WO2016038685A1 - Multiplex communication apparatus - Google Patents

Multiplex communication apparatus Download PDF

Info

Publication number
WO2016038685A1
WO2016038685A1 PCT/JP2014/073798 JP2014073798W WO2016038685A1 WO 2016038685 A1 WO2016038685 A1 WO 2016038685A1 JP 2014073798 W JP2014073798 W JP 2014073798W WO 2016038685 A1 WO2016038685 A1 WO 2016038685A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplex communication
data
output unit
communication
input
Prior art date
Application number
PCT/JP2014/073798
Other languages
French (fr)
Japanese (ja)
Inventor
伸夫 長坂
重元 廣田
英和 金井
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2014/073798 priority Critical patent/WO2016038685A1/en
Priority to JP2016547292A priority patent/JP6511457B2/en
Publication of WO2016038685A1 publication Critical patent/WO2016038685A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems

Definitions

  • the present invention relates to a multiplex communication apparatus that performs multiplex communication with peripheral devices at a distance and constructs a sensor feedback control function with high accuracy.
  • FIG. 5 is a system configuration diagram of a conventional multiple communication system.
  • the multiplex communication system 1001 includes a controller 11 and is divided into an A area (fixed part) 101 and a B area (movable part) 301.
  • the controller 11 controls the entire apparatus by a position / speed / torque command.
  • a area (fixed part) 101 is a multi-axis control amplifier, and controls an AC servo motor, which will be described later, by PID control in response to a command from the controller 11.
  • Area B (movable part) 301 is a head unit, which is a unit attached to the tip of the mounter, and inspects the mounting of the surface-mounted product or the component mounting state on the board.
  • the multi-axis control amplifier which is the A area (fixed portion) 101 has a multi-axis control board 111.
  • the multi-axis control board 111 is a board on which a microcomputer for controlling a 4-axis AC servo motor is mounted.
  • the multi-axis control board 111 includes a PHY-IC 112, a slave ASIC 113, a PHY-IC 114, a 4-axis motor control microcomputer 115, DI 116, D0117, a communication ASIC 118, and four DRV-ICs 119, 120, 121, and 122.
  • the PHY-IC 112 is connected to the controller 11 with a cable 12.
  • the cable 12 is a 100 base-tx based industrial Ethernet (registered trademark) LAN cable.
  • the PHY-IC 112 is connected to the slave ASIC 113.
  • the slave ASIC 113 is connected to the PHY-IC 114 and the 4-axis motor control microcomputer 115.
  • the 4-axis motor control microcomputer 115 is connected to DIs 116 and D0117.
  • the 4-axis motor control microcomputer 115 is connected to the four DRV-ICs 119, 120, 121, and 122 via the communication ASIC 118.
  • the head unit which is the B area (movable part) 301 includes a head substrate 1201, a sensor substrate 311, a limit switch 314, a relay 315, and four AC servomotor / serial encoders 316, 317, 318, and 319.
  • the head substrate 1201 is a substrate that acquires sensor information of the head unit which is the B area (movable part) 301 by I2C communication or SPI communication, and transmits it as slave information of industrial Ethernet (registered trademark). (Moving part) DI / DO control in the head unit which is 301 is performed.
  • the head substrate 1201 includes a PHY-IC 1202, a slave ASIC 1203, and a microcomputer 1204.
  • the microcomputer 1204 has an I2C 1205 and an SPI 1206.
  • the slave ASIC 1203 is connected to the PHY-IC 1202 and the microcomputer 1204.
  • the sensor substrate 311 is a substrate on which the pressure sensor 312 and the acceleration sensor 313 are mounted.
  • the pressure-sensitive sensor 312 is a sensor for controlling the indentation pressure of the mounted component.
  • the pressure sensitive sensor 312 is connected to the I2C 1205 in the microcomputer 1204. Therefore, the sensor value of the pressure sensor 312 is acquired from the microcomputer 1204 via I2C communication.
  • the acceleration sensor 313 is a sensor that detects acceleration in order to suppress vibration of the head unit that is the B area (movable part) 301.
  • the acceleration sensor 313 is connected to the SPI 1206 in the microcomputer 1204. Therefore, the sensor value of the acceleration sensor 313 is acquired from the microcomputer 1204 via SPI communication.
  • the PHY-IC 1202 in the head substrate 1201 is connected to the PHY-IC 114 in the multi-axis control substrate 111 in the A area (fixed portion) 101 by a cable 1301.
  • the cable 1301 is a 100 base-tx-based industrial Ethernet (registered trademark) LAN cable.
  • the limit switch 314, the relay 315, and the four AC servo motor / serial encoders 316, 317, 318, and 319 in the head unit which is the B area (movable part) 301 are the multi-axis control board of the A area (fixed part) 101.
  • 111 are connected to DI 116, D 0117, and four DRV-ICs 119, 120, 121, 122 by cables 1302, 1303, 1304, 1305, 1306, 1307.
  • the present invention has been made in view of the above points, and a small peripheral device that has been conventionally usable only for a short distance can communicate with a unit / apparatus outside the casing at a distance. It is an object to provide a multiplex communication apparatus.
  • the invention according to claim 1 made to solve this problem is a multiplex communication apparatus, wherein serial bus standard data transmission between a microcomputer and a peripheral device is multiplexed within a board or between boards.
  • the “peripheral device” includes, for example, an EEPROM, an A / D converter, a D / A converter, an acceleration sensor, a pressure sensor, or a load cell.
  • serial bus standard data transmission includes, for example, SPI (Serial Peripheral Interface) communication, I2C (Inter-Integrated Circuit) communication, or Microwire (registered trademark) communication.
  • SPI Serial Peripheral Interface
  • I2C Inter-Integrated Circuit
  • Microwire registered trademark
  • a small peripheral device that has been conventionally usable only for a short distance can communicate with a unit / apparatus outside the casing at a distance.
  • FIG. 1 is a system configuration diagram of a multiplex communication system using a multiplex communication board according to an embodiment of the present invention. It is an internal block diagram of the same multiplex communication board. It is the figure by which the multiplex communication protocol by the standard (GbE) of Ethernet (trademark) at the time of the same multiplex communication board transmitting / receiving by a half duplex communication system was represented. It is the figure by which the multiplex communication protocol by the standard (GbE) of Ethernet (trademark) at the time of the same multiplex communication board transmitting / receiving by a half duplex communication system was represented. It is a system block diagram of the multiplex communication system of a prior art.
  • GbE standard
  • Ethernet trademark
  • FIG. 1 is a system configuration diagram of a multiplex communication system in which a multiplex communication board according to an embodiment of the present invention is used.
  • the multiplex communication system 1 includes a controller 11 and is divided into an A area (fixed part) 101 and a B area (movable part) 301.
  • the controller 11 controls the entire apparatus by a position / speed / torque command.
  • a area (fixed part) 101 is a multi-axis control amplifier, and controls an AC servo motor, which will be described later, by PID control in response to a command from the controller 11.
  • Area B (movable part) 301 is a head unit, which is a unit attached to the tip of the mounter, and inspects the mounting of the surface-mounted product or the component mounting state on the board.
  • the multi-axis control amplifier which is the A area (fixed portion) 101 includes a multi-axis control board 111 and the multiplex communication board 201 according to the present embodiment.
  • the multi-axis control board 111 is a board on which a microcomputer for controlling a 4-axis AC servo motor is mounted.
  • the multi-axis control board 111 includes a PHY-IC 112, a slave ASIC 113, a PHY-IC 114, a 4-axis motor control microcomputer 115, DI 116, D0117, a communication ASIC 118, and four DRV-ICs 119, 120, 121, and 122.
  • the 4-axis motor control microcomputer 115 has an I2C 131 and an SPI 132.
  • the PHY-IC 112 is connected to the controller 11 with a cable 12.
  • the cable 12 is a 100 base-tx based industrial Ethernet (registered trademark) LAN cable.
  • the PHY-IC 112 is connected to the slave ASIC 113.
  • the slave ASIC 113 is connected to the PHY-IC 114 and the 4-axis motor control microcomputer 115.
  • the 4-axis motor control microcomputer 115 is connected to DIs 116 and D0117.
  • the 4-axis motor control microcomputer 115 is connected to the four DRV-ICs 119, 120, 121, and 122 via the communication ASIC 118.
  • the multiplex communication board 201 includes an ETHERPHY-IC 202, a multiplex communication FPGA 203, a DO 206, a DI 207, and four DRV-ICs 208, 209, 210, and 211.
  • the multiplex communication FPGA 203 has an I2C 204 and an SPI 205.
  • the ETHERPHY-IC 202 is connected to the multiplex communication FPGA 203.
  • the multiplex communication FPGA 203 is connected to the DO 206, the DI 207, and the four DRV-ICs 208, 209, 210, and 211.
  • the I2C 204 and the SPI 205 in the multiplex communication FPGA 203 are connected to the I2C 131 and the SPI 132 in the 4-axis motor control microcomputer 115.
  • the multiplex communication board 201 is connected to the I2C 131 and the SPI 132 in the multi-axis control board 111 through communication lines in the multi-axis control amplifier of the A area (fixed portion) 101 that is the same housing. .
  • the DO 206, DI 207, and the four DRV-ICs 208, 209, 210, 211 in the multiplex communication board 201 are the DI 116, D 0117, and the four DRV-ICs 119, 120 in the multi-axis control board 111. , 121, 122.
  • the head unit which is the B area (movable part) 301 includes a sensor substrate 311, a multiplex communication substrate 401 according to the present embodiment, a limit switch 314, a relay 315, and four AC servomotor / serial encoders 316, 317, 318, and 319.
  • the sensor substrate 311 is a substrate on which the pressure sensor 312 and the acceleration sensor 313 are mounted.
  • the pressure-sensitive sensor 312 is a sensor for controlling the indentation pressure of the mounted component.
  • the acceleration sensor 313 is a sensor that detects acceleration in order to suppress vibration of the head unit that is the B area (movable part) 301.
  • the multiplex communication board 401 includes an ETHERPHY-IC 402, a multiplex communication FPGA 403, a DI 406, a D 0407, and four DRV-ICs 408, 409, 410, and 411.
  • the multiplex communication FPGA 403 includes an I2C 404 and an SPI 405.
  • the I2C 404 in the multiplex communication FPGA 403 is connected to the pressure-sensitive sensor 312.
  • the SPI 405 in the multiplex communication FPGA 403 is connected to the acceleration sensor 313.
  • the multiplex communication FPGA 403 is connected to the DI 406, D 0407, and the four DRV-ICs 408, 409, 410, and 411.
  • the DI 406, D0407, and four DRV-ICs 408, 409, 410, 411 in the multiplex communication board 401 are a limit switch 314, a relay 315, and four AC servo motor / serial encoders 316, 317, 318. , 319.
  • the ETHERPHY-IC 402 in the multiplex communication board 401 according to the present embodiment is connected by a cable 501 to the ETHERPHY-IC 202 in the multiplex communication board 201 according to the present embodiment in the A area (fixed portion) 101.
  • the cable 501 is an Ethernet (registered trademark) cable for multiplex communication, and a 1000 base-t category 5e anti-bending LAN line is used.
  • FIG. 2 is an internal configuration diagram of the multiplex communication boards 201 and 401 according to the present embodiment. That is, FIG. 2 shows an internal configuration of a board that performs multiplex communication using a serial encoder signal, an I2C signal, and an SPI signal using GbE.
  • the multiplex communication boards 201 and 401 according to the present embodiment are roughly divided into a multiplexing target signal input unit, a multiplexing processing unit, and a multiplexing communication unit using GbE.
  • the multiple communication boards 201 and 401 according to the present embodiment are connected by the cable 501 as described above.
  • the multiplex communication board 201 includes a 1000base-t PHY-IC 212, a DIP-SW 213, a multiplex communication protocol processing unit 220, a serial encoder input / output unit 230, an I2C input / output unit 240, an SPI input / output unit 250, It includes a processing unit 260, a DRIVER-IC 270 for RS485, and two I / O input / output units 280 and 290.
  • the 1000base-t PHY-IC 212 is a 1000base-t communication PHY-IC for performing multiplex communication.
  • the DIP-SW 213 is a DIP switch that sets the timing in advance because the mode for determining data at which timing of the clock in SPI communication is determined by the IC of the sensor or the like (however, the default value is a 4-axis motor) UART and IO setting from the control microcomputer 115 side may also be used).
  • the multiplex communication protocol processing unit 220 is a processing unit that performs mixing / separation processing of local data for a multiplex communication protocol.
  • the multiplex communication protocol processing unit 220 includes a GMII-IF data input unit 221, a demultiplexing unit 222, a multiplex mixing unit 223, and a GMII-IF data output unit 224.
  • the serial encoder input / output unit 230 inputs or outputs ABS serial encoder communication data such as AC servo motors 316 to 319.
  • the serial encoder input / output unit 230 transmits data to the multiplex communication protocol processing unit 220 or outputs data received from the multiplex communication protocol processing unit 220.
  • the serial encoder input / output unit 230 includes an HDLC-I / F data input unit 231, a reception buffer 232, an HDLC-I / F data output unit 233, and a transmission buffer 234, and these signals each signal to be multiplexed.
  • the I2C input / output unit 240 samples the data using the I2C communication clock and the high-speed clock in the multiplex communication FPGA 203 and transmits the H and L (1, 0) signals to the multiplex communication protocol processing unit 220.
  • the I2C input / output unit 240 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 220 to the I / O input / output unit 280.
  • the I2C input / output unit 240 includes an I2C-I / F data input unit 241, a reception buffer 242, an I2C-I / F data output unit 243, and a transmission buffer 244, which multiplex each signal to be multiplexed.
  • the SPI input / output unit 250 samples data using the SPI communication clock and the high-speed clock in the multiplex communication FPGA 203, and transmits the H and L (1, 0) signals to the multiplex communication protocol processing unit 220.
  • the SPI input / output unit 250 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 220 to the I / O input / output unit 290.
  • the mode for determining data at which timing of the clock is determined in advance by the DIP-SW 213 since it is determined by the IC such as a sensor.
  • the SPI input / output unit 250 includes an SPI-I / F data input unit 251, a reception buffer 252, an SPI-I / F data output unit 253, and a transmission buffer 254, which multiplex each signal to be multiplexed.
  • the multiplex processing unit 260 is a multiplex processing unit for realizing the function of the multiplex communication board 201 according to the present embodiment, and is a multiplex communication FPGA 203.
  • the multiplex processing unit 260 includes a multiplex communication protocol processing unit 220, a serial encoder input / output unit 230, an I2C input / output unit 240, and an SPI input / output unit 250.
  • the RS485 DRIVER-IC 270 is a DRIVER-IC of the physical layer RS485 of the serial encoder.
  • the I / O input / output unit 280 is an input / output unit suitable for the I2C signal level.
  • the I / O input / output unit 290 is an input / output unit suitable for the SPI signal level.
  • the multiplex communication board 401 includes a 1000-base-t PHY-IC 412, an LED 413, a multiplex communication protocol processing unit 420, a serial encoder input / output unit 430, an I2C input / output unit 440, and an SPI input / output unit 450.
  • the 1000base-t PHY-IC 412 is a 1000base-t communication PHY-IC for performing multiplex communication.
  • the LED 413 is a visual confirmation LED for checking whether the specification matches the 4-axis motor control microcomputer 115 side by SPI communication.
  • the multiplex communication protocol processing unit 420 is a processing unit that performs mixing / separation processing of local data for a multiplex communication protocol.
  • the multiplex communication protocol processing unit 420 includes a GMII-IF data input unit 421, a demultiplexing unit 422, a multiplex mixing unit 423, and a GMII-IF data output unit 424.
  • the serial encoder input / output unit 430 inputs or outputs ABS serial encoder communication data of the AC servo motors 316 to 319 and the like.
  • the serial encoder input / output unit 430 transmits data to the multiplex communication protocol processing unit 420 or outputs data received from the multiplex communication protocol processing unit 420.
  • the serial encoder input / output unit 430 includes an HDLC-I / F data input unit 431, a reception buffer 432, an HDLC-I / F data output unit 433, and a transmission buffer 434.
  • the I2C input / output unit 440 samples data using the I2C communication clock and the high-speed clock in the multiplex communication FPGA 403 and transmits the H, L (1, 0) signal to the multiplex communication protocol processing unit 420.
  • the I2C input / output unit 440 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 420 to the I / O input / output unit 480.
  • the I2C input / output unit 440 includes an I2C-I / F data input unit 441, a reception buffer 442, an I2C-I / F data output unit 443, and a transmission buffer 444, which multiplex each signal to be multiplexed.
  • the SPI input / output unit 450 samples data using the SPI communication clock and the high-speed clock in the multiplex communication FPGA 403 and transmits the H, L (1, 0) signal to the multiplex communication protocol processing unit 420.
  • the SPI input / output unit 450 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 420 to the I / O input / output unit 490.
  • the mode for determining data at which timing of the clock is determined in advance by the DIP-SW 213 since it is determined by the IC such as a sensor.
  • the SPI input / output unit 450 includes an SPI-I / F data input unit 451, a reception buffer 452, an SPI-I / F data output unit 453, and a transmission buffer 454, which multiplex each signal to be multiplexed.
  • the multiplex processing unit 460 is a multiplex processing unit for realizing the function of the multiplex communication board 401 according to the present embodiment, and is a multiplex communication FPGA 403.
  • the multiplex processing unit 460 includes a multiplex communication protocol processing unit 420, a serial encoder input / output unit 430, an I2C input / output unit 440, and an SPI input / output unit 450.
  • the RS485 DRIVER-IC 470 is a DRIVER-IC of the physical layer RS485 of the serial encoder.
  • the I / O input / output unit 480 is an input / output unit suitable for the I2C signal level.
  • the I / O input / output unit 490 is an input / output unit that conforms to the SPI signal level.
  • the multiplex communication boards 201 and 401 according to the present embodiment use GbE (1000 base-t, half-duplex communication) and perform transmission / reception by switching at a fixed number of times.
  • 3 and 4 show a multiplex communication protocol based on the Ethernet (registered trademark) standard GbE when the multiplex communication boards 201 and 401 (see FIG. 2) according to the present embodiment perform transmission and reception by the half-duplex communication method.
  • FIG. 1 1000 base-t, half-duplex communication
  • FIG. 3 is a diagram showing a multiplex communication protocol of a half-duplex communication method for transmitting data from A area 2 to B area 3, but half-duplex for transmitting data from B area 3 to A area 2.
  • the multiplex communication protocol of the communication method is not described.
  • FIG. 4 shows a half-duplex communication protocol for transmitting data from B area 3 to A area 2, but transmits data from A area 2 to B area 3.
  • the multiplex communication protocol of the half duplex communication system is not described.
  • the multiplex communication protocol is a communication protocol as shown in FIG. 3 and FIG. 4 for each 125 MHz clock, and transmits / receives 8 bits, and performs communication synthesis / separation on the local side.
  • the 8 bits are represented by “B0”, “B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7” arranged in the vertical axis in FIGS.
  • the numerical values “0” to “14” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication.
  • the numerical values “15” to “29” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication.
  • SPI-D represents data of SPI communication. “With / without SPI” is a flag indicating the presence / absence of data. “With SPI” indicates that there is SPI data. “No SPI” indicates that there is no SPI data. “I2C-D” represents I2C communication data. “I2C present / not present” is a flag indicating the presence / absence of data. “I2C present” indicates that there is I2C data. “No I2C” indicates that there is no I2C data.
  • “DO0”, “DO1”, “DO2”, and “DO3” are digital output signals (Hi: 1, Low: 0).
  • “DI1”, “DI2”, and “DI3” are digital input signals (Hi: 1, Low: 0).
  • “encoder 1 data”, “encoder 2 data”, “encoder 3 data”, and “encoder 4 data” are data for multiplexing encoder signals.
  • the “FEC (15, 11) shortening system” is a shortening system of the Hamming code (15, 11) (3 BIT is fixed to 0) and is 4 BIT data added for error correction.
  • a total of 11 BITs of 8 BIT + (3 BIT is fixed to 0) in a horizontal row with the counter number “2” to “9” are targeted.
  • a total of 11 BITs of 8 BIT + (3 BIT is fixed to 0) in a horizontal row with the counter number “17” to “24” are targeted.
  • “SS1”, “SS2”, “SS3”, and “SS4” are selection signals for devices to be communicated by SPI communication.
  • “MODE0”, “MODE1”, “MODE2”, and “MODE3” represent clock timing modes (Clock Phase) for determining data by SPI communication.
  • “CLK_I2C_NO” and “CLK_SPI_NO” provide four types of representative clock frequencies for I2C and SPI communication (for example, 1, 2, 5, and 10 MHz) for use in peripheral devices on the movable part side. The clock to be specified is specified.
  • the pressure-sensitive sensor 312 and the acceleration sensor 313, which are small peripheral devices that have conventionally been used only for a short distance, can communicate with each other between units and devices outside the casing.
  • the analog output of the sensor is directly connected to the A / D of the microcomputer, so there is no resolution due to noise, and the wiring-saving standards such as industrial Ethernet (registered trademark) or CC-Link (registered trademark) Since it is necessary to select a unit on which A / D or the like is mounted as a slave device, it has not been possible to reduce the size.
  • the pressure-sensitive sensor 312 and the acceleration sensor 313, which are peripheral devices can be directly connected to the multiplex communication board 401 according to this embodiment with high speed and low delay. Good complex control is possible.
  • the 4-axis motor control microcomputer 115 can directly collect data from the sensors (the pressure-sensitive sensor 312 and the acceleration sensor 313), so that there is little delay and high-performance feedback control can be realized.
  • the communication line includes a multi-axis control amplifier that is A area (fixed part) 101 and a head unit that is B area (movable part) 301. It is only necessary to connect one LAN line of the Ethernet (registered trademark) cable 501 for multiplex communication between the two.
  • the multi-axis control amplifier that is the A area (fixed part) 101 and the B area (movable) No change in wiring with the head unit 301 is required. This can be dealt with only by changing the CPU of the multi-axis control board 111. Therefore, even if the device has already been delivered, the effect of the new function can be obtained by using a new head unit that is the B area (movable part) 301 without wiring work.
  • notch FILTER notch FILTER, etc.
  • the processing load is high because the load on the CPU during this processing is large and the heat generation is high. It is necessary to use an expensive CPU.
  • a control CPU is used by utilizing a predetermined function (for example, LPF, HPF (High Pass Filer), or notch) or a frequency digital filter function in the multiplex communication FPGAs 203 and 403.
  • a predetermined function for example, LPF, HPF (High Pass Filer), or notch
  • a frequency digital filter function in the multiplex communication FPGAs 203 and 403.
  • this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning.
  • the pressure-sensitive sensor 312 and the acceleration sensor 313 are used as “peripheral devices”.
  • an EEPROM, an A / D converter, a D / A converter, a load cell, or the like may be used as the “peripheral device”.
  • SPI communication and I2C communication are performed as “serial bus standard data transmission”.
  • Serial bus standard data transmission Microwire (registered trademark) communication or the like may be performed.
  • Multiplex Communication System 115 4-axis Motor Control Microcomputer 201 Multiplex Communication Board 202 ETHERPHY-IC 203 FPGA for multiplex communication 233 HDLC-I / F output unit 234 Transmission buffer 243 I2C-I / F data output unit 244 Transmission buffer 253 SPI-I / F data output unit 254 Transmission buffer 311 Sensor substrate 312 Pressure sensor 313 Acceleration sensor 401 Multiplex communication substrate 402 ETHERPHY-IC 403 FPGA for multiplex communication 433 HDLC-I / F output unit 434 Transmission buffer 443 I2C-I / F data output unit 444 Transmission buffer 453 SPI-I / F data output unit 454 Transmission buffer 501 Ethernet (registered trademark) cable for multiplex communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Provided is a multiplex communication apparatus for enabling the communication of small-sized peripheral devices, which were conventionally able to be used only at short distances, between remote outside-casing units/apparatuses. An ETHERPHY-IC 402 in a multiplex communication board 401 is connected to an ETHERPHY-IC 202 in a multiplex communication board 201 of an A-area (fixed part) 101 by use of a cable 501. The cable 501 is a cable of a multiplex communication-use Ethernet (Registered Trademark), which comprises a 1000base-t-use category-5e flexible LAN line.

Description

多重通信装置Multiplex communication equipment
 本発明は、距離の離れた周辺デバイスと多重化通信し、センサフィードバック制御機能を高精度に構築する多重通信装置に関するものである。 The present invention relates to a multiplex communication apparatus that performs multiplex communication with peripheral devices at a distance and constructs a sensor feedback control function with high accuracy.
 従来より、距離の離れた周辺デバイスと通信する多重通信装置としては、以下の多重通信システムがある。 Conventionally, as a multiplex communication apparatus that communicates with a peripheral device at a distance, there are the following multiplex communication systems.
  図5は、従来技術の多重通信システムのシステム構成図である。図5に表したように、多重通信システム1001は、コントローラ11を有し、Aエリア(固定部)101とBエリア(可動部)301に分かれる。コントローラ11は、位置・速度・トルク指令などで装置全体をコントロールする。 FIG. 5 is a system configuration diagram of a conventional multiple communication system. As illustrated in FIG. 5, the multiplex communication system 1001 includes a controller 11 and is divided into an A area (fixed part) 101 and a B area (movable part) 301. The controller 11 controls the entire apparatus by a position / speed / torque command.
 Aエリア(固定部)101は、多軸制御アンプであって、コントローラ11からの指令で後述するACサーボモータをPID制御で制御する。Bエリア(可動部)301は、ヘッドユニットであって、マウンタの先端部につくユニットで、表面実装品の実装又は基板上の部品実装状態を検査する。 A area (fixed part) 101 is a multi-axis control amplifier, and controls an AC servo motor, which will be described later, by PID control in response to a command from the controller 11. Area B (movable part) 301 is a head unit, which is a unit attached to the tip of the mounter, and inspects the mounting of the surface-mounted product or the component mounting state on the board.
 Aエリア(固定部)101である多軸制御アンプは、多軸制御基板111を有する。 The multi-axis control amplifier which is the A area (fixed portion) 101 has a multi-axis control board 111.
 多軸制御基板111は、4軸ACサーボモータを制御するマイコンを載せた基板である。多軸制御基板111は、PHY-IC112、スレーブASIC113、PHY-IC114、4軸モータ制御用マイコン115、DI116、D0117、通信ASIC118、及び4つのDRV-IC119,120,121,122を有する。 The multi-axis control board 111 is a board on which a microcomputer for controlling a 4-axis AC servo motor is mounted. The multi-axis control board 111 includes a PHY-IC 112, a slave ASIC 113, a PHY-IC 114, a 4-axis motor control microcomputer 115, DI 116, D0117, a communication ASIC 118, and four DRV- ICs 119, 120, 121, and 122.
 PHY-IC112は、コントローラ11にケーブル12で接続される。ケーブル12は、100base-txベースの産業用のイーサネット(登録商標)規格のLANケーブルである。PHY-IC112は、スレーブASIC113に接続される。 The PHY-IC 112 is connected to the controller 11 with a cable 12. The cable 12 is a 100 base-tx based industrial Ethernet (registered trademark) LAN cable. The PHY-IC 112 is connected to the slave ASIC 113.
 スレーブASIC113は、PHY-IC114と4軸モータ制御用マイコン115に接続される。 The slave ASIC 113 is connected to the PHY-IC 114 and the 4-axis motor control microcomputer 115.
 4軸モータ制御用マイコン115は、DI116及びD0117に接続される。4軸モータ制御用マイコン115は、通信ASIC118を介して、4つのDRV-IC119,120,121,122に接続される。 The 4-axis motor control microcomputer 115 is connected to DIs 116 and D0117. The 4-axis motor control microcomputer 115 is connected to the four DRV- ICs 119, 120, 121, and 122 via the communication ASIC 118.
 Bエリア(可動部)301であるヘッドユニットは、ヘッド基板1201、センサ基板311、リミットスイッチ314、リレー315、及び4つのACサーボモータ/シリアルエンコーダ316,317,318,319を有する。 The head unit which is the B area (movable part) 301 includes a head substrate 1201, a sensor substrate 311, a limit switch 314, a relay 315, and four AC servomotor / serial encoders 316, 317, 318, and 319.
 ヘッド基板1201は、Bエリア(可動部)301であるヘッドユニットのセンサ情報をI2C通信又はSPI通信で取得し、産業用のイーサネット(登録商標)のスレーブ情報として送信する基板であり、その他Bエリア(可動部)301であるヘッドユニット内のDI/DO制御等を行う。ヘッド基板1201は、PHY-IC1202、スレーブASIC1203、及びマイコン1204を有する。マイコン1204は、I2C1205とSPI1206を有する。 The head substrate 1201 is a substrate that acquires sensor information of the head unit which is the B area (movable part) 301 by I2C communication or SPI communication, and transmits it as slave information of industrial Ethernet (registered trademark). (Moving part) DI / DO control in the head unit which is 301 is performed. The head substrate 1201 includes a PHY-IC 1202, a slave ASIC 1203, and a microcomputer 1204. The microcomputer 1204 has an I2C 1205 and an SPI 1206.
 スレーブASIC1203は、PHY-IC1202とマイコン1204に接続される。 The slave ASIC 1203 is connected to the PHY-IC 1202 and the microcomputer 1204.
 センサ基板311は、感圧センサ312と加速度センサ313を実装する基板である。感圧センサ312は、実装部品の押し込み圧を制御するためのセンサである。感圧センサ312は、マイコン1204内のI2C1205に接続される。従って、感圧センサ312のセンサ値は、I2C通信経由で、マイコン1204から取得される。加速度センサ313は、Bエリア(可動部)301であるヘッドユニットの振動を抑制するために加速度を検出するセンサである。加速度センサ313は、マイコン1204内のSPI1206に接続される。従って、加速度センサ313のセンサ値は、SPI通信経由で、マイコン1204から取得される。 The sensor substrate 311 is a substrate on which the pressure sensor 312 and the acceleration sensor 313 are mounted. The pressure-sensitive sensor 312 is a sensor for controlling the indentation pressure of the mounted component. The pressure sensitive sensor 312 is connected to the I2C 1205 in the microcomputer 1204. Therefore, the sensor value of the pressure sensor 312 is acquired from the microcomputer 1204 via I2C communication. The acceleration sensor 313 is a sensor that detects acceleration in order to suppress vibration of the head unit that is the B area (movable part) 301. The acceleration sensor 313 is connected to the SPI 1206 in the microcomputer 1204. Therefore, the sensor value of the acceleration sensor 313 is acquired from the microcomputer 1204 via SPI communication.
 ヘッド基板1201内のPHY-IC1202は、Aエリア(固定部)101の多軸制御基板111内のPHY-IC114にケーブル1301で接続される。ケーブル1301は、100base-txベースの産業用のイーサネット(登録商標)規格のLANケーブルである。 The PHY-IC 1202 in the head substrate 1201 is connected to the PHY-IC 114 in the multi-axis control substrate 111 in the A area (fixed portion) 101 by a cable 1301. The cable 1301 is a 100 base-tx-based industrial Ethernet (registered trademark) LAN cable.
 Bエリア(可動部)301であるヘッドユニット内のリミットスイッチ314、リレー315、及び4つのACサーボモータ/シリアルエンコーダ316,317,318,319は、Aエリア(固定部)101の多軸制御基板111内のDI116、D0117、及び4つのDRV-IC119,120,121,122に、ケーブル1302,1303,1304,1305,1306,1307で接続される。 The limit switch 314, the relay 315, and the four AC servo motor / serial encoders 316, 317, 318, and 319 in the head unit which is the B area (movable part) 301 are the multi-axis control board of the A area (fixed part) 101. 111 are connected to DI 116, D 0117, and four DRV- ICs 119, 120, 121, 122 by cables 1302, 1303, 1304, 1305, 1306, 1307.
 尚、距離の離れた周辺デバイスと通信する多重通信装置に関連する発明としては、以下の各特許文献に記載された発明がある。 In addition, as inventions related to a multiplex communication apparatus that communicates with peripheral devices at a distance, there are inventions described in the following patent documents.
特表2009-524281号公報Special table 2009-524281 特表2008-519471号公報JP 2008-519471 A
 しかしながら、図5に表された従来技術のシステムでは、新機能追加用センサを追加する場合、産業用イーサネット上のデータ量が増加し追加前の通信周期で許容されたバイト数を超えると通信の周期と制御周期が大きくなり、従来の制御性能より劣化する。 However, in the prior art system shown in FIG. 5, when adding a sensor for adding a new function, if the amount of data on the industrial Ethernet increases and exceeds the number of bytes allowed in the communication cycle before the addition, The cycle and the control cycle become large, and the conventional control performance is deteriorated.
 また、産業用のイーサネット(登録商標)の使用時や省配線時は、一般的に、スレーブ同士での通信は不可である。従って、産業用のイーサネット(登録商標)規格のLANケーブルをケーブル130に使用すると、1度マスタであるコントローラ11でデータを取得した後にAエリア(固定部)101である多軸制御アンプに反映されるため、遅延時間が大きくなり、高精度な制御ができず、また、コントローラ11の負荷が大きい。 Also, when using industrial Ethernet (registered trademark) or when wiring is reduced, communication between slaves is generally not possible. Therefore, when an industrial Ethernet (registered trademark) standard LAN cable is used for the cable 130, it is reflected in the multi-axis control amplifier which is the A area (fixed portion) 101 after data is acquired once by the controller 11 which is the master. For this reason, the delay time becomes large, high-precision control cannot be performed, and the load on the controller 11 is large.
 特に、感圧センサ312や加速度センサ313のようなシリアルバス規格のセンサを利用する場合には、一般的に、同じ筐体内の基板間・基板内の近距離での利用を前提とするため、筐体外や距離の離れた間ではノイズに弱く、誤動作・データ化けする可能性が高い。 In particular, when a serial bus standard sensor such as the pressure sensor 312 or the acceleration sensor 313 is used, it is generally assumed that the sensor is used at a short distance between the boards in the same housing or in the board. It is vulnerable to noise outside the case and at a distance, and there is a high possibility of malfunction and data corruption.
 そこで、本発明は、上述した点を鑑みてなされたものであり、従来、短い距離間でしか使用できなかった小型の周辺デバイスが距離のはなれた筐体外のユニット・装置間で通信可能となる多重通信装置を提供することを課題とする。 Therefore, the present invention has been made in view of the above points, and a small peripheral device that has been conventionally usable only for a short distance can communicate with a unit / apparatus outside the casing at a distance. It is an object to provide a multiplex communication apparatus.
 この課題を解決するためになされた請求項1に係る発明は、多重通信装置であって、基板内又は基板間で、マイコンと周辺デバイス間のシリアルバス規格のデータ伝送を多重化したこと、を特徴とする。 The invention according to claim 1 made to solve this problem is a multiplex communication apparatus, wherein serial bus standard data transmission between a microcomputer and a peripheral device is multiplexed within a board or between boards. Features.
 尚、「周辺デバイス」には、例えば、EEPROM、A/D変換器、D/A変換器、加速度センサ、感圧センサ、又はロードセル等がある。 The “peripheral device” includes, for example, an EEPROM, an A / D converter, a D / A converter, an acceleration sensor, a pressure sensor, or a load cell.
 また、「シリアルバス規格のデータ伝送」には、例えば、SPI(Serial Peripheral Interface)通信、I2C(Inter-Integrated Circuit)通信、又はMicrowire(登録商標)通信等がある。 In addition, “serial bus standard data transmission” includes, for example, SPI (Serial Peripheral Interface) communication, I2C (Inter-Integrated Circuit) communication, or Microwire (registered trademark) communication.
 本発明では、従来、短い距離間でしか使用できなかった小型の周辺デバイスが距離のはなれた筐体外のユニット・装置間で通信可能となる。 In the present invention, a small peripheral device that has been conventionally usable only for a short distance can communicate with a unit / apparatus outside the casing at a distance.
本発明の一実施形態に係る多重通信基板が使用された多重通信システムのシステム構成図である。1 is a system configuration diagram of a multiplex communication system using a multiplex communication board according to an embodiment of the present invention. 同多重通信基板の内部構成図である。It is an internal block diagram of the same multiplex communication board. 同多重通信基板が半2重通信方式で送受信を行う際のイーサネット(登録商標)の規格GbEによる多重通信プロトコルが表された図である。It is the figure by which the multiplex communication protocol by the standard (GbE) of Ethernet (trademark) at the time of the same multiplex communication board transmitting / receiving by a half duplex communication system was represented. 同多重通信基板が半2重通信方式で送受信を行う際のイーサネット(登録商標)の規格GbEによる多重通信プロトコルが表された図である。It is the figure by which the multiplex communication protocol by the standard (GbE) of Ethernet (trademark) at the time of the same multiplex communication board transmitting / receiving by a half duplex communication system was represented. 従来技術の多重通信システムのシステム構成図である。It is a system block diagram of the multiplex communication system of a prior art.
[1.多重通信システムのシステム構成]
  以下、本発明を具体化した多重通信基板について図面を参照しつつ説明する。図1は、本発明の一実施形態に係る多重通信基板が使用された多重通信システムのシステム構成図である。
[1. System configuration of multiplex communication system]
Hereinafter, a multiplex communication board embodying the present invention will be described with reference to the drawings. FIG. 1 is a system configuration diagram of a multiplex communication system in which a multiplex communication board according to an embodiment of the present invention is used.
 図1に表したように、多重通信システム1は、コントローラ11を有し、Aエリア(固定部)101とBエリア(可動部)301に分かれる。コントローラ11は、位置・速度・トルク指令などで装置全体をコントロールする。 As shown in FIG. 1, the multiplex communication system 1 includes a controller 11 and is divided into an A area (fixed part) 101 and a B area (movable part) 301. The controller 11 controls the entire apparatus by a position / speed / torque command.
 Aエリア(固定部)101は、多軸制御アンプであって、コントローラ11からの指令で後述するACサーボモータをPID制御で制御する。Bエリア(可動部)301は、ヘッドユニットであって、マウンタの先端部につくユニットで、表面実装品の実装又は基板上の部品実装状態を検査する。 A area (fixed part) 101 is a multi-axis control amplifier, and controls an AC servo motor, which will be described later, by PID control in response to a command from the controller 11. Area B (movable part) 301 is a head unit, which is a unit attached to the tip of the mounter, and inspects the mounting of the surface-mounted product or the component mounting state on the board.
 Aエリア(固定部)101である多軸制御アンプは、多軸制御基板111、及び本実施形態に係る多重通信基板201を有する。 The multi-axis control amplifier which is the A area (fixed portion) 101 includes a multi-axis control board 111 and the multiplex communication board 201 according to the present embodiment.
 多軸制御基板111は、4軸ACサーボモータを制御するマイコンを載せた基板である。多軸制御基板111は、PHY-IC112、スレーブASIC113、PHY-IC114、4軸モータ制御用マイコン115、DI116、D0117、通信ASIC118、及び4つのDRV-IC119,120,121,122を有する。4軸モータ制御用マイコン115は、I2C131とSPI132を有する。 The multi-axis control board 111 is a board on which a microcomputer for controlling a 4-axis AC servo motor is mounted. The multi-axis control board 111 includes a PHY-IC 112, a slave ASIC 113, a PHY-IC 114, a 4-axis motor control microcomputer 115, DI 116, D0117, a communication ASIC 118, and four DRV- ICs 119, 120, 121, and 122. The 4-axis motor control microcomputer 115 has an I2C 131 and an SPI 132.
 PHY-IC112は、コントローラ11にケーブル12で接続される。ケーブル12は、100base-txベースの産業用のイーサネット(登録商標)規格のLANケーブルである。PHY-IC112は、スレーブASIC113に接続される。 The PHY-IC 112 is connected to the controller 11 with a cable 12. The cable 12 is a 100 base-tx based industrial Ethernet (registered trademark) LAN cable. The PHY-IC 112 is connected to the slave ASIC 113.
 スレーブASIC113は、PHY-IC114と4軸モータ制御用マイコン115に接続される。 The slave ASIC 113 is connected to the PHY-IC 114 and the 4-axis motor control microcomputer 115.
 4軸モータ制御用マイコン115は、DI116及びD0117に接続される。4軸モータ制御用マイコン115は、通信ASIC118を介して、4つのDRV-IC119,120,121,122に接続される。 The 4-axis motor control microcomputer 115 is connected to DIs 116 and D0117. The 4-axis motor control microcomputer 115 is connected to the four DRV- ICs 119, 120, 121, and 122 via the communication ASIC 118.
 本実施形態に係る多重通信基板201は、ETHERPHY-IC202、多重通信用FPGA203、DO206、DI207、及び4つのDRV-IC208,209,210,211を有する。多重通信用FPGA203は、I2C204とSPI205を有する。 The multiplex communication board 201 according to this embodiment includes an ETHERPHY-IC 202, a multiplex communication FPGA 203, a DO 206, a DI 207, and four DRV- ICs 208, 209, 210, and 211. The multiplex communication FPGA 203 has an I2C 204 and an SPI 205.
 ETHERPHY-IC202は、多重通信用FPGA203に接続される。 The ETHERPHY-IC 202 is connected to the multiplex communication FPGA 203.
 多重通信用FPGA203は、DO206、DI207、及び4つのDRV-IC208,209,210,211に接続される。多重通信用FPGA203内のI2C204とSPI205は、4軸モータ制御用マイコン115内のI2C131とSPI132に接続される。 The multiplex communication FPGA 203 is connected to the DO 206, the DI 207, and the four DRV- ICs 208, 209, 210, and 211. The I2C 204 and the SPI 205 in the multiplex communication FPGA 203 are connected to the I2C 131 and the SPI 132 in the 4-axis motor control microcomputer 115.
 つまり、本実施形態に係る多重通信基板201は、同じ筐体であるAエリア(固定部)101の多軸制御アンプ内で、多軸制御基板111内のI2C131、SPI132と通信線で接続される。 That is, the multiplex communication board 201 according to the present embodiment is connected to the I2C 131 and the SPI 132 in the multi-axis control board 111 through communication lines in the multi-axis control amplifier of the A area (fixed portion) 101 that is the same housing. .
 また、本実施形態に係る多重通信基板201内のDO206、DI207、及び4つのDRV-IC208,209,210,211は、多軸制御基板111内のDI116、D0117、及び4つのDRV-IC119,120,121,122に接続される。 Also, the DO 206, DI 207, and the four DRV- ICs 208, 209, 210, 211 in the multiplex communication board 201 according to the present embodiment are the DI 116, D 0117, and the four DRV- ICs 119, 120 in the multi-axis control board 111. , 121, 122.
 Bエリア(可動部)301であるヘッドユニットは、センサ基板311、本実施形態に係る多重通信基板401、リミットスイッチ314、リレー315、及び4つのACサーボモータ/シリアルエンコーダ316,317,318,319を有する。 The head unit which is the B area (movable part) 301 includes a sensor substrate 311, a multiplex communication substrate 401 according to the present embodiment, a limit switch 314, a relay 315, and four AC servomotor / serial encoders 316, 317, 318, and 319. Have
 センサ基板311は、感圧センサ312と加速度センサ313を実装する基板である。感圧センサ312は、実装部品の押し込み圧を制御するためのセンサである。加速度センサ313は、Bエリア(可動部)301であるヘッドユニットの振動を抑制するために加速度を検出するセンサである。 The sensor substrate 311 is a substrate on which the pressure sensor 312 and the acceleration sensor 313 are mounted. The pressure-sensitive sensor 312 is a sensor for controlling the indentation pressure of the mounted component. The acceleration sensor 313 is a sensor that detects acceleration in order to suppress vibration of the head unit that is the B area (movable part) 301.
 本実施形態に係る多重通信基板401は、ETHERPHY-IC402、多重通信用FPGA403、DI406、D0407、及び4つのDRV-IC408,409,410,411を有する。多重通信用FPGA403は、I2C404とSPI405を有する。 The multiplex communication board 401 according to the present embodiment includes an ETHERPHY-IC 402, a multiplex communication FPGA 403, a DI 406, a D 0407, and four DRV- ICs 408, 409, 410, and 411. The multiplex communication FPGA 403 includes an I2C 404 and an SPI 405.
 多重通信用FPGA403内のI2C404は、感圧センサ312に接続される。多重通信用FPGA403内のSPI405は、加速度センサ313に接続される。 The I2C 404 in the multiplex communication FPGA 403 is connected to the pressure-sensitive sensor 312. The SPI 405 in the multiplex communication FPGA 403 is connected to the acceleration sensor 313.
 多重通信用FPGA403は、DI406、D0407、及び4つのDRV-IC408,409,410,411に接続される。 The multiplex communication FPGA 403 is connected to the DI 406, D 0407, and the four DRV- ICs 408, 409, 410, and 411.
 本実施形態に係る多重通信基板401内のDI406、D0407、及び4つのDRV-IC408,409,410,411は、リミットスイッチ314、リレー315、及び4つのACサーボモータ/シリアルエンコーダ316,317,318,319に接続される。 The DI 406, D0407, and four DRV- ICs 408, 409, 410, 411 in the multiplex communication board 401 according to the present embodiment are a limit switch 314, a relay 315, and four AC servo motor / serial encoders 316, 317, 318. , 319.
 本実施形態に係る多重通信基板401内のETHERPHY-IC402は、Aエリア(固定部)101の本実施形態に係る多重通信基板201内のETHERPHY-IC202にケーブル501で接続される。ケーブル501は、多重通信用のイーサネット(登録商標)のケーブルであり、1000base-t用のカテゴリー5eの対屈曲性のあるLAN線が使用される。 The ETHERPHY-IC 402 in the multiplex communication board 401 according to the present embodiment is connected by a cable 501 to the ETHERPHY-IC 202 in the multiplex communication board 201 according to the present embodiment in the A area (fixed portion) 101. The cable 501 is an Ethernet (registered trademark) cable for multiplex communication, and a 1000 base-t category 5e anti-bending LAN line is used.
[2.多重通信基板の内部構成]
 図2は、本実施形態に係る多重通信基板201,401の内部構成図である。つまり、図2は、シリアルエンコーダ信号、I2C信号、及びSPI信号をGbEを利用した多重通信を行う基板の内部構成が表される。本実施形態に係る多重通信基板201,401は、多重化対象信号の入力部、多重化処理部、及びGbEを利用した多重化通信部に、大きく分けられる。
[2. Internal configuration of multiplex communication board]
FIG. 2 is an internal configuration diagram of the multiplex communication boards 201 and 401 according to the present embodiment. That is, FIG. 2 shows an internal configuration of a board that performs multiplex communication using a serial encoder signal, an I2C signal, and an SPI signal using GbE. The multiplex communication boards 201 and 401 according to the present embodiment are roughly divided into a multiplexing target signal input unit, a multiplexing processing unit, and a multiplexing communication unit using GbE.
 図2に表されたように、本実施形態に係る多重通信基板201,401は、上述したように、ケーブル501で接続される。 As shown in FIG. 2, the multiple communication boards 201 and 401 according to the present embodiment are connected by the cable 501 as described above.
 本実施形態に係る多重通信基板201は、1000base-t用PHY-IC212、DIP-SW213、多重通信プロトコル処理部220、シリアルエンコーダ入出力部230、I2C入出力部240、SPI入出力部250、多重処理部260、RS485用DRIVER-IC270、及び2つのI/O入出力部280,290を有する。 The multiplex communication board 201 according to this embodiment includes a 1000base-t PHY-IC 212, a DIP-SW 213, a multiplex communication protocol processing unit 220, a serial encoder input / output unit 230, an I2C input / output unit 240, an SPI input / output unit 250, It includes a processing unit 260, a DRIVER-IC 270 for RS485, and two I / O input / output units 280 and 290.
 1000base-t用PHY-IC212は、多重通信を行うための1000base-tの通信用PHY-ICである。 The 1000base-t PHY-IC 212 is a 1000base-t communication PHY-IC for performing multiplex communication.
 DIP-SW213は、SPI通信ではクロックのどのタイミングでデータを確定するかのモードはセンサ等のICで決まるため、予めそのタイミングを設定するDIPスイッチである(但し、あくまでもdefault値で、4軸モータ制御用マイコン115側からのUART,IO設定でもよい)。 The DIP-SW 213 is a DIP switch that sets the timing in advance because the mode for determining data at which timing of the clock in SPI communication is determined by the IC of the sensor or the like (however, the default value is a 4-axis motor) UART and IO setting from the control microcomputer 115 side may also be used).
 多重通信プロトコル処理部220は、ローカル側のデータを多重通信用プロトコル用に混合・分離処理を行う処理部である。多重通信プロトコル処理部220は、GMII-IFデータ入力部221、多重分離部222、多重混合部223、及びGMII-IFデータ出力部224を有する。 The multiplex communication protocol processing unit 220 is a processing unit that performs mixing / separation processing of local data for a multiplex communication protocol. The multiplex communication protocol processing unit 220 includes a GMII-IF data input unit 221, a demultiplexing unit 222, a multiplex mixing unit 223, and a GMII-IF data output unit 224.
 シリアルエンコーダ入出力部230は、ACサーボモータ316~319等のABSシリアルエンコーダ通信データを入力又は出力する。シリアルエンコーダ入出力部230は、 多重通信プロトコル処理部220へデータを送信又は多重通信プロトコル処理部220から受信したデータを出力する。シリアルエンコーダ入出力部230は、HDLC-I/Fデータ入力部231、受信バッファ232、HDLC-I/Fデータ出力部233、及び送信バッファ234を有し、それらは、多重化対象の各信号を多重化するための入出力部とそのバッファである。 The serial encoder input / output unit 230 inputs or outputs ABS serial encoder communication data such as AC servo motors 316 to 319. The serial encoder input / output unit 230 transmits data to the multiplex communication protocol processing unit 220 or outputs data received from the multiplex communication protocol processing unit 220. The serial encoder input / output unit 230 includes an HDLC-I / F data input unit 231, a reception buffer 232, an HDLC-I / F data output unit 233, and a transmission buffer 234, and these signals each signal to be multiplexed. An input / output unit for multiplexing and its buffer.
 I2C入出力部240は、I2C通信のクロック、多重通信用FPGA203内の高速なクロックでデータをサンプルし、H,L(1,0)信号を多重通信プロトコル処理部220へ送信する。I2C入出力部240は、多重通信プロトコル処理部220からのH,L(1,0)信号をI/O入出力部280へ出力する。I2C入出力部240は、I2C-I/Fデータ入力部241、受信バッファ242、I2C-I/Fデータ出力部243、及び送信バッファ244を有し、それらは、多重化対象の各信号を多重化するための入出力部とそのバッファである。 The I2C input / output unit 240 samples the data using the I2C communication clock and the high-speed clock in the multiplex communication FPGA 203 and transmits the H and L (1, 0) signals to the multiplex communication protocol processing unit 220. The I2C input / output unit 240 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 220 to the I / O input / output unit 280. The I2C input / output unit 240 includes an I2C-I / F data input unit 241, a reception buffer 242, an I2C-I / F data output unit 243, and a transmission buffer 244, which multiplex each signal to be multiplexed. The input / output unit and its buffer
 SPI入出力部250は、SPI通信のクロック、多重通信用FPGA203内の高速なクロックでデータをサンプルし、H,L(1,0)信号を多重通信プロトコル処理部220へ送信する。SPI入出力部250は、多重通信プロトコル処理部220からのH,L(1,0)信号をI/O入出力部290へ出力する。クロックのどのタイミングでデータを確定するかのモードは、センサ等のICで決まるため、DIP-SW213で予め設定する。SPI入出力部250は、SPI-I/Fデータ入力部251、受信バッファ252、SPI-I/Fデータ出力部253、及び送信バッファ254を有し、それらは、多重化対象の各信号を多重化するための入出力部とそのバッファである。 The SPI input / output unit 250 samples data using the SPI communication clock and the high-speed clock in the multiplex communication FPGA 203, and transmits the H and L (1, 0) signals to the multiplex communication protocol processing unit 220. The SPI input / output unit 250 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 220 to the I / O input / output unit 290. The mode for determining data at which timing of the clock is determined in advance by the DIP-SW 213 since it is determined by the IC such as a sensor. The SPI input / output unit 250 includes an SPI-I / F data input unit 251, a reception buffer 252, an SPI-I / F data output unit 253, and a transmission buffer 254, which multiplex each signal to be multiplexed. The input / output unit and its buffer
 多重処理部260は、本実施形態に係る多重通信基板201の機能を実現するための多重処理部であり、多重通信用FPGA203である。多重処理部260は、多重通信プロトコル処理部220、シリアルエンコーダ入出力部230、I2C入出力部240、及びSPI入出力部250を有する。 The multiplex processing unit 260 is a multiplex processing unit for realizing the function of the multiplex communication board 201 according to the present embodiment, and is a multiplex communication FPGA 203. The multiplex processing unit 260 includes a multiplex communication protocol processing unit 220, a serial encoder input / output unit 230, an I2C input / output unit 240, and an SPI input / output unit 250.
 RS485用DRIVER-IC270は、シリアルエンコーダの物理層RS485のDRIVER-ICである。 The RS485 DRIVER-IC 270 is a DRIVER-IC of the physical layer RS485 of the serial encoder.
 I/O入出力部280は、I2Cの信号レベルにあった入出力部である。 The I / O input / output unit 280 is an input / output unit suitable for the I2C signal level.
 I/O入出力部290は、SPIの信号レベルにあった入出力部である。 The I / O input / output unit 290 is an input / output unit suitable for the SPI signal level.
 同様にして、本実施形態に係る多重通信基板401は、1000base-t用PHY-IC412、LED413、多重通信プロトコル処理部420、シリアルエンコーダ入出力部430、I2C入出力部440、SPI入出力部450、多重処理部460、RS485用DRIVER-IC470、及び2つのI/O入出力部480,490を有する。 Similarly, the multiplex communication board 401 according to the present embodiment includes a 1000-base-t PHY-IC 412, an LED 413, a multiplex communication protocol processing unit 420, a serial encoder input / output unit 430, an I2C input / output unit 440, and an SPI input / output unit 450. A multi-processing unit 460, an RS485 DRIVER-IC 470, and two I / O input / output units 480 and 490.
 1000base-t用PHY-IC412は、多重通信を行うための1000base-tの通信用PHY-ICである。 The 1000base-t PHY-IC 412 is a 1000base-t communication PHY-IC for performing multiplex communication.
 LED413は、SPI通信で4軸モータ制御用マイコン115側と仕様があっているかの目視確認用LEDである。 The LED 413 is a visual confirmation LED for checking whether the specification matches the 4-axis motor control microcomputer 115 side by SPI communication.
 多重通信プロトコル処理部420は、ローカル側のデータを多重通信用プロトコル用に混合・分離処理を行う処理部である。多重通信プロトコル処理部420は、GMII-IFデータ入力部421、多重分離部422、多重混合部423、及びGMII-IFデータ出力部424を有する。 The multiplex communication protocol processing unit 420 is a processing unit that performs mixing / separation processing of local data for a multiplex communication protocol. The multiplex communication protocol processing unit 420 includes a GMII-IF data input unit 421, a demultiplexing unit 422, a multiplex mixing unit 423, and a GMII-IF data output unit 424.
 シリアルエンコーダ入出力部430は、ACサーボモータ316~319等のABSシリアルエンコーダ通信データを入力又は出力する。シリアルエンコーダ入出力部430は、 多重通信プロトコル処理部420へデータを送信又は多重通信プロトコル処理部420から受信したデータを出力する。シリアルエンコーダ入出力部430は、HDLC-I/Fデータ入力部431、受信バッファ432、HDLC-I/Fデータ出力部433、及び送信バッファ434を有し、それらは、多重化対象の各信号を多重化するための入出力部とそのバッファである。 The serial encoder input / output unit 430 inputs or outputs ABS serial encoder communication data of the AC servo motors 316 to 319 and the like. The serial encoder input / output unit 430 transmits data to the multiplex communication protocol processing unit 420 or outputs data received from the multiplex communication protocol processing unit 420. The serial encoder input / output unit 430 includes an HDLC-I / F data input unit 431, a reception buffer 432, an HDLC-I / F data output unit 433, and a transmission buffer 434. An input / output unit for multiplexing and its buffer.
 I2C入出力部440は、I2C通信のクロック、多重通信用FPGA403内の高速なクロックでデータをサンプルし、H,L(1,0)信号を多重通信プロトコル処理部420へ送信する。I2C入出力部440は、多重通信プロトコル処理部420からのH,L(1,0)信号をI/O入出力部480へ出力する。I2C入出力部440は、I2C-I/Fデータ入力部441、受信バッファ442、I2C-I/Fデータ出力部443、及び送信バッファ444を有し、それらは、多重化対象の各信号を多重化するための入出力部とそのバッファである。 The I2C input / output unit 440 samples data using the I2C communication clock and the high-speed clock in the multiplex communication FPGA 403 and transmits the H, L (1, 0) signal to the multiplex communication protocol processing unit 420. The I2C input / output unit 440 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 420 to the I / O input / output unit 480. The I2C input / output unit 440 includes an I2C-I / F data input unit 441, a reception buffer 442, an I2C-I / F data output unit 443, and a transmission buffer 444, which multiplex each signal to be multiplexed. The input / output unit and its buffer
 SPI入出力部450は、SPI通信のクロック、多重通信用FPGA403内の高速なクロックでデータをサンプルし、H,L(1,0)信号を多重通信プロトコル処理部420へ送信する。SPI入出力部450は、多重通信プロトコル処理部420からのH,L(1,0)信号をI/O入出力部490へ出力する。クロックのどのタイミングでデータを確定するかのモードは、センサ等のICで決まるため、DIP-SW213で予め設定する。SPI入出力部450は、SPI-I/Fデータ入力部451、受信バッファ452、SPI-I/Fデータ出力部453、及び送信バッファ454を有し、それらは、多重化対象の各信号を多重化するための入出力部とそのバッファである。 The SPI input / output unit 450 samples data using the SPI communication clock and the high-speed clock in the multiplex communication FPGA 403 and transmits the H, L (1, 0) signal to the multiplex communication protocol processing unit 420. The SPI input / output unit 450 outputs the H, L (1, 0) signal from the multiplex communication protocol processing unit 420 to the I / O input / output unit 490. The mode for determining data at which timing of the clock is determined in advance by the DIP-SW 213 since it is determined by the IC such as a sensor. The SPI input / output unit 450 includes an SPI-I / F data input unit 451, a reception buffer 452, an SPI-I / F data output unit 453, and a transmission buffer 454, which multiplex each signal to be multiplexed. The input / output unit and its buffer
 多重処理部460は、本実施形態に係る多重通信基板401の機能を実現するための多重処理部であり、多重通信用FPGA403である。多重処理部460は、多重通信プロトコル処理部420、シリアルエンコーダ入出力部430、I2C入出力部440、及びSPI入出力部450を有する。 The multiplex processing unit 460 is a multiplex processing unit for realizing the function of the multiplex communication board 401 according to the present embodiment, and is a multiplex communication FPGA 403. The multiplex processing unit 460 includes a multiplex communication protocol processing unit 420, a serial encoder input / output unit 430, an I2C input / output unit 440, and an SPI input / output unit 450.
 RS485用DRIVER-IC470は、シリアルエンコーダの物理層RS485のDRIVER-ICである。 The RS485 DRIVER-IC 470 is a DRIVER-IC of the physical layer RS485 of the serial encoder.
 I/O入出力部480は、I2Cの信号レベルにあった入出力部である。 The I / O input / output unit 480 is an input / output unit suitable for the I2C signal level.
 I/O入出力部490は、SPIの信号レベルにあった入出力部である。 The I / O input / output unit 490 is an input / output unit that conforms to the SPI signal level.
[3.多重通信プロトコル]
 本実施形態に係る多重通信基板201,401は、GbE(1000base-t、半2重通信)を使用し、一定回数毎に送受信を切り替えて行う。図3,図4は、本実施形態に係る多重通信基板201,401(図2参照)が半2重通信方式で送受信を行う際のイーサネット(登録商標)の規格GbEによる多重通信プロトコルが表わされた図である。
[3. Multiplex communication protocol]
The multiplex communication boards 201 and 401 according to the present embodiment use GbE (1000 base-t, half-duplex communication) and perform transmission / reception by switching at a fixed number of times. 3 and 4 show a multiplex communication protocol based on the Ethernet (registered trademark) standard GbE when the multiplex communication boards 201 and 401 (see FIG. 2) according to the present embodiment perform transmission and reception by the half-duplex communication method. FIG.
 図3,図4では、縦軸に通信方向が表される。図3は、Aエリア2からBエリア3にデータを送信する半2重通信方式の多重通信プロトコルが表わされた図であるが、Bエリア3からAエリア2にデータを送信する半2重通信方式の多重通信プロトコルは記載されていない。これに対して、図4は、Bエリア3からAエリア2にデータを送信する半2重通信方式の多重通信プロトコルが表された図であるが、Aエリア2からBエリア3にデータを送信する半2重通信方式の多重通信プロトコルは記載されていない。 3 and 4, the vertical axis represents the communication direction. FIG. 3 is a diagram showing a multiplex communication protocol of a half-duplex communication method for transmitting data from A area 2 to B area 3, but half-duplex for transmitting data from B area 3 to A area 2. The multiplex communication protocol of the communication method is not described. On the other hand, FIG. 4 shows a half-duplex communication protocol for transmitting data from B area 3 to A area 2, but transmits data from A area 2 to B area 3. The multiplex communication protocol of the half duplex communication system is not described.
 多重通信プロトコルは、125MHzのクロック毎に図3,図4に表されるような通信プロトコルであり、8BITの送受信を行い、ローカル側の通信合成・分離を行う。その8BITは、図3,図4では、縦軸に並んだ「B0」,「B1」,「B2」,「B3」,「B4」,「B5」,「B6」,「B7」で表される。 The multiplex communication protocol is a communication protocol as shown in FIG. 3 and FIG. 4 for each 125 MHz clock, and transmits / receives 8 bits, and performs communication synthesis / separation on the local side. The 8 bits are represented by “B0”, “B1”, “B2”, “B3”, “B4”, “B5”, “B6”, “B7” arranged in the vertical axis in FIGS. The
 図3では、横軸に並んだ「0」~「14」の数値は、多重化通信を行うクロック(規格GbE用と同じ125MHz)のカウンタ数である。同様にして、図4では、横軸に並んだ「15」~「29」の数値は、多重化通信を行うクロック(規格GbE用と同じ125MHz)のカウンタ数である。 In FIG. 3, the numerical values “0” to “14” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication. Similarly, in FIG. 4, the numerical values “15” to “29” arranged on the horizontal axis are the counter numbers of the clock (125 MHz, which is the same as that for the standard GbE) for performing multiplexed communication.
 図3,図4において、「SPI-D」は、SPI通信のデータを表す。「SPI有/無」は、データ有無のフラグである。「SPI有」は、SPIデータが有ることを表す。「SPI無」は、SPIのデータが無いことを表す。「I2C-D」は、I2C通信のデータを表す。「I2C有/無」は、データ有無のフラグである。「I2C有」は、I2Cデータが有ることを表す。「I2C無」は、I2Cのデータが無いことを表す。 3 and 4, “SPI-D” represents data of SPI communication. “With / without SPI” is a flag indicating the presence / absence of data. “With SPI” indicates that there is SPI data. “No SPI” indicates that there is no SPI data. “I2C-D” represents I2C communication data. “I2C present / not present” is a flag indicating the presence / absence of data. “I2C present” indicates that there is I2C data. “No I2C” indicates that there is no I2C data.
 図3,図4において、「DO0」,「DO1」,「DO2」,「DO3」は、デジタル出力信号(Hi:1,Low:0)である。「DI1」,「DI2」,「DI3」は、デジタル入力信号(Hi:1,Low:0)である。 3 and 4, “DO0”, “DO1”, “DO2”, and “DO3” are digital output signals (Hi: 1, Low: 0). “DI1”, “DI2”, and “DI3” are digital input signals (Hi: 1, Low: 0).
 図3,図4において、「エンコーダ1 データ」,「エンコーダ2 データ」,「エンコーダ3 データ」,「エンコーダ4 データ」は、エンコーダ信号を多重化するデータである。「FEC(15,11)短縮系」は、ハミング符号(15,11)の短縮系(3BITが0固定)で、誤り訂正用に付加される4BITデータである。図3では、カウンタ数が「2」~「9」の横一列の8BIT+(3BITが0固定)の計11BITを対象とする。図4では、カウンタ数が「17」~「24」の横一列の8BIT+(3BITが0固定)の計11BITを対象とする。 3 and 4, “encoder 1 data”, “encoder 2 data”, “encoder 3 data”, and “encoder 4 data” are data for multiplexing encoder signals. The “FEC (15, 11) shortening system” is a shortening system of the Hamming code (15, 11) (3 BIT is fixed to 0) and is 4 BIT data added for error correction. In FIG. 3, a total of 11 BITs of 8 BIT + (3 BIT is fixed to 0) in a horizontal row with the counter number “2” to “9” are targeted. In FIG. 4, a total of 11 BITs of 8 BIT + (3 BIT is fixed to 0) in a horizontal row with the counter number “17” to “24” are targeted.
 図3,図4において、「SS1」,「SS2」,「SS3」,「SS4」は、SPI通信で通信対象とするデバイスの選択信号である。「MODE0」,「MODE1」,「MODE2」,「MODE3」は、SPI通信でデータを確定するクロックのタイミングのモード(Clock Phase)を表す。また、「CLK_I2C_NO」、「CLK_SPI_NO」は、I2C,SPI通信の代表的なclock周波数を0-3の4種類(例えば、1,2,5,10MHz)用意し、可動部側の周辺デバイスで使用するclockを指定する。 3 and 4, “SS1”, “SS2”, “SS3”, and “SS4” are selection signals for devices to be communicated by SPI communication. “MODE0”, “MODE1”, “MODE2”, and “MODE3” represent clock timing modes (Clock Phase) for determining data by SPI communication. In addition, “CLK_I2C_NO” and “CLK_SPI_NO” provide four types of representative clock frequencies for I2C and SPI communication (for example, 1, 2, 5, and 10 MHz) for use in peripheral devices on the movable part side. The clock to be specified is specified.
 尚、「空き」は、データそのものが存在しないことを表す。 Note that “free” means that the data itself does not exist.
 図3に表されたように、カウンタ数が「0」,「1」の通信開始時はプリアンブル2個が送受信される。カウンタ数が「14」では、送受信を切り替えるため、お互いに送信OFFの状態とする。 As shown in FIG. 3, two preambles are transmitted and received at the start of communication with the counter numbers “0” and “1”. When the number of counters is “14”, transmission and reception are switched, so that transmission is mutually turned off.
 図4に表されたように、カウンタ数が「15」~「29」の後半15回分は、送受信の方向を切り替えて通信を行う。 As shown in FIG. 4, for the last 15 times of the counter number “15” to “29”, communication is performed by switching the transmission / reception direction.
[4.まとめ]
 すなわち、本実施形態では、従来、短い距離間でしか使用できなかった小型の周辺デバイスである感圧センサ312や加速度センサ313が距離のはなれた筐体外のユニット・装置間で通信可能となる。
[4. Summary]
That is, in the present embodiment, the pressure-sensitive sensor 312 and the acceleration sensor 313, which are small peripheral devices that have conventionally been used only for a short distance, can communicate with each other between units and devices outside the casing.
 従来は、センサのアナログ出力をマイコンのA/Dに直接接続するので、ノイズで分解能が出なかったり、また、産業用のイーサネット(登録商標)又はCC-Link(登録商標)等の省配線規格品のスレーブ機器でA/D等が搭載されたユニットを選択する必要があるため、小型化することができなかった。しかしながら、本実施の形態では、高速・低遅延で直接に本実施形態に係る多重通信基板401に周辺デバイスである感圧センサ312や加速度センサ313が接続できるため、ハードウエア的に小型で精度の良い複雑な制御が可能となる。 Conventionally, the analog output of the sensor is directly connected to the A / D of the microcomputer, so there is no resolution due to noise, and the wiring-saving standards such as industrial Ethernet (registered trademark) or CC-Link (registered trademark) Since it is necessary to select a unit on which A / D or the like is mounted as a slave device, it has not been possible to reduce the size. However, in this embodiment, the pressure-sensitive sensor 312 and the acceleration sensor 313, which are peripheral devices, can be directly connected to the multiplex communication board 401 according to this embodiment with high speed and low delay. Good complex control is possible.
 つまり、センサ類(感圧センサ312や加速度センサ313)と4軸モータ制御用マイコン115が直接通信を行うので、コントローラ11の負荷が増えない。4軸モータ制御用マイコン115は、センサ類(感圧センサ312や加速度センサ313)からのデータを直接収集できるため、遅延が少なく、高性能なフィードバック制御が実現可能である。 That is, since the sensors (the pressure sensor 312 and the acceleration sensor 313) and the 4-axis motor control microcomputer 115 communicate directly, the load on the controller 11 does not increase. The 4-axis motor control microcomputer 115 can directly collect data from the sensors (the pressure-sensitive sensor 312 and the acceleration sensor 313), so that there is little delay and high-performance feedback control can be realized.
 本実施形態では、他の通信データと多重化するために、ユニット間の追加配線がなく、省配線化できる。よって、本実施形態では、例えば、センサ出力用のアナログ出力ケーブル、RS485ケーブル、又はイーサネット(登録商標)用ケーブルの追加が不要である。 In the present embodiment, since multiplexing with other communication data is performed, there is no additional wiring between units, and wiring can be saved. Therefore, in this embodiment, for example, it is not necessary to add an analog output cable for sensor output, an RS485 cable, or an Ethernet (registered trademark) cable.
 つまり、他の信号線(エンコーダ・DIO)を含めて多重化しているため、通信線としては、Aエリア(固定部)101である多軸制御アンプとBエリア(可動部)301であるヘッドユニットとの間を、多重通信用のイーサネット(登録商標)のケーブル501のLAN線を1本接続するだけでよく、省配線を実現可能にする。 That is, since other signal lines (encoders / DIOs) are multiplexed, the communication line includes a multi-axis control amplifier that is A area (fixed part) 101 and a head unit that is B area (movable part) 301. It is only necessary to connect one LAN line of the Ethernet (registered trademark) cable 501 for multiplex communication between the two.
 本実施形態では、既に出荷済み装置のワイヤーハーネスの配線を変更せず、新型ユニット内の基板の追加・変更や、マイコンを搭載するユニット側のソフトウエアの変更のみで、装置の機能拡張が可能である。 In this embodiment, it is possible to expand the function of the device by changing the software on the unit side where the microcomputer is installed without changing the wiring of the wire harness of the already shipped device It is.
 つまり、Bエリア(可動部)301であるヘッドユニットでセンサ類(感圧センサ312や加速度センサ313)を変更しても、Aエリア(固定部)101である多軸制御アンプとBエリア(可動部)301であるヘッドユニットとの間での配線変更が不要である。多軸制御基板111のCPUを変更するのみで対応可能である。従って、既に納入された装置でも、配線工事なしで、Bエリア(可動部)301であるヘッドユニットの新型を使用することで、新機能の効果を得られる。 That is, even if the sensors (pressure-sensitive sensor 312 and acceleration sensor 313) are changed in the head unit that is the B area (movable part) 301, the multi-axis control amplifier that is the A area (fixed part) 101 and the B area (movable) No change in wiring with the head unit 301 is required. This can be dealt with only by changing the CPU of the multi-axis control board 111. Therefore, even if the device has already been delivered, the effect of the new function can be obtained by using a new head unit that is the B area (movable part) 301 without wiring work.
 従来は、機械系の振動制御等では、デジタルフィルタ(ノッチFILTER等)を使用するのが一般的であるが、この処理時のCPUにかかる負荷が大きく、発熱が高くなるため、処理能力が高い高価なCPUを使用する必要がある。しかしながら、本実施形態では、多重通信用FPGA203,403に予め決められた機能(例えば、LPF、HPF(High Pass Filer)、又はノッチ等)又は周波数のデジタルフィルタ機能を利用することで、制御用CPUに対し、負荷を減らし、発熱を低く抑えられるので、処理能力が低い安価な制御用CPUを選択することが可能である。 Conventionally, it is common to use a digital filter (notch FILTER, etc.) for mechanical vibration control, etc., but the processing load is high because the load on the CPU during this processing is large and the heat generation is high. It is necessary to use an expensive CPU. However, in the present embodiment, a control CPU is used by utilizing a predetermined function (for example, LPF, HPF (High Pass Filer), or notch) or a frequency digital filter function in the multiplex communication FPGAs 203 and 403. On the other hand, since the load is reduced and the heat generation can be kept low, it is possible to select an inexpensive control CPU having a low processing capability.
[5.その他]
 尚、本発明は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、本実施の形態では、「周辺デバイス」として、感圧センサ312や加速度センサ313を使用する。その他に、「周辺デバイス」として、EEPROM、A/D変換器、D/A変換器、又はロードセル等を使用してもよい。
[5. Others]
In addition, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning.
For example, in this embodiment, the pressure-sensitive sensor 312 and the acceleration sensor 313 are used as “peripheral devices”. In addition, an EEPROM, an A / D converter, a D / A converter, a load cell, or the like may be used as the “peripheral device”.
 また、本実施の形態では、「シリアルバス規格のデータ伝送」として、SPI通信やI2C通信を行う。その他に、「シリアルバス規格のデータ伝送」として、Microwire(登録商標)通信等を行ってもよい。 Further, in the present embodiment, SPI communication and I2C communication are performed as “serial bus standard data transmission”. In addition, as the “serial bus standard data transmission”, Microwire (registered trademark) communication or the like may be performed.
  1 多重通信システム
115 4軸モータ制御用マイコン
201 多重通信基板
202 ETHERPHY-IC
203 多重通信用FPGA
233 HDLC-I/F出力部
234 送信バッファ
243 I2C-I/Fデータ出力部
244 送信バッファ
253 SPI-I/Fデータ出力部
254 送信バッファ
311 センサ基板
312 感圧センサ
313 加速度センサ
401 多重通信基板
402 ETHERPHY-IC
403 多重通信用FPGA
433 HDLC-I/F出力部
434 送信バッファ
443 I2C-I/Fデータ出力部
444 送信バッファ
453 SPI-I/Fデータ出力部
454 送信バッファ
501 多重通信用のイーサネット(登録商標)のケーブル
1 Multiplex Communication System 115 4-axis Motor Control Microcomputer 201 Multiplex Communication Board 202 ETHERPHY-IC
203 FPGA for multiplex communication
233 HDLC-I / F output unit 234 Transmission buffer 243 I2C-I / F data output unit 244 Transmission buffer 253 SPI-I / F data output unit 254 Transmission buffer 311 Sensor substrate 312 Pressure sensor 313 Acceleration sensor 401 Multiplex communication substrate 402 ETHERPHY-IC
403 FPGA for multiplex communication
433 HDLC-I / F output unit 434 Transmission buffer 443 I2C-I / F data output unit 444 Transmission buffer 453 SPI-I / F data output unit 454 Transmission buffer 501 Ethernet (registered trademark) cable for multiplex communication

Claims (4)

  1.  基板内又は基板間で、マイコンと周辺デバイス間のシリアルバス規格のデータ伝送を多重化したこと、を特徴とする多重通信装置。 A multiplex communication device characterized by multiplexing serial bus standard data transmission between a microcomputer and peripheral devices within a substrate or between substrates.
  2.  データの論理層と物理層の内部インターフェイスの前記物理層として用いられるイーサネット(登録商標)用の物理層回路と、
     多重通信用ワイヤーハーネスとして用いられるLAN線と、を備えたこと、を特徴とする請求項1に記載の多重通信装置。
    A physical layer circuit for Ethernet (registered trademark) used as the physical layer of the logical interface of the data and the internal interface of the physical layer;
    The multiplex communication apparatus according to claim 1, further comprising a LAN line used as a multiplex communication wire harness.
  3.  ローカル出力部と、
     バッファと、を備え、
     前記ローカル出力部は、連続的に出力するためのデータ数分を前記バッファにためた後に、前記バッファにためたデータの出力を開始すること、を特徴とする請求項1に記載の多重通信装置。
    A local output section;
    A buffer, and
    The multiplex communication apparatus according to claim 1, wherein the local output unit starts outputting data for the buffer after storing the number of data for continuous output in the buffer. .
  4.  予め決められた機能又は周波数のデジタルフィルタ機能を備え、
     前記周辺デバイスの値に対して前記機能で処理した結果を出力すること、を特徴とする請求項1に記載の多重通信装置。
    It has a digital filter function of a predetermined function or frequency,
    The multiplex communication apparatus according to claim 1, wherein the result of processing by the function is output for the value of the peripheral device.
PCT/JP2014/073798 2014-09-09 2014-09-09 Multiplex communication apparatus WO2016038685A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/073798 WO2016038685A1 (en) 2014-09-09 2014-09-09 Multiplex communication apparatus
JP2016547292A JP6511457B2 (en) 2014-09-09 2014-09-09 Multiple communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073798 WO2016038685A1 (en) 2014-09-09 2014-09-09 Multiplex communication apparatus

Publications (1)

Publication Number Publication Date
WO2016038685A1 true WO2016038685A1 (en) 2016-03-17

Family

ID=55458478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073798 WO2016038685A1 (en) 2014-09-09 2014-09-09 Multiplex communication apparatus

Country Status (2)

Country Link
JP (1) JP6511457B2 (en)
WO (1) WO2016038685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022541126A (en) * 2019-06-28 2022-09-22 アナログ・ディヴァイシス・インターナショナル・アンリミテッド・カンパニー Low Complexity Ethernet Node (LEN) 1 port

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456925B2 (en) 2020-12-24 2024-03-27 ダイキン工業株式会社 air treatment equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040475A (en) * 2002-07-03 2004-02-05 Mitsubishi Electric Corp Data bus processing circuit
JP2004120503A (en) * 2002-09-27 2004-04-15 Fujitsu Access Ltd Data transmission method and apparatus thereof
JP2008271512A (en) * 2007-04-20 2008-11-06 Provigent Ltd Adaptive coding and modulation for synchronous connection
JP2009530934A (en) * 2006-03-23 2009-08-27 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Data transmission method and data transmission system
JP2012114883A (en) * 2010-11-29 2012-06-14 Furukawa Electric Co Ltd:The Distribution system monitoring controller, and monitoring control system for power distribution system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633552B2 (en) * 2001-12-18 2005-03-30 日本電気株式会社 Data transfer method, data transfer system, terminal adapter, and control program for the terminal adapter
JP2005098855A (en) * 2003-09-25 2005-04-14 Koden Electronics Co Ltd Vibration inspection apparatus of inside of solid
JP4426249B2 (en) * 2003-10-27 2010-03-03 パイオニア株式会社 Signal transmission apparatus and transmission method
JP5125363B2 (en) * 2007-09-28 2013-01-23 横河電機株式会社 Waveform measuring device
JP2011050584A (en) * 2009-09-02 2011-03-17 Canon Inc Radiographic imaging control apparatus and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040475A (en) * 2002-07-03 2004-02-05 Mitsubishi Electric Corp Data bus processing circuit
JP2004120503A (en) * 2002-09-27 2004-04-15 Fujitsu Access Ltd Data transmission method and apparatus thereof
JP2009530934A (en) * 2006-03-23 2009-08-27 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Data transmission method and data transmission system
JP2008271512A (en) * 2007-04-20 2008-11-06 Provigent Ltd Adaptive coding and modulation for synchronous connection
JP2012114883A (en) * 2010-11-29 2012-06-14 Furukawa Electric Co Ltd:The Distribution system monitoring controller, and monitoring control system for power distribution system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022541126A (en) * 2019-06-28 2022-09-22 アナログ・ディヴァイシス・インターナショナル・アンリミテッド・カンパニー Low Complexity Ethernet Node (LEN) 1 port
JP7391116B2 (en) 2019-06-28 2023-12-04 アナログ・ディヴァイシス・インターナショナル・アンリミテッド・カンパニー 1 port of low complexity Ethernet node (LEN)
US11940943B2 (en) 2019-06-28 2024-03-26 Analog Devices International Unlimited Company Low complexity ethernet node (LEN) one port

Also Published As

Publication number Publication date
JPWO2016038685A1 (en) 2017-06-22
JP6511457B2 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
US8731002B2 (en) Synchronization, re-synchronization, addressing, and serialized signal processing for daisy-chained communication devices
JP6169715B2 (en) Multiplexed communication system and work robot
JP6140459B2 (en) Sensor data transmission device
JP6023059B2 (en) Integrated servo system, motor system, and control method of integrated servo system
CN111684711A (en) Servo system, sensor hub, and method for diagnosing industrial device
US20050174086A1 (en) Machine controller
WO2012134930A1 (en) System, apparatus, and method for time-division multiplexed communication
US8918668B2 (en) Interface circuit, inverter device, inverter system, and transmitting and receiving method
WO2016038685A1 (en) Multiplex communication apparatus
JP2020121362A5 (en) Robot system and robot control device
US8193955B2 (en) Modular units for synchro-to-digital conversion and digital-to-synchro conversion
JP4212372B2 (en) Encoder signal processing device and servo driver
JP5837146B1 (en) Numerical control system with reduced external input signal capture time
US9829875B2 (en) Safety communication system using IO units communicating with a plurality of CPUS
JP6596239B2 (en) Multiplexing communication device
WO2018150544A1 (en) Multiplex communication system and work robot
CN106643716A (en) MEMS inertial measuring device with redundant signal acquisition strategy
JP6521020B2 (en) Safety controller
KR101490823B1 (en) Apparatus of universal inter-integrated circuit interface for controlling devices using fpga and communication method for using the same
EP2784448B1 (en) Synchronous serial interface circuit and motion control function module
WO2002093394A3 (en) Method for transmitting data between a master and at least one slave
JP2012168787A (en) Encoder communication circuit
JP2010119254A (en) Servo motor control apparatus
CN113710437A (en) Robot
WO2021044717A1 (en) Composite sensing device, rotary equipment, and rotary equipment control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901663

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547292

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901663

Country of ref document: EP

Kind code of ref document: A1