WO2016038909A1 - 表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板 - Google Patents

表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板 Download PDF

Info

Publication number
WO2016038909A1
WO2016038909A1 PCT/JP2015/057181 JP2015057181W WO2016038909A1 WO 2016038909 A1 WO2016038909 A1 WO 2016038909A1 JP 2015057181 W JP2015057181 W JP 2015057181W WO 2016038909 A1 WO2016038909 A1 WO 2016038909A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
treated steel
coating
amount
resin
Prior art date
Application number
PCT/JP2015/057181
Other languages
English (en)
French (fr)
Inventor
光英 粟飯原
亙 黒川
宗光 弘津
吉村 国浩
聡子 原田
康介 佐々木
真彦 松川
美和 内川
圭佑 吉田
Original Assignee
東洋製罐グループホールディングス株式会社
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社, 東洋鋼鈑株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to EP15840460.8A priority Critical patent/EP3196341B1/en
Priority to CN201580048894.4A priority patent/CN107075710B/zh
Priority to US15/510,364 priority patent/US10858751B2/en
Publication of WO2016038909A1 publication Critical patent/WO2016038909A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a surface-treated steel sheet, a method for producing the same, and a resin-coated surface-treated steel sheet, and more specifically, provides a can excellent in adhesion, corrosion resistance, dissolution resistance, and dent resistance after retort sterilization.
  • the present invention relates to a possible surface-treated steel sheet and a manufacturing method thereof.
  • chromate treatment has been known as a treatment for improving the adhesion between steel sheet and organic coating, and it is widely used due to its excellent corrosion resistance and adhesion.
  • chromate treatment There are two types of chromate treatment, one containing hexavalent chromium in the film and the other not containing it.
  • the starting material There is a growing movement to ban the inclusion of hexavalent chromium in itself.
  • the chromate treatment of the type in which hexavalent chromium does not remain is naturally used in the final product.
  • a coating is formed.
  • cathodic electrolysis of a tin-plated steel plate in an aqueous solution of sodium dichromate cathodic electrolysis treatment of a steel plate in an aqueous solution of chromic anhydride containing fluoride, or treatment of an aluminum alloy with phosphoric acid chromate, followed by resin coating Is used.
  • Non-patent Documents 1 and 2 Metal containers such as cans are often subjected to hot water retort treatment for the purpose of sterilizing the contents. As a result, the material is exposed to a harsh environment, and thus there is a problem that the adhesion between the resin coating and the metal surface tends to be lowered, and various studies have been conducted in the past to solve the problem.
  • tinplate and electrolytic chromic acid-treated steel sheets used as materials for cans are treated by performing hot water washing or hot water washing in the final surface treatment process for the purpose of improving hot water adhesion.
  • a technique is used in which an anion such as sulfate ion or fluorine ion in the coating is controlled to form a metal surface with excellent adhesion to the resin coating (Non-patent Documents 1 and 2).
  • Patent Document 1 an immersion treatment using a treatment liquid containing Zr (zirconium) or Ti (titanium) has been proposed as a non-chromium-based surface treatment being studied for steel sheets.
  • the surface-treated steel sheet by the immersion treatment in the treatment liquid containing Zr or Ti is inferior to the corrosion resistance of the coating, and compared with the electrolytic chromic acid-treated steel sheet (TFS) conventionally used as a can material, Since the film deposition rate was slow, there was a problem that productivity was remarkably inferior.
  • TFS electrolytic chromic acid-treated steel sheet
  • the metal oxygen compound film mainly composed of an oxygen compound such as Zr, Al, Ti is directly formed on the surface of the metal substrate, thereby improving the corrosion resistance of the substrate.
  • the degree of processing is high, the underlying iron is easily exposed by processing, or the adhesion to the resin coating tends to decrease, so increasing the amount of coating ensures corrosion resistance and at the same time adheres to the resin coating. There was a need to improve sex.
  • Another problem to be solved by the present invention is a problem related to elution resistance that prevents elution of components constituting the metal container into the contents.
  • elution resistance For metal containers, maintaining the quality of the contents is very important, and special attention must be paid to the dissolution of components from the metal containers into the contents.
  • typical examples of elution of metallic components of containers are elution of iron due to corrosion and elution of anions such as sulfate ions and fluorine ions in the surface treatment coating.
  • it is necessary to pay attention to various factors such as the coating amount and surface form of the surface treatment coating, or the adhesion of a resin coating such as a film or a coating film.
  • Patent Document 2 shows an example in which the surface of a metal oxygen compound coating on a metal plating layer is washed with hot water to improve adhesion.
  • a large coating amount is required as described above, in order to achieve surface treatment characteristics and elution resistance, it is not possible with hot water washing used for electrolytic chromic acid-treated steel plates that have been used conventionally. It is enough.
  • the electrolytic chromic acid treatment line is diverted to form a metal oxygen compound film and the cleaning is performed for a longer time than before, the operation speed of the surface treatment line is limited, or the number of processing tanks for cleaning. It has been found that there are many problems such as increasing the productivity load and the energy use load, such as using a large amount of hot water.
  • the present applicants formed a compound film mainly containing Zr containing F, and then used an ion-containing aqueous solution to adjust the amount of F in the film to 0.5 to 10 mg.
  • a surface-treated steel sheet controlled to / m 2 and a method for producing the same Japanese Patent Application No. 2013-197714.
  • the surface-treated steel sheet and the method for producing the same can provide cans and the like having excellent resin coating adhesion, corrosion resistance, and elution resistance, but seamless cans formed using such resin-coated surface-treated steel sheets, It turned out that it is inferior to dent resistance at the time of being applied to retort sterilization processing.
  • dent resistance as practical impact resistance required for actual canned products. This is because even if the canned product falls or the canned products collide with each other and a dent called a dent is generated in the canned product, the adhesion and the coverage of the coating are completely maintained.
  • the resin coating may be peeled off on the outer surface side of the dent portion, particularly dioxide dioxide. It has been found that a biaxially stretched film containing an inorganic pigment such as titanium is prominent when used as a resin coating.
  • an object of the present invention is to provide a surface-treated steel sheet, a method for producing the same, and a resin-coated surface-treated steel sheet capable of effectively preventing peeling of the resin coating generated at the dent portion on the outer surface side of the can as described above.
  • the amount of Zr in the film on the outer surface side of the can is 80 to 200 mg / m 2 .
  • a surface-treated steel sheet characterized in that the F amount is 12 mg / m 2 or more.
  • the Zr content in the coating on the inner surface side of the can is 80 to 200 mg / m 2 and the F content is 25 mg / m 2 or less, 2.
  • the amount of F in the coating on the outer surface side of the can is 12 to 40 mg / m 2 ; 3.
  • the F content in the coating on the inner surface side of the can is 0.5 to 10 mg / m 2 ; Is preferred.
  • a resin-coated surface-treated steel sheet obtained by laminating a biaxially stretched film containing an inorganic pigment on the coating on the outer surface of the surface-treated steel sheet.
  • a method for producing a surface-treated steel sheet for cans formed by forming a compound coating mainly containing Zr and containing F on a steel sheet, and cathodic electrolysis in an aqueous solution containing Zr ions and F ions.
  • an alkaline aqueous solution is brought into contact with the coating film forming step in which the amount of Zr in the coating film is 80 to 200 mg / m 2 , the coating on the inner surface side of the can, and the coating on the outer surface surface of the can
  • a method for producing a surface-treated steel sheet comprising a surface adjustment step for contacting warm water.
  • the alkaline aqueous solution contains at least one of sodium, ammonium and potassium, and has a pH of 9 or more, 2.
  • the temperature of the hot water is 30-70 ° C; Is preferred.
  • the Zr amount and the F amount on the surface of the compound coating containing F and mainly composed of Zr are controlled within the above range, so that even after retort sterilization, the can It is possible to provide a seamless can excellent in dent resistance after retort sterilization in which peeling of the resin coating at the dent portion on the outer surface side is effectively prevented.
  • the F amount and Zr amount of the surface on the inner surface side of the surface-treated steel sheet within the ranges described above, a seamless can excellent in adhesion to the resin coating on the inner surface side of the can, corrosion resistance, and elution resistance is provided. can do.
  • the resin-coated surface-treated steel sheet of the present invention is effective even when a biaxially stretched film containing an inorganic pigment is used as the resin coating, particularly where the resin coating on the outer surface side of the can after the retort sterilization is prominent. Further, peeling of the resin coating on the dent portion is prevented. Furthermore, in the method for producing a surface-treated steel sheet according to the present invention, a surface-treated steel sheet in which the Zr amount and the F amount of the surface serving as the inner surface and the outer surface of the can are controlled in the above ranges can be produced with high productivity.
  • the surface-treated steel sheet of the present invention is a surface-treated steel sheet for cans in which a compound coating containing F and containing Zr as a main component is formed.
  • the amount of Zr in the compound coating on the outer surface of the can is 80 to 200 mg. / M 2 and an F amount of 12 mg / m 2 or more are important characteristics for improving the dent resistance described above.
  • the compound coating mainly containing zirconium and formed on the surface-treated steel sheet of the present invention has an amorphous structure such as ZrOx (OH) y-zFz. It is considered that this film is dehydrated by drying and baking, and F is removed and changes to an oxide film having a large amount of crystal components, and when heating further proceeds, the film finally becomes close to ZrO 2 .
  • the surface treatment layer preferably has a structure such as ZrOx (OH) y-zFz containing F or OH.
  • the preferred range is different between the surface serving as the outer surface of the can and the surface serving as the inner surface of the can. That is, with respect to zirconium, when the amount of Zr is small, there are many defective portions of the surface-treated film, and thus the film is likely to cause elution of iron as a base material.
  • the surface treated layer can be used on the inner surface side of the can during retort sterilization of the can or during high-temperature storage.
  • fluorine existing excessively will elute in the contents and impair the flavor of the contents.
  • the resin coating peels off at the dent portion after retort sterilization, and the dent resistance decreases.
  • the decrease in the adhesion of the resin coating during retort sterilization is due to the elution of the surface treatment film components and the generation of alkali by the cathode reaction.
  • the generation of alkali accelerates the elution of fluorine in the surface treatment film. This is because the structural treatment of the surface treatment layer is induced, leading to a decrease in the cohesive strength of the coating. Especially, such a decrease in the cohesive strength of the coating occurs remarkably in the dent portion after retort sterilization. A certain amount of F needs to be present in the coating.
  • the surface that becomes the inner surface of the can affects the corrosion resistance and adhesion.
  • the amount of F can be reduced and the elution of fluorine can be suppressed without imparting the content of the resin, and the surface of the outer surface of the can can contain the amount of F in the above range to prevent the resin coating of the dent portion after retort sterilization. It becomes possible to suppress peeling.
  • the F amount needs to be 12 mg / m 2 or more on the surface that becomes the outer surface of the can of the surface-treated steel sheet.
  • the range of the amount according to the amount of Zr in which the surface treatment film can maintain the above structure is preferable.
  • the amount of F is preferably in the range of 12 to 40 mg / m 2 . Further, as described above, it is preferable that the F amount is 25 mg / m 2 or less on the surface that becomes the inner surface of the can of the surface-treated steel sheet from the viewpoint of elution resistance.
  • the amount of F is extremely small, the structural change due to hydration of the surface treatment film proceeds, and the adhesion and corrosion resistance with the resin film due to the reduction of the cohesive force of the surface treatment film are reduced. It is preferable that it is 5 mg / m 2 or more.
  • Method for producing surface-treated steel sheet [Film formation process]
  • the steel sheet is subjected to cathodic electrolysis in an electrolytic treatment solution of an aqueous solution containing Zr ions and F ions. Is formed so that the Zr amount is in the range of 80 to 200 mg / m 2 and the F amount is in the range of 12 mg / m 2 or more, particularly in the range of 12 to 40 mg / m 2 .
  • the steel sheet after the formation of the compound film is squeezed with a roll after the electrolytic treatment solution is squeezed, and further squeezed with a roll of rinsing water, and then is sent to the next surface adjustment step. Moreover, the water washing after squeezing the electrolytic treatment solution with a roll can be omitted.
  • the Zr concentration in the electrolytic treatment solution used in the film forming step is preferably 1,000 to 10,000 ppm, the F concentration is preferably 600 to 13,000 ppm, the electrolytic treatment solution pH is preferably 2 to 5, and more preferably 2.5. Is more preferable, and the temperature of the electrolytic treatment solution is preferably 30 to 60 ° C.
  • Various compounds can be added to the electrolytic treatment solution used in the film forming step as described later.
  • Fe ions which are the elution components, are basically included.
  • the agent for forming the Zr ions constituting the electrolytic treatment solution is not particularly limited, for example, K 2 ZrF 6, (NH ) 2 ZrF 6, (NH 4) 2 ZrO (CO 3) 2, H 2 ZrF 6 , ZrO (NO 3 ) 2 , ZrO (CH 3 COO) 2 or the like can be used.
  • the above-mentioned drugs may be used alone or in combination of two or more.
  • a treatment liquid containing F ions in addition to the Zr ions described above as the electrolytic treatment liquid.
  • the F ions act as a complexing agent for enhancing the solubility of Zr ions in the electrolytic treatment liquid.
  • the Zr compound can be precipitated, and therefore the adhesion between the coating and the organic resin layer can be further improved.
  • Zr causes local precipitation, and a thick portion and a thin portion where Zr is present in the coating are mixed, resulting in a coating with poor film thickness uniformity.
  • the film is inferior in adhesion and corrosion resistance after processing. Therefore, in the film forming step, it is necessary to manage the molar ratio F / Zr in the film so that the molar ratio F / Zr of F atoms to Zr atoms in the film is 0.6 or more.
  • an electrolytic processing liquid for example, zirconium ammonium fluoride, aluminum fluoride, titanium fluoride, sodium fluoride, ammonium fluoride, hydrofluoric acid , Calcium fluoride, hexafluorosilicic acid, sodium hexafluorosilicate, and the like can be used. Among them, a drug having high solubility in water is preferable.
  • an electrolyte such as nitrate ion or ammonium ion is added to the electrolytic treatment liquid within a range not impeding the formation of the Zr compound film for the purpose of improving the conductivity in the treatment liquid and adjusting the pH of the treatment liquid. Also good.
  • one or more additives among organic acids such as citric acid, lactic acid, tartaric acid and glycolic acid, and polymer compounds such as polyacrylic acid, polyitaconic acid and phenol resin are added to the electrolytic treatment solution. It may be.
  • the formed Zr compound film can contain an additive such as an organic acid or a phenol resin.
  • the electrolytic treatment solution may contain phosphoric acid and phosphate.
  • the current density when the cathodic electrolysis treatment is performed on the substrate is not particularly limited, but is preferably 1 to 30 A / dm 2 .
  • the total energization time for the base material (cycle of energization and deenergization) Is preferably 0.3 to 30 seconds.
  • the counter electrode installed on the base material may be anything as long as it does not dissolve in the electrolytic processing solution during the cathode electrolytic treatment.
  • a titanium plate coated with iridium oxide is preferred because it has a low overvoltage and is difficult to dissolve in the electrolytic treatment solution.
  • the surface adjustment step the surface-treated steel sheet in which the compound coating containing fluorine and containing zirconium as a main component is formed in the coating forming step, an alkaline aqueous solution is used for the coating on the surface on the inner surface side of the can, and the outer surface of the can
  • the surface of the surface to be adjusted is adjusted with warm water.
  • F existing excessively in the compound coating is reduced using an alkaline aqueous solution.
  • the surface of the compound coating on the inner surface of the can is adjusted using an alkaline aqueous solution, and the surface of the compound coating on the outer surface of the can is adjusted with the inner surface of the can.
  • the surface adjustment treatment is performed by bringing warm water into contact with the outer surface.
  • the surface adjustment treatment of the surface that becomes the inner surface of the can of the surface-treated steel sheet of the present invention uses an alkaline aqueous solution and is brought into contact with the surface that becomes the inner surface of the can, and the F amount in the compound coating is 25 mg / m 2 or less, particularly 0.5 to Control within the range of 10 mg / m 2 .
  • the treatment method include spray treatment, immersion treatment, cathodic electrolysis treatment, etc., but in the present invention, it is preferable to carry out the treatment by spray treatment in that the surface adjustment treatment of the inner and outer surfaces can be performed simultaneously. is there.
  • the alkaline aqueous solution desirably contains at least one of sodium, ammonium, and potassium, and sodium is particularly preferable. These ions easily bind to fluorine as an anion, and can efficiently remove fluorine.
  • the total amount of sodium ion, potassium ion, and ammonium ion contained in the alkaline aqueous solution is 0.001 mol / L or more, preferably 0.01 mol / L or more, and more preferably 0.02 mol / L or more. .
  • the alkaline compound used for the preparation of the alkaline aqueous solution is not limited as long as it dissolves in water, but sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium phosphate, sodium hydrogen phosphate, sodium borate, potassium hydroxide, carbonate Potassium, ammonia, ammonium zirconium carbonate and the like can be mentioned, and sodium hydroxide and potassium hydroxide can be particularly preferably used.
  • sodium hydroxide and potassium hydroxide have a low concentration and a high pH, and therefore can be treated at a low temperature for a short time and are excellent in productivity.
  • Two or more alkaline compounds may be used in combination.
  • various surfactants and chelating agents can be added to the aqueous solution for surface adjustment as necessary.
  • the pH of the alkaline aqueous solution is 9 or more, particularly preferably in the range of 11-14. If the pH is lower than the above range, fluorine may not be sufficiently removed unless the treatment temperature is increased or the treatment time is lengthened, resulting in poor productivity.
  • the liquid temperature of the alkaline aqueous solution is preferably in the range of 30 to 70 ° C., particularly 40 to 60 ° C. If the temperature is higher than the above range, fluorine elution from the compound film becomes excessive and the corrosion resistance may be lowered. On the other hand, if the temperature is lower than the above range, fluorine cannot be sufficiently reduced, and the elution resistance may be lowered.
  • the treatment time varies depending on the pH, temperature, treatment method, etc. of the alkaline aqueous solution and cannot be generally specified, but is preferably in the range of 0.5 to 5 seconds.
  • the surface adjustment treatment of the surface that becomes the outer surface of the can of the surface-treated steel sheet of the present invention is performed by bringing hot water into contact with the surface that becomes the outer surface of the can, and the F amount in the compound coating is controlled to be 12 mg / m 2 or more. .
  • the hot water is squeezed with a roll and then dried with hot air or the like.
  • the hot water used for the surface conditioning treatment is preferably in the range of 30 to 70 ° C, particularly 40 to 60 ° C. If the temperature is lower than the above range, there is a possibility that the back of the alkaline aqueous solution used for the surface adjustment of the surface that becomes the inner surface of the can cannot be sufficiently washed away.
  • the treatment time for hot water is preferably in the range of 0.5 to 5 seconds. If the treatment time is longer than the above range, fluorine may be eluted. On the other hand, if the treatment time is shorter than the above range, it cannot be washed out sufficiently. As long as the hot water is in contact with the outer surface of the surface-treated steel sheet and is used to adjust the surface of the inner surface of the can, the back surface of the alkaline aqueous solution can be washed away, spraying, showering, pouring, dipping, etc.
  • the surface-treated steel sheet can be performed by various methods, but it can be performed simultaneously with the surface adjustment process of the surface to be the inner surface, and from the point that the hot water can be uniformly contacted with the surface, It is preferable to carry out by spray treatment.
  • rinsing is performed for the purpose of cleaning the inner and outer surfaces after passing through the film forming step and the surface adjusting step.
  • This rinsing is desirably performed under conditions that do not change the amount of Zr and the amount of F in the coating of the surface-treated steel sheet that has undergone the surface adjustment step.
  • water at normal temperature may be used.
  • at least the final rinsing should be performed with hot water of 40 to 60 ° C. in order to facilitate drying of the surface-treated steel sheet after rinsing.
  • the rinsing is particularly preferably performed by dipping treatment because the inner and outer surfaces of the surface-treated steel sheet can be washed out simultaneously and the rinsing efficiency is good.
  • the immersion time depends on the temperature of the hot water used, it is preferably in the range of 0.5 to 5 seconds. After rinsing, squeeze the water with a roll and dry with warm air.
  • each of the film forming process, the surface adjusting process, and the rinsing process can be performed separately on each of the surface serving as the inner surface and the outer surface of the surface-treated steel sheet.
  • Examples of the steel sheet used for the surface-treated steel sheet of the present invention include a hot-rolled steel sheet based on an aluminum killed steel continuous cast material, a cold-rolled steel sheet obtained by cold rolling these hot-rolled steel sheets, and these hot-rolled steel sheets and cold-rolled steel sheets.
  • a steel plate provided with a metal plating layer containing Zn, Sn, Ni, Cu, Al, or the like on the steel plate can be used.
  • a steel plate in which an alloy layer such as a Sn—Ni—Fe alloy, a Sn—Fe alloy, or a Ni—Fe alloy is present on a part of the surface or the entire surface can be used. It is also possible to use a steel plate having a metal plating layer.
  • a steel plate that does not have a metal plating layer or has an iron exposed portion dispersed on the surface even if it has a plating layer is the basis. Most preferably used as a material.
  • the thickness of the substrate is not particularly limited and may be appropriately selected depending on the intended use, but is preferably 0.07 to 0.4 mm.
  • the surface-treated steel sheet obtained by the present invention is excellent in the adhesion of the resin coating when the resin coating is formed on the compound coating, and becomes the outer surface of the can even when the retort treatment is performed.
  • the peeling of the resin coating at the dent portion of the surface is effectively prevented, and the progress of corrosion is effectively prevented even when the resin coating is cracked and the metal surface is exposed in a wet environment.
  • the elution of the container constituent metal material component is suppressed on the surface which becomes the inner surface of the can.
  • the resin constituting such a resin coating is not particularly limited, and may be appropriately selected depending on the use of the surface-treated steel sheet of the present invention (for example, a can container filled with a specific content).
  • thermoplastic resins examples include polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic ester copolymers, olefin resin films such as ionomers, polyethylene terephthalate, poly Polyethylene film such as butylene terephthalate, or non-stretched or biaxially stretched thermoplastic film such as nylon 6, nylon 6,6, nylon 11, nylon 12 or other polyamide film, polyvinyl chloride film, polyvinylidene chloride film, etc. It may be. Among these, non-oriented polyethylene terephthalate obtained by copolymerizing isophthalic acid is particularly preferable. Moreover, the resin for constituting such an organic resin layer may be used alone, or may be used by blending different resins.
  • thermoplastic resin When a thermoplastic resin is coated as the resin coating, it may be a single resin layer or a multilayer resin layer by coextrusion or the like.
  • a polyester resin having a composition with excellent adhesion is selected for the base layer, that is, the surface-treated steel sheet, and the surface layer is excellent in content resistance, that is, extraction resistance and non-adsorption of flavor components. This is advantageous because polyester resins having different compositions can be selected.
  • Examples of multilayer polyester resin layers are shown as surface layer / lower layer, polyethylene terephthalate / polyethylene terephthalate / isophthalate, polyethylene terephthalate / polyethylene / cyclohexylene dimethylene / terephthalate, polyethylene terephthalate / isolated with low isophthalate content.
  • Polyethylene terephthalate / isophthalate having a high phthalate / isophthalate content polyethylene terephthalate / isophthalate / [blend of polyethylene terephthalate / isophthalate and polybutylene terephthalate / adipate] and the like are of course not limited thereto.
  • the thickness ratio of the surface layer to the lower layer is preferably in the range of 5:95 to 95: 5.
  • known compounding agents for resins for example, antiblocking agents such as amorphous silica, inorganic fillers, various antistatic agents, lubricants, antioxidants, UV absorbers, etc. are blended according to known formulations. can do.
  • inorganic pigments such as titanium dioxide, silicon oxide, zinc oxide and the like in which such a phenomenon is remarkable It is possible to suitably use a biaxially stretched film containing.
  • the thickness of the resin coating applied to the surface-treated steel sheet obtained according to the present invention is desirably 3 to 50 ⁇ m, particularly 5 to 40 ⁇ m in general for the thermoplastic resin coating.
  • the thickness is preferably in the range of 1 to 50 ⁇ m, particularly 3 to 30 ⁇ m. When the thickness is less than the above range, the corrosion resistance becomes insufficient, and when the thickness exceeds the above range, a problem is likely to occur in terms of workability.
  • Formation of the resin coating on the surface-treated steel sheet obtained by the present invention can be performed by any means.
  • thermoplastic resin coating extrusion coating, cast film thermal bonding, biaxially stretched film thermal bonding
  • the extrusion coating method it can be manufactured by extrusion coating a polyester resin in a molten state on a surface-treated metal material and thermally bonding it. That is, after the polyester resin is melt-kneaded with an extruder, it is extruded from a T-die into a thin film, and the extruded molten resin film is passed together with a surface-treated metal material between a pair of laminating rolls to be pressed and integrated under cooling. Then quench rapidly.
  • an extruder for surface layer resin and an extruder for lower layer resin are used, and the resin flow from each extruder is merged in a multiple multilayer die, and thereafter a single layer Extrusion coating may be performed as in the case of resin. Further, by passing a surface-treated metal material vertically between a pair of laminate rolls and supplying a molten resin web on both sides thereof, a polyester resin coating layer can be formed on both sides of the substrate.
  • an organic coated surface-treated steel sheet having an organic coating made of a polyester resin by the extrusion coating method is specifically performed as follows. If necessary, the surface-treated steel sheet is preheated by a heating device and supplied to a nip position between a pair of laminate rolls. On the other hand, the polyester resin is extruded in the form of a thin film through a die head of an extruder, supplied between the laminate roll and the surface-treated steel sheet, and pressed onto the surface-treated steel sheet by the laminate roll.
  • the laminating roll is maintained at a constant temperature, and a thin film made of a thermoplastic resin such as polyester is pressure-bonded to the surface-treated steel sheet to thermally bond them together and cooled from both sides to obtain an organic-coated surface-treated steel sheet.
  • a thin film made of a thermoplastic resin such as polyester is pressure-bonded to the surface-treated steel sheet to thermally bond them together and cooled from both sides to obtain an organic-coated surface-treated steel sheet.
  • the formed organic-coated surface-treated steel sheet is further cooled in order to guide it to a cooling water tank or the like to prevent thermal crystallization.
  • the polyester resin layer has a low crystallinity level and a difference from the amorphous density of 0.05 g / cm 3 or less due to selection of the resin composition and rapid cooling with a roll or a cooling bath. Therefore, sufficient workability is ensured for subsequent can manufacturing, lid processing, and the like.
  • the rapid cooling operation is not limited to the above example, and the laminate sheet can be rapidly cooled by spraying cooling water on the formed organic-coated surface-treated steel sheet.
  • the thermal adhesion of the polyester resin to the surface-treated steel sheet is performed by the amount of heat that the molten resin layer has and the amount of heat that the surface-treated steel sheet has.
  • the heating temperature (T1) of the surface-treated steel plate is generally 90 ° C. to 290 ° C., particularly 100 ° C. to 280 ° C., while the laminating roll temperature is suitably 10 ° C. to 150 ° C.
  • the resin coating of the surface-treated steel sheet obtained by the production method of the present invention can also be produced by thermally bonding a polyester resin film previously formed by the T-die method or the inflation film-forming method to the surface-treated steel sheet. Can do.
  • an unstretched film formed by a cast molding method in which the extruded film is rapidly cooled can be used, and this film is biaxially stretched sequentially or simultaneously at the stretching temperature, and the stretched film is heat-set. It is also possible to use a biaxially stretched film produced by the above method.
  • the metal container (can) formed using the surface-treated steel sheet of the present invention may be formed from an organic-coated surface-treated steel sheet in which a resin coating is formed on the surface of the surface-treated steel sheet.
  • it can shape
  • it can be a three-piece can (welded can) having a side seam or a seamless can (two-piece can), but as described above, a surface treatment with a large amount of Zr from the viewpoint of adhesion to an organic resin.
  • a seamless can is most preferable.
  • Seamless cans are drawn, drawn and squeezed, bent and stretched by drawing and redrawing (stretching), and drawn and drawn by drawing and redrawing so that the organic coating is on the inner surface and / or outer surface of the can.
  • -It is manufactured by attaching to a conventionally known means such as ironing or drawing / ironing.
  • a conventionally known means such as ironing or drawing / ironing.
  • organic coating is applied by extrusion coating.
  • thermoplastic resin coating by, a thermal laminate of an unstretched film by a cast molding method, or a thermal laminate of a biaxially stretched film.
  • Such an organic-coated surface-treated steel sheet is excellent in work adhesion, and therefore can provide a seamless can having excellent corrosion resistance and excellent coating adhesion even when subjected to severe processing. .
  • the can lid formed using the surface-treated steel sheet of the present invention is preferably formed from an organic-coated surface-treated steel sheet as in the metal container described above, and can be formed by any conventionally known lid-making method. .
  • the present invention can be applied to a flat lid, a stay-on-tab type easy open can lid, and a full open type easy open can lid.
  • the lid can be formed using any of the various embodiments of the organic-coated surface-treated steel sheet of the present invention without limitation.
  • the present invention will be described more specifically with reference to examples.
  • the present invention is not limited to these examples.
  • the to-be-processed raw material, degreasing agent, and organic coating which were used in the Example were arbitrarily selected from the commercially available materials, and do not limit the manufacturing method of the steel plate for surface treatment of this invention.
  • Example 1> ⁇ Film formation process> A low carbon steel plate having a thickness of 0.225 mm and a width of 200 mm was used as an original plate, and then alkaline electrolytic degreasing and sulfuric acid immersion pickling were performed as pretreatment. Thereafter, the steel sheet was immersed in an electrolytic treatment solution and subjected to cathodic electrolysis, whereby a compound film containing F on the surface of the steel sheet and mainly composed of Zr was formed on both surfaces. Next, the electrolytic treatment solution was drawn and removed from the steel sheet with a roll.
  • Composition of electrolytic treatment solution aqueous solution of Zr concentration 6000 ppm and F concentration 7000 ppm obtained by dissolving ammonium zirconium fluoride as Zr compound pH of electrolytic treatment solution: 3.0 (pH adjustment with nitric acid and / or ammonia)
  • Electrolytic solution temperature 40 ° C
  • Current density during cathodic electrolysis (indicated as CD in Table 1): 10
  • Energization method during cathodic electrolysis A cycle of 0.15 sec energization and 0.1 sec energization stop was performed 8 times (hereinafter referred to as the number of cycles) on both the inner surface of the can and the outer surface of the can.
  • ⁇ Measurement of surface treatment coating amount> The film formation step, surface conditioning step, and rinsed plate used in the test were washed with water and dried with warm air, and the amount of the coating was measured by the following method. The coating amount was measured separately for the inner surface of the can and the outer surface of the can.
  • the F weight present in the ultrapure water was determined, and this was converted into the F weight present per unit area of the surface-treated plate, thereby defining the F amount in the coating.
  • Table 1 shows the F amount after the film formation step and after the surface adjustment step.
  • the description of the F amount after rinsing was omitted in Table 1.
  • the obtained surface-treated steel sheet is a 19 ⁇ m-thick stretched film having a polyethylene terephthalate / isophthalate copolymer composition containing 11 mol% of an isophthalic acid component on one side of a metal plate on the inner surface side of the can.
  • the side On the other side which is the side, it has a polyethylene terephthalate / isophthalate copolymer composition containing 12 mol% of isophthalic acid component, is colored white with 30 wt% of titanium oxide, and has a thickness of 13 ⁇ m
  • the film was thermo-compressed via a laminating roll and immediately cooled with water to obtain a resin-coated surface-treated steel sheet while paying attention so that an appropriate orientation state remained in the film.
  • the produced resin-coated surface-treated steel sheet was used for the production of metal cans, except that a part was used for evaluation of cross-cut corrosion resistance.
  • FIG. 1 represents a can body obtained by processing the resin-coated surface-treated steel sheet, 2 represents a printing ink layer, and 3 represents a finished varnish layer.
  • the obtained seamless can was filled with 183 g of distilled water at a vacuum degree of 30 KPa in the can, subjected to a retort treatment at 125 ° C. for 30 minutes, and stored at room temperature for 1 day with the lid on top.
  • the can is left sideways so that the rolling direction of the can bottom steel plate is horizontal, and a 1 kg weight having a spherical surface with a diameter of 52.0 mm is placed from the height of 40 mm near the lower body wall radius portion of the side wall of the can body.
  • the can body was impacted and deformed by dropping so that the spherical surface hit the can.
  • the peeling observation site was a portion where only the finishing varnish was coated on the outer white film shown in FIG. 1 (portion represented by P in FIG. 1 and not coated with indigo ink).
  • the evaluation number was 10 cans.
  • X is the case where even one can was observed by naked eye observation, no peeling was observed by naked eye observation, but the number where peeling was observed by an optical microscope was 4 or less, and the number where peeling was recognized by the optical microscope was 2
  • the following cans were marked with ⁇ . ⁇ and ⁇ were within the allowable range.
  • the obtained seamless can was filled with 183 g of ultrapure water, subjected to a retort treatment at 130 ° C. for 30 minutes, and then the fluorine ions extracted into the ultrapure water were analyzed by ion chromatography (DX-320 manufactured by DIONEX). It was measured. F detection amount exceeding 0.25 ppm x, F detection amount exceeding 0.20 ppm and 0.25 ppm or less ⁇ , F detection amount exceeding 0.10 ppm and 0.20 ppm or less ⁇ , those below the detection limit (0.10 ppm) are marked with ⁇ . ⁇ , ⁇ , and ⁇ were within the allowable range.
  • the maximum width of discoloration or film peeling was 2 mm or more per side, x was 1 mm or more and less than 2 mm, and ⁇ was less than 1 mm. ⁇ ⁇ ⁇ was an acceptable range.
  • Examples 2 to 14> A surface-treated steel sheet was produced in the same manner as in Example 1 except that the conditions of the film forming process and the surface adjustment process were changed as shown in Table 1, and evaluated in the same manner as in Example 1.
  • Table 1 shows the respective treatment methods, coating amounts, and evaluation results.
  • Example 1 A surface-treated steel sheet was prepared in the same manner as in Example 1 except that the number of cycles was 11 in the film forming process on the inner surface side of the can and that a 40 ° C. hot water spray was performed instead of the alkaline aqueous solution spray in the surface adjustment process. It produced and evaluated similarly to Example 1.
  • the F amount on the can inner surface side was 28 mg / m 2 , and the can inner surface F elution evaluation was x.
  • a surface-treated steel sheet was prepared in the same manner as in Example 1 except that it was changed to hot water spray in the surface adjustment step on the outer surface side of the can and sprayed with a sodium hydroxide aqueous solution having a pH of 11.0, and evaluated in the same manner as in Example 1. .
  • the F amount on the outer surface side of the can was 10 mg / m 2 , and the evaluation of the outer surface dent property was x.
  • Example 3 A surface-treated steel sheet was prepared in the same manner as in Example 1 except that the number of electrolytic cycles was changed to 5 in the coating formation process on the outer surface side of the can, and evaluated in the same manner as in Example 1.
  • the amount of Zr on the outer surface side of the can was 69 mg / m 2 , and the can outer surface dent evaluation was x.

Abstract

本発明は、Fを含有しZrを主体とする化合物被膜が形成されて成る缶用表面処理鋼板に関するものであり、缶外面側となる面における前記被膜中のZr量が80~200mg/mであり且つF量が12mg/m以上であることにより、缶外面側のデント部に発生する樹脂被覆の剥離が有効に防止することが可能になる。

Description

表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板
 本発明は、表面処理鋼板及びその製造方法、並びに樹脂被覆表面処理鋼板に関するものであり、より詳細には、密着性、耐食性、耐溶出性及びレトルト殺菌後の耐デント性に優れた缶を提供可能な表面処理鋼板及びその製造方法に関する。
 家電製品や建材、車両、航空機、容器等の分野において、鋼板と有機被覆との密着性を向上させる処理として、クロメート処理が従来より知られており、その優れた耐食性と密着性から、幅広く用いられてきた。
 クロメート処理には、被膜中に6価クロムを含有するタイプと含有しないタイプがあるが、近年、環境および労働衛生の観点から、最終製品に6価クロムが残存しない場合であっても、出発原料自体への6価クロム含有を禁止しようとする動きが強まっている。
 缶や缶蓋等の金属容器に用いられる材料においては、当然、最終製品には6価クロムが残存しないタイプのクロメート処理が利用されており、通常、更にその上に塗膜やフィルム等の樹脂被覆が形成されている。例えば、錫めっき鋼板を重クロム酸ソーダの水溶液中で陰極電解したり、鋼板をフッ化物含有無水クロム酸水溶液中で陰極電解処理したり、アルミニウム合金をリン酸クロメート処理し、その上に樹脂被覆が形成されたものが用いられている。
 缶等の金属容器は、内容物の殺菌を目的とした熱水レトルト処理が多く行われている。これにより、材料が過酷な環境に晒されるため、樹脂被覆と金属表面の密着が低下しやすいという問題が存在し、問題の解決に向けて過去に様々な検討が行われてきた。現在、缶用材料として用いられているぶりきや電解クロム酸処理鋼板などは、熱水密着性の向上を目的として、表面処理の最終工程において、温水洗浄や熱水洗浄を行うことで、処理被覆中の硫酸イオンやフッ素イオンなどのアニオンを制御し樹脂被覆との密着性に優れた金属表面とする技術が用いられている(非特許文献1、特許文献2)。
 近年、鋼板材において検討されているノンクロム系表面処理として、Zr(ジルコニウム)又はTi(チタン)を含有する処理液を用いた浸漬処理が提案されている(特許文献1)。しかしながら、Zr又はTiを含有する処理液への浸漬処理による表面処理鋼板は、被覆の耐食性に劣ると共に、従来より缶用材料として利用されている電解クロム酸処理鋼板(TFS)に比して、被膜析出速度が遅いために、著しく生産性が劣るという問題を有していた。このため、浸漬処理に代わる高速処理プロセスとして、陰極電解を適用したZr及び/又はTi処理及び/又はAl処理が提案されており、これらはいずれも基材の表面に高速で金属酸素化合物を形成させることができることが知られている(特許文献3,4,5)。
国際公開2002/103080 特開平7-11483号公報 特開2004-190121号公報 特開2005-97712号公報 特開2006-348360号公報 国際公開2012/036200
「我が国における缶用表面処理鋼板の技術史」社団法人 日本鉄鋼協会発行、平成10年10月31日発行、p87 最終行~p90
 金属基材上に金属めっき層を設けずに、Zr,Al,Tiなどの酸素化合物を主成分とした金属酸素化合物被膜を金属基材表面に直接形成することにより、基材の耐食性を向上させる場合には、金属めっき層を設けた場合と比較して、被膜厚(被覆量)を大きくする必要がある。特に加工度の大きいシームレス缶用途においては、加工により下地の鉄が露出したり、樹脂被覆との密着性が低下しやすいため、被覆量を大きくすることによって耐食性の確保と同時に樹脂被覆との密着性を改善することが求められていた。
 また、上述のような密着性に関する課題以外に、本発明が解決しようとするもう一つの課題として、金属容器を構成する成分の内容物への溶出を防止する耐溶出性に関する課題がある。金属容器にとって、内容品の品質を維持することは、非常に重要であり、金属容器からの内容品への成分溶出には、特に注意を払う必要がある。一般に、容器構成金属材料成分の溶出の代表的例としては、腐食による鉄の溶出や、表面処理被膜中の硫酸イオンやフッ素イオン等のアニオンの溶出があり、内容物のpHや殺菌条件の他、表面処理被膜の被覆量や表面形態、或いはフィルムや塗膜等の樹脂被覆の密着性等、種々の要因に留意する必要がある。
 特許文献2には、金属めっき層上の金属酸素化合物被膜の表面を熱水で洗浄して密着性を改善する例が示してある。しかしながら、前述したように大きな被覆量が必要な場合に、表面処理特性、耐溶出性を達成するためには、従来から使用されている電解クロム酸処理鋼板に利用されている熱水洗浄では不十分である。また、金属酸素化合物被膜の形成に電解クロム酸処理ラインを転用し、従来より更に長時間の洗浄を行った場合には、表面処理ラインの操業速度が制約されたり、洗浄するための処理タンク数を増加させる他、熱水を大量に使用するなど、生産性負荷やエネルギー使用負荷の増大など、多くの課題も存在することが分かった。
 本出願人等は、このような問題を解決するために、Fを含有しZrを主体とする化合物被膜を形成した後、イオン含有水溶液を用いて該被膜中のF量を0.5~10mg/mに制御して成る表面処理鋼板及びその製造方法を提案した(特願2013-197714号)。
 上記表面処理鋼板及びその製造方法は、樹脂被覆の密着性、耐食性及び耐溶出性に優れた缶等を提供できるものであるが、かかる樹脂被覆表面処理鋼板を用いて成形されたシームレス缶は、レトルト殺菌処理に賦された場合の耐デント性に劣ることが分かった。すなわち、実際の缶詰製品に要求される実用的な耐衝撃性として、耐デント性と呼ばれるものがある。これは、缶詰製品が落下、或いは缶詰製品同士が相互に衝突して、缶詰製品に打痕と呼ばれる凹み(デント)が生じた場合にもなお、被覆の密着性やカバレージが完全に保たれることが要求されるという特性であり、上記シームレス缶においては、内容物が充填されレトルト殺菌処理に賦されると、デント部の缶外面側に樹脂被覆の剥離が発生することがあり、特に二酸化チタンのような無機顔料を含有する二軸延伸フィルムが樹脂被覆として使用された場合に顕著であることが分かった。
 従って本発明の目的は、上述したような缶外面側のデント部に発生する樹脂被覆の剥離が有効に防止可能な表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板を提供することである。
 本発明によれば、Fを含有しZrを主体とする化合物被膜が形成されて成る缶用表面処理鋼板において、缶外面側となる面における前記被膜中のZr量が80~200mg/mであり且つF量が12mg/m以上であることを特徴とする表面処理鋼板が提供される。
 本発明の表面処理鋼板においては、
1.缶内面側となる面における前記被膜中のZr量が80~200mg/mであり且つF量が25mg/m以下であること、
2.前記缶外面側となる面における前記被膜中のF量が12~40mg/mであること、
3.前記缶内面側となる面における前記被膜中のF量が0.5~10mg/mであること、
が好適である。
 本発明によればまた、上記表面処理鋼板の缶外面となる側の被膜上に、無機顔料を含む二軸延伸フィルムがラミネートされて成る樹脂被覆表面処理鋼板が提供される。
 本発明によれば更に、鋼板に、Fを含有しZrを主体とする化合物被膜を形成して成る缶用表面処理鋼板の製造方法であって、Zrイオン及びFイオンを含む水溶液中で陰極電解することにより、前記被膜中のZr量を80~200mg/mとする被膜形成工程と、缶内面側となる面の被膜にはアルカリ性水溶液を接触させると共に、缶外面となる面の被膜には温水を接触させる表面調整工程、とを有することを特徴とする表面処理鋼板の製造方法が提供される。
 本発明の表面処理鋼板の製造方法においては、
1.アルカリ性水溶液が、ナトリウム、アンモニウム、カリウムの少なくとも1種以上を含有し、pHが9以上であること、
2.温水が30~70℃の温度であること、
が好適である。
 本発明の表面処理鋼板においては、Fを含有しZrを主体とする化合物被膜の缶外面側となる面のZr量及びF量が上記範囲に制御されていることにより、レトルト殺菌後においても缶外面側のデント部における樹脂被覆の剥離が有効に防止された、レトルト殺菌後の耐デント性に優れたシームレス缶を提供することができる。
 また表面処理鋼板の缶内面側となる面のF量及びZr量を前述した範囲とすることにより、缶内面側における樹脂被覆との密着性、耐食性及び耐溶出性にも優れたシームレス缶を提供することができる。
 本発明の樹脂被覆表面処理鋼板においては、特にレトルト殺菌後の缶外面側のデント部の樹脂被覆の剥離が顕著である、無機顔料を含む二軸延伸フィルムを樹脂被覆として用いた場合でも、有効にデント部の樹脂被覆の剥離が防止されている。
 更に本発明の表面処理鋼板の製造方法においては、缶の内面となる面及び外面となる面のZr量及びF量が前記範囲に制御された表面処理鋼板を生産性良く製造することができる。
 本発明の作用効果は後述する実施例の結果からも明らかである。
 すなわち、缶外面側のF量が上記範囲よりも小さい場合には、Zr量が上記範囲にある場合でもレトルト処理後の耐デント性に劣っており(比較例2)、一方缶外面側のZr量が上記範囲よりも少ない場合には、F量が上記範囲にある場合でもレトルト殺菌後の耐デント性に劣っている(比較例3)。これに対して、Zr量及びF量が本発明範囲にある場合には、満足するレトルト殺菌後の缶外面側の耐デント性が得られている(実施例1~14)。
実施例で成形したシームレス缶の一部断面図である。
(表面処理鋼板)
 本発明の表面処理鋼板は、Fを含有しZrを主体とする化合物被膜が形成されて成る缶用表面処理鋼板であり、缶外面側となる面におけるこの化合物被膜中のZr量が80~200mg/mであり且つF量が12mg/m以上であることが、前述した耐デント性を改良する上での重要な特徴である。
 本発明の表面処理鋼板に形成される、フッ素を含有しジルコニウムを主体とする化合物被膜は、ZrOx(OH)y―zFzのような非結晶性の構造をとると考えられる。この被膜は、乾燥や焼成により、脱水すると共にFが抜けて、結晶成分を多く持つ酸化被膜に変化し、更に加熱が進むと最終的にはZrOに近い被膜となると考えられる。しかし、通常の缶材が受ける熱履歴を越える過度の加熱は、構造変化に起因する被膜のクラックを誘発すると共に、よりセラミックスライクな被膜となるため、加工性の低下はもちろん、樹脂被覆との密着性低下を招くため好ましくない。したがって、表面処理層としては、FやOHを含有したZrOx(OH)y―zFzのような構造を保持していることが好ましい。
 本発明者等は、ZrやF等の被膜の成分量と、クロスカット耐食性、被覆樹脂との密着性、特に缶外面となる面におけるレトルト後の耐デント性の関係について研究した結果、Zr量は耐食性や密着性の観点から多いことが好適であるが、F量については缶外面となる面と缶内面となる面とでは好適な範囲が異なることを見出した。
 すなわち、ジルコニウムに関しては、Zr量が少ないと表面処理被膜の欠陥部が多く存在するため、基材である鉄の溶出を起こしやすい被膜となる。鉄溶出を起こすと、アノード反応では鉄の溶出が起こるが、その対反応であるカソード反応により、被覆樹脂と金属被膜との界面でアルカリが生成する。アルカリの生成は、表面処理被膜中のフッ素溶出を加速すると共に、被覆樹脂と表面処理層との界面剥離の原因となる。
 従って、缶内面となる面及び外面となる面のいずれにおいてもジルコニウム量が上記範囲を下回ると、樹脂被覆との密着性が劣るようになると共に、缶外面側となる面においてはレトルト殺菌後の耐デント性に劣るようになり、缶内面側となる面においてはクロスカット耐食性が上記範囲にある場合に比して劣るようになる。
 その一方、ジルコニウム量が上記範囲よりも多くても更なる効果の向上は期待できず、経済性に劣るようになると共に、過剰なジルコニウムが陰極電解処理に用いられる通電ロール上に堆積して凹凸が形成されることにより局所的に高電圧放電が発生し、放電跡(アークスポット)等の外観不良を発生するおそれもある。
 また、フッ素に関しては、被膜中のF量が非常に大きい表面処理鋼板を金属缶用途に利用した場合、缶の内面側となる面においては、缶のレトルト殺菌時や高温保管時に、表面処理層中に余分に存在するフッ素が内容品中に溶出し、内容品の風味を損なう可能性がある。その一方、缶外面側となる面においては、F量があまり少ないと、レトルト殺菌後のデント部における樹脂被覆の剥離が生じ、耐デント性が低下する。
 すなわちレトルト殺菌時における樹脂被覆の密着性の低下は、表面処理被膜成分の溶出とカソード反応によるアルカリ生成に起因し、前述したとおり、アルカリの生成は、表面処理被膜中のフッ素の溶出が加速して、表面処理層の構造変化を誘発し、被膜の凝集力低下を招くことが原因であり、特にこのような被膜の凝集力低下はレトルト殺菌後のデント部において顕著に生じることから、表面処理被膜中には一定量のFが存在することが必要になる。
 このような観点から、本発明の表面処理鋼板においては、缶内面となる面と缶外面となる面で異なる表面調整処理を行うことにより、缶内面となる面においては、耐食性や密着性に影響を与えることなく、F量を低減させフッ素の溶出を抑制することができると共に、缶外面となる面においては、上記範囲のF量を含有させることにより、レトルト殺菌後のデント部の樹脂被覆の剥離を抑制することが可能になる。
 すなわち、表面処理鋼板の缶外面となる面においては、F量は12mg/m以上であることが必要である。その一方、F量が極端に多くても更なる効果は望めず、フッ素が溶出し、経済性に劣ることから、表面処理被膜が上記構造を維持可能なZr量に応じた量の範囲、好適にはF量は12~40mg/mの範囲にあることが好適である。
 また表面処理鋼板の缶内面となる面においては、前述したとおり、耐溶出性の点からF量が25mg/m以下であることが好適である。その一方、F量が極端に少ないと、表面処理被膜の水和による構造変化が進行し、表面処理被膜の凝集力低下による樹脂被膜との密着性や耐食性が低下することから、F量は0.5mg/m以上であることが好適である。
(表面処理鋼板の製造方法)
[被膜形成工程]
 本発明の表面処理鋼板の製造方法では、まず被膜形成工程において、Zrイオン、Fイオンを含む水溶液の電解処理液中で、鋼板を陰極電解することにより、鋼板の両面に、フッ素を含有しジルコニウムを主体とする化合物被膜を、Zr量が80~200mg/mの範囲、及びF量が12mg/m以上、特に12~40mg/mの範囲になるように形成する。
 化合物被膜を形成後の鋼板は、電解処理液をロールで絞った後、水洗し、更に水洗水をロールで絞った後、次の表面調整工程に送られる。またロールで電解処理液を絞った後の水洗は省略することもできる。
 被膜形成工程で用いる電解処理液中のZr濃度は、1,000~10,000ppmが好ましく、F濃度は600~13,000ppmが好ましく、電解処理液pHは2~5が好ましく更には2.5~4であることがより好ましく、電解処理液温度は30~60℃であることが好ましい。
 被膜形成工程で用いる電解処理液中には、後述のように各種の化合物を添加することができるが、Zrイオン、Fイオンの他、pH調整などに用いる硝酸イオン、アンモニウムイオン、基材からの溶出成分であるFeイオンが、基本的に含まれる。
 電解処理液を構成するZrイオンを形成するための薬剤としては、特に限定されないが、たとえば、KZrF、(NH)ZrF、(NHZrO(CO、HZrF、ZrO(NO、ZrO(CHCOO)などを用いることができる。本発明においては、上述した薬剤を、単独で用いてもよいし、2つ以上を組み合わせ用いてもよい。
 なお、陰極電解処理によりZr化合物被膜を形成する場合には、通常、電解処理液として、上述したZrイオンに加えて、Fイオンを含有した処理液を用いることが望ましい。電解処理液にFイオンを含有させることにより、Fイオンが、電解処理液中におけるZrイオンの溶解性を高めるための錯化剤として作用し、これにより、基材上に、均一な膜厚のZr化合物を析出させることができ、そのため、被膜と有機樹脂層との密着性をより向上させることができる。
 電解処理液中のFイオンが少ないと、Zrが局部的な析出を起こし、被膜中のZrの存在状態が厚い部分と薄い部分が混在し、膜厚均一性に劣る被膜となるため、結果として加工後の密着性や耐食性に劣る被膜となる。したがって、被膜形成工程において、被膜中のZr原子に対するF原子のモル比F/Zrは0.6以上となるように、被膜中のモル比F/Zrを管理する必要がある。
 電解処理液中に含有させるFイオンを形成するための薬剤としては、特に限定されないが、たとえば、フッ化ジルコニウムアンモニウム、フッ化アルミニウム、フッ化チタン、フッ化ナトリウム、フッ化アンモニウム、フッ化水素酸、フッ化カルシウム、ヘキサフルオロ珪酸、ヘキサフルオロ珪酸ナトリウムなどを用いることができ、中でも水への溶解度が高い薬剤が好ましい。
 また、電解処理液には、処理液中における導電率の向上や、処理液のpH調整を目的として、Zr化合物被膜の形成を阻害しない範囲で、硝酸イオンやアンモニウムイオンなどの電解質を添加してもよい。
 さらに、電解処理液には、クエン酸、乳酸、酒石酸、グリコール酸などの有機酸や、ポリアクリル酸、ポリイタコン酸、フェノール樹脂などの高分子化合物などのうち、1種以上の添加物が添加されていてもよい。本発明においては、電解処理液に有機酸や、フェノール樹脂などの添加物を添加することにより、形成されるZr化合物被膜に有機酸や、フェノール樹脂などの添加物を含有させることができ、これにより、金属酸素化合物被膜の柔軟性を付与する他、有機樹脂層との密着性をより向上させることができる。さらにまた、電解処理液には、リン酸およびリン酸塩を含んでもよい。
 基材に陰極電解処理を行う場合における電流密度としては、特に限定されないが、好ましくは1~30A/dmである。
 なお、基材に陰極電解処理を行う場合には、通電と通電停止のサイクルを繰り返す断続電解方式を用いることが好ましく、この際においては、基材に対するトータルの通電時間(通電および通電停止のサイクルを複数回繰り返した際の合計の通電時間)は、好ましくは0.3~30秒である。
 また、基材に陰極電解処理を行う際に、基材に対して設置する対極板としては、陰極電解処理を実施している間に電解処理液に溶解しないものであれば何でもよいが、酸素過電圧が小さく電解処理液に溶解し難いという点より、酸化イリジウムで被覆されたチタン板が好ましい。
[表面調整工程]
 表面調整工程においては、上記被膜形成工程で、フッ素を含有し且つジルコニウムを主体とする化合物被膜が形成された表面処理鋼板を、缶内面側となる面の被膜にはアルカリ性水溶液を用い、缶外面となる面の被膜には温水を用いて表面調整を行う。
 前述した通り、缶内面となる面においては、レトルト殺菌処理等による内容品へのフッ素等のアニオン溶出を抑制する観点から、アルカリ性水溶液を用いて化合物被膜中に過剰に存在するFを低減させる。その一方、缶外面となる面においては、内容品への耐溶出性の問題がないこと、また化合物被膜中のF量が低減されることによる、レトルト殺菌後のデント部における樹脂被覆の剥離の発生を抑制する必要があることから、被膜形成工程で形成された化合物被膜を維持することが望ましい。
 このような観点から本発明においては、缶内面となる面の化合物被膜に対しては、アルカリ性水溶液を用いて表面調整を行うと共に、缶外面となる面の化合物被膜に対しては、缶内面となる面の表面調整処理に用いたアルカリ性水溶液が缶外面となる面のエッジ及びエッジ近傍等に接触してF量が部分的に低減することにより、不均一な化合物被膜になることを防止すべく、温水を缶外面となる面に接触させることにより表面調整処理を行う。
<缶内面となる面の表面調整処理>
 本発明の表面処理鋼板の缶内面となる面の表面調整処理は、アルカリ性水溶液を用い、缶内面となる面に接触させ、化合物被膜中のF量を25mg/m以下、特に0.5~10mg/mの範囲に制御する。処理の方法は、スプレー処理、浸漬処理、陰極電解処理等を挙げることができるが、内外面の表面調整処理を同時に行うことができるという点で、本発明においてはスプレー処理により行うことが好適である。
 次いでアルカリ性水溶液をロールで絞った後、水洗し、更に水洗水をロールで絞った後、熱風などで乾燥することにより行う。
 アルカリ性水溶液は、ナトリウム、アンモニウム、カリウムの少なくとも1種以上を含有することが望ましく、特にナトリウムが好適である。これらのイオンはアニオンであるフッ素と結合しやすく、効率的にフッ素を除去することができる。
 アルカリ性水溶液中に含まれるナトリウムイオン、カリウムイオン、アンモニウムイオンの総量は、0.001mol/L以上、好適には0.01mol/L以上、更に好適には0.02mol/L以上であることが望ましい。
 アルカリ性水溶液の調整に用いられるアルカリ性化合物としては、水に溶解する限り限定されないが、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸ナトリウム、リン酸水素ナトリウム、ホウ酸ナトリウム、水酸化カリウム、炭酸カリウム、アンモニア、炭酸ジルコニウムアンモニウムなどを挙げることができ、特に水酸化ナトリウム、水酸化カリウムを好適に用いることができる。水酸化ナトリウムや水酸化カリウムは低濃度で高いpHを示すことから低温短時間の処理が可能であり、生産性に優れている。また2種以上のアルカリ性化合物を組み合わせで用いてもよい。
 更に、表面調整用水溶液には、必要に応じて、各種の界面活性剤やキレート剤を添加することもできる。
 アルカリ性水溶液のpHは9以上で、特に11~14の範囲にあることが好ましい。上記範囲よりもpHが低いと、処理温度を高く或いは処理時間を長くしなければ充分にフッ素を除去できないおそれがあり、生産性に劣るようになる。
 アルカリ性水溶液の液温は30~70℃、特に40~60℃の範囲にあることが望ましく、上記範囲よりも温度が高いと、化合物被膜中からのフッ素溶出が過剰になり、耐食性が低下するおそれがあり、一方上記範囲よりも温度が低いとフッ素を充分に低減することができず、耐溶出性が低下するおそれがある。
 また処理時間は、アルカリ性水溶液のpH、温度或いは処理方法等によって異なり、一概に規定できないが、0.5~5秒の範囲であることが好適である。
<缶外面となる面の表面調整処理>
 本発明の表面処理鋼板の缶外面となる面の表面調整処理は、温水を缶外面となる面に接触させることにより行い、化合物被膜中のF量を12mg/m以上となるように制御する。次いで温水をロールで絞った後、熱風などで乾燥する。
 表面調整処理に用いる温水は、30~70℃、特に40~60℃の範囲にあることが好ましい。上記範囲よりも温度が低いと缶内面となる面の表面調整に用いるアルカリ性水溶液の裏回りを充分に洗い流すことができないおそれがあり、一方上記範囲よりも高温であると、化合物被膜中のフッ素が溶出するおそれがある。
 また温水の処理時間は、0.5~5秒の範囲であることが好適である。上記範囲よりも処理時間が長いとフッ素が溶出するおそれがあり、一方上記範囲よりも処理時間が短いと充分に洗い流すことができない。
 温水は表面処理鋼板の缶外面となる面と接触し、缶内面となる面の表面調整に用いられ、裏回りしてきたアルカリ性水溶液を洗い流せる限り、スプレー処理、シャワー処理、掛け流し処理、浸漬処理等、表面処理鋼板の製造ラインに応じて種々の方法で行うことができるが、内面となる面の表面調整処理と同時に行うことができると共に、温水を表面に均一に接触させることができる点から、スプレー処理により行うことが好ましい。
[表面調整工程後の内外面リンス]
 本発明の表面処理鋼板の製造方法においては、被膜形成工程、表面調整工程を経た後、内外面の洗浄を目的としてリンスを行う。このリンスにおいては、表面調整工程を経た表面処理鋼板の被膜中のZr量及びF量を変化させない条件で行うことが望ましい。
 リンスは、常温の水を用いてもよいが、リンスを2回以上行う場合には、少なくとも最終のリンスは、リンス後の表面処理鋼板の乾燥を容易にするために40~60℃の温水を用いて実施することでき、浸漬処理またはスプレー処理等により行うことができる。上記範囲よりも高温の温水では、表面調整工程で制御されたフッ素が溶出し、F量が表面調整工程で制御した値から変化するおそれがあり、一方、上記範囲よりも低温では、冷却にエネルギーを要するため不経済である。
 リンスは、表面処理鋼板の内外面を同時に洗い流すことができると共にリンス効率も良いことから、特に浸漬処理により行うことが好適である。浸漬時間は用いる温水の温度にもよるが、0.5~5秒の範囲にあることが好適である。
 リンス後、ロールで水を絞り、温風などで乾燥する。
[製造装置]
 本発明の表面処理鋼板の製造方法において、被膜形成工程、表面調整工程及びリンス工程の各工程は、表面処理鋼板の内面となる面及び外面となる面のそれぞれを別々に処理することも可能であるが、生産性の点から、鋼板の両面を同時に処理することが特に望ましい。
(鋼板基材)
 本発明の表面処理鋼板に用いる鋼板としては、例えば、アルミキルド鋼連鋳材などをベースとした熱延鋼板、これらの熱延鋼板を冷間圧延した冷延鋼板、これらの熱延鋼板や冷延鋼板にZn、Sn、Ni、Cu、Alなどを含む金属めっき層を備えた鋼板などを用いることができる。
 また、Sn-Ni-Fe合金やSn-Fe合金、Ni-Fe合金などの合金層が表面の一部または表面全体に存在する鋼板を用いることもでき、これら合金層の上にSn、Niなどの金属めっき層が存在する鋼板なども用いることができる。これらのなかでも、コスト的に考えた場合には、金属めっき層を有しないか、めっき層を有していても一部に鉄露出部が表面に分散して存在している鋼板が、基材として最も好適に用いられる。
 基材の厚みは、特に限定されず、使用用途に応じて適宜選択すればよいが、好ましくは0.07~0.4mmである。
(樹脂被覆)
 前述した通り、本発明により得られる表面処理鋼板は化合物被膜上に樹脂被覆を形成した場合に、樹脂被覆の密着性に優れており、特にレトルト処理等を施した場合にも、缶外面となる面のデント部における樹脂被覆の剥離が有効に防止されると共に、樹脂被覆に亀裂が入り、湿潤環境下で金属面が露出した場合にも腐食の進行が有効に防止される。また、缶内面となる面においては容器構成金属材料成分の溶出が抑制されている。
 このような樹脂被覆を構成する樹脂としては、特に限定されず、本発明の表面処理鋼板の用途(例えば、特定の内容物を充填する缶容器などの用途)に応じて適宜選択すればよいが、各種熱可塑性樹脂から成る樹脂被覆や、熱硬化性塗料又は熱可塑性塗料からなる塗膜を挙げることができる。熱可塑性樹脂から成る樹脂被覆としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリルエステル共重合体、アイオノマー等のオレフィン系樹脂フィルム、またはポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム、もしくはナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミドフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム等の熱可塑性樹脂フィルムの未延伸または二軸延伸したものであってもよい。その中でも、イソフタル酸を共重合化してなる無配向のポリエチレンテレフタレートが特に好ましい。また、このような有機樹脂層を構成するための樹脂は、単独で用いてもよく、異なる樹脂をブレンドして用いてもよい。
 樹脂被覆として熱可塑性樹脂を被覆する場合、単層の樹脂層であってもよく、また同時押出等による多層の樹脂層であってもよい。多層のポリエステル樹脂層を用いると、下地層、即ち表面処理鋼板側に接着性に優れた組成のポリエステル樹脂を選択し、表層に耐内容物性、即ち耐抽出性やフレーバー成分の非吸着性に優れた組成のポリエステル樹脂を選択できるので有利である。
 多層ポリエステル樹脂層の例を示すと、表層/下層として表示して、ポリエチレンテレフタレート/ポリエチレンテレフタレート・イソフタレート、ポリエチレンテレフタレート/ポリエチレン・シクロへキシレンジメチレン・テレフタレート、イソフタレート含有量の少ないポリエチレンテレフタレート・イソフタレート/イソフタレート含有量の多いポリエチレンテレフタレート・イソフタレート、ポリエチレンテレフタレート・イソフタレート/[ポリエチレンテレフタレート・イソフタレートとポリブチレンテレフタレート・アジペートとのブレンド物]等であるが、勿論上記の例に限定されない。表層:下層の厚み比は、5:95~95:5の範囲にあるのが望ましい。
 上記樹脂被覆には、それ自体公知の樹脂用配合剤、例えば非晶質シリカ等のアンチブロッキング剤、無機フィラー、各種帯電防止剤、滑剤、酸化防止剤、紫外線吸収剤等を公知の処方に従って配合することができる。
 特に本発明においては、レトルト殺菌後の缶外面のデント部の樹脂被覆の剥離が有効に抑制されているため、このような現象が顕著であった二酸化チタン、酸化ケイ素、酸化亜鉛等の無機顔料が含有された二軸延伸フィルムを好適に使用することが可能になる。
 本発明により得られる表面処理鋼板に適用する樹脂被覆の厚みとしては、熱可塑性樹脂被覆で一般に3~50μm、特に5~40μmの範囲にあることが望ましく、塗膜の場合には、焼付け後の厚みが1~50μm、特に3~30μmの範囲にあることが好ましい。厚みが上記範囲を下回ると、耐食性が不十分となり、厚みが上記範囲を上回ると加工性の点で問題を生じやすい。
 本発明により得られる表面処理鋼板への樹脂被覆の形成は任意の手段で行うことができ、例えば、熱可塑性樹脂被覆の場合は、押出コート法、キャストフィルム熱接着法、二軸延伸フィルム熱接着法等により行うことができる。押出コート法の場合、表面処理金属材料の上にポリエステル樹脂を溶融状態で押出コートして、熱接着させることにより製造することができる。即ち、ポリエステル樹脂を押出機で溶融混練した後、T-ダイから薄膜状に押し出し、押し出された溶融樹脂膜を表面処理金属材料と共に一対のラミネートロール間に通して冷却下に押圧一体化させ、次いで急冷する。多層のポリエステル樹脂層を押出コートする場合には、表層樹脂用の押出機及び下層樹脂用の押出機を使用し、各押出機からの樹脂流を多重多層ダイ内で合流させ、以後は単層樹脂の場合と同様に押出コートを行えばよい。また、一対のラミネートロール間に垂直に表面処理金属材料を通し、その両側に溶融樹脂ウエッブを供給することにより、前記基体両面にポリエステル樹脂の被覆層を形成させることができる。
 ポリエステル樹脂から成る有機被覆を有する有機被覆表面処理鋼板の押出コート法による製造は具体的には次のように行われる。表面処理鋼板を必要により加熱装置により予備加熱し、一対のラミネートロール間のニップ位置に供給する。一方、ポリエステル樹脂は、押出機のダイヘッドを通して薄膜の形に押し出し、ラミネートロールと表面処理鋼板との間に供給され、ラミネートロールにより表面処理鋼板に圧着される。ラミネートロールは、一定の温度に保持されており、表面処理鋼板にポリエステル等の熱可塑性樹脂から成る薄膜を圧着して両者を熱接着させると共に両側から冷却して有機被覆表面処理鋼板を得る。一般に、形成される有機被覆表面処理鋼板を更に冷却用水槽等に導いて、熱結晶化を防止するため、急冷を行う。
 この押出コート法では、樹脂組成の選択とロールや冷却槽による急冷とにより、ポリエステル樹脂層は、結晶化度が低いレベル、非晶密度との差が0.05g/cm以下に抑制されているため、次いで行う製缶加工や蓋加工等に対する十分な加工性が保証される。勿論、急冷操作は上記例に限定されるものではなく、形成される有機被覆表面処理鋼板に冷却水を噴霧して、ラミネート板を急冷することもできる。
 表面処理鋼板に対するポリエステル樹脂の熱接着は、溶融樹脂層が有する熱量と、表面処理鋼板が有する熱量とにより行われる。表面処理鋼板の加熱温度(T1)は、一般に90℃~290℃、特に100℃~280℃の温度が適当であり、一方ラミネートロールの温度は10℃~150℃の範囲が適当である。
 また、本発明の製造方法により得られる表面処理鋼板の樹脂被覆は、T-ダイ法やインフレーション製膜法で予め製膜されたポリエステル樹脂フィルムを表面処理鋼板に熱接着させることによっても製造することができる。フィルムとしては、押し出したフィルムを急冷した、キャスト成形法による未延伸フィルムを用いることもでき、また、このフィルムを延伸温度で、逐次或いは同時二軸延伸し、延伸後のフィルムを熱固定することにより製造された二軸延伸フィルムを用いることもできる。
(金属容器)
 本発明の表面処理鋼板を用いて成形される金属容器(缶体)としては、前述した通り、表面処理鋼板の表面に樹脂被覆が形成されて成る有機被覆表面処理鋼板から成形されていることが好ましく、任意の製缶法により成形することができる。具体的には、側面継ぎ目を有するスリーピース缶(溶接缶)や、シームレス缶(ツーピース缶)とすることができるが、前述したように、有機樹脂との密着性の観点からZr量が大きい表面処理鋼板を利用する点を考慮すると、シームレス缶への適用がもっとも好ましい。
 シームレス缶は、有機被覆が缶内面側及び/又は缶外面側になるように、絞り加工、絞り・再しぼり加工、絞り・再絞りによる曲げ伸ばし加工(ストレッチ加工)、絞り・再絞りによる曲げ伸ばし・しごき加工或いは絞り・しごき加工等の従来公知の手段に付すことによって製造される。
 また、絞り・再絞りによる曲げ伸ばし加工(ストレッチ加工)、絞り・再絞りによる曲げ伸ばし・しごき加工、絞り・しごき加工等の高度な加工が施されるシームレス缶においては、有機被覆が押出コート法による熱可塑性樹脂被覆から成るもの、キャスト成形法による未延伸フィルムの熱ラミネートから成るもの、あるいは二軸延伸フィルムの熱ラミネートから成るものであることが特に好ましい。このような有機被覆表面処理鋼板は、加工密着性に優れていることから、過酷な加工に賦された場合にも被覆の密着性に優れ、優れた耐食性を有するシームレス缶を提供することができる。
(蓋)
 本発明の表面処理鋼板を用いて成形される缶蓋は、上述した金属容器同様、有機被覆表面処理鋼板から成形されていることが好ましく、従来公知の任意の製蓋法により成形することができる。具体的には、平蓋や、ステイ・オン・タブタイプのイージーオープン缶蓋やフルオープンタイプのイージーオープン缶蓋に適用することができる。
 本発明の缶蓋においては本発明の有機被覆表面処理鋼板の種々の態様のものを制限なく用いて蓋を成形することができる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されるものではない。なお、実施例で使用した被処理素材、脱脂剤、有機被覆は市販されている材料の中から任意に選択したものであり、本発明の表面処理用鋼板の製造方法を限定するものではない。
<実施例1>
<被膜形成工程>
 原板として、厚さ0.225mm、幅200mmの低炭素鋼板を用い、次いで、前処理としてアルカリ電解脱脂、硫酸浸漬の酸洗を行った。その後、鋼板を電解処理液に浸漬させ、陰極電解処理を行うことにより、鋼板の表面にFを含有し、Zrを主体とする化合物被膜を両面に形成した。次いで鋼板から電解処理液をロールで絞り除去した。
 電解処理液の組成:Zr化合物としてフッ化ジルコニウムアンモニウムを溶解させて得た、Zr濃度6000ppm、F濃度7000ppmの水溶液
 電解処理液のpH:3.0(硝酸及び/又はアンモニアにてpH調整実施)
 電解処理液の温度:40℃
 陰極電解時の電流密度(表1ではCDと表記する):10A/dm
 陰極電解時の通電方法:0.15秒通電、0.1秒通電停止のサイクルを缶内面側、缶外面側とも8回(以後、サイクル数と呼ぶ)実施した。
<表面調整工程>
 被膜形成工程終了後の鋼板を、缶内面側はアルカリ性水溶液で所定時間スプレー処理すると同時に、缶外面側は温水で所定時間スプレー処理した。次いで鋼板からアルカリ性水溶液及び温水をロールで絞り除去した。
(缶内面側)
・アルカリ性水溶液の組成:水酸化ナトリウム(NaOH)の添加量を調整し、下記pHの水溶液になるよう作製した。
・アルカリ性水溶液のpH:11.7
・アルカリ性水溶液の温度:40℃
・アルカリ性水溶液のスプレー時間:1秒
(缶外面側)
・温水の種類:工業用水
・温水の温度:40℃
・温水のスプレー時間:1秒
<表面調整工程後のリンス>
 表面調整工程終了後の鋼板を、リンス水に2秒間浸漬し、内外面の付着液を除去した。
リンス水は40℃の工業用水を用い、温風で乾燥させ、表面処理鋼板を得た。
<表面処理被膜量の測定>
 試験に用いた被膜形成工程、表面調整工程、リンス後の板を、水洗後温風で乾燥させて下記方法で被膜量を測定した。被膜量は缶内面側、缶外面側それぞれ別々に測定した。
<Zr量の測定>
 得られた表面処理板について、蛍光X線分析装置(リガク社製、型番:ZSX100e)を用いて、金属化合物被膜に含まれるZr量を測定した。表1に、被膜形成工程後、表面調整工程後のZr量を示した。なお、リンス後のZr量は、表面調整工程後のZr量と同じであっため、表1にはリンス後のZr量の記載は省略した。
<F量の測定>
 蛍光X線分析ではF量の微量分析は定量精度の点で限界があり、特にF量1.5mg/m以下の表面処理板から直接Fを定量する事は困難である。種々検討の結果、我々は以下の測定方法を選定した。即ち、レトルト加圧可能な特殊セルを用いて、一定面積の表面処理板を一定量の超純水に接触させた状態で、130℃で30分間のレトルト処理を行った。この処理により超純水中に抽出されたフッ素イオンをイオンクロマトグラフ(DIONEX製DX-320)により測定した。得られたF濃度から、超純水中に存在するF重量を求め、これを表面処理板の単位面積当たりに存在するF重量に換算することにより、被膜中のF量と定義した。表1に、被膜形成工程後、表面調整工程後のF量を示した。なお、リンス後のF量は、表面調整工程後のF量と同じであったため、表1にはリンス後のF量の記載は省略した。
<樹脂被覆表面処理鋼板の作製>
 得られた表面処理鋼板を、缶内面側となる金属板の片面上に、イソフタル酸成分を11モル%含有するポリエチレンテレフタレート/イソフタレート共重合組成を有する、厚さ19μmの延伸フィルムを、缶外面側となるもう一方の片面上に、イソフタル酸成分を12モル%含有するポリエチレンテレフタレート/イソフタレート共重合組成を有し、酸化チタンを30重量%含有してホワイトに着色した、厚さ13μmの延伸フィルムを、ラミネートロールを介して熱圧着後、直ちに水冷することにより、フィルムに適度な配向状態が残るように留意しながら樹脂被覆表面処理鋼板を得た。作製した樹脂被覆表面処理鋼板は、一部をクロスカット耐食性評価用として用いた以外は、金属缶の作製に使用した。
<金属缶の作製>
 得られた樹脂被覆表面処理鋼板の両面に、パラフィンワックスを静電塗油した後、直径143mmの円形に打抜き、定法に従い、径91mm、高さ36mmの絞りカップを作製した。ついでこの絞りカップを同時絞りしごき加工を2回繰り返して径が小さくハイトの大きいカップに成形した。この様にして得られたカップの諸特性は以下の通りである。
  カップ径  52.0mm
  カップ高さ 111.7mm
  元板厚に対する缶壁部の板厚減少率  30%
 このカップはドーミング成形後、樹脂フィルムの歪みをとるために220℃で60秒間熱処理を行い、続いて開口端端部のトリミング加工、そして、図1に示すように缶胴に藍インキ30mg/缶と仕上げニス100mg/缶を塗布する曲面印刷を施し、215℃で80秒の焼き付け後、直径50.8mmにネックイン加工、フランジ加工を行い、200gシームレス缶を作製した。
 尚、図1において、1は上記樹脂被覆表面処理鋼板を加工した缶胴、2は印刷インキ層、3は仕上げニス層、をそれぞれ表す。
<缶外面デント性評価>
 得られたシームレス缶に蒸留水183gを缶内真空度30KPaで充填し、125℃30分のレトルト処理を行った後、蓋を上にした状態で室温にて1日保管した。次いで、缶を缶底鋼板圧延方向が水平となるように横向きに静置し、缶体の側壁下部ボディーウォールラジアス部付近に、径52.0mmの球面を有する1kgのおもりを40mmの高さから球面が缶に当たるように落とすことにより缶体に衝撃を与え変形させた。その後、幅24mmのセロハン粘着テープを缶変形部にできるだけ均一に貼った後、一気にテープを引きはがし、ホワイトフィルムの剥離程度を目視および光学顕微鏡(50倍)にて次の基準で判定し、缶外面デント性評価とした。剥離観察部位は、図1に示す外面ホワイトフィルム上に仕上げニスのみが被覆されている部分(図1中、Pで表す、藍インキが塗られていない部分)とした。また、評価数は10缶とした。肉眼観察で1缶でも剥離が認められたものを×、肉眼観察で剥離はないが光学顕微鏡で剥離が認められた数が4缶以下を○、同じく光学顕微鏡で剥離が認められた数が2缶以下を◎とした。○及び◎を許容範囲内とした。
<缶内面F溶出性評価>
 得られたシームレス缶に183gの超純水を充填し、130℃で30分のレトルト処理を行った後、超純水中に抽出されたフッ素イオンをイオンクロマトグラフ(DIONEX製DX-320)により測定した。F検出量が0.25ppmを超えたものを×、F検出量が0.20ppmを超えかつ0.25ppm以下のものを△、F検出量が0.10ppmを超えかつ0.20ppm以下のものを○、検出限界(0.10ppm)以下のものを◎とした。△・○・◎を許容範囲内とした。
<缶内面側クロスカット耐食性評価>
 作製した樹脂被覆表面処理鋼板の缶内面側に相当する部分に、圧延方向に対して45度方向にカッターで長さ4cmの素地に達する2本のクロスカット傷を入れ、モデル液(塩化ナトリウムとクエン酸の重量濃度がそれぞれ1.5%の水溶液)に、浸漬させて37℃で1週間経時して、腐食状態を評価した。その後、試験片をモデル液から取り出し、クロスカット部分及びその周囲について、有機樹脂層の剥離あるいは、腐食生成物の生成による変色の状態を目視評価にて観察して評価した。クロスカット部周辺において、変色またはフィルム剥離の最大幅が片側あたり2mm以上であったものを×、1mm以上2mm未満のものを△、1mm未満のものを○とした。△・○を許容範囲とした。
 これらを纏めて、それぞれの処理方法、被膜量、評価結果を表1に示した。
<実施例2~14>
 被膜形成工程、表面調整工程の条件を表1のように変更した以外は実施例1と同様にして表面処理鋼板を作製し、実施例1と同様に評価した。それぞれの処理方法、被膜量、評価結果を表1に示した。
<比較例1>
 缶内面側の被膜形成工程でサイクル数を11回としたこと、および、表面調整工程でアルカリ性水溶液スプレーに変えて40℃の温水スプレーを行った以外は実施例1と同様にして表面処理鋼板を作製し、実施例1と同様に評価した。缶内面側のF量が28mg/mであり、缶内面F溶出性評価が×であった。
<比較例2>
 缶外面側の表面調整工程で温水スプレーに変えて、pH11.0の水酸化ナトリウム水溶液スプレーを行った以外は実施例1と同様にして表面処理鋼板を作製し、実施例1と同様に評価した。缶外面側のF量が10mg/mであり、缶外面デント性評価が×であった。
<比較例3>
 缶外面側の被膜形成工程で電解サイクル数を5回にした以外は実施例1と同様にして表面処理鋼板を作製し、実施例1と同様に評価した。缶外面側のZr量が69mg/mであり、缶外面デント性評価が×であった。
Figure JPOXMLDOC01-appb-T000001

Claims (8)

  1.  Fを含有しZrを主体とする化合物被膜が形成されて成る缶用表面処理鋼板において、缶外面側となる面における前記被膜中のZr量が80~200mg/mであり且つF量が12mg/m以上であることを特徴とする表面処理鋼板。
  2.  缶内面側となる面における前記被膜中のZr量が80~200mg/mであり且つF量が25mg/m以下である請求項1記載の表面処理鋼板。
  3.   前記缶外面側となる面における前記被膜中のF量が12~40mg/mである請求項1又は2記載の表面処理鋼板。
  4.  前記缶内面側となる面における前記被膜中のF量が0.5~10mg/mである請求項2又は3記載の表面処理鋼板。
  5.  請求項1~4の何れかに記載の表面処理鋼板の缶外面となる側の被膜上に、無機顔料を含む二軸延伸フィルムがラミネートされて成る樹脂被覆表面処理鋼板。
  6.  鋼板に、Fを含有しZrを主体とする化合物被膜を形成して成る缶用表面処理鋼板の製造方法であって、Zrイオン及びFイオンを含む水溶液中で陰極電解することにより、前記被膜中のZr量を80~200mg/mとする被膜形成工程と、缶内面側となる面の被膜にはアルカリ性水溶液を接触させると共に、缶外面となる面の被膜には温水を接触させる表面調整工程、とを有することを特徴とする表面処理鋼板の製造方法。
  7.  前記アルカリ性水溶液が、ナトリウム、アンモニウム、カリウムの少なくとも1種以上を含有し、pHが9以上である請求項6記載の表面処理鋼板の製造方法。
  8.  前記温水が30~70℃の温度である請求項6又は7記載の表面処理鋼板の製造方法。
PCT/JP2015/057181 2014-09-12 2015-03-11 表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板 WO2016038909A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15840460.8A EP3196341B1 (en) 2014-09-12 2015-03-11 Surface-treated steel sheet, process for producing the same, and resin-coated surface-treated steel sheet
CN201580048894.4A CN107075710B (zh) 2014-09-12 2015-03-11 表面处理钢板、其制造方法和树脂被覆的表面处理钢板
US15/510,364 US10858751B2 (en) 2014-09-12 2015-03-11 Surface-treated steel sheet, process for producing the same and resin-coated surface-treated steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185874A JP5886919B1 (ja) 2014-09-12 2014-09-12 表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板
JP2014-185874 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038909A1 true WO2016038909A1 (ja) 2016-03-17

Family

ID=55458674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057181 WO2016038909A1 (ja) 2014-09-12 2015-03-11 表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板

Country Status (5)

Country Link
US (1) US10858751B2 (ja)
EP (1) EP3196341B1 (ja)
JP (1) JP5886919B1 (ja)
CN (1) CN107075710B (ja)
WO (1) WO2016038909A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2671652B1 (en) 2012-06-06 2016-03-16 GE Energy Power Conversion Technology Limited Hot strip mill controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097712A (ja) * 2002-11-25 2005-04-14 Toyo Seikan Kaisha Ltd 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、缶蓋
JP2009084623A (ja) * 2007-09-28 2009-04-23 Nippon Steel Corp 化成処理被覆鋼板の製造方法
WO2011118588A1 (ja) * 2010-03-23 2011-09-29 新日本製鐵株式会社 容器用鋼板及びその製造方法
WO2012036200A1 (ja) * 2010-09-15 2012-03-22 Jfeスチール株式会社 容器用鋼板の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942105B2 (ja) 1993-06-24 1999-08-30 東洋鋼鈑株式会社 湿潤下での経時塗料密着性に優れたスズめっき鋼板の製造法
TWI268965B (en) 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
AU2003302815A1 (en) 2002-11-25 2004-06-30 Toyo Seikan Kaisha, Ltd. Surface-treated metallic material, method of surface treating therefor and resin-coated metallic material, metal can and can lid
JP4205939B2 (ja) 2002-12-13 2009-01-07 日本パーカライジング株式会社 金属の表面処理方法
JP4805613B2 (ja) 2005-06-17 2011-11-02 東洋製罐株式会社 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋
JP2011127141A (ja) * 2009-12-15 2011-06-30 Nippon Parkerizing Co Ltd 電着塗装用表面処理金属材料、および化成処理方法
WO2011141410A1 (en) * 2010-05-10 2011-11-17 Technische Universität München Method for the direct elution of reactive [18f]fluoride from an anion exchange resin in an organic medium suitable for radiolabelling without any evaporation step by the use of alkalimetal and alkaline earth metal cryptates
CN105579622B (zh) * 2013-09-25 2018-07-27 东洋钢钣株式会社 表面处理钢板、有机树脂覆层金属容器以及表面处理钢板的制造方法
JP6530885B2 (ja) * 2013-12-18 2019-06-12 東洋製罐株式会社 表面処理鋼板、有機樹脂被覆金属容器、及び表面処理鋼板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097712A (ja) * 2002-11-25 2005-04-14 Toyo Seikan Kaisha Ltd 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、缶蓋
JP2009084623A (ja) * 2007-09-28 2009-04-23 Nippon Steel Corp 化成処理被覆鋼板の製造方法
WO2011118588A1 (ja) * 2010-03-23 2011-09-29 新日本製鐵株式会社 容器用鋼板及びその製造方法
WO2012036200A1 (ja) * 2010-09-15 2012-03-22 Jfeスチール株式会社 容器用鋼板の製造方法

Also Published As

Publication number Publication date
EP3196341A4 (en) 2018-05-02
EP3196341A1 (en) 2017-07-26
JP5886919B1 (ja) 2016-03-16
JP2016056432A (ja) 2016-04-21
CN107075710B (zh) 2018-09-04
EP3196341B1 (en) 2019-12-18
CN107075710A (zh) 2017-08-18
US20170253985A1 (en) 2017-09-07
US10858751B2 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
JP5978576B2 (ja) 容器用鋼板およびその製造方法
WO2015093318A1 (ja) 表面処理鋼板、有機樹脂被覆金属容器、及び表面処理鋼板の製造方法
TWI439573B (zh) A method for producing a steel sheet for a container material having a low environmental burden, a steel sheet for a container material having a small environmental burden, a precoated steel sheet for a laminated steel sheet and a container material for use in the container material
WO2011149047A1 (ja) 表面処理浴、この表面処理浴を用いた表面処理鋼板の製造方法及びこの製造方法から成る表面処理鋼板
JP5892619B2 (ja) 表面処理剤組成物、表面処理鋼板の製造方法、表面処理鋼板、有機被覆表面処理鋼板、缶蓋、缶体及びシームレス缶
JP5729230B2 (ja) 容器用鋼板およびその製造方法
WO2011118846A1 (ja) 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
JP5886919B1 (ja) 表面処理鋼板及びその製造方法並びに樹脂被覆表面処理鋼板
JP5873609B2 (ja) 表面処理鋼板、有機樹脂被覆金属容器、並びに表面処理鋼板の製造方法
JP2015180782A (ja) 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板
JP6220226B2 (ja) 表面処理鋼板の製造方法、表面処理鋼板、および有機樹脂被覆金属容器
EP4118257B1 (en) Method for passivating a tinplate strip and apparatus for producing said passivated tinplate strip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840460

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015840460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15510364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE