WO2016039453A1 - 排気浄化システム及び、その制御方法 - Google Patents

排気浄化システム及び、その制御方法 Download PDF

Info

Publication number
WO2016039453A1
WO2016039453A1 PCT/JP2015/075877 JP2015075877W WO2016039453A1 WO 2016039453 A1 WO2016039453 A1 WO 2016039453A1 JP 2015075877 W JP2015075877 W JP 2015075877W WO 2016039453 A1 WO2016039453 A1 WO 2016039453A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
exhaust
injection amount
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2015/075877
Other languages
English (en)
French (fr)
Inventor
昌明 西頭
輝男 中田
隆行 坂本
長岡 大治
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201580049184.3A priority Critical patent/CN106715855A/zh
Priority to EP15840686.8A priority patent/EP3192990B1/en
Priority to US15/510,669 priority patent/US10240499B2/en
Publication of WO2016039453A1 publication Critical patent/WO2016039453A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification system and a control method thereof.
  • a NOx occlusion reduction type catalyst is known as a catalyst for reducing and purifying nitrogen compounds (NOx) in exhaust gas discharged from an internal combustion engine.
  • NOx nitrogen compounds
  • This NOx occlusion reduction type catalyst occludes NOx contained in the exhaust when the exhaust is in a lean atmosphere, and reduces and purifies NOx occluded by hydrocarbons contained in the exhaust when the exhaust is in a rich atmosphere. Detoxify and release. For this reason, when the NOx occlusion amount of the catalyst reaches a predetermined amount, so-called NOx purge that makes the exhaust rich by post injection or exhaust pipe injection needs to be performed periodically to restore the NOx occlusion capacity ( For example, see Patent Document 1).
  • the NOx occlusion reduction type catalyst also occludes sulfur oxide (hereinafter referred to as SOx) contained in the exhaust gas.
  • SOx sulfur oxide
  • the SOx occlusion amount increases, there is a problem that the NOx purification ability of the NOx occlusion reduction type catalyst is lowered. Therefore, when the SOx occlusion amount reaches a predetermined amount, unburned fuel is added to the upstream oxidation catalyst by post injection or exhaust pipe injection so that SOx is released from the NOx occlusion reduction type catalyst and recovered from S poisoning. Therefore, it is necessary to periodically perform a so-called SOx purge for raising the exhaust temperature to the SOx separation temperature (see, for example, Patent Document 2).
  • JP 2008-202425 A JP 2009-47086 A JP 2009-203866 A JP 2003-090250 A
  • the lambda sensor has a problem that its measurement accuracy cannot be ensured when the fuel supplied by post injection or exhaust pipe injection is not sufficiently oxidized by the exhaust heat. For this reason, in the method using a lambda sensor, there is a possibility that the exhaust cannot be controlled to the target excess air ratio.
  • the disclosed system aims to effectively control the exhaust to the target excess air ratio of the NOx purge or SOx purge without using the lambda value of the exhaust.
  • the disclosed system includes a NOx reduction type catalyst that is provided in an exhaust system of an internal combustion engine for reducing and purifying NOx in exhaust gas, and an exhaust air excess rate is reduced to a predetermined target air excess rate to reduce the NOx reduction type catalyst.
  • An exhaust purification system comprising: a regeneration processing unit that restores NOx purification capacity, wherein the regeneration processing unit is based on the intake air amount of the internal combustion engine, the target excess air ratio, and the fuel injection amount of the internal combustion engine.
  • a target setting unit that sets a target injection amount of at least one of post-injection and exhaust pipe injection necessary for setting the exhaust air excess ratio to the target air excess ratio, and target injection input from the target setting unit
  • an injection control unit that controls at least one of the post injection and the exhaust pipe injection based on the amount.
  • 1 is an overall configuration diagram showing an exhaust purification system according to an embodiment. It is a timing chart explaining SOx purge control concerning this embodiment. It is a block diagram which shows the setting process of the MAF target value at the time of SOx purge lean control which concerns on this embodiment. It is a block diagram which shows the setting process of the target injection amount at the time of SOx purge rich control which concerns on this embodiment. It is a timing chart explaining catalyst temperature adjustment control of SOx purge control concerning this embodiment. It is a timing chart figure explaining NOx purge control concerning this embodiment. It is a block diagram which shows the setting process of the MAF target value at the time of NOx purge lean control which concerns on this embodiment.
  • each cylinder of a diesel engine (hereinafter simply referred to as an engine) 10 is provided with an injector 11 for directly injecting high pressure fuel stored in a common rail (not shown) into each cylinder.
  • the fuel injection amount and fuel injection timing of each injector 11 are controlled in accordance with an instruction signal input from an electronic control unit (hereinafter referred to as ECU) 50.
  • ECU electronice control unit
  • An intake passage 12 for introducing fresh air is connected to the intake manifold 10A of the engine 10, and an exhaust passage 13 for connecting exhaust to the outside is connected to the exhaust manifold 10B.
  • an air cleaner 14 an intake air amount sensor (hereinafter referred to as MAF sensor) 40, a compressor 20A of the variable displacement supercharger 20, an intercooler 15, an intake throttle valve 16 and the like are provided in order from the intake upstream side.
  • MAF sensor 40 intake air amount sensor
  • the exhaust passage 13 is provided with a turbine 20B of the variable displacement supercharger 20, an exhaust aftertreatment device 30 and the like in order from the exhaust upstream side.
  • reference numeral 41 denotes an engine speed sensor
  • reference numeral 42 denotes an accelerator opening sensor
  • reference numeral 46 denotes a boost pressure sensor.
  • the EGR device 21 includes an EGR passage 22 that connects the exhaust manifold 10B and the intake manifold 10A, an EGR cooler 23 that cools the EGR gas, and an EGR valve 24 that adjusts the EGR amount.
  • the exhaust aftertreatment device 30 is configured by arranging an oxidation catalyst 31, a NOx occlusion reduction type catalyst 32, and a particulate filter (hereinafter simply referred to as a filter) 33 in order from the exhaust upstream side in a case 30A.
  • the exhaust passage 13 upstream of the oxidation catalyst 31 is provided with an exhaust pipe injection device 34 that injects unburned fuel (mainly HC) into the exhaust passage 13 in accordance with an instruction signal input from the ECU 50. It has been.
  • the oxidation catalyst 31 is formed, for example, by carrying an oxidation catalyst component on the surface of a ceramic carrier such as a honeycomb structure.
  • a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 is formed, for example, by supporting an alkali metal or the like on the surface of a ceramic carrier such as a honeycomb structure.
  • the NOx occlusion reduction type catalyst 32 occludes NOx in the exhaust when the exhaust air-fuel ratio is in a lean state, and occludes with a reducing agent (HC or the like) contained in the exhaust when the exhaust air-fuel ratio is in a rich state. NOx is reduced and purified.
  • the filter 33 is formed, for example, by arranging a large number of cells partitioned by porous partition walls along the flow direction of the exhaust gas and alternately plugging the upstream side and the downstream side of these cells. .
  • the filter 33 collects PM in the exhaust gas in the pores and surfaces of the partition walls, and when the estimated amount of PM deposition reaches a predetermined amount, so-called filter forced regeneration is performed in which the PM is burned and removed.
  • Filter forced regeneration is performed by supplying unburned fuel to the upstream side oxidation catalyst 31 by exhaust pipe injection or post injection, and raising the exhaust temperature flowing into the filter 33 to the PM combustion temperature.
  • the first exhaust temperature sensor 43 is provided on the upstream side of the oxidation catalyst 31 and detects the exhaust temperature flowing into the oxidation catalyst 31.
  • the second exhaust temperature sensor 44 is provided between the oxidation catalyst 31 and the NOx storage reduction catalyst 32 and detects the exhaust temperature flowing into the NOx storage reduction catalyst 32.
  • the NOx / lambda sensor 45 is provided on the downstream side of the filter 33, and detects the NOx value and lambda value (hereinafter also referred to as excess air ratio) of the exhaust gas that has passed through the NOx storage reduction catalyst 32.
  • the ECU 50 performs various controls of the engine 10 and the like, and includes a known CPU, ROM, RAM, input port, output port, and the like. In order to perform these various controls, the sensor values of the sensors 40 to 45 are input to the ECU 50.
  • the ECU 50 includes a filter forced regeneration control unit 51, a SOx separation processing unit 60, a NOx separation processing unit 70, a MAF follow-up control unit 80, an injection amount learning correction unit 90, and a MAF correction coefficient calculation unit 95.
  • a functional element As a functional element. Each of these functional elements will be described as being included in the ECU 50 which is an integral hardware, but any one of these may be provided in separate hardware.
  • the filter forced regeneration control unit 51 estimates the PM accumulation amount of the filter 33 from the travel distance of the vehicle or the differential pressure across the filter detected by a differential pressure sensor (not shown), and the estimated PM accumulation amount has a predetermined upper limit threshold. If it exceeds, the forced regeneration flag F DPF is turned on (see time t 1 in FIG. 2). When the forced regeneration flag F DPF is turned on, an instruction signal for causing the exhaust pipe injection device 34 to execute exhaust pipe injection is transmitted, or an instruction signal for causing each injector 11 to perform post injection is transmitted. The exhaust temperature is raised to the PM combustion temperature (for example, about 550 ° C.).
  • This forced regeneration flag F DPF is turned off when the PM accumulation estimated amount falls to a predetermined lower threshold (determination threshold) indicating combustion removal (see time t 2 in FIG. 2).
  • determination threshold indicating combustion removal
  • the SOx desorption processing unit 60 is an example of the regeneration processing unit of the present invention, and makes the exhaust gas rich to raise the exhaust gas temperature to a sulfur desorption temperature (for example, about 600 ° C.), so that the NOx occlusion reduction type catalyst 32 is Control to recover from SOx poisoning (hereinafter, this control is referred to as SOx purge control) is executed.
  • FIG. 2 shows a timing chart of the SOx purge control of this embodiment.
  • SOx purge flag F SP to start SOx purge control is turned off and on at the same time forced regeneration flag F DPF (see time t 2 in FIG. 2).
  • F DPF forced regeneration flag
  • the enrichment by the SOx purge control is performed by adjusting the excess air ratio to the lean side from the theoretical air-fuel ratio equivalent value (about 1.0) from the steady operation (for example, about 1.5) by the air system control.
  • SOx purge lean control for reducing to 1 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the first target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) This is realized by using together with the SOx purge rich control that lowers to .9). Details of the SOx purge lean control and the SOx purge rich control will be described below.
  • FIG. 3 is a block diagram showing a process for setting the MAF target value MAF SPL_Trgt during SOx purge lean control.
  • the first target excess air ratio setting map 61 is a map that is referred to based on the engine speed Ne and the accelerator opening Q (the fuel injection amount of the engine 10), and the engine speed Ne, the accelerator opening Q, A target value ⁇ SPL_Trgt (first target air excess rate) at the time of SOx purge lean control corresponding to is preset based on experiments or the like.
  • the excess air ratio target value ⁇ SPL_Trgt at the time of SOx purge lean control is read from the first target excess air ratio setting map 61 using the engine speed Ne and the accelerator opening Q as input signals, and the MAF target value calculation unit 62 Entered. Further, the MAF target value calculation unit 62 calculates the MAF target value MAF SPL_Trgt at the time of SOx purge lean control based on the following formula (1).
  • MAF SPL_Trgt ⁇ SPL_Trgt ⁇ Q fnl_corrd ⁇ Ro Fuel ⁇ AFR sto / Maf_corr (1)
  • Equation (1) Q fnl_corrd is a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel is a fuel specific gravity, AFR sto is a stoichiometric air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Yes.
  • MAF target value MAF SPL_Trgt calculated by the MAF target value calculation unit 62, when the SOx purge flag F SP is turned on (see time t 2 in FIG. 2) is input to the lamp unit 63.
  • the ramp processing unit 63 reads the ramp coefficient from the ramp coefficient maps 63A and 63B using the engine speed Ne and the accelerator opening Q as input signals, and outputs the MAF target ramp value MAF SPL_Trgt_Ramp to which the ramp coefficient is added to the valve control unit 64. To enter.
  • the valve control unit 64 throttles the intake throttle valve 16 to the close side and feeds back the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF SPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF SPL_Trgt is set based on the excess air ratio target value ⁇ SPL_Trgt read from the first target excess air ratio setting map 61 and the fuel injection amount of each injector 11.
  • the air system operation is feedback controlled based on the MAF target value MAF SPL_Trgt .
  • the MAF target value MAF SPL_Trgt can be set by feedforward control, and the aging deterioration and characteristic change of each injector 11 can be achieved. The influence of individual differences can be effectively eliminated.
  • FIG. 4 is a block diagram showing processing for setting the target injection amount Q SPR_Trgt (injection amount per unit time) of exhaust pipe injection or post injection in SOx purge rich control.
  • the second target excess air ratio setting map 65 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and at the time of SOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the air excess rate target value ⁇ SPR_Trgt (second target air excess rate) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ SPR_Trgt at the time of SOx purge rich control is read from the second target excess air ratio setting map 65 using the engine speed Ne and the accelerator opening Q as input signals, and an injection quantity target value calculation unit 66. Further, the injection amount target value calculation unit 66 calculates the target injection amount Q SPR_Trgt at the time of SOx purge rich control based on the following formula (2).
  • Q SPR_Trgt MAF SPL_Trgt ⁇ Maf_corr / ( ⁇ SPR_Target ⁇ Ro Fuel ⁇ AFR sto ) ⁇ Q fnl_corrd (2)
  • MAF SPL_Trgt is the MAF target value at the time of SOx purge lean, and is input from the MAF target value calculation unit 62 described above.
  • Q fnlRaw_corrd is a fuel injection amount (excluding post-injection) after application of learning corrected MAF follow-up control described later,
  • Ro Fuel is fuel specific gravity
  • AFR sto is a stoichiometric air-fuel ratio
  • Maf_corr is a MAF correction coefficient described later. Show.
  • the target injection amount Q SPR_Trgt calculated by the injection amount target value calculation unit 66 is transmitted as an injection instruction signal to the exhaust pipe injector 34 or each injector 11 when a SOx purge rich flag F SPR described later is turned on.
  • the target injection amount Q SPR_Trgt is set based on the air excess rate target value ⁇ SPR_Trgt read from the second target air excess rate setting map 65 and the fuel injection amount of each injector 11. It has become.
  • the sensor value of the lambda sensor is not used.
  • the exhaust can be effectively reduced to a desired excess air ratio required for SOx purge rich control.
  • the exhaust temperature (hereinafter also referred to as catalyst temperature) flowing into the NOx occlusion reduction type catalyst 32 during the SOx purge control is the SOx for performing exhaust pipe injection or post injection as shown at times t 2 to t 4 in FIG.
  • the purge rich flag F SPR is controlled by alternately switching on / off (rich / lean).
  • the SOx purge rich flag F SPR is turned off, the catalyst temperature is lowered by stopping the exhaust pipe injection or the post injection (hereinafter, this period is referred to as an interval TF_INT ).
  • the injection period TF_INJ is set by reading values corresponding to the engine speed Ne and the accelerator opening Q from an injection period setting map (not shown) created in advance by experiments or the like.
  • an injection period required to reliably reduce the excess air ratio of exhaust gas obtained in advance through experiments or the like to the second target excess air ratio is set according to the operating state of the engine 10. ing.
  • the interval TF_INT is set by feedback control when the SOx purge rich flag F SPR at which the catalyst temperature is highest is switched from on to off. Specifically, the proportional control for changing the input signal in proportion to the deviation ⁇ T between the target catalyst temperature and the estimated catalyst temperature when the SOx purge rich flag F SPR is turned off, and the time integral value of the deviation ⁇ T are proportional. This is processed by PID control constituted by integral control for changing the input signal and differential control for changing the input signal in proportion to the time differential value of the deviation ⁇ T.
  • the target catalyst temperature is set at a temperature at which SOx can be removed from the NOx storage reduction catalyst 32.
  • the estimated catalyst temperature is, for example, the inlet temperature of the oxidation catalyst 31 detected by the first exhaust temperature sensor 43, and the oxidation catalyst 31. It may be estimated based on the exothermic reaction in the NOx occlusion reduction type catalyst 32 or the like.
  • the SOx purge control is started from the SOx purge rich control without performing the SOx purge lean control, the fuel gas consumption is promptly shifted to the SOx purge control without lowering the exhaust temperature that has been raised by the forced filter regeneration. Can be reduced.
  • the injection period T F_INJ for raising the catalyst temperature and lowering the excess air ratio to the second target excess air ratio is set from a map referred to based on the operating state of the engine 10,
  • the interval TF_INT for lowering the catalyst temperature is processed by PID control. This makes it possible to reliably reduce the excess air ratio to the target excess ratio while effectively maintaining the catalyst temperature during the SOx purge control within a desired temperature range necessary for the purge.
  • SOx purge control (1) SOx purge flag F from on the SP injection quantity of the exhaust pipe injection or post injection accumulated, when the amount of the cumulative injected has reached the predetermined upper limit threshold amount, of (2) SOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals.
  • SOx purge flag F SP is terminated by turning off the (time t 4 in FIG. 2 , reference time t n in FIG. 5).
  • the SOx purge control end condition is provided with the upper limit of the cumulative injection amount and the elapsed time
  • the fuel consumption amount when the SOx purge does not progress due to a decrease in the exhaust temperature or the like. Can be effectively prevented from becoming excessive.
  • NOx purge control The NOx detachment processing unit 70 is an example of the regeneration processing unit of the present invention.
  • the NOx occluded in the NOx occlusion reduction type catalyst 32 is made rich by exhaust gas and detoxified and released by reduction purification.
  • Control for recovering the NOx storage capacity of the storage reduction catalyst 32 (hereinafter, this control is referred to as NOx purge control) is executed.
  • the NOx purge flag F NP for starting the NOx purge control is turned on when the NOx emission amount per unit time is estimated from the operating state of the engine 10 and the estimated cumulative value ⁇ NOx obtained by accumulating this exceeds a predetermined threshold value ( (See time t 1 in FIG. 6).
  • a predetermined threshold value (See time t 1 in FIG. 6).
  • the NOx purification rate by the NOx occlusion reduction type catalyst 32 is calculated from the NOx emission amount upstream of the catalyst estimated from the operating state of the engine 10 and the NOx amount downstream of the catalyst detected by the NOx / lambda sensor 45. , if the NOx purification rate becomes lower than a predetermined judgment threshold, NOx purge flag F NP is turned on.
  • the enrichment by the NOx purge control is performed on the lean side of the excess air ratio from the stoichiometric air-fuel ratio equivalent value (about 1.0) from the time of steady operation (for example, about 1.5) by the air system control.
  • NOx purge lean control for reducing to 3 target excess air ratio (for example, about 1.3) and injection system control to reduce the excess air ratio from the fourth target excess air ratio to the second target excess air ratio on the rich side (for example, about 0) .9) and NOx purge rich control for reducing the pressure to 9).
  • the details of the NOx purge lean control and the NOx purge rich control will be described below.
  • FIG. 7 is a block diagram showing a setting process of the MAF target value MAF NPL_Trgt at the time of NOx purge lean control.
  • the third target excess air ratio setting map 71 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge lean control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ NPL_Trgt (third excess air ratio) is set in advance based on experiments or the like.
  • the excess air ratio target value ⁇ NPL_Trgt at the time of NOx purge lean control is read from the third target excess air ratio setting map 71 using the engine speed Ne and the accelerator opening Q as input signals, and is sent to the MAF target value calculation unit 72. Entered. Further, the MAF target value calculation unit 72 calculates the MAF target value MAF NPL_Trgt at the time of NOx purge lean control based on the following formula (3).
  • MAF NPL_Trgt ⁇ NPL_Trgt ⁇ Q fnl_corrd ⁇ Ro Fuel ⁇ AFR sto / Maf_corr (3)
  • Equation (3) Q fnl_corrd represents a learning-corrected fuel injection amount (excluding post-injection) described later, Ro Fuel represents fuel specific gravity, AFR sto represents a stoichiometric air-fuel ratio, and Maf_corr represents a MAF correction coefficient described later. Yes.
  • MAF target value MAF NPL_Trgt calculated by the MAF target value calculation unit 72 is input the NOx purge flag F SP is turned on (see the time t 1 in FIG. 6) to the lamp unit 73.
  • the ramp processing unit 73 reads the ramp coefficient from the ramp coefficient maps 73A and 73B using the engine speed Ne and the accelerator opening Q as input signals, and sets the MAF target ramp value MAF NPL_Trgt_Ramp to which the ramp coefficient is added as a valve control unit 74. To enter.
  • the valve controller 74 throttles the intake throttle valve 16 to the close side and feeds back the EGR valve 24 to the open side so that the actual MAF value MAF Act input from the MAF sensor 40 becomes the MAF target ramp value MAF NPL_Trgt_Ramp. Execute control.
  • the MAF target value MAF NPL_Trgt is set based on the excess air ratio target value ⁇ NPL_Trgt read from the third target excess air ratio setting map 71 and the fuel injection amount of each injector 11.
  • the air system operation is feedback-controlled based on the MAF target value MAF NPL_Trgt .
  • the MAF target value MAF NPL_Trgt can be set by feedforward control, and the aging deterioration and characteristic change of each injector 11 are possible. Etc. can be effectively eliminated.
  • FIG. 8 is a block diagram showing processing for setting a target injection amount Q NPR_Trgt (injection amount per unit time) for exhaust pipe injection or post injection in NOx purge rich control.
  • the fourth target excess air ratio setting map 75 is a map that is referred to based on the engine speed Ne and the accelerator opening Q, and during NOx purge rich control corresponding to the engine speed Ne and the accelerator opening Q.
  • the excess air ratio target value ⁇ NPR_Trgt (fourth target excess air ratio) is previously set based on experiments or the like.
  • the excess air ratio target value ⁇ NPR_Trgt at the time of NOx purge rich control is read using the engine speed Ne and the accelerator opening Q as input signals, and an injection amount target value calculation unit 76 is performed. Is input. Further, the injection amount target value calculation unit 76 calculates a target injection amount Q NPR_Trgt at the time of NOx purge rich control based on the following formula (4).
  • Q NPR_Trgt MAF NPL_Trgt ⁇ Maf_corr / ( ⁇ NPR_Target ⁇ Ro Fuel ⁇ AFR sto ) ⁇ Q fnl_corrd (4)
  • MAF NPL_Trgt is a NOx purge lean MAF target value, and is input from the MAF target value calculation unit 72 described above.
  • Q fnlRaw_corrd is a fuel injection amount (excluding post-injection) after application of learning corrected MAF follow-up control described later,
  • Ro Fuel is fuel specific gravity, AFR sto is a stoichiometric air-fuel ratio, and Maf_corr is a MAF correction coefficient described later. Show.
  • the target injection amount Q NPR_Trgt that is calculated by the injection amount target value computing unit 76, NOx purge flag F SP When turned on, is sent as the injection instruction signal to the exhaust pipe injector 34 or the injectors 11 (time of FIG. 6 t 1 ). Transmission of the injection instruction signal is continued until the NOx purge flag F NP is turned off (time t 2 in FIG. 6) by the completion judgment of the NOx purge control described later.
  • the target injection amount Q NPR_Trgt is set based on the air excess rate target value ⁇ NPR_Trgt read from the fourth target air excess rate setting map 75 and the fuel injection amount of each injector 11. It has become.
  • the sensor value of the lambda sensor is not used. It is possible to effectively reduce the exhaust gas to a desired excess air ratio required for NOx purge rich control.
  • the target injection amount Q NPR_Trgt can be set by feedforward control, and the aging deterioration and characteristic change of each injector 11 are possible. Etc. can be effectively eliminated.
  • the ECU 50 feedback-controls the opening degree of the intake throttle valve 16 and the EGR valve 24 based on the sensor value of the MAF sensor 40 in the region where the operating state of the engine 10 is on the low load side. On the other hand, in the region where the operating state of the engine 10 is on the high load side, the ECU 50 feedback-controls the supercharging pressure by the variable displacement supercharger 20 based on the sensor value of the boost pressure sensor 46 (hereinafter, this region is referred to as “high”). Booth pressure FB control area).
  • the NOx detachment processing unit 70 of this embodiment prohibits NOx purge lean control for adjusting the opening degree of the intake throttle valve 16 and the EGR valve 24 in the booth pressure FB control region, and exhaust pipe
  • the excess air ratio is reduced to the fourth target excess air ratio (the excess air ratio target value ⁇ NPR_Trgt ) only by injection or post injection.
  • the MAF target value set based on the operating state of the engine 10 may be applied to the MAF target value MAF NPL_Trgt of the above-described equation (4).
  • NOx purge control (1) when the NOx purge flag F NP is turned on, the injection amount of exhaust pipe injection or post injection is accumulated, and when this cumulative injection amount reaches a predetermined upper limit threshold amount, (2) NOx purge control When the elapsed time counted from the start reaches a predetermined upper threshold time, (3) calculation is performed based on a predetermined model formula including the operating state of the engine 10 and the sensor value of the NOx / lambda sensor 45 as input signals.
  • the cumulative injection amount and the upper limit of the elapsed time are provided in the end condition of the NOx purge control, so that the fuel consumption amount is reduced when the NOx purge is not successful due to a decrease in the exhaust temperature or the like. It is possible to reliably prevent the excess.
  • the MAF follow-up control unit 80 includes (1) a period for switching from a lean state in normal operation to a rich state by SOx purge control or NOx purge control, and (2) lean in normal operation from a rich state by SOx purge control or NOx purge control. During the switching period to the state, control for correcting the fuel injection timing and the fuel injection amount of each injector 11 in accordance with the MAF change (hereinafter, this control is referred to as MAF follow-up control) is executed.
  • the injection amount learning correction unit 90 includes a learning correction coefficient calculation unit 91 and an injection amount correction unit 92.
  • the learning correction coefficient calculation unit 91 is based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 during the lean operation of the engine 10 and the estimated lambda value ⁇ Est and the learning correction coefficient F for the fuel injection amount. Calculate Corr .
  • the oxidation reaction of HC does not occur in the oxidation catalyst 31, so that the actual lambda value ⁇ Act in the exhaust that passes through the oxidation catalyst 31 and is detected by the downstream NOx / lambda sensor 45, and It is considered that the estimated lambda value ⁇ Est in the exhaust discharged from the engine 10 coincides.
  • step S300 based on the engine speed Ne and the accelerator opening Q, it is determined whether or not the engine 10 is in a lean operation state. If it is in the lean operation state, the process proceeds to step S310 to start the calculation of the learning correction coefficient.
  • the estimated lambda value ⁇ Est is estimated and calculated from the operating state of the engine 10 according to the engine speed Ne and the accelerator opening Q. Further, the correction sensitivity coefficient K 2 is read the actual lambda value lambda Act detected by the NOx / lambda sensor 45 from the correction sensitivity coefficient map 91A shown in FIG. 9 as an input signal.
  • step S320 it is determined whether or not the absolute value
  • step S330 it is determined whether the learning prohibition flag FPro is off.
  • Whether or not the engine 10 is in a transient operation state is determined when, for example, the time change amount is larger than a predetermined threshold based on the time change amount of the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45. What is necessary is just to determine with a transient operation state.
  • step S340 the learning value map 91B (see FIG. 9) referred to based on the engine speed Ne and the accelerator opening Q is updated to the learning value F CorrAdpt calculated in step S310. More specifically, on the learning value map 91B, a plurality of learning areas divided according to the engine speed Ne and the accelerator opening Q are set. These learning regions are preferably set to have a narrower range as the region is used more frequently and to be wider as a region is used less frequently. As a result, learning accuracy is improved in regions where the usage frequency is high, and unlearning can be effectively prevented in regions where the usage frequency is low.
  • the injection amount correction unit 92 multiplies each basic injection amount of pilot injection Q Pilot , pre-injection Q Pre , main injection Q Main , after-injection Q After , and post-injection Q Post by a learning correction coefficient F Corr, thereby The injection amount is corrected.
  • the MAF correction coefficient calculation unit 95 sets MAF target value MAF SPL_Trgt and target injection amount Q SPR_Trgt at the time of SOx purge control, and MAF used for setting MAF target value MAF NPL_Trgt and target injection amount Q NPR_Trgt at the time of NOx purge control.
  • a correction coefficient Maf_corr is calculated.
  • the fuel injection amount of each injector 11 is corrected based on the error ⁇ between the actual lambda value ⁇ Act detected by the NOx / lambda sensor 45 and the estimated lambda value ⁇ Est .
  • the factor of error ⁇ is not necessarily only the effect of the difference between the commanded injection amount and the actual injection amount for each injector 11. That is, there is a possibility that the error of not only each injector 11 but also the MAF sensor 40 affects the lambda error ⁇ .
  • FIG. 11 is a block diagram showing the setting process of the MAF correction coefficient Maf_corr by the MAF correction coefficient calculation unit 95.
  • the correction coefficient setting map 96 is a map that is referred to based on the engine speed Ne and the accelerator opening Q.
  • the MAF indicating the sensor characteristics of the MAF sensor 40 corresponding to the engine speed Ne and the accelerator opening Q is shown in FIG.
  • the correction coefficient Maf_corr is set in advance based on experiments or the like.
  • the MAF correction coefficient calculation unit 95 reads the MAF correction coefficient Maf_corr from the correction coefficient setting map 96 using the engine speed Ne and the accelerator opening Q as input signals, and outputs the MAF correction coefficient Maf_corr to the MAF target value calculation unit 62, 72 and the injection amount target value calculation units 66 and 76.
  • SOx purge control when the MAF target value MAF SPL_Trgt and the target injection amount Q SPR_Trgt, the setting of the MAF target value MAF NPL_Trgt and the target injection amount Q NPR_Trgt during NOx purge control effectively the sensor characteristics of the MAF sensor 40 It becomes possible to reflect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 排気のラムダ値を用いることなく、排気をNOxパージ又はSOxパージの目標空気過剰率に効果的に制御する。 内燃機関10の排気系に設けられて排気中のNOxを還元浄化するNOx還元型触媒32と、排気の空気過剰率を所定の目標空気過剰率まで低下させてNOx還元型触媒32のNOx浄化能力を回復させる再生処理部60,70とを備え、再生処理部60,70は、内燃機関の吸入空気量、目標空気過剰率及び、内燃機関の燃料噴射量に基づいて、排気の空気過剰率を目標空気過剰率にするのに必要なポスト噴射及び排気管噴射の少なくとも一方の目標噴射量を設定する目標設定部66,76と、目標設定部66,76から入力される目標噴射量に基づいて、ポスト噴射及び排気管噴射の少なくとも一方の噴射量を制御する噴射制御部50とを含む。

Description

排気浄化システム及び、その制御方法
 本発明は、排気浄化システム及び、その制御方法に関する。
 従来、内燃機関から排出される排気中の窒素化合物(NOx)を還元浄化する触媒として、NOx吸蔵還元型触媒が知られている。このNOx吸蔵還元型触媒は、排気がリーン雰囲気のときに排気中に含まれるNOxを吸蔵すると共に、排気がリッチ雰囲気のときに排気中に含まれる炭化水素で吸蔵していたNOxを還元浄化により無害化して放出する。このため、触媒のNOx吸蔵量が所定量に達した場合は、NOx吸蔵能力を回復させるべく、ポスト噴射や排気管噴射によって排気をリッチ状態にする所謂NOxパージを定期的に行う必要がある(例えば、特許文献1参照)。
 また、NOx吸蔵還元型触媒には、排気中に含まれる硫黄酸化物(以下、SOxという)も吸蔵される。このSOx吸蔵量が増加すると、NOx吸蔵還元型触媒のNOx浄化能力を低下させる課題がある。このため、SOx吸蔵量が所定量に達した場合は、NOx吸蔵還元型触媒からSOxを離脱させてS被毒から回復させるべく、ポスト噴射や排気管噴射によって上流側の酸化触媒に未燃燃料を供給して排気温度をSOx離脱温度まで上昇させる所謂SOxパージを定期的に行う必要がある(例えば、特許文献2参照)。
特開2008-202425号公報 特開2009-47086号公報 特開2009-203866号公報 特開2003-090250号公報
 一般的に、NOxパージやSOxパージを実行する際は、排気をパージに必要な目標空気過剰率まで低下させるべく、NOx吸蔵還元型触媒の上流側に配置したラムダセンサのセンサ値に基づいて、ポスト噴射量や排気管噴射量等をフィードバック制御している。
 しかしながら、ラムダセンサは、ポスト噴射や排気管噴射による供給燃料が排気熱によって十分に酸化されていない状態では、その測定精度を確保できない課題がある。このため、ラムダセンサを用いる手法では、排気を目標空気過剰率に制御できない可能性がある。
 開示のシステムは、排気のラムダ値を用いることなく、排気をNOxパージ又はSOxパージの目標空気過剰率に効果的に制御することを目的とする。
 開示のシステムは、内燃機関の排気系に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、排気の空気過剰率を所定の目標空気過剰率まで低下させて前記NOx還元型触媒のNOx浄化能力を回復させる再生処理部と、を備える排気浄化システムであって、前記再生処理部は、前記内燃機関の吸入空気量、前記目標空気過剰率及び、前記内燃機関の燃料噴射量に基づいて、排気の空気過剰率を前記目標空気過剰率にするのに必要なポスト噴射及び排気管噴射の少なくとも一方の目標噴射量を設定する目標設定部と、前記目標設定部から入力される目標噴射量に基づいて、ポスト噴射及び排気管噴射の少なくとも一方の噴射量を制御する噴射制御部とを含む。
本実施形態に係る排気浄化システムを示す全体構成図である。 本実施形態に係るSOxパージ制御を説明するタイミングチャート図である。 本実施形態に係るSOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 本実施形態に係るSOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 本実施形態に係るSOxパージ制御の触媒温度調整制御を説明するタイミングチャート図である。 本実施形態に係るNOxパージ制御を説明するタイミングチャート図である。 本実施形態に係るNOxパージリーン制御時のMAF目標値の設定処理を示すブロック図である。 本実施形態に係るNOxパージリッチ制御時の目標噴射量の設定処理を示すブロック図である。 本実施形態に係るインジェクタの噴射量学習補正の処理を示すブロック図である。 本実施形態に係る学習補正係数の演算処理を説明するフロー図である。 本実施形態に係るMAF補正係数の設定処理を示すブロック図である。
 以下、添付図面に基づいて、本発明の一実施形態に係る排気浄化システムを説明する。
 図1に示すように、ディーゼルエンジン(以下、単にエンジンという)10の各気筒には、図示しないコモンレールに畜圧された高圧燃料を各気筒内に直接噴射するインジェクタ11がそれぞれ設けられている。これら各インジェクタ11の燃料噴射量や燃料噴射タイミングは、電子制御ユニット(以下、ECUという)50から入力される指示信号に応じてコントロールされる。
 エンジン10の吸気マニホールド10Aには新気を導入する吸気通路12が接続され、排気マニホールド10Bには排気を外部に導出する排気通路13が接続されている。吸気通路12には、吸気上流側から順にエアクリーナ14、吸入空気量センサ(以下、MAFセンサという)40、可変容量型過給機20のコンプレッサ20A、インタークーラ15、吸気スロットルバルブ16等が設けられている。排気通路13には、排気上流側から順に可変容量型過給機20のタービン20B、排気後処理装置30等が設けられている。なお、図1中において、符号41はエンジン回転数センサ、符号42はアクセル開度センサ、符号46はブースト圧センサをそれぞれ示している。
 EGR装置21は、排気マニホールド10Bと吸気マニホールド10Aとを接続するEGR通路22と、EGRガスを冷却するEGRクーラ23と、EGR量を調整するEGRバルブ24とを備えている。
 排気後処理装置30は、ケース30A内に排気上流側から順に酸化触媒31、NOx吸蔵還元型触媒32、パティキュレートフィルタ(以下、単にフィルタという)33を配置して構成されている。また、酸化触媒31よりも上流側の排気通路13には、ECU50から入力される指示信号に応じて、排気通路13内に未燃燃料(主にHC)を噴射する排気管噴射装置34が設けられている。
 酸化触媒31は、例えば、ハニカム構造体等のセラミック製担体表面に酸化触媒成分を担持して形成されている。酸化触媒31は、排気管噴射装置34又はインジェクタ11のポスト噴射によって未燃燃料が供給されると、これを酸化して排気温度を上昇させる。
 NOx吸蔵還元型触媒32は、例えば、ハニカム構造体等のセラミック製担体表面にアルカリ金属等を担持して形成されている。このNOx吸蔵還元型触媒32は、排気空燃比がリーン状態のときに排気中のNOxを吸蔵すると共に、排気空燃比がリッチ状態のときに排気中に含まれる還元剤(HC等)で吸蔵したNOxを還元浄化する。
 フィルタ33は、例えば、多孔質性の隔壁で区画された多数のセルを排気の流れ方向に沿って配置し、これらセルの上流側と下流側とを交互に目封止して形成されている。フィルタ33は、排気中のPMを隔壁の細孔や表面に捕集すると共に、PM堆積推定量が所定量に達すると、これを燃焼除去するいわゆるフィルタ強制再生が実行される。フィルタ強制再生は、排気管噴射又はポスト噴射によって上流側の酸化触媒31に未燃燃料を供給し、フィルタ33に流入する排気温度をPM燃焼温度まで昇温することで行われる。
 第1排気温度センサ43は、酸化触媒31よりも上流側に設けられており、酸化触媒31に流入する排気温度を検出する。第2排気温度センサ44は、酸化触媒31とNOx吸蔵還元型触媒32との間に設けられており、NOx吸蔵還元型触媒32に流入する排気温度を検出する。NOx/ラムダセンサ45は、フィルタ33よりも下流側に設けられており、NOx吸蔵還元型触媒32を通過した排気のNOx値及びラムダ値(以下、空気過剰率ともいう)を検出する。
 ECU50は、エンジン10等の各種制御を行うもので、公知のCPUやROM、RAM、入力ポート、出力ポート等を備えて構成されている。これら各種制御を行うため、ECU50にはセンサ類40~45のセンサ値が入力される。また、ECU50は、フィルタ強制再生制御部51と、SOx離脱処理部60と、NOx離脱処理部70と、MAF追従制御部80、噴射量学習補正部90と、MAF補正係数演算部95とを一部の機能要素として有する。これら各機能要素は、一体のハードウェアであるECU50に含まれるものとして説明するが、これらのいずれか一部を別体のハードウェアに設けることもできる。
 [フィルタ強制再生制御]
 フィルタ強制再生制御部51は、車両の走行距離、あるいは図示しない差圧センサで検出されるフィルタ前後差圧からフィルタ33のPM堆積量を推定すると共に、このPM堆積推定量が所定の上限閾値を超えると強制再生フラグFDPFをオンにする(図2の時刻t1参照)。強制再生フラグFDPFがオンにされると、排気管噴射装置34に排気管噴射を実行させる指示信号が送信されるか、あるいは、各インジェクタ11にポスト噴射を実行させる指示信号が送信されて、排気温度をPM燃焼温度(例えば、約550℃)まで昇温させる。この強制再生フラグFDPFは、PM堆積推定量が燃焼除去を示す所定の下限閾値(判定閾値)まで低下するとオフにされる(図2の時刻t2参照)。なお、強制再生フラグFDPFをオフにする判定閾値は、例えば、フィルタ強制再生開始(FDPF=1)からの上限経過時間や上限累積噴射量を基準にしてもよい。
 [SOxパージ制御]
 SOx離脱処理部60は、本発明の再生処理部の一例であって、排気をリッチ状態にして排気温度を硫黄離脱温度(例えば、約600℃)まで上昇させて、NOx吸蔵還元型触媒32をSOx被毒から回復させる制御(以下、この制御をSOxパージ制御という)を実行する。
 図2は、本実施形態のSOxパージ制御のタイミングチャートを示している。図2に示すように、SOxパージ制御を開始するSOxパージフラグFSPは、強制再生フラグFDPFのオフと同時にオンにされる(図2の時刻t2参照)。これにより、フィルタ33の強制再生によって排気温度を上昇させた状態からSOxパージ制御に効率よく移行することが可能となり、燃料消費量を効果的に低減することができる。
 本実施形態において、SOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第1目標空気過剰率(例えば、約1.3)まで低下させるSOxパージリーン制御と、噴射系制御によって空気過剰率を第1目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるSOxパージリッチ制御とを併用することで実現される。以下、SOxパージリーン制御及び、SOxパージリッチ制御の詳細について説明する。
 [SOxパージリーン制御の空気系制御]
 図3は、SOxパージリーン制御時のMAF目標値MAFSPL_Trgtの設定処理を示すブロック図である。第1目標空気過剰率設定マップ61は、エンジン回転数Ne及びアクセル開度Q(エンジン10の燃料噴射量)に基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリーン制御時の空気過剰率目標値λSPL_Trgt(第1目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第1目標空気過剰率設定マップ61から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリーン制御時の空気過剰率目標値λSPL_Trgtが読み取られて、MAF目標値演算部62に入力される。さらに、MAF目標値演算部62では、以下の数式(1)に基づいてSOxパージリーン制御時のMAF目標値MAFSPL_Trgtが演算される。
 MAFSPL_Trgt=λSPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(1)
 数式(1)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 MAF目標値演算部62によって演算されたMAF目標値MAFSPL_Trgtは、SOxパージフラグFSPがオン(図2の時刻t2参照)になるとランプ処理部63に入力される。ランプ処理部63は、各ランプ係数マップ63A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFSPL_Trgt_Rampをバルブ制御部64に入力する。
 バルブ制御部64は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFSPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
 このように、本実施形態では、第1目標空気過剰率設定マップ61から読み取られる空気過剰率目標値λSPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFSPL_Trgtを設定し、このMAF目標値MAFSPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFSPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化、個体差等の影響を効果的に排除することができる。
 また、MAF目標値MAFSPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
 [SOxパージリッチ制御の燃料噴射量設定]
 図4は、SOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QSPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第2目標空気過剰率設定マップ65は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgt(第2目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第2目標空気過剰率設定マップ65から、エンジン回転数Ne及びアクセル開度Qを入力信号としてSOxパージリッチ制御時の空気過剰率目標値λSPR_Trgtが読み取られて、噴射量目標値演算部66に入力される。さらに、噴射量目標値演算部66では、以下の数式(2)に基づいてSOxパージリッチ制御時の目標噴射量QSPR_Trgtが演算される。
 QSPR_Trgt=MAFSPL_Trgt×Maf_corr/(λSPR_Target×RoFuel×AFRsto)-Qfnl_corrd・・・(2)
 数式(2)において、MAFSPL_TrgtはSOxパージリーン時のMAF目標値であって、前述のMAF目標値演算部62から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 噴射量目標値演算部66によって演算された目標噴射量QSPR_Trgtは、後述するSOxパージリッチフラグFSPRがオンになると、排気管噴射装置34又は、各インジェクタ11に噴射指示信号として送信される。
 このように、本実施形態では、第2目標空気過剰率設定マップ65から読み取られる空気過剰率目標値λSPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QSPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をSOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QSPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
 [SOxパージ制御の触媒温度調整制御]
 SOxパージ制御中にNOx吸蔵還元型触媒32に流入する排気温度(以下、触媒温度ともいう)は、図2の時刻t2~t4に示すように、排気管噴射又はポスト噴射を実行するSOxパージリッチフラグFSPRのオン・オフ(リッチ・リーン)を交互に切り替えることで制御される。SOxパージリッチフラグFSPRがオン(FSPR=1)にされると、排気管噴射又はポスト噴射によって触媒温度は上昇する(以下、この期間を噴射期間TF_INJという)。一方、SOxパージリッチフラグFSPRがオフにされると、排気管噴射又はポスト噴射の停止によって触媒温度は低下する(以下、この期間をインターバルTF_INTという)。
 本実施形態において、噴射期間TF_INJは、予め実験等により作成した噴射期間設定マップ(不図示)からエンジン回転数Ne及びアクセル開度Qに対応する値を読み取ることで設定される。この噴射時間設定マップには、予め実験等によって求めた排気の空気過剰率を第2目標空気過剰率まで確実に低下させるのに必要となる噴射期間が、エンジン10の運転状態に応じて設定されている。
 インターバルTF_INTは、触媒温度が最も高くなるSOxパージリッチフラグFSPRがオンからオフに切り替えられた際に、フィードバック制御によって設定される。具体的には、SOxパージリッチフラグFSPRがオフされた際の目標触媒温度と推定触媒温度との偏差ΔTに比例して入力信号を変化させる比例制御と、偏差ΔTの時間積分値に比例して入力信号を変化させる積分制御と、偏差ΔTの時間微分値に比例して入力信号を変化させる微分制御とで構成されるPID制御によって処理される。目標触媒温度は、NOx吸蔵還元型触媒32からSOxを離脱可能な温度で設定され、推定触媒温度は、例えば、第1排気温度センサ43で検出される酸化触媒31の入口温度と、酸化触媒31及びNOx吸蔵還元型触媒32の内部での発熱反応等に基づいて推定すればよい。
 図5の時刻t1に示すように、フィルタ強制再生の終了(FDPF=0)によってSOxパージフラグFSPがオンされると、SOxパージリッチフラグFSPRもオンにされ、さらに前回のSOxパージ制御時にフィードバック計算されたインターバルTF_INTも一旦リセットされる。すなわち、フィルタ強制再生直後の初回は、噴射期間設定マップで設定した噴射期間TF_INJ_1に応じて排気管噴射又はポスト噴射が実行される(図5の時刻t1~t2参照)。このように、SOxパージリーン制御を行うことなくSOxパージリッチ制御からSOxパージ制御を開始するので、フィルタ強制再生で上昇した排気温度を低下させることなく、速やかにSOxパージ制御に移行され、燃料消費量を低減することができる。
 次いで、噴射期間TF_INJ_1の経過によってSOxパージリッチフラグFSPRがオフになると、PID制御によって設定されたインターバルTF_INT_1が経過するまで、SOxパージリッチフラグFSPRはオフとされる(図5の時刻t2~t3参照)。さらに、インターバルTF_INT_1の経過によってSOxパージリッチフラグFSPRがオンにされると、再び噴射期間TF_INJ_2に応じた排気管噴射又はポスト噴射が実行される(図5の時刻t3~t4参照)。その後、これらSOxパージリッチフラグFSPRのオン・オフの切り替えは、後述するSOxパージ制御の終了判定によってSOxパージフラグFSPがオフ(図5の時刻tn参照)にされるまで繰り返し実行される。
 このように、本実施形態では、触媒温度を上昇させると共に空気過剰率を第2目標空気過剰率まで低下させる噴射期間TF_INJをエンジン10の運転状態に基づいて参照されるマップから設定すると共に、触媒温度を降下させるインターバルTF_INTをPID制御によって処理するようになっている。これにより、SOxパージ制御中の触媒温度をパージに必要な所望の温度範囲に効果的に維持しつつ、空気過剰率を目標過剰率まで確実に低下させることが可能になる。
 [SOxパージ制御の終了判定]
 SOxパージ制御は、(1)SOxパージフラグFSPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)SOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のSOx吸着量がSOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、SOxパージフラグFSPをオフにして終了される(図2の時刻t4、図5の時刻tn参照)。
 このように、本実施形態では、SOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、SOxパージが排気温度の低下等によって進捗しなかった場合に、燃料消費量が過剰になることを効果的に防止することができる。
 [NOxパージ制御]
 NOx離脱処理部70は、本発明の再生処理部の一例であって、排気をリッチ雰囲気にしてNOx吸蔵還元型触媒32に吸蔵されているNOxを還元浄化により無害化して放出することで、NOx吸蔵還元型触媒32のNOx吸蔵能力を回復させる制御(以下、この制御をNOxパージ制御という)を実行する。
 NOxパージ制御を開始するNOxパージフラグFNPは、エンジン10の運転状態から単位時間当たりのNOx排出量を推定し、これを累積計算した推定累積値ΣNOxが所定の閾値を超えるとオンにされる(図6の時刻t1参照)。あるいは、エンジン10の運転状態から推定される触媒上流側のNOx排出量と、NOx/ラムダセンサ45で検出される触媒下流側のNOx量とからNOx吸蔵還元型触媒32によるNOx浄化率を演算し、このNOx浄化率が所定の判定閾値よりも低くなった場合に、NOxパージフラグFNPはオンにされる。
 本実施形態において、NOxパージ制御によるリッチ化は、空気系制御によって空気過剰率を定常運転時(例えば、約1.5)から理論空燃比相当値(約1.0)よりもリーン側の第3目標空気過剰率(例えば、約1.3)まで低下させるNOxパージリーン制御と、噴射系制御によって空気過剰率を第4目標空気過剰率からリッチ側の第2目標空気過剰率(例えば、約0.9)まで低下させるNOxパージリッチ制御とを併用することで実現される。以下、NOxパージリーン制御及び、NOxパージリッチ制御の詳細について説明する。
 [NOxパージリーン制御のMAF目標値設定]
 図7は、NOxパージリーン制御時のMAF目標値MAFNPL_Trgtの設定処理を示すブロック図である。第3目標空気過剰率設定マップ71は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリーン制御時の空気過剰率目標値λNPL_Trgt(第3目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第3目標空気過剰率設定マップ71から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリーン制御時の空気過剰率目標値λNPL_Trgtが読み取られて、MAF目標値演算部72に入力される。さらに、MAF目標値演算部72では、以下の数式(3)に基づいてNOxパージリーン制御時のMAF目標値MAFNPL_Trgtが演算される。
 MAFNPL_Trgt=λNPL_Trgt×Qfnl_corrd×RoFuel×AFRsto/Maf_corr・・・(3)
 数式(3)において、Qfnl_corrdは後述する学習補正された燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 MAF目標値演算部72によって演算されたMAF目標値MAFNPL_Trgtは、NOxパージフラグFSPがオン(図6の時刻t1参照)になるとランプ処理部73に入力される。ランプ処理部73は、各ランプ係数マップ73A,Bからエンジン回転数Ne及びアクセル開度Qを入力信号としてランプ係数を読み取ると共に、このランプ係数を付加したMAF目標ランプ値MAFNPL_Trgt_Rampをバルブ制御部74に入力する。
 バルブ制御部74は、MAFセンサ40から入力される実MAF値MAFActがMAF目標ランプ値MAFNPL_Trgt_Rampとなるように、吸気スロットルバルブ16を閉側に絞ると共に、EGRバルブ24を開側に開くフィードバック制御を実行する。
 このように、本実施形態では、第3目標空気過剰率設定マップ71から読み取られる空気過剰率目標値λNPL_Trgtと、各インジェクタ11の燃料噴射量とに基づいてMAF目標値MAFNPL_Trgtを設定し、このMAF目標値MAFNPL_Trgtに基づいて空気系動作をフィードバック制御するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリーン制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、MAF目標値MAFNPL_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
 また、MAF目標値MAFNPL_Trgtにエンジン10の運転状態に応じて設定されるランプ係数を付加することで、吸入空気量の急激な変化によるエンジン10の失火やトルク変動によるドライバビリティーの悪化等を効果的に防止することができる。
 [NOxパージリッチ制御の燃料噴射量設定]
 図8は、NOxパージリッチ制御における排気管噴射又はポスト噴射の目標噴射量QNPR_Trgt(単位時間当たりの噴射量)の設定処理を示すブロック図である。第4目標空気過剰率設定マップ75は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgt(第4目標空気過剰率)が予め実験等に基づいて設定されている。
 まず、第4目標空気過剰率設定マップ75から、エンジン回転数Ne及びアクセル開度Qを入力信号としてNOxパージリッチ制御時の空気過剰率目標値λNPR_Trgtが読み取られて噴射量目標値演算部76に入力される。さらに、噴射量目標値演算部76では、以下の数式(4)に基づいてNOxパージリッチ制御時の目標噴射量QNPR_Trgtが演算される。
 QNPR_Trgt=MAFNPL_Trgt×Maf_corr/(λNPR_Target×RoFuel×AFRsto)-Qfnl_corrd・・・(4)
 数式(4)において、MAFNPL_TrgtはNOxパージリーンMAF目標値であって、前述のMAF目標値演算部72から入力される。また、QfnlRaw_corrdは後述する学習補正されたMAF追従制御適用前の燃料噴射量(ポスト噴射を除く)、RoFuelは燃料比重、AFRstoは理論空燃比、Maf_corrは後述するMAF補正係数をそれぞれ示している。
 噴射量目標値演算部76によって演算される目標噴射量QNPR_Trgtは、NOxパージフラグFSPがオンになると、排気管噴射装置34又は各インジェクタ11に噴射指示信号として送信される(図6の時刻t1)。この噴射指示信号の送信は、後述するNOxパージ制御の終了判定によってNOxパージフラグFNPがオフ(図6の時刻t2)にされるまで継続される。
 このように、本実施形態では、第4目標空気過剰率設定マップ75から読み取られる空気過剰率目標値λNPR_Trgtと、各インジェクタ11の燃料噴射量とに基づいて目標噴射量QNPR_Trgtを設定するようになっている。これにより、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けることなく、或いは、NOx吸蔵還元型触媒32の上流側にラムダセンサを設けた場合も当該ラムダセンサのセンサ値を用いることなく、排気をNOxパージリッチ制御に必要な所望の空気過剰率まで効果的に低下させることが可能になる。
 また、各インジェクタ11の燃料噴射量として学習補正後の燃料噴射量Qfnl_corrdを用いることで、目標噴射量QNPR_Trgtをフィードフォワード制御で設定することが可能となり、各インジェクタ11の経年劣化や特性変化等の影響を効果的に排除することができる。
 [NOxパージ制御の空気系制御禁止]
 ECU50は、エンジン10の運転状態が低負荷側の領域では、MAFセンサ40のセンサ値に基づいて吸気スロットルバルブ16やEGRバルブ24の開度をフィードバック制御している。一方、エンジン10の運転状態が高負荷側の領域では、ECU50はブースト圧センサ46のセンサ値に基づいて可変容量型過給機20による過給圧をフィードバック制御している(以下、この領域をブース圧FB制御領域という)。
 このようなブース圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の制御が可変容量型過給機20の制御と干渉してしまう現象が生じる。このため、上述の数式(3)で設定されるMAF目標値MAFNPL_Trgtに基づいて空気系をフィードバック制御するNOxパージリーン制御を実行しても、吸入空気量をMAF目標値NPL_Trgtに維持できない課題がある。その結果、ポスト噴射や排気管噴射を実行するNOxパージリッチ制御を開始しても、空気過剰率をNOxパージに必要な第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させられない可能性がある。
 このような現象を回避すべく、本実施形態のNOx離脱処理部70は、ブース圧FB制御領域では、吸気スロットルバルブ16やEGRバルブ24の開度を調整するNOxパージリーン制御を禁止し、排気管噴射又はポスト噴射のみで空気過剰率を第4目標空気過剰率(空気過剰率目標値λNPR_Trgt)まで低下させる。これにより、ブース圧FB制御領域においても、NOxパージを確実に行うことが可能になる。なお、この場合、上述の数式(4)のMAF目標値MAFNPL_Trgtには、エンジン10の運転状態に基づいて設定されるMAF目標値を適用すればよい。
 [NOxパージ制御の終了判定]
 NOxパージ制御は、(1)NOxパージフラグFNPのオンから排気管噴射又はポスト噴射の噴射量を累積し、この累積噴射量が所定の上限閾値量に達した場合、(2)NOxパージ制御の開始から計時した経過時間が所定の上限閾値時間に達した場合、(3)エンジン10の運転状態やNOx/ラムダセンサ45のセンサ値等を入力信号として含む所定のモデル式に基づいて演算されるNOx吸蔵還元型触媒32のNOx吸蔵量がNOx除去成功を示す所定の閾値まで低下した場合の何れかの条件が成立すると、NOxパージフラグFNPをオフにして終了される(図6の時刻t2参照)。
 このように、本実施形態では、NOxパージ制御の終了条件に累積噴射量及び、経過時間の上限を設けたことで、NOxパージが排気温度の低下等によって成功しなかった場合に燃料消費量が過剰になることを確実に防止することができる。
 [MAF追従制御]
 MAF追従制御部80は、(1)通常運転のリーン状態からSOxパージ制御又はNOxパージ制御によるリッチ状態への切り替え期間及び、(2)SOxパージ制御又はNOxパージ制御によるリッチ状態から通常運転のリーン状態への切り替え期間に、各インジェクタ11の燃料噴射タイミング及び燃料噴射量をMAF変化に応じて補正する制御(以下、この制御をMAF追従制御という)を実行する。
 [噴射量学習補正]
 図9に示すように、噴射量学習補正部90は、学習補正係数演算部91と、噴射量補正部92とを有する。
 学習補正係数演算部91は、エンジン10のリーン運転時にNOx/ラムダセンサ45で検出される実ラムダ値λActと、推定ラムダ値λEstとの誤差Δλに基づいて燃料噴射量の学習補正係数FCorrを演算する。排気がリーン状態のときは、酸化触媒31でHCの酸化反応が生じないため、酸化触媒31を通過して下流側のNOx/ラムダセンサ45で検出される排気中の実ラムダ値λActと、エンジン10から排出された排気中の推定ラムダ値λEstとは一致すると考えられる。このため、これら実ラムダ値λActと推定ラムダ値λEstとに誤差Δλが生じた場合は、各インジェクタ11に対する指示噴射量と実噴射量との差によるものと仮定することができる。以下、この誤差Δλを用いた学習補正係数演算部91による学習補正係数の演算処理を図10のフローに基づいて説明する。
 ステップS300では、エンジン回転数Ne及びアクセル開度Qに基づいて、エンジン10がリーン運転状態にあるか否かが判定される。リーン運転状態にあれば、学習補正係数の演算を開始すべく、ステップS310に進む。
 ステップS310では、推定ラムダ値λEstからNOx/ラムダセンサ45で検出される実ラムダ値λActを減算した誤差Δλに、学習値ゲインK1及び補正感度係数K2を乗じることで、学習値FCorrAdptが演算される(FCorrAdpt=(λEst-λAct)×K1×K2)。推定ラムダ値λEstは、エンジン回転数Neやアクセル開度Qに応じたエンジン10の運転状態から推定演算される。また、補正感度係数K2は、図9に示す補正感度係数マップ91AからNOx/ラムダセンサ45で検出される実ラムダ値λActを入力信号として読み取られる。
 ステップS320では、学習値FCorrAdptの絶対値|FCorrAdpt|が所定の補正限界値Aの範囲内にあるか否かが判定される。絶対値|FCorrAdpt|が補正限界値Aを超えている場合、本制御はリターンされて今回の学習を中止する。
 ステップS330では、学習禁止フラグFProがオフか否かが判定される。学習禁止フラグFProとしては、例えば、エンジン10の過渡運転時、SOxパージ制御時(FSP=1)、NOxパージ制御時(FNP=1)等が該当する。これらの条件が成立する状態では、実ラムダ値λActの変化によって誤差Δλが大きくなり、正確な学習を行えないためである。エンジン10が過渡運転状態にあるか否かは、例えば、NOx/ラムダセンサ45で検出される実ラムダ値λActの時間変化量に基づいて、当該時間変化量が所定の閾値よりも大きい場合に過渡運転状態と判定すればよい。
 ステップS340では、エンジン回転数Ne及びアクセル開度Qに基づいて参照される学習値マップ91B(図9参照)が、ステップS310で演算された学習値FCorrAdptに更新される。より詳しくは、この学習値マップ91B上には、エンジン回転数Ne及びアクセル開度Qに応じて区画された複数の学習領域が設定されている。これら学習領域は、好ましくは、使用頻度が多い領域ほどその範囲が狭く設定され、使用頻度が少ない領域ほどその範囲が広く設定されている。これにより、使用頻度が多い領域では学習精度が向上され、使用頻度が少ない領域では未学習を効果的に防止することが可能になる。
 ステップS350では、エンジン回転数Ne及びアクセル開度Qを入力信号として学習値マップ91Bから読み取った学習値に「1」を加算することで、学習補正係数FCorrが演算される(FCorr=1+FCorrAdpt)。この学習補正係数FCorrは、図9に示す噴射量補正部92に入力される。
 噴射量補正部92は、パイロット噴射QPilot、プレ噴射QPre、メイン噴射QMain、アフタ噴射QAfter、ポスト噴射QPostの各基本噴射量に学習補正係数FCorrを乗算することで、これら燃料噴射量の補正を実行する。
 このように、推定ラムダ値λEstと実ラムダ値λActとの誤差Δλに応じた学習値で各インジェクタ11に燃料噴射量を補正することで、各インジェクタ11の経年劣化や特性変化、個体差等のバラツキを効果的に排除することが可能になる。
 [MAF補正係数]
 MAF補正係数演算部95は、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgtの設定及び、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に用いられるMAF補正係数Maf_corrを演算する。
 本実施形態において、各インジェクタ11の燃料噴射量は、NOx/ラムダセンサ45で検出される実ラムダ値λActと推定ラムダ値λEstとの誤差Δλに基づいて補正される。しかしながら、ラムダは空気と燃料の比であるため、誤差Δλの要因が必ずしも各インジェクタ11に対する指示噴射量と実噴射量との差の影響のみとは限らない。すなわち、ラムダの誤差Δλには、各インジェクタ11のみならずMAFセンサ40の誤差も影響している可能性がある。
 図11は、MAF補正係数演算部95によるMAF補正係数Maf_corrの設定処理を示すブロック図である。補正係数設定マップ96は、エンジン回転数Ne及びアクセル開度Qに基づいて参照されるマップであって、これらエンジン回転数Neとアクセル開度Qとに対応したMAFセンサ40のセンサ特性を示すMAF補正係数Maf_corrが予め実験等に基づいて設定されている。
 MAF補正係数演算部95は、エンジン回転数Ne及びアクセル開度Qを入力信号として補正係数設定マップ96からMAF補正係数Maf_corrを読み取ると共に、このMAF補正係数Maf_corrをMAF目標値演算部62,72及び噴射量目標値演算部66,76に送信する。これにより、SOxパージ制御時のMAF目標値MAFSPL_Trgtや目標噴射量QSPR_Trgt、NOxパージ制御時のMAF目標値MAFNPL_Trgtや目標噴射量QNPR_Trgtの設定に、MAFセンサ40のセンサ特性を効果的に反映することが可能になる。
 [その他]
 なお、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。

Claims (7)

  1.  内燃機関の排気系に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、排気の空気過剰率を所定の目標空気過剰率まで低下させて前記NOx還元型触媒のNOx浄化能力を回復させる再生処理部と、を備える排気浄化システムであって、
     前記再生処理部は、
     前記内燃機関の吸入空気量、前記目標空気過剰率及び、前記内燃機関の燃料噴射量に基づいて、排気の空気過剰率を前記目標空気過剰率にするのに必要なポスト噴射及び排気管噴射の少なくとも一方の目標噴射量を設定する目標設定部と、
     前記目標設定部から入力される目標噴射量に基づいて、ポスト噴射及び排気管噴射の少なくとも一方の噴射量を制御する噴射制御部と、を含む
     排気浄化システム。
  2.  前記目標設定部は、前記内燃機関の吸入空気量を前記目標空気過剰率と燃料比重と理論空燃比とで除算した値から前記内燃機関の燃料噴射量を減算して得られる値を前記目標噴射量として設定する
     請求項1に記載の排気浄化システム。
  3.  前記内燃機関の排気系に設けられたラムダセンサと、
     前記内燃機関の運転状態から推定した推定ラムダ値と前記ラムダセンサで検出される実ラムダ値との差に基づいて前記内燃機関の燃料噴射量を補正する噴射量補正部と、をさらに備え、
     前記目標設定部は、前記内燃機関の燃料噴射量として前記噴射量補正部による補正後の燃料噴射量を用いる
     請求項1又は2に記載の排気浄化システム。
  4.  前記目標空気過剰率は、前記内燃機関の運転状態に基づいて設定される
     請求項1から3の何れか一項に記載の排気浄化システム。
  5.  内燃機関の排気系に設けられて排気中のNOxを還元浄化するNOx還元型触媒と、排気の空気過剰率を所定の目標空気過剰率まで低下させて前記NOx還元型触媒のNOx浄化能力を回復させる再生処理部と、を備える排気浄化システムの制御方法であって、
     前記内燃機関の吸入空気量、前記目標空気過剰率及び、前記内燃機関の燃料噴射量に基づいて、排気の空気過剰率を前記目標空気過剰率にするのに必要なポスト噴射及び排気管噴射の少なくとも一方の目標噴射量を設定し、当該目標噴射量に基づいて、ポスト噴射及び排気管噴射の少なくとも一方の噴射量を制御する
     制御方法。
  6.  前記内燃機関の吸入空気量を前記目標空気過剰率と燃料比重と理論空燃比とで除算した値から前記内燃機関の燃料噴射量を減算して得られる値を前記目標噴射量として設定する
     請求項5に記載の制御方法。
  7.  前記内燃機関の排気系に設けられたラムダセンサのセンサ値と、前記内燃機関の運転状態から推定した推定ラムダ値との差に基づいて前記内燃機関の燃料噴射量を補正すると共に、補正後の燃料噴射量を用いて前記目標噴射量を設定する
     請求項5又は6に記載の制御方法。
PCT/JP2015/075877 2014-09-12 2015-09-11 排気浄化システム及び、その制御方法 WO2016039453A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580049184.3A CN106715855A (zh) 2014-09-12 2015-09-11 排气净化系统及其控制方法
EP15840686.8A EP3192990B1 (en) 2014-09-12 2015-09-11 Exhaust-gas-cleaning system and method for controlling the same
US15/510,669 US10240499B2 (en) 2014-09-12 2015-09-11 Exhaust purification system and control method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186760A JP2016061147A (ja) 2014-09-12 2014-09-12 排気浄化システム及び、その制御方法
JP2014-186760 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016039453A1 true WO2016039453A1 (ja) 2016-03-17

Family

ID=55459196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075877 WO2016039453A1 (ja) 2014-09-12 2015-09-11 排気浄化システム及び、その制御方法

Country Status (5)

Country Link
US (1) US10240499B2 (ja)
EP (1) EP3192990B1 (ja)
JP (1) JP2016061147A (ja)
CN (1) CN106715855A (ja)
WO (1) WO2016039453A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115013125B (zh) * 2022-07-13 2023-09-15 江铃汽车股份有限公司 一种急加速工况下的还原剂预喷射控制策略

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161145A (ja) * 2001-09-12 2003-06-06 Mitsubishi Motors Corp 排気浄化装置
JP2004218518A (ja) * 2003-01-15 2004-08-05 Isuzu Motors Ltd エンジンの空燃比制御方法
JP2010007634A (ja) * 2008-06-30 2010-01-14 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04252833A (ja) * 1991-01-28 1992-09-08 Nissan Motor Co Ltd 内燃機関の燃料供給量制御装置
JP2003090250A (ja) 2001-09-18 2003-03-28 Nissan Motor Co Ltd ディーゼルエンジンの制御装置
JP4154596B2 (ja) * 2003-06-02 2008-09-24 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP2005155374A (ja) * 2003-11-21 2005-06-16 Isuzu Motors Ltd 排気浄化方法及び排気浄化システム
JP3852461B2 (ja) * 2004-09-03 2006-11-29 いすゞ自動車株式会社 排気ガス浄化方法及び排気ガス浄化システム
US20100030713A1 (en) * 2006-05-24 2010-02-04 Icom Limited Content engine
JP2008202425A (ja) 2007-02-16 2008-09-04 Mitsubishi Motors Corp 排ガス浄化装置
JP5067614B2 (ja) 2007-08-21 2012-11-07 株式会社デンソー 内燃機関の排気浄化装置
JP4998326B2 (ja) 2008-02-27 2012-08-15 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161145A (ja) * 2001-09-12 2003-06-06 Mitsubishi Motors Corp 排気浄化装置
JP2004218518A (ja) * 2003-01-15 2004-08-05 Isuzu Motors Ltd エンジンの空燃比制御方法
JP2010007634A (ja) * 2008-06-30 2010-01-14 Toyota Motor Corp 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
EP3192990A4 (en) 2018-07-18
EP3192990B1 (en) 2020-01-08
US10240499B2 (en) 2019-03-26
CN106715855A (zh) 2017-05-24
US20170218807A1 (en) 2017-08-03
JP2016061147A (ja) 2016-04-25
EP3192990A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP6471857B2 (ja) 排気浄化システム
WO2016039451A1 (ja) 排気浄化システム
WO2016039452A1 (ja) 排気浄化システム
WO2016140211A1 (ja) 内燃機関の制御装置
WO2016117573A1 (ja) 排気浄化システム及びNOx浄化能力回復方法
JP6439334B2 (ja) 排気浄化システム
JP6432411B2 (ja) 排気浄化システム
WO2016098895A1 (ja) 排気浄化システム及びNOx浄化能力回復方法
JP6405816B2 (ja) 排気浄化システム
WO2016039453A1 (ja) 排気浄化システム及び、その制御方法
WO2016039450A1 (ja) 排気浄化システム及び、その制御方法
JP6604034B2 (ja) 排気浄化装置
WO2016104802A1 (ja) 排気浄化システム及び排気浄化システムの制御方法
JP6435730B2 (ja) 内燃機関の制御装置
JP6455070B2 (ja) 排気浄化システム
WO2016039454A1 (ja) 排気浄化システム
JP2016200077A (ja) 排気浄化システム
JP6550996B2 (ja) 吸蔵量推定装置
JP2016180383A (ja) 触媒温度推定装置
JP6481392B2 (ja) 排気浄化システム
JP2016084753A (ja) 排気浄化システム
JP2016084752A (ja) 排気浄化システム
JP2016133022A (ja) 排気浄化システム
JP2016153619A (ja) 排気浄化システム
JP2016183565A (ja) 吸蔵量推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840686

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015840686

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15510669

Country of ref document: US

Ref document number: 2015840686

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE