WO2016039286A1 - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- WO2016039286A1 WO2016039286A1 PCT/JP2015/075315 JP2015075315W WO2016039286A1 WO 2016039286 A1 WO2016039286 A1 WO 2016039286A1 JP 2015075315 W JP2015075315 W JP 2015075315W WO 2016039286 A1 WO2016039286 A1 WO 2016039286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- igbt
- semiconductor device
- circuit
- generation circuit
- light
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 29
- 238000010248 power generation Methods 0.000 claims abstract description 13
- 239000000969 carrier Substances 0.000 claims abstract description 12
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 238000010992 reflux Methods 0.000 claims description 16
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/04—Modifications for accelerating switching
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a semiconductor device including an IGBT and a circuit for reducing the switching loss thereof.
- IGBTs Insulated Gate Bipolar Transistors / Insulated Gate Bipolar Transistors combine the high withstand voltage and large current characteristics of bipolar power transistors with the high-speed switching characteristics of MOSFETs. High power semiconductor device. This IGBT has the potential to further expand its active areas by improving performance that has been subdivided according to applications by realizing higher voltage resistance and larger capacity and higher frequency.
- the IGBT When focusing on higher frequency, the IGBT, like the MOSFET, can switch the current flowing between the collector electrode and the emitter electrode at high speed by controlling the voltage of the gate. There is a delay time due to influence, and this delay time is one factor that hinders further increase in frequency.
- tail current is a current that flows during the time when holes injected into the n base layer spontaneously disappear in the n layer, and the time until the tail current is settled is a relatively long delay time.
- Patent Document 1 As a proposal for reducing the delay time caused by the tail current at the turn-off time, the conventional technique described in Patent Document 1 below provides an IGBT formation region and a Schottky diode formation region in an active region of a semiconductor device. It has been proposed to reduce the delay time caused by the tail current by discharging the accumulated carriers at turn-off through the Schottky diode.
- FIG. 1 shows a waveform at the time of turn-off of the IGBT (time change of the collector current I C and the collector voltage V C ).
- the collector current I C begins to decrease when the IGBT is turned off at time t 0 on the horizontal axis, decreases rapidly before and after time t 1 , then decreases gradually and gradually decreases to time t 2. To go.
- the current during the period from time t 1 to t 2 is called tail current.
- the collector current I C at the time of turn-off rapidly decreases from the value I C1 at the time of turn-off to the value I C2 immediately after time t 1, it is provided integrally on the collector side of the IGBT as in the prior art. Even if an attempt is made to release the stored carriers via the Schottky diode, the potential difference between the stored carriers immediately falls below the drive potential of the Schottky diode, and there is a problem that the tail current cannot be discharged effectively.
- the present invention is an example of a problem to deal with such a problem. That is, it is possible to effectively discharge the accumulated carriers at the time of turn-off even when the potential difference of the accumulated carriers is small, to reduce the delay time due to the tail current, and to reduce the switching loss at the time of turn-off of the IGBT. Is the purpose.
- a semiconductor device has the following configuration.
- An IGBT a photovoltaic generation circuit connected between the drift region of the IGBT and an emitter electrode or ground, and discharging accumulated carriers in the drift region; and a light to the photovoltaic generation circuit when the IGBT is turned off.
- a semiconductor device comprising a light emitting circuit for irradiation.
- the semiconductor device having such a feature can effectively discharge the accumulated carriers in the drift region of the IGBT by the photovoltaic effect, it is possible to reduce the switching loss when the IGBT is turned off due to the tail current. Thus, further higher frequency and lower power consumption of the IGBT can be realized.
- FIG. 1 is an explanatory diagram for explaining an operation principle of an accumulated carrier discharge circuit according to an embodiment of the present invention ((a) is a circuit diagram showing the operation principle, and (b) is a graph showing current dependency on a capacitor voltage). It is explanatory drawing explaining operation
- FIG. 2 is an explanatory diagram showing an electrical equivalent circuit of the semiconductor device according to the embodiment of the present invention.
- the semiconductor device 1 includes an IGBT (Insulated Gate Bipolar Transistor) 10.
- the IGBT 10 includes a PNP bipolar transistor 11 and an N-channel MOS transistor 12 as an equivalent circuit.
- the bipolar transistor 11 has its emitter region 11E connected to the collector electrode terminal 10C of the IGBT 10, and its collector region 11C connected to the emitter electrode 10E of the IGBT 10.
- the source 12S of the MOS transistor 12 is connected to the emitter electrode 10E of the IGBT 10 or the ground G, and the drain 12D is connected to the base 11B of the bipolar transistor 11.
- the gate 12G of the MOS transistor 12 becomes the gate electrode terminal 10G of the IGBT 10, and a drive signal from an IGBT drive circuit described later is input to the gate electrode terminal 10G.
- the charge accumulated in the drift region of the IGBT 10 can be represented as a capacitor 14, and the charge accumulated in the gate can be represented as a capacitor 15.
- the capacitor 14 stores positive charges on the base 11B side of the bipolar transistor 11 and stores negative charges on the source 12S side of the MOS transistor 12.
- the capacitor 15 stores positive charges on the gate 12G side of the MOS transistor 12, and stores negative charges on the drain 12D side of the MOS transistor 12.
- a PN junction diode 13 having an anode connected to the emitter electrode 10E side and a cathode connected to the collector electrode terminal 10C side is connected between the emitter electrode 10E and the collector electrode terminal 10C of the IGBT 10. Yes.
- Connection terminals 10S1 and 10S2 are provided on the emitter electrode 10E and the collector electrode terminal 10C of the IGBT 10, respectively.
- the operating voltage V CC1 is input to the collector electrode terminal 10C.
- the semiconductor device 1 includes a power storage carrier discharge circuit 2, and the power storage carrier discharge circuit 2 includes a photovoltaic power generation circuit 20 for power storage carrier discharge and a light emitting circuit 30 for power storage carrier discharge.
- the photovoltaic generation circuit 20 includes an NPN phototransistor 21 having a collector region 21C connected to the drift region side of the IGBT 10 and an emitter region 21E connected to the emitter electrode 10E side or the ground G side of the IGBT 10. It has.
- the photovoltaic power generation circuit 20 includes an NPN-type phototransistor 22 connected in series with the phototransistor 21.
- the emitter region 22E of the phototransistor 22 is connected to the collector region 21C of the phototransistor 21,
- the operating voltage input terminal 20S is connected to the collector region 22C of the phototransistor 22, and the operating voltage V CC2 is input to the operating voltage input terminal 20S.
- the photovoltaic power generation circuit 20 includes a free-wheeling photodiode 23 having an anode connected to the emitter region 21E side of the phototransistor 21 and a cathode connected to the collector region 21C side.
- a PN junction diode 24 can be connected to the reflux photodiode 23 in series in the same forward direction as necessary.
- the light-emitting circuit 30 for storing and discharging a carrier includes light-emitting diodes 31 and 32.
- the light-emitting diodes 31 and 32 irradiate light to the photo-transistors 21 and 22 for discharging the stored-carrier, and the light-emitting diodes are provided.
- 32 is arranged so that light can be irradiated to the reflux photodiode 23.
- FIG. 3A a photodiode 101, a phototransistor 102, and a charged capacitor 103 are connected in parallel, and the photodiode 101 and the phototransistor 102 are irradiated with a certain amount of light.
- the current Ip flows through the photodiode 101 and the current Id flows through the phototransistor 102 in accordance with the voltage of the capacitor 103.
- FIG. 3B is a graph showing the current dependency on the voltage of the capacitor 103.
- Id is the relationship between the collector-emitter voltage and collector current of the transistor, and Ip is the same as the reverse bias characteristic of the photodiode. Therefore, it is efficient to discharge the capacitor by the phototransistor 102 when the voltage (accumulated charge amount) of the capacitor 103 is large, and by the photodiode 101 when the voltage is small.
- the power storage carrier discharge circuit 2 uses the operation principle shown in FIG. 3, and the operation will be described with reference to FIG.
- the solid line indicates the change in the collector current Ic after the IGBT 10 is turned off when the power storage carrier discharge circuit 2 is provided and the broken line indicates that the power storage carrier discharge circuit 2 is not provided.
- the accumulated charge is discharged using the photovoltaic effect of the phototransistors 21 and 22, and is returned to the subsequent discharge after the accumulated charge amount is reduced.
- the photovoltaic effect of the photo diode 23 the storage carrier in the drift region can be discharged efficiently. According to this, the accumulated carriers in the drift region can be quickly lost at the time of turn-off, and the switching loss due to the tail current can be effectively reduced.
- t 1 and t 2 are the same time, but may be different times.
- FIG. 5 shows a configuration example of the IGBT drive circuit of the semiconductor device according to the embodiment of the present invention.
- the output terminal 3S of the IGBT drive circuit 3 is connected to the gate electrode terminal 10G of the IGBT 10, and the drive control of the IGBT 10 is performed by the drive signal output from the IGBT drive circuit 3.
- the IGBT drive circuit 3 includes a photovoltaic power generation circuit 40 and a light emitting circuit 50.
- the photovoltaic power generation circuit 40 includes NPN-type phototransistors 41 and 42 and a free-wheeling photodiode 43.
- the collector region 41C of the phototransistor 41 is connected to the input terminal 40S of the drive voltage V CC3.
- the collector region 42C of the phototransistor 42 is connected to the emitter region 41E.
- the ground region G and the anode of the reflux photodiode 43 are connected to the emitter region 42E of the phototransistor 42, and the cathode of the reflux photodiode 43 is connected to the collector region 42C of the phototransistor 42 and the output terminal 3S.
- the light emitting circuit 50 includes one or a plurality of light emitting diodes 51 and 52.
- light emitted from the light emitting diode 51 is irradiated to the phototransistor 41 and light emitted from the light emitting diode 52 is emitted.
- the phototransistor 42 and the refluxing photodiode 43 are irradiated.
- a driving photovoltaic power generation circuit is configured by the phototransistor 41
- a driving on-time light emitting circuit is configured by the light emitting diode 51. That is, the light-emitting diode 51 emits light when the IGBT 10 is turned on and irradiates the phototransistor 41 with light, and the phototransistor 41 is driven to be input to the input terminal 40S due to the photovoltaic effect caused by the light emitted when the IGBT 10 is turned on.
- the voltage V CC3 is input to the gate electrode terminal 10G of the IGBT 10 via the output terminal 3S.
- the semiconductor device 1 can employ such an optical driving method.
- a photoelectromotive force generating circuit for gate discharge is constituted by the phototransistor 42 and the refluxing photodiode 43
- a light emitting circuit for driving is constituted by the light emitting diode 52. That is, the light emitting diode 52 emits light when the IGBT 10 is turned off and irradiates light to the phototransistor 42 and the refluxing photodiode 43.
- the phototransistor 42 and the refluxing photodiode 43 emit light by the light emitted when the IGBT 10 is turned off. Due to the electromotive force effect, the charges accumulated in the gate electrode terminal 10G connected to the output terminal 3S can be effectively discharged to the ground G. By applying such a gate charge discharge, the switching loss due to the tail current at the time of turn-off can be further effectively reduced.
- the single light-emitting diode 52 irradiates both the phototransistor 42 and the reflux photodiode 43, but a plurality of light-emitting elements are emitted as in the case of discharging the charge accumulated in the drift region.
- the phototransistor 42 and the reflux photodiode 43 may be irradiated at individual timings using a diode.
- the semiconductor device 1 connects the photovoltaic generation circuit 20 including the phototransistors 22 and 21 and the free-wheeling photodiode 23 between the drift region of the IGBT 10 and the emitter electrode 10E.
- the accumulated carriers in the drift region at the turn-off time can be quickly released to the ground G or the emitter electrode 10E by the photovoltaic effect of the phototransistors 22 and 21 and the reflux photodiode 23. Thereby, the switching loss due to the tail current can be effectively reduced.
- the gate discharge photovoltaic generation circuit including the phototransistor 42 and the reflux photodiode 43 is connected to the gate electrode terminal 10G of the IGBT 10. Can be quickly discharged to the ground G by the photovoltaic effect of the phototransistor 42 and the reflux photodiode 43. This also makes it possible to further reduce the switching loss due to the tail current.
- the semiconductor device 1 according to the embodiment of the present invention can effectively reduce the switching loss of the IGBT 10, the operating frequency can be improved. Further, the semiconductor device including the conventional IGBT has increased the power consumption due to the energy loss of the tail current. However, the semiconductor device 1 according to the embodiment of the present invention can reduce the power consumption by reducing the switching loss. It becomes possible. As described above, the semiconductor device according to the embodiment of the present invention can realize higher frequency and lower power consumption of a power semiconductor device including an IGBT.
- 1 semiconductor device
- 2 storage carrier discharge circuit
- 3 IGBT drive circuit
- 10 IGBT
- 11 Bipolar transistor
- 12 MOS transistor
- 13 PN junction diode
- 20, 40 photovoltaic power generation circuit
- 30, 50 light emitting circuit
- 21, 22, 41, 42 phototransistor
- 23, 43 photodiode for reflux
- 31, 32, 51, 52 light emitting diodes
- G Earth
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electronic Switches (AREA)
- Power Conversion In General (AREA)
Abstract
The present invention reduces switching loss when an IGBT is turned off. This semiconductor device 1 is provided with an IGBT 10, a photovoltaic power generation circuit 20 that is connected between the drift region of the IGBT 10 and an emitter electrode 10E or ground G and is for discharging carriers accumulated in the drift region, and a light emission circuit 30 that irradiates light onto the photovoltaic power generation circuit 20 when the IGBT 10 is turned off.
Description
本発明は、IGBTとそのスイッチング損失を低減する回路とを備える半導体装置に関するものである。
The present invention relates to a semiconductor device including an IGBT and a circuit for reducing the switching loss thereof.
IGBT(Insulated Gate Bipolar Transistor/絶縁ゲート型バイポーラトランジスタ)は、バイポーラパワートランジスタの高耐圧・大電流特性とMOSFETの高速スイッチング特性を兼ね備えた、高耐圧・低損失・高速スイッチングを特徴とする汎用性の高いパワー半導体デバイスである。このIGBTは、更なる高耐圧・大容量化の実現と更なる高周波数化の実現により用途別に細分化された性能向上を図ることで、活躍の領域を更に広げる可能性を持っている。
IGBTs (Insulated Gate Bipolar Transistors / Insulated Gate Bipolar Transistors) combine the high withstand voltage and large current characteristics of bipolar power transistors with the high-speed switching characteristics of MOSFETs. High power semiconductor device. This IGBT has the potential to further expand its active areas by improving performance that has been subdivided according to applications by realizing higher voltage resistance and larger capacity and higher frequency.
高周波数化に着目した場合、IGBTは、MOSFETと同様に,ゲートの電圧制御によってコレクタ電極とエミッタ電極間を流れる電流を高速スイッチングすることができるものであるが、MOSFETと比較すると、蓄積キャリアの影響による遅れ時間が存在し、この遅れ時間が更なる高周波数化を妨げる一つの要因になっている。
When focusing on higher frequency, the IGBT, like the MOSFET, can switch the current flowing between the collector electrode and the emitter electrode at high speed by controlling the voltage of the gate. There is a delay time due to influence, and this delay time is one factor that hinders further increase in frequency.
IGBTのターンオン時は、ドリフト領域と呼ばれるPNP型バイポーラトランジスタ部分のn層で正孔の注入時間分の遅れ時間が発生するが、ターンオフ時は、オン時より長めの遅れ時間が発生する。IGBTをターンオフするとコレクタ電流は先ず急激に減少しその後ある時点から緩やかなカーブを描いて減少する。これをテール電流と呼ぶ。テール電流は、nベース層に注入された正孔がn層中で自然消滅する時間に流れる電流であり、テール電流が収まるまでの時間が比較的長い遅れ時間になっている。
When the IGBT is turned on, a delay time corresponding to the hole injection time is generated in the n layer of the PNP-type bipolar transistor portion called a drift region, but a longer delay time is generated than when the IGBT is turned on. When the IGBT is turned off, the collector current first decreases rapidly and then decreases gradually after a gentle curve. This is called tail current. The tail current is a current that flows during the time when holes injected into the n base layer spontaneously disappear in the n layer, and the time until the tail current is settled is a relatively long delay time.
このようなターンオフ時のテール電流で生じる遅れ時間を低減するための提案として、下記特許文献1に記載された従来技術は、半導体装置のアクティブ領域にIGBT形成領域とショットキーダイオード形成領域を設け、ショットキーダイオードを介してターンオフ時の蓄積キャリアを放出することで、テール電流で生じる遅れ時間を低減させることを提案している。
As a proposal for reducing the delay time caused by the tail current at the turn-off time, the conventional technique described in Patent Document 1 below provides an IGBT formation region and a Schottky diode formation region in an active region of a semiconductor device. It has been proposed to reduce the delay time caused by the tail current by discharging the accumulated carriers at turn-off through the Schottky diode.
図1は、IGBTのターンオフ時波形(コレクタ電流ICとコレクタ電圧VCの時間変化)を示している。コレクタ電流ICは、横軸の時刻tがt0においてIGBTがオフになると減少し始め、時刻t1の前後で急激に減少した後、減少が緩やかになって時刻t2まで徐々に減少していく。この時刻t1からt2の期間の電流をテール電流と呼んでいる。
FIG. 1 shows a waveform at the time of turn-off of the IGBT (time change of the collector current I C and the collector voltage V C ). The collector current I C begins to decrease when the IGBT is turned off at time t 0 on the horizontal axis, decreases rapidly before and after time t 1 , then decreases gradually and gradually decreases to time t 2. To go. The current during the period from time t 1 to t 2 is called tail current.
ここで、ターンオフ時のコレクタ電流ICは、オフ時の値IC1から時刻t1直後の値IC2までは急激に減少するので、従来技術のように、IGBTのコレクタ側に一体に設けたショットキーダイオードを介して蓄積キャリアを放出しようとしても、蓄積キャリアの電位差がすぐにショットキーダイオードの駆動電位を下回ってしまい、効果的にテール電流を放出することができない問題が生じる。
Here, since the collector current I C at the time of turn-off rapidly decreases from the value I C1 at the time of turn-off to the value I C2 immediately after time t 1, it is provided integrally on the collector side of the IGBT as in the prior art. Even if an attempt is made to release the stored carriers via the Schottky diode, the potential difference between the stored carriers immediately falls below the drive potential of the Schottky diode, and there is a problem that the tail current cannot be discharged effectively.
本発明は、このような問題に対処することを課題の一例とするものである。すなわち、ターンオフ時の蓄積キャリアをこの蓄積キャリアの電位差が小さい場合にも効果的に放電させて、テール電流による遅れ時間を減少させ、IGBTのターンオフ時のスイッチング損失を低減すること、等が本発明の目的である。
The present invention is an example of a problem to deal with such a problem. That is, it is possible to effectively discharge the accumulated carriers at the time of turn-off even when the potential difference of the accumulated carriers is small, to reduce the delay time due to the tail current, and to reduce the switching loss at the time of turn-off of the IGBT. Is the purpose.
このような目的を達成するために、本発明による半導体装置は、以下の構成を具備するものである。
IGBTと、前記IGBTのドリフト領域とエミッタ電極又はアースとの間に接続され、前記ドリフト領域の蓄積キャリアを放電する光起電力発生回路と、前記IGBTのターンオフ時に前記光起電力発生回路に光を照射する発光回路を備えることを特徴とする半導体装置。 In order to achieve such an object, a semiconductor device according to the present invention has the following configuration.
An IGBT, a photovoltaic generation circuit connected between the drift region of the IGBT and an emitter electrode or ground, and discharging accumulated carriers in the drift region; and a light to the photovoltaic generation circuit when the IGBT is turned off. A semiconductor device comprising a light emitting circuit for irradiation.
IGBTと、前記IGBTのドリフト領域とエミッタ電極又はアースとの間に接続され、前記ドリフト領域の蓄積キャリアを放電する光起電力発生回路と、前記IGBTのターンオフ時に前記光起電力発生回路に光を照射する発光回路を備えることを特徴とする半導体装置。 In order to achieve such an object, a semiconductor device according to the present invention has the following configuration.
An IGBT, a photovoltaic generation circuit connected between the drift region of the IGBT and an emitter electrode or ground, and discharging accumulated carriers in the drift region; and a light to the photovoltaic generation circuit when the IGBT is turned off. A semiconductor device comprising a light emitting circuit for irradiation.
このような特徴を備える半導体装置は、IGBTのドリフト領域の蓄積キャリアを光起電力効果によって効果的に放電することができるので、テール電流によるIGBTのターンオフ時におけるスイッチング損失を低減することが可能になり、IGBTの更なる高周波数化と低消費電力化を実現することができる。
Since the semiconductor device having such a feature can effectively discharge the accumulated carriers in the drift region of the IGBT by the photovoltaic effect, it is possible to reduce the switching loss when the IGBT is turned off due to the tail current. Thus, further higher frequency and lower power consumption of the IGBT can be realized.
以下、図面を参照して本発明の実施形態を説明する。図2は、本発明の実施形態に係る半導体装置の電気的等価回路を示す説明図である。半導体装置1は、IGBT(絶縁ゲート型バイポーラトランジスタ)10を備える。IGBT10は、等価回路としては、PNP型のバイポーラトランジスタ11とNチャネルのMOSトランジスタ12によって構成される。バイポーラトランジスタ11は、そのエミッタ領域11EがIGBT10のコレクタ電極端子10Cに接続されており、そのコレクタ領域11CがIGBT10のエミッタ電極10Eに接続されている。MOSトランジスタ12は、そのソース12SがIGBT10のエミッタ電極10E又はアースGに接続されており、そのドレイン12Dがバイポーラトランジスタ11のベース11Bに接続されている。そして、MOSトランジスタ12のゲート12GはIGBT10のゲート電極端子10Gになり、このゲート電極端子10Gに後述するIGBT駆動回路からの駆動信号が入力する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is an explanatory diagram showing an electrical equivalent circuit of the semiconductor device according to the embodiment of the present invention. The semiconductor device 1 includes an IGBT (Insulated Gate Bipolar Transistor) 10. The IGBT 10 includes a PNP bipolar transistor 11 and an N-channel MOS transistor 12 as an equivalent circuit. The bipolar transistor 11 has its emitter region 11E connected to the collector electrode terminal 10C of the IGBT 10, and its collector region 11C connected to the emitter electrode 10E of the IGBT 10. The source 12S of the MOS transistor 12 is connected to the emitter electrode 10E of the IGBT 10 or the ground G, and the drain 12D is connected to the base 11B of the bipolar transistor 11. The gate 12G of the MOS transistor 12 becomes the gate electrode terminal 10G of the IGBT 10, and a drive signal from an IGBT drive circuit described later is input to the gate electrode terminal 10G.
等価回路において、IGBT10のドリフト領域に蓄積された電荷はコンデンサ14として、ゲートに蓄積された電荷はコンデンサ15で表すことができる。コンデンサ14はバイポーラトランジスタ11のベース11Bの側に正電荷が蓄積され、MOSトランジスタ12のソース12S側に負電荷が蓄積されている。コンデンサ15はMOSトランジスタ12のゲート12G側に正電荷が蓄積され、MOSトランジスタ12のドレイン12D側に負電荷が蓄積されている。
In the equivalent circuit, the charge accumulated in the drift region of the IGBT 10 can be represented as a capacitor 14, and the charge accumulated in the gate can be represented as a capacitor 15. The capacitor 14 stores positive charges on the base 11B side of the bipolar transistor 11 and stores negative charges on the source 12S side of the MOS transistor 12. The capacitor 15 stores positive charges on the gate 12G side of the MOS transistor 12, and stores negative charges on the drain 12D side of the MOS transistor 12.
また、図示の例では、IGBT10のエミッタ電極10Eとコレクタ電極端子10Cとの間に、エミッタ電極10E側にアノードが接続されコレクタ電極端子10C側にカソードが接続されるPN接合ダイオード13が接続されている。IGBT10のエミッタ電極10Eとコレクタ電極端子10Cにはそれぞれ接続端子10S1,10S2が設けられている。コレクタ電極端子10Cには作動電圧VCC1が入力されている。
In the illustrated example, a PN junction diode 13 having an anode connected to the emitter electrode 10E side and a cathode connected to the collector electrode terminal 10C side is connected between the emitter electrode 10E and the collector electrode terminal 10C of the IGBT 10. Yes. Connection terminals 10S1 and 10S2 are provided on the emitter electrode 10E and the collector electrode terminal 10C of the IGBT 10, respectively. The operating voltage V CC1 is input to the collector electrode terminal 10C.
半導体装置1は蓄電キャリア放電回路2を備えており、この蓄電キャリア放電回路2は、蓄電キャリア放電用の光起電力発生回路20と蓄電キャリア放電用の発光回路30を備えている。図示の例では、光起電力発生回路20は、IGBT10のドリフト領域側にコレクタ領域21Cが接続され、IGBT10のエミッタ電極10E側又はアースG側にエミッタ領域21Eが接続されるNPN型のフォトトランジスタ21を備えている。また、光起電力発生回路20は、フォトトランジスタ21と直列に接続されたNPN型のフォトトランジスタ22を備えており、このフォトトランジスタ22のエミッタ領域22Eがフォトトランジスタ21のコレクタ領域21Cに接続され、フォトトランジスタ22のコレクタ領域22Cには作動電圧入力端子20Sが接続され、作動電圧入力端子20Sには作動電圧VCC2が入力されている。
The semiconductor device 1 includes a power storage carrier discharge circuit 2, and the power storage carrier discharge circuit 2 includes a photovoltaic power generation circuit 20 for power storage carrier discharge and a light emitting circuit 30 for power storage carrier discharge. In the illustrated example, the photovoltaic generation circuit 20 includes an NPN phototransistor 21 having a collector region 21C connected to the drift region side of the IGBT 10 and an emitter region 21E connected to the emitter electrode 10E side or the ground G side of the IGBT 10. It has. The photovoltaic power generation circuit 20 includes an NPN-type phototransistor 22 connected in series with the phototransistor 21. The emitter region 22E of the phototransistor 22 is connected to the collector region 21C of the phototransistor 21, The operating voltage input terminal 20S is connected to the collector region 22C of the phototransistor 22, and the operating voltage V CC2 is input to the operating voltage input terminal 20S.
また、光起電力発生回路20は、フォトトランジスタ21のエミッタ領域21E側にアノードが接続されコレクタ領域21C側にカソードが接続される還流用フォトダイオード23を備えている。この還流用フォトダイオード23には、必要に応じてPN接合ダイオード24を同じ順方向で直列接続することができる。
The photovoltaic power generation circuit 20 includes a free-wheeling photodiode 23 having an anode connected to the emitter region 21E side of the phototransistor 21 and a cathode connected to the collector region 21C side. A PN junction diode 24 can be connected to the reflux photodiode 23 in series in the same forward direction as necessary.
蓄電キャリア放電用の発光回路30は、発光ダイオード31,32を備えており、単数又は複数の発光ダイオード31で蓄電キャリア放電用のフォトトランジスタ21,22に光を照射し、単数又は複数の発光ダイオード32で還流用フォトダイオード23に光を照射することができるように配備されている。
The light-emitting circuit 30 for storing and discharging a carrier includes light-emitting diodes 31 and 32. The light- emitting diodes 31 and 32 irradiate light to the photo-transistors 21 and 22 for discharging the stored-carrier, and the light-emitting diodes are provided. 32 is arranged so that light can be irradiated to the reflux photodiode 23.
このような蓄積キャリア放電回路2の動作原理を図3によって説明する。図3(a)に示した回路では、フォトダイオード101、フォトトランジスタ102と充電されたコンデンサ103が並列接続され、フォトダイオード101とフォトトランジスタ102には一定量の光が照射されている。このような回路では、コンデンサ103の電圧に応じてフォトダイオード101には電流Ip、フォトトランジスタ102には電流Idが流れることになる。図3(b)はコンデンサ103の電圧に対する電流依存性を示すグラフである。Idはトランジスタのコレクタ-エミッタ電圧とコレクタ電流の関係となり、Ipはフォトダイオードの逆バイアス特性と同様になる。したがって、コンデンサ103の電圧(蓄積された電荷量)が大きいときにはフォトトランジスタ102によって、小さいときにはフォトダイオード101によってコンデンサの放電を行うことが効率的である。
The operation principle of such a stored carrier discharge circuit 2 will be described with reference to FIG. In the circuit shown in FIG. 3A, a photodiode 101, a phototransistor 102, and a charged capacitor 103 are connected in parallel, and the photodiode 101 and the phototransistor 102 are irradiated with a certain amount of light. In such a circuit, the current Ip flows through the photodiode 101 and the current Id flows through the phototransistor 102 in accordance with the voltage of the capacitor 103. FIG. 3B is a graph showing the current dependency on the voltage of the capacitor 103. Id is the relationship between the collector-emitter voltage and collector current of the transistor, and Ip is the same as the reverse bias characteristic of the photodiode. Therefore, it is efficient to discharge the capacitor by the phototransistor 102 when the voltage (accumulated charge amount) of the capacitor 103 is large, and by the photodiode 101 when the voltage is small.
本発明の実施形態に係る蓄電キャリア放電回路2は、図3に示す動作原理を利用しており、その動作を図4を用いて説明する。図4において、実線は、蓄電キャリア放電回路2がある場合、破線は蓄電キャリア放電回路2を設けていない場合のIGBT10のターンオフ後のコレクタ電流Icの変化を示している。
The power storage carrier discharge circuit 2 according to the embodiment of the present invention uses the operation principle shown in FIG. 3, and the operation will be described with reference to FIG. In FIG. 4, the solid line indicates the change in the collector current Ic after the IGBT 10 is turned off when the power storage carrier discharge circuit 2 is provided and the broken line indicates that the power storage carrier discharge circuit 2 is not provided.
IGBT10のターンオフ後の時刻t0からt1まで、発光回路30の発光ダイオード31を発光させて、光起電力発生回路20のフォトトランジスタ21,22に光を照射することで、フォトトランジスタ21,22の光起電力効果によってIGBT10のコンデンサ14に蓄積された電荷(ドリフト領域における蓄積キャリア)をアースG又はエミッタ電極10E側に逃がす。次に、時刻t2からt3まで、発光ダイオード32を発光させて、還流用フォトダイオード23の光起電力効果によってIGBT10のコンデンサ14に蓄積された電荷をアースG又はエミッタ電極10E側に逃がす。このように蓄積された電荷量が大きいターンオフ後の初期にはフォトトランジスタ21,22の光起電力効果を利用して蓄積電荷を放電させ、蓄積された電荷量が小さくなったその後の放電に還流用フォトダイオード23の光起電力効果を利用することで効率的にドリフト領域の蓄電キャリアを放電させることができる。これによると、ターンオフ時にドリフト領域の蓄積キャリアを速やかに消失させることができ、テール電流によるスイッチング損失を効果的に低減することができる。なお、本発明の実施形態において、t1とt2は同時刻であるが、異なる時刻であっても構わない。
From the time t 0 after the turn-off of the IGBT10 to t 1, while the light emitting diode 31 of the light emitting circuit 30, by irradiating light to the phototransistor 21, 22 of the photovoltaic generation circuit 20, the phototransistor 21 and 22 The charge (accumulated carriers in the drift region) accumulated in the capacitor 14 of the IGBT 10 is released to the ground G or the emitter electrode 10E side by the photovoltaic effect. Next, from time t 2 to t 3 , the light emitting diode 32 emits light, and the electric charge accumulated in the capacitor 14 of the IGBT 10 is released to the ground G or the emitter electrode 10E side by the photovoltaic effect of the reflux photodiode 23. In the initial stage after the turn-off in which the accumulated charge amount is large in this way, the accumulated charge is discharged using the photovoltaic effect of the phototransistors 21 and 22, and is returned to the subsequent discharge after the accumulated charge amount is reduced. By using the photovoltaic effect of the photo diode 23, the storage carrier in the drift region can be discharged efficiently. According to this, the accumulated carriers in the drift region can be quickly lost at the time of turn-off, and the switching loss due to the tail current can be effectively reduced. In the embodiment of the present invention, t 1 and t 2 are the same time, but may be different times.
図5は、本発明の実施形態に係る半導体装置のIGBT駆動回路の構成例を示している。IGBT駆動回路3の出力端子3SはIGBT10のゲート電極端子10Gに接続され、IGBT駆動回路3が出力する駆動信号によってIGBT10の駆動制御がなされる。
FIG. 5 shows a configuration example of the IGBT drive circuit of the semiconductor device according to the embodiment of the present invention. The output terminal 3S of the IGBT drive circuit 3 is connected to the gate electrode terminal 10G of the IGBT 10, and the drive control of the IGBT 10 is performed by the drive signal output from the IGBT drive circuit 3.
IGBT駆動回路3は、光起電力発生回路40と発光回路50を備えている。光起電力発生回路40は、NPN型のフォトトランジスタ41,42と還流用フォトダイオード43を備えており、駆動電圧VCC3の入力端子40Sにフォトトランジスタ41のコレクタ領域41Cが接続され、フォトトランジスタ41のエミッタ領域41Eにフォトトランジスタ42のコレクタ領域42Cが接続されている。フォトトランジスタ42のエミッタ領域42Eには、アースG及び還流用フォトダイオード43のアノードが接続され、還流用フォトダイオード43のカソードはフォトトランジスタ42のコレクタ領域42C及び出力端子3Sに接続されている。
The IGBT drive circuit 3 includes a photovoltaic power generation circuit 40 and a light emitting circuit 50. The photovoltaic power generation circuit 40 includes NPN- type phototransistors 41 and 42 and a free-wheeling photodiode 43. The collector region 41C of the phototransistor 41 is connected to the input terminal 40S of the drive voltage V CC3. The collector region 42C of the phototransistor 42 is connected to the emitter region 41E. The ground region G and the anode of the reflux photodiode 43 are connected to the emitter region 42E of the phototransistor 42, and the cathode of the reflux photodiode 43 is connected to the collector region 42C of the phototransistor 42 and the output terminal 3S.
これに対して、発光回路50は、単数又は複数の発光ダイオード51,52を備えており、例えば、発光ダイオード51にて発光した光がフォトトランジスタ41に照射され、発光ダイオード52にて発光した光がフォトトランジスタ42及び還流用フォトダイオード43に照射されるように、発光ダイオード51,52が配置されている。
On the other hand, the light emitting circuit 50 includes one or a plurality of light emitting diodes 51 and 52. For example, light emitted from the light emitting diode 51 is irradiated to the phototransistor 41 and light emitted from the light emitting diode 52 is emitted. Are arranged so that the phototransistor 42 and the refluxing photodiode 43 are irradiated.
このようなIGBT駆動回路3は、フォトトランジスタ41によって駆動用光起電力発生回路が構成されており、発光ダイオード51によって駆動用オン時発光回路が構成されている。すなわち、発光ダイオード51は、IGBT10のターンオン時に発光してフォトトランジスタ41に光を照射し、フォトトランジスタ41は、IGBT10のターンオン時に照射された光による光起電力効果で入力端子40Sに入力される駆動電圧VCC3を出力端子3Sを介してIGBT10のゲート電極端子10Gに入力する。半導体装置1は、このような光駆動方式を採用することができる。
In such an IGBT driving circuit 3, a driving photovoltaic power generation circuit is configured by the phototransistor 41, and a driving on-time light emitting circuit is configured by the light emitting diode 51. That is, the light-emitting diode 51 emits light when the IGBT 10 is turned on and irradiates the phototransistor 41 with light, and the phototransistor 41 is driven to be input to the input terminal 40S due to the photovoltaic effect caused by the light emitted when the IGBT 10 is turned on. The voltage V CC3 is input to the gate electrode terminal 10G of the IGBT 10 via the output terminal 3S. The semiconductor device 1 can employ such an optical driving method.
また、IGBT駆動回路3は、フォトトランジスタ42及び還流用フォトダイオード43によってゲート放電用の光起電力発生回路が構成されており、発光ダイオード52によって駆動用オフ時発光回路が構成されている。すなわち、発光ダイオード52は、IGBT10のターンオフ時に発光してフォトトランジスタ42及び還流用フォトダイオード43に光を照射し、フォトトランジスタ42及び還流用フォトダイオード43は、IGBT10のターンオフ時に照射された光による光起電力効果によって、出力端子3Sに接続されるゲート電極端子10Gに溜まった電荷を効果的にアースGに放電させることができる。このようなゲート電荷の放電を加えることでターンオフ時のテール電流によるスイッチング損失を更に効果的に低減することができる。
Further, in the IGBT driving circuit 3, a photoelectromotive force generating circuit for gate discharge is constituted by the phototransistor 42 and the refluxing photodiode 43, and a light emitting circuit for driving is constituted by the light emitting diode 52. That is, the light emitting diode 52 emits light when the IGBT 10 is turned off and irradiates light to the phototransistor 42 and the refluxing photodiode 43. The phototransistor 42 and the refluxing photodiode 43 emit light by the light emitted when the IGBT 10 is turned off. Due to the electromotive force effect, the charges accumulated in the gate electrode terminal 10G connected to the output terminal 3S can be effectively discharged to the ground G. By applying such a gate charge discharge, the switching loss due to the tail current at the time of turn-off can be further effectively reduced.
なお、本発明の実施形態では単一の発光ダイオード52でフォトトランジスタ42と還流用フォトダイオード43の両方を照射しているが、ドリフト領域に溜まった電荷を放電する場合と同様に、複数の発光ダイオードを用いてフォトトランジスタ42と還流用フォトダイオード43を個別のタイミングで照射してもよい。
In the embodiment of the present invention, the single light-emitting diode 52 irradiates both the phototransistor 42 and the reflux photodiode 43, but a plurality of light-emitting elements are emitted as in the case of discharging the charge accumulated in the drift region. The phototransistor 42 and the reflux photodiode 43 may be irradiated at individual timings using a diode.
このように、本発明の実施形態に係る半導体装置1は、IGBT10のドリフト領域とエミッタ電極10E間にフォトトランジスタ22,21と還流用フォトダイオード23を備える光起電力発生回路20を接続することで、ターンオフ時のドリフト領域における蓄積キャリアをフォトトランジスタ22,21と還流用フォトダイオード23の光起電力効果によって速やかにアースG又はエミッタ電極10Eに逃がすことができる。これによって、テール電流によるスイッチング損失を効果的に低減することができる。
As described above, the semiconductor device 1 according to the embodiment of the present invention connects the photovoltaic generation circuit 20 including the phototransistors 22 and 21 and the free-wheeling photodiode 23 between the drift region of the IGBT 10 and the emitter electrode 10E. The accumulated carriers in the drift region at the turn-off time can be quickly released to the ground G or the emitter electrode 10E by the photovoltaic effect of the phototransistors 22 and 21 and the reflux photodiode 23. Thereby, the switching loss due to the tail current can be effectively reduced.
また、本発明の実施形態に係る半導体装置1は、IGBT10のゲート電極端子10Gにフォトトランジスタ42と還流用フォトダイオード43を備えるゲート放電用の光起電力発生回路を接続しているので、ターンオフ時のゲート電荷をフォトトランジスタ42と還流用フォトダイオード43の光起電力効果によって速やかにアースGに放電することができる。これによっても、テール電流によるスイッチング損失を更に低減することができる。
In the semiconductor device 1 according to the embodiment of the present invention, the gate discharge photovoltaic generation circuit including the phototransistor 42 and the reflux photodiode 43 is connected to the gate electrode terminal 10G of the IGBT 10. Can be quickly discharged to the ground G by the photovoltaic effect of the phototransistor 42 and the reflux photodiode 43. This also makes it possible to further reduce the switching loss due to the tail current.
以上説明したように、本発明の実施形態に係る半導体装置1は、IGBT10のスイッチング損失を効果的に低減することができるので、動作周波数の向上が可能になる。また、従来のIGBTを含む半導体装置は、テール電流がエネルギーロスになって消費電力を増大させていたが、本発明の実施形態に係る半導体装置1は、スイッチング損失の低減によって消費電力の削減が可能になる。このように、本発明の実施形態に係る半導体装置は、IGBTを含むパワー半導体デバイスの高周波数化と低消費電力化を実現することができる。
As described above, since the semiconductor device 1 according to the embodiment of the present invention can effectively reduce the switching loss of the IGBT 10, the operating frequency can be improved. Further, the semiconductor device including the conventional IGBT has increased the power consumption due to the energy loss of the tail current. However, the semiconductor device 1 according to the embodiment of the present invention can reduce the power consumption by reducing the switching loss. It becomes possible. As described above, the semiconductor device according to the embodiment of the present invention can realize higher frequency and lower power consumption of a power semiconductor device including an IGBT.
1:半導体装置,2:蓄積キャリア放電回路,3:IGBT駆動回路,
10:IGBT,
11:バイポーラトランジスタ,12:MOSトランジスタ,
13,24:PN接合ダイオード,
20,40:光起電力発生回路,30,50:発光回路,
21,22,41,42:フォトトランジスタ,
23,43:還流用フォトダイオード,
31,32,51,52:発光ダイオード,
G:アース 1: semiconductor device, 2: storage carrier discharge circuit, 3: IGBT drive circuit,
10: IGBT,
11: Bipolar transistor, 12: MOS transistor,
13, 24: PN junction diode,
20, 40: photovoltaic power generation circuit, 30, 50: light emitting circuit,
21, 22, 41, 42: phototransistor,
23, 43: photodiode for reflux,
31, 32, 51, 52: light emitting diodes,
G: Earth
10:IGBT,
11:バイポーラトランジスタ,12:MOSトランジスタ,
13,24:PN接合ダイオード,
20,40:光起電力発生回路,30,50:発光回路,
21,22,41,42:フォトトランジスタ,
23,43:還流用フォトダイオード,
31,32,51,52:発光ダイオード,
G:アース 1: semiconductor device, 2: storage carrier discharge circuit, 3: IGBT drive circuit,
10: IGBT,
11: Bipolar transistor, 12: MOS transistor,
13, 24: PN junction diode,
20, 40: photovoltaic power generation circuit, 30, 50: light emitting circuit,
21, 22, 41, 42: phototransistor,
23, 43: photodiode for reflux,
31, 32, 51, 52: light emitting diodes,
G: Earth
Claims (6)
- IGBTと、
前記IGBTのドリフト領域とエミッタ電極又はアースとの間に接続され、前記ドリフト領域の蓄積キャリアを放電する光起電力発生回路と、
前記IGBTのターンオフ時に前記光起電力発生回路に光を照射する発光回路を備えることを特徴とする半導体装置。 IGBT,
A photovoltaic generation circuit connected between the drift region of the IGBT and an emitter electrode or ground, and discharging accumulated carriers in the drift region;
A semiconductor device comprising: a light emitting circuit for irradiating light to the photovoltaic power generation circuit when the IGBT is turned off. - 前記光起電力発生回路は、前記IGBTのドリフト領域側にコレクタ領域が接続され前記IGBTのエミッタ電極側又はアース側にエミッタ領域が接続されるNPN型フォトトランジスタを備えることを特徴とする請求項1記載の半導体装置。 2. The photovoltaic generation circuit includes an NPN phototransistor having a collector region connected to a drift region side of the IGBT and an emitter region connected to an emitter electrode side or a ground side of the IGBT. The semiconductor device described.
- 前記光起電力発生回路は、前記NPN型フォトトランジスタのエミッタ領域側にアノードが接続されコレクタ領域側にカソードが接続される還流用フォトダイオードを備えることを特徴とする請求項2記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the photovoltaic power generation circuit includes a reflux photodiode in which an anode is connected to an emitter region side of the NPN phototransistor and a cathode is connected to a collector region side.
- 前記発光回路は、前記IGBTのターンオフ後初期に前記NPN型フォトトランジスタに光を照射し、その後前記環流用フォトダイオードに光を照射することを特徴とする請求項3記載の半導体装置。 4. The semiconductor device according to claim 3, wherein the light emitting circuit irradiates the NPN phototransistor with light at an early stage after the IGBT is turned off, and thereafter irradiates the circulating photodiode with light.
- 前記IGBTのゲート電極に接続されるIGBT駆動回路を備え、
前記IGBT駆動回路は、駆動用光起電力発生回路と前記IGBTのターンオン時に前記駆動用光起電力発生回路に光を照射する駆動用オン時発光回路を備えることを特徴とする請求項1~4のいずれかに記載された半導体装置。 An IGBT drive circuit connected to the gate electrode of the IGBT;
The IGBT driving circuit includes a driving photovoltaic power generation circuit and a driving on-time light emitting circuit that irradiates light to the driving photovoltaic power generation circuit when the IGBT is turned on. A semiconductor device according to any one of the above. - 前記IGBT駆動回路は、前記IGBTのゲート電極とアース間に接続されるゲート放電用光起電力発生回路と、前記IGBTのターンオフ時に前記ゲート放電用光起電力発生回路に光を照射する駆動用オフ時発光回路とを備えることを特徴とする請求項5記載の半導体装置。 The IGBT drive circuit includes a gate discharge photovoltaic generation circuit connected between the gate electrode of the IGBT and the ground, and a drive-off for irradiating the gate discharge photovoltaic generation circuit with light when the IGBT is turned off. 6. The semiconductor device according to claim 5, further comprising a time light emitting circuit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014187094A JP2016063265A (en) | 2014-09-12 | 2014-09-12 | Semiconductor device |
JP2014-187094 | 2014-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039286A1 true WO2016039286A1 (en) | 2016-03-17 |
Family
ID=55459034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/075315 WO2016039286A1 (en) | 2014-09-12 | 2015-09-07 | Semiconductor device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2016063265A (en) |
TW (1) | TW201622345A (en) |
WO (1) | WO2016039286A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000299634A (en) * | 1999-02-14 | 2000-10-24 | Yazaki Corp | Switch device for ac |
JP2014146629A (en) * | 2013-01-28 | 2014-08-14 | Hitachi Power Semiconductor Device Ltd | Semiconductor device |
-
2014
- 2014-09-12 JP JP2014187094A patent/JP2016063265A/en active Pending
-
2015
- 2015-09-07 WO PCT/JP2015/075315 patent/WO2016039286A1/en active Application Filing
- 2015-09-11 TW TW104130175A patent/TW201622345A/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000299634A (en) * | 1999-02-14 | 2000-10-24 | Yazaki Corp | Switch device for ac |
JP2014146629A (en) * | 2013-01-28 | 2014-08-14 | Hitachi Power Semiconductor Device Ltd | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2016063265A (en) | 2016-04-25 |
TW201622345A (en) | 2016-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106877634B (en) | Driving mechanism for switch and switch drive methods | |
US20120212198A1 (en) | Semiconductor device | |
US9054704B2 (en) | Method, system, and apparatus for efficiently driving a transistor with a booster in voltage supply | |
WO2016030966A1 (en) | Semiconductor element | |
JP5993749B2 (en) | Gate drive circuit of semiconductor device and power conversion device using the same | |
CN109672336B (en) | SiC MOSFET gate pole auxiliary circuit | |
JP6613899B2 (en) | Semiconductor device driving apparatus | |
CN103199677A (en) | One-way isolated type metal-oxide-semiconductor filed-effect transistor (MOSFET) drive circuit | |
CN210042317U (en) | LED high-speed pulse driving circuit | |
US7701279B2 (en) | Driving circuit for an emitter-switching configuration | |
JP6227677B2 (en) | Semiconductor device driving device and power conversion device using the same | |
EP1455452A1 (en) | Circuit arrangement for switching the current in an inductive load | |
JP6295268B2 (en) | Semiconductor drive device | |
EP3183942A1 (en) | Switched mode power converter circuit and method | |
WO2016039286A1 (en) | Semiconductor device | |
JP5259671B2 (en) | Semiconductor device | |
JP2009117528A (en) | Optical semiconductor relay device | |
CN213150779U (en) | Novel insulated gate bipolar transistor and control circuit | |
Laven et al. | RCDC-IGBT study for low-voltage applications | |
JP2009017723A (en) | Drive circuit of current amplification semiconductor element | |
JP2013098336A (en) | Gate drive circuit | |
JP5649035B2 (en) | Strobe device | |
JP7098927B2 (en) | Silicon Carbide MOSFET Inverter Circuit | |
JP5737509B2 (en) | Switching circuit | |
JP2014158352A (en) | Rectifier circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15840007 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15840007 Country of ref document: EP Kind code of ref document: A1 |