa 的废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 40MPa ,高强度等级新混凝土与低强度等级废旧混凝土组合后抗压强度 48.8MPa 。在钢管内中部五分之三高度范围内设置 26 根横向箍筋,横向箍筋采用直径 12mm 的 HRB335 级钢筋;其中 1500mm 高度处紧靠布置两根箍筋,中间 900mm 高度范围内共布置 20 根箍筋,箍筋间距 49mm ;两边再各布置 3 根箍筋,箍筋间距 150mm 。纵向架立筋采用直径 8mm 的 HRB335 级钢筋,长度 3000mm 。低强度等级废旧混凝土块体为一座旧有建筑物拆除并去除保护层和全部钢筋之后的废旧混凝土块体;高强度等级新混凝土为天然骨料混凝土。低强度等级废旧混凝土块体的特征尺寸为 100~200mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:1.5 。
上述 内设局部约束的高强化再生混合钢管砼轴压柱的施工工艺,包括以下步骤:
( 1 )将 26 根横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使横向箍筋置于钢管中部五分之三高度范围内,其中 1500mm 高度处紧靠布置两根箍筋,中间 900mm 高度范围内共布置 20 根箍筋,箍筋间距 49mm ,两边再各布置 3 根箍筋,箍筋间距 150mm ;然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
为对比起见,取外径 300mm 、壁厚 7mm 、长度 3000mm 的相同材料圆钢管,不设横向箍筋,制作无局部约束的高强化再生混合钢管砼柱;同时取强度等级 35MPa 的新混凝土和强度等级 30MPa 的废旧混凝土块体,混合后抗压强度 33MPa ,制作无局部约束的常规再生混合钢管砼柱。研究得出,本实施例中内设局部约束的高强化再生混合钢管砼轴压柱的极限轴向受压承载力 5783kN ,无局部约束的高强化再生混合钢管砼柱的极限轴向受压承载力约 5113kN ,无局部约束的常规再生混合钢管砼柱的极限轴向受压承载力 4328kN ,通过计算可知三种柱的用钢量几乎相同,但前者比中者轴压承载力提高 13.1% ,中者比后者轴压承载力提高 18.1% ,前者比后者轴压承载力提高 36.6% 。
实施例 3 :
参见 图 3a 、图 3b ,本发 明的 内设局部约束的高强化再生混合钢管砼轴压柱 包括 钢管 1 、高强度等级新混凝土 2 、低强度等级废旧混凝土块体 3 、横向箍筋 5 、纵向架立筋 6 。所述钢管截面为方形,边长 300mm ,壁厚 7mm ,钢管长度 3000mm ,钢材牌号 Q235 ,实测屈服强度 269.8MPa ,抗拉强度 407.7MPa ,钢管内部交替浇筑强度等级 110MPa 的新混凝土和强度等级 20MPa 的废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度 90MPa ,高强度等级新混凝土与低强度等级废旧混凝土组合后抗压强度 57.5MPa 。在钢管内中部五分之三高度范围内设置 27 根横向箍筋,箍筋采用直径 12mm 的 HRB335 级钢筋,其中中间布置 21 根箍筋,箍筋间距 45mm ,两边再各布置 3 根箍筋,箍筋间距 150mm 。纵向架立筋采用直径 8mm 的 HRB335 级钢筋,长度 3000mm 。低强度等级废旧混凝土块体为一座旧有建筑物拆除并去除保护层和全部钢筋之后的废旧混凝土块体;高强度等级新混凝土为天然骨料混凝土。低强度等级废旧混凝土块体的特征尺寸为 100~200mm ,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为 1:2 。
上述 内设局部约束的高强化再生混合钢管砼轴压柱的施工工艺,包括以下步骤:
( 1 )将 27 根横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使横向箍筋置于钢管内中部五分之三高度范围内,且中间 900mm 高度范围内共布置 21 根箍筋,箍筋间距 45mm ,两边再各布置 3 根箍筋,箍筋间距 150mm ;然后将两根纵向架立筋与钢管内壁点焊;
( 2 )提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约 20mm 厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
为对比起见,取边长 300mm 、壁厚 8mm 、长度 3000mm 的相同材料方钢管,不设横向箍筋,制作无局部约束的高强化再生混合钢管砼柱;同时取强度等级 30MPa 的新混凝土和强度等级 20MPa 的废旧混凝土块体,混合后抗压强度 26.7MPa ,制作无局部约束的常规再生混合钢管砼柱。 研 究得出, 本实施例中内设局部约束的高强化再生混合钢管砼轴压柱的极限轴向受压承载力约 8802kN , 无局部约束的高强化再生混合钢管砼柱的极限轴向受压承载力约 8081kN , 无局部约束的常规再生混合钢管砼柱的极限轴向受压承载力约 5607kN , 通过计算可知三种柱的用钢量几乎相同,但前者比中者轴压承载力提高 8.9% ,中者 比后者轴压承载力 提高 44.1% ,前 者比后者轴压承载力提高 57.0% 。
上述为本发明较佳的实施方式,但本发明的实施方式并不受上述内容的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

  1. 内设局部约束的高强化再生混合钢管砼轴压柱,其特征在于:在钢管内中部五分之三高度范围内设置螺旋箍筋或若干横向箍筋,钢管内部交替浇筑高强度等级新混凝土和投放低强度等级废旧混凝土块体,高强度等级新混凝土的抗压强度大于低强度等级废旧混凝土抗压强度30~90MPa。
  2. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼轴压柱,其特征在于:所述螺旋箍筋设置在钢管内中部五分之三高度范围内,钢管截面为圆形;或横向箍筋设置在钢管内中部五分之三高度范围内,中间密两边疏,钢管截面为圆形或多边形。
  3. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼轴压柱,其特征在于:所述低强度等级废旧混凝土块体为旧有建筑物、构筑物、道路、桥梁或堤坝拆除并去除保护层和全部或部分钢筋之后的废旧混凝土块体。
  4. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼轴压柱,其特征在于:所述高强度等级新混凝土为天然骨料混凝土或再生骨料混凝土,且抗压强度不小于60MPa。
  5. 根据权利要求1所述的内设局部约束的高强化再生混合钢管砼轴压柱,其特征在于:所述低强度等级废旧混凝土块体的特征尺寸不低于100mm,且低强度等级废旧混凝土块体与高强度等级新混凝土的质量比为1:4~1:1。
  6. 权利要求1所述的内设局部约束的高强化再生混合钢管砼轴压柱的施工工艺,其特征在于,包括以下步骤:
    (1)将螺旋箍筋或若干横向箍筋与两根纵向架立筋点焊成一体,再吊起两根纵向架立筋,使螺旋箍筋或若干横向箍筋置于钢管内中部五分之三高度范围内,且采用横向箍筋时箍筋间距中间密两边疏,然后将两根纵向架立筋与钢管内壁点焊;
    (2)提前将低强度等级废旧混凝土块体充分湿润,投放时首先在钢管底部灌入约20mm厚的高强度等级新混凝土,然后将湿润的低强度等级废旧混凝土块体与高强度等级新混凝土交替放入钢管内部并充分振捣,直至浇筑完成,使得低强度等级废旧混凝土块体与高强度等级新混凝土均匀混合成一体。
    根据权利要求1所述的垂直轴波浪发电机,其特征在于:所述底座为下沉至海床(8)的重力式下沉体。
PCT/CN2014/089375 2014-09-17 2014-10-24 内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺 WO2016041236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/512,068 US10087106B2 (en) 2014-09-17 2014-10-24 Method of constructing an axial compression steel tubular column

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410476627.4 2014-09-17
CN201410476627.4A CN104295002B (zh) 2014-09-17 2014-09-17 内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺

Publications (1)

Publication Number Publication Date
WO2016041236A1 true WO2016041236A1 (zh) 2016-03-24

Family

ID=52314926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089375 WO2016041236A1 (zh) 2014-09-17 2014-10-24 内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺

Country Status (3)

Country Link
US (1) US10087106B2 (zh)
CN (1) CN104295002B (zh)
WO (1) WO2016041236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106760210A (zh) * 2017-01-10 2017-05-31 中铁第勘察设计院集团有限公司 钢筋混凝土双重复合芯柱及其施工方法
WO2019184958A1 (zh) * 2018-03-27 2019-10-03 王哲 组合结构及其制作方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107366352A (zh) * 2017-04-10 2017-11-21 深圳市建筑设计研究总院有限公司 强外框超高层建筑结构
CN109853943A (zh) * 2017-11-30 2019-06-07 中国二十冶集团有限公司 劲性混凝土柱构造钢筋施工装置及其使用方法
CN111395655A (zh) * 2020-03-05 2020-07-10 南京林业大学 一种套管约束钢筋混凝土增强的海水海砂混凝土结构
CN112878585A (zh) * 2021-01-27 2021-06-01 中北大学 一种高抗爆高强泡沫铝-钢管混凝土复合柱及其制备方法
CN113775068A (zh) * 2021-08-20 2021-12-10 北京工业大学 一种颗粒填充方钢管消能减震构件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524147A1 (de) * 1975-05-30 1976-12-02 Ytong Ag Verfahren zur verwendung von bei der herstellung von dampfgehaertetem gasbeton anfallendem bruch- und abfallmaterial und daraus hergestellte erzeugnisse
JPH07279312A (ja) * 1994-04-07 1995-10-27 Jdc Corp コンクリート充填部材
JP2001233657A (ja) * 2000-02-24 2001-08-28 Makkusuton Kk コンクリート成形パネル又は同ブロック
CN101054275A (zh) * 2006-04-11 2007-10-17 牛宁民 聚合泡沫混凝土水泥发泡剂
CN101818543A (zh) * 2010-05-28 2010-09-01 中南大学 方钢管内切环形箍筋约束高强混凝土柱
CN201883609U (zh) * 2010-12-02 2011-06-29 西安建筑科技大学 金属波纹管再回收混凝土芯柱
CN202324344U (zh) * 2011-11-17 2012-07-11 吴若涵 废弃砖块再生混合矩形柱

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316724A (en) * 1963-01-16 1967-05-02 Tsuzuki Yoshiro Concrete pile joint and method of assembly
FR1575629A (zh) * 1968-03-22 1969-07-25
US3858374A (en) * 1973-10-09 1975-01-07 Int Environmental Dynamics Triaxially prestressed polygonal concrete members
BE821235R (fr) * 1973-10-26 1975-02-17 Caissons en acier et leur utilisation en vue de l'execution de poteaux ou de pieux mixtes acier-beton.
US4166347A (en) * 1976-10-18 1979-09-04 Pohlman Joe C Composite structural member and method of constructing same
US4127002A (en) * 1977-11-25 1978-11-28 Dewitt Arthur W Method for forming a concrete piling foundation
JPS5991214A (ja) * 1982-11-18 1984-05-25 Sumitomo Cement Co Ltd 場所打杭の杭頭処理工法
US4606167A (en) * 1984-10-31 1986-08-19 Parker Thorne Fabricated round interior column and method of construction
CN1008461B (zh) * 1985-03-05 1990-06-20 清水建设株式会社 钢管混凝土柱子及其制造方法
US5012622A (en) * 1985-03-05 1991-05-07 Shimizu Construction Co., Ltd. Structural filler filled steel tube column
US4783940A (en) * 1985-12-28 1988-11-15 Shimizu Construction Co., Ltd. Concrete filled steel tube column and method of constructing same
JPH01256651A (ja) * 1988-04-01 1989-10-13 Shimizu Corp 鋼管コンクリート柱構造及びその施工方法
US5050356A (en) * 1988-07-19 1991-09-24 Houston Industries Incorporated Immured foundation
US5263297A (en) * 1989-11-02 1993-11-23 Kim Joong S Structural member with a metal shell
US5457929A (en) * 1989-11-02 1995-10-17 Kim; Joong S. Structural member with a metal shell
US5119614A (en) * 1991-01-28 1992-06-09 Superior Precast Concrete post reinforcing apparatus
US5317846A (en) * 1991-03-28 1994-06-07 United Dominion Industries, Inc. Underfloor wire distributing reinforced concrete floor structure
KR930010214B1 (ko) * 1991-11-23 1993-10-15 김선자 프리캐스트(Pre Cast) 콘크리트부재의 연결공법
US5328508A (en) * 1993-03-18 1994-07-12 Lintek International, Inc. Method for rapid hydration of cement and improved concrete
US5599599A (en) * 1995-07-06 1997-02-04 University Of Central Florida Fiber reinforced plastic ("FRP")-concrete composite structural members
US5766524A (en) * 1995-10-16 1998-06-16 Governors Of The University Of Alberta Reclamation of leftover concrete
JPH1096263A (ja) * 1996-06-06 1998-04-14 R Johann Hashihoran Simanjuntakk I プレキャストコンクリート支柱及びスラブの組立方法
GR1002860B (el) * 1997-01-03 1998-02-12 Αντισεισμικοι σπειροειδεις συνδετηρες δομικων εργων
US6123485A (en) * 1998-02-03 2000-09-26 University Of Central Florida Pre-stressed FRP-concrete composite structural members
US6705058B1 (en) * 1999-02-12 2004-03-16 Newmark International Inc. Multiple-part pole
US6192647B1 (en) * 1999-04-15 2001-02-27 Kjell L. Dahl High strength grouted pipe coupler
JP3064963U (ja) * 1999-06-17 2000-01-28 株式会社トピックス 建築資材
US6244014B1 (en) * 1999-07-22 2001-06-12 Andrew Barmakian Steel rod-reinforced plastic piling
JP3484156B2 (ja) * 1999-12-27 2004-01-06 構造品質保証研究所株式会社 構築物の補強方法及びその構造
JP3614393B2 (ja) * 2000-10-18 2005-01-26 洋三 山本 コンクリート廃材を利用したコンクリート丸形磨き骨材及びその製造方法
JP2003300766A (ja) * 2002-02-06 2003-10-21 Nippon Shokubai Co Ltd コンクリート組成物、コンクリート組成物の製造方法及びセメント混和剤
US6938392B2 (en) * 2002-08-14 2005-09-06 Newmark International, Inc. Concrete filled pole
TW577952B (en) * 2002-12-25 2004-03-01 Nat Science Council A cable renovation and intensification construction method used in reinforced concrete structure
US20050183381A1 (en) * 2003-01-21 2005-08-25 Rosenberg Jean G. Method for manufacturing brakeless lightweight concrete poles
US6860077B2 (en) * 2003-05-19 2005-03-01 Runborn Pretech Engineering Co., Ltd. Helical rebar structure
US20050055922A1 (en) * 2003-09-05 2005-03-17 Mohammad Shamsai Prefabricated cage system for reinforcing concrete members
US20050050837A1 (en) * 2003-09-08 2005-03-10 Jiaduo Wang Meshed (porous) steel pipe/tube used as concrete reinforcement
US20080184667A1 (en) * 2004-05-17 2008-08-07 Hindi Riyadh A Concrete Reinforcement Apparatus and Method
US20080155827A1 (en) * 2004-09-20 2008-07-03 Fyfe Edward R Method for repairing metal structure
TWM271896U (en) * 2005-03-18 2005-08-01 Runhorn Pretech Eng Co Ltd Assembly structure for spiral stirrups and steel
US8104242B1 (en) * 2006-06-21 2012-01-31 Valmont Industries Inc. Concrete-filled metal pole with shear transfer connectors
US20080263978A1 (en) * 2007-04-27 2008-10-30 Zaher Ali Abou-Saleh Reinforcing Assemblies and Reinforced Concrete Structures
CN101324115B (zh) * 2008-07-04 2010-06-02 华南理工大学 钢管再生混合构件
KR101157147B1 (ko) * 2008-09-22 2012-06-22 경희대학교 산학협력단 콘크리트 복합 기둥 및 이를 이용한 건축물 시공방법
CN101418629B (zh) * 2008-10-14 2011-07-27 华南理工大学 再生混合钢筋混凝土梁及其施工方法
US8429876B2 (en) * 2009-08-27 2013-04-30 Eugenio Santiago Aburto Concrete rib construction method
US20110138704A1 (en) * 2010-06-30 2011-06-16 General Electric Company Tower with tensioning cables
US8307593B2 (en) * 2010-08-18 2012-11-13 General Electric Company Tower with adapter section
WO2012024814A1 (en) * 2010-08-24 2012-03-01 Empire Technology Development Llc Reinforced concrete dense column structure systems
CN102959162B (zh) * 2010-08-24 2015-03-18 英派尔科技开发有限公司 预制墙板
CN102003042A (zh) * 2010-10-26 2011-04-06 天津大学 一种螺旋箍筋方钢管混凝土柱及其制作方法
US20130312350A1 (en) * 2010-11-12 2013-11-28 Kenneth Robert Kreizinger Plastic Stay-In-Place Concrete Forming System
CN102031846B (zh) * 2010-12-28 2012-07-04 哈尔滨工业大学 端部设置开孔斜拉肋矩形钢管约束混凝土柱
CN102330469A (zh) * 2011-07-27 2012-01-25 福州大学 一种加强钢管和管内混凝土粘结作用的方法及其结构
TWM428973U (en) * 2011-10-28 2012-05-11 Yan-Qing Hong Building structure with stay-in-place mould
US8998003B2 (en) * 2012-01-20 2015-04-07 Mccue Corporation Ballasted cart storage station
US8484915B1 (en) * 2012-07-11 2013-07-16 King Saud University System for improving fire endurance of concrete-filled steel tubular columns
KR101253255B1 (ko) * 2012-09-13 2013-04-10 (주)목양엔지니어링건축사사무소 횡구속 및 하이브리드 섬유혼입을 통한 고강도 콘크리트의 내화성능 향상공법
AU2014224166B2 (en) * 2013-09-15 2018-10-11 Bfre Pty Ltd As Trustee Dual Mesh Level Reinforcement Bar Chair Assembly
US9476212B2 (en) * 2014-06-10 2016-10-25 Seyed Hossein Abbasi System and method for structural rehabilitation and enhancement
CN105256947B (zh) * 2015-09-24 2017-05-17 广州建筑股份有限公司 一种再生混合混凝土梁板的施工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2524147A1 (de) * 1975-05-30 1976-12-02 Ytong Ag Verfahren zur verwendung von bei der herstellung von dampfgehaertetem gasbeton anfallendem bruch- und abfallmaterial und daraus hergestellte erzeugnisse
JPH07279312A (ja) * 1994-04-07 1995-10-27 Jdc Corp コンクリート充填部材
JP2001233657A (ja) * 2000-02-24 2001-08-28 Makkusuton Kk コンクリート成形パネル又は同ブロック
CN101054275A (zh) * 2006-04-11 2007-10-17 牛宁民 聚合泡沫混凝土水泥发泡剂
CN101818543A (zh) * 2010-05-28 2010-09-01 中南大学 方钢管内切环形箍筋约束高强混凝土柱
CN201883609U (zh) * 2010-12-02 2011-06-29 西安建筑科技大学 金属波纹管再回收混凝土芯柱
CN202324344U (zh) * 2011-11-17 2012-07-11 吴若涵 废弃砖块再生混合矩形柱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106760210A (zh) * 2017-01-10 2017-05-31 中铁第勘察设计院集团有限公司 钢筋混凝土双重复合芯柱及其施工方法
WO2019184958A1 (zh) * 2018-03-27 2019-10-03 王哲 组合结构及其制作方法

Also Published As

Publication number Publication date
US20170253526A1 (en) 2017-09-07
US10087106B2 (en) 2018-10-02
CN104295002A (zh) 2015-01-21
CN104295002B (zh) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2016041236A1 (zh) 内设局部约束的高强化再生混合钢管砼轴压柱及施工工艺
US10273691B2 (en) Method of constructing a reinforced compound concrete beam containing demolished concrete lumps
WO2016041237A1 (zh) 内设局部约束的高强化再生混合钢管砼抗震柱及施工工艺
WO2018072759A1 (zh) 一种钢筋再生块体混凝土梁-柱节点及其施工方法
WO2018077202A1 (zh) 一种再生块体混凝土组合梁-柱的节点连接及其施工方法
WO2018196309A1 (zh) 一种预制再生块体混凝土梁的连接构造及其施工方法
CN207776149U (zh) 一种预制钢管混凝土边框剪力墙
CN101418631A (zh) U型外包钢再生混合梁及其施工方法
CN206784158U (zh) 一种预制盖梁与预制墩柱连接节点构造
CN113047849B (zh) 一种软岩偏压隧道衬砌支护施工方法
CN109209438B (zh) 一种使用钢纤维混凝土的隧道衬砌结构施工方法
WO2022052387A1 (zh) 一种钢筋再生块体 / 骨料混凝土预制柱及其施工方法
CN109519193A (zh) 一种铁路既有线隧道套衬结构及其施工方法
CN106088640A (zh) 对既有框架结构进行抽柱改造的方法
CN105350641A (zh) 适用于预制装配建筑的框架柱连接节点及其施工工艺
CN111485716A (zh) 一种废弃混凝土大骨料在混凝土结构施工中的应用
CN202945741U (zh) 一种钢管免振混凝土柱
CN107288030A (zh) 制作圆柱形混凝土墩柱的方法
CN204343699U (zh) 一种混凝土柱预压应力钢护筒
WO2021213099A1 (zh) 一种利用插筋与既有路面基础锚固的井盖加固结构及方法
CN112813794A (zh) 采用uhpc预制波纹板节段拼装的实腹式拱桥体系及施工方法
CN104314001B (zh) 再生混凝土带u肋哑铃型柱式桥墩
CN109610338B (zh) 一种悬索桥塔柱底口防漏浆施工方法
CN114718245B (zh) 一种再生块体/骨料混凝土预制叠合梁及其施工方法
CN206279680U (zh) 一种基于免拆模板的轻质芯模混凝土叠合密肋楼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15512068

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14902246

Country of ref document: EP

Kind code of ref document: A1