WO2016038672A1 - 発電システムおよび発電方法 - Google Patents

発電システムおよび発電方法 Download PDF

Info

Publication number
WO2016038672A1
WO2016038672A1 PCT/JP2014/073756 JP2014073756W WO2016038672A1 WO 2016038672 A1 WO2016038672 A1 WO 2016038672A1 JP 2014073756 W JP2014073756 W JP 2014073756W WO 2016038672 A1 WO2016038672 A1 WO 2016038672A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
generator
power generation
pressure turbine
value
Prior art date
Application number
PCT/JP2014/073756
Other languages
English (en)
French (fr)
Inventor
尚弘 楠見
日野 徳昭
コーテット アウン
白石 朋史
正利 吉村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/323,458 priority Critical patent/US10094297B2/en
Priority to PCT/JP2014/073756 priority patent/WO2016038672A1/ja
Priority to JP2016547280A priority patent/JP6228316B2/ja
Publication of WO2016038672A1 publication Critical patent/WO2016038672A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/057Control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/704Application in combination with the other apparatus being a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/06Purpose of the control system to match engine to driven device
    • F05D2270/061Purpose of the control system to match engine to driven device in particular the electrical frequency of driven generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/40Type of control system
    • F05D2270/44Type of control system active, predictive, or anticipative
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/70Type of control algorithm
    • F05D2270/71Type of control algorithm synthesized, i.e. parameter computed by a mathematical model
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/40Display of information, e.g. of data or controls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/20Information technology specific aspects, e.g. CAD, simulation, modelling, system security

Definitions

  • the present invention relates to a power generation system.
  • a thermal power plant is a power generation device that generates power by driving a power generation device based on combustion heat extracted from fossil fuel by combustion, and there are various power generation devices depending on the combination of fuel and power generation device. For example, coal or heavy oil is burned in a boiler, steam is generated by the combustion heat, a steam turbine power generator that drives a steam turbine to generate electricity, or the atmosphere is compressed by a compressor and fuel and compressed air are compressed by a combustor.
  • a gas turbine power generator that generates power by driving a gas turbine with the combustion air, or using exhaust gas burned in the gas turbine, generating steam in an exhaust heat recovery boiler, and using the steam in the steam turbine There is a combined cycle power generation device that drives.
  • Patent Document 1 in a power system in which a plurality of power sources having different capacities such as gas engines and gas turbine generators and thermoelectric loads are connected to an unstable power source of wind power generation or solar power generation, a power generation command corresponding to the system load is provided. And a control device that adjusts the amount of exhaust heat recovery and the amount of heat stored in the thermoelectric load.
  • Patent Document 2 describes a combined plant that supplies surplus power from wind power generation equipment and gas turbine equipment to heavy oil reforming equipment.
  • Patent Document 3 describes a system in which an auxiliary generator / motor is connected to a multi-shaft gas turbine engine having a plurality of spools, and partial load efficiency is improved by injecting power into the spool or extracting power from the spool.
  • renewable energy especially wind power generation and solar power generation, affects the stabilization of the grid because the power output is affected by climate change.
  • the increase in the introduction of renewable energy will accelerate further from the viewpoint of the environment and the diversification of energy sources, and the impact on the system will become noticeable.
  • the gas turbine inlet temperature may exceed the limit value due to the power generation of the auxiliary generator / motor applied to the gas turbine power generation device.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique for improving the follow-up performance of a power generation facility against load fluctuations and improving the reliability of the power generation facility.
  • a power generation system includes a high-pressure turbine shaft, a compressor that generates compressed air according to the rotation of the high-pressure turbine shaft, and the compressed air and fuel.
  • a combustor that generates combustion gas by burning, a high-pressure turbine that receives and rotates the combustion gas and drives the high-pressure turbine shaft, a low-pressure turbine shaft, and a gas that is discharged from the high-pressure turbine and rotates.
  • a low-pressure turbine that drives the low-pressure turbine shaft, and a first generator that is connected to an electric power system, generates electric power using rotation of the low-pressure turbine shaft, and outputs the generated electric power to the electric power system.
  • a gas turbine ; a second generator for accelerating and decelerating the high-pressure turbine shaft according to power input / output; a frequency converter connected to a terminal of the second generator; and the frequency converter And a transformer connected between the terminals of the first generator and an output target value that is a time-series target value of the output of the power generation system, and simulates dynamic characteristics of the multi-shaft gas turbine.
  • the predicted value of the output of the first generator when the combustor is controlled to match the output of the first generator with the output target value is calculated, and the output target value and the output
  • the first generator output command value that is the command value of the output from the first generator to the power system
  • the second generator to the power system A second generator output command value that is an output command value is calculated, the combustor is controlled based on the first generator output command value, and the frequency conversion is performed based on the second generator output command value
  • a control unit for controlling the device is
  • the frequency converter frequency-converts the output of the second generator based on an instruction from the control unit and outputs the frequency to the power system.
  • the second generator outputs electric power obtained by decelerating the high-pressure turbine shaft to the frequency converter, and the transformer boosts the output of the frequency converter and outputs it to the power system.
  • the frequency converter performs frequency conversion on a part of the output of the first generator based on an instruction from the control unit.
  • the transformer steps down a part of the output of the first generator and outputs it to the frequency converter, and the second generator uses the output of the frequency converter. And accelerating the high-pressure turbine shaft.
  • FIG. 1 shows a two-shaft gas turbine power generator 100 according to an embodiment of the present invention.
  • the output of the two-shaft gas turbine power generator 100 with respect to demand fluctuation is shown.
  • the structure of the electric power generation system of Example 1 is shown.
  • the contents of the related information database 300 are shown.
  • the contents of the driving information database 600 are shown.
  • the structure of a wind power generation model is shown.
  • the gas turbine control processing is shown.
  • the relationship between the atmospheric temperature and the power generation output when M / G6 is not used is shown.
  • the relationship between M / G input and power generation output is shown.
  • the relationship between M / G input and power generation efficiency is shown.
  • the modification of gas turbine control processing is shown.
  • the initial screen is shown.
  • the operation status display screen is shown.
  • the trend display setting screen is shown.
  • the trend graph screen is shown.
  • the structure of the electric power generation system of Example 2 is shown.
  • the configuration of the solar power generation model is shown.
  • FIG. 1 shows a two-shaft gas turbine power generator 100 according to an embodiment of the present invention.
  • the two-shaft gas turbine power generator 100 includes a gas generator 15, a power turbine 16, a GT (Gas Turbine) controller (controller) 7a, and a frequency converter 10.
  • the power turbine 16 includes a low-pressure turbine 2b, a low-pressure turbine shaft 12b that is a shaft thereof, and a generator 5 that converts the rotational force of the low-pressure turbine shaft 12b into electric power.
  • the power turbine 16 rotates at a substantially constant low-pressure turbine rotational speed, thereby driving the generator 5 at a substantially constant low-pressure turbine rotational speed.
  • the electric power generated by the generator 5 is transmitted to the electric power consumer through the electric power cable.
  • the gas generator 15 is configured to include a compressor 1, a combustor 20, a high-pressure turbine 2a, an electric motor / sub-generator (M / G) 6, and a high-pressure turbine shaft 12a.
  • the M / G 6, the compressor 1, and the high pressure turbine 2a share the high pressure turbine shaft 12a.
  • the gas generator 15 Since the gas generator 15 has a structure mechanically separated from the power turbine 16, the gas generator 15 can rotate at a high-pressure turbine speed different from the low-pressure turbine speed.
  • the compressor 1 generates compressed air 21 by sucking and compressing the atmosphere.
  • an IGV (Inlet Guide Vane: inlet guide vane) 9 is provided at the intake inlet (intake port) of the compressor 1.
  • the IGV 9 changes its opening area by rotating itself.
  • the amount of air flowing into the compressor 1 can be changed by changing the opening degree CIGV of the IGV 9 by the GT control device 7a.
  • the other governor which adjusts high-pressure turbine rotation speed may be used.
  • the amount of air flowing into the compressor 1 can be changed by the M / G 6 adjusting the high-pressure turbine rotational speed.
  • the combustor 20 mixes the compressed air 21 generated by the compressor 1 and the fuel from the fuel pipe at a substantially constant air-fuel ratio (mass ratio), and burns it in the burner 18 to generate the combustion gas 22.
  • the combustion gas 22 first flows into the high-pressure turbine 2 a through the combustor liner 19.
  • the fuel burned in the burner 18 is adjusted by a fuel flow control valve 8 provided in the fuel pipe.
  • the GT control device 7 a controls the fuel flow rate control valve 8.
  • the high-pressure turbine 2 a obtains a rotational force by the kinetic energy of the high-temperature and high-pressure combustion gas 22.
  • the rotational force is transmitted to the compressor 1 through the high-pressure turbine shaft 12a, and the compressor 1 is rotationally driven.
  • the combustion gas 22 flows into the low-pressure turbine 2b of the power turbine 16 after a part of the kinetic energy is extracted by the high-pressure turbine 2a.
  • the low-pressure turbine 2b obtains a rotational force from the kinetic energy of the combustion gas 22, transmits the rotational force to the generator 5 through the low-pressure turbine shaft 12b, and drives the generator 5 to rotate.
  • the combustion gas 22 that has passed through the low-pressure turbine 2 b is discharged as the exhaust 14.
  • a part of the compressed air 21 generated by the compressor 1 is extracted as the turbine cooling air 23 and supplied to the turbine 2 including the high pressure turbine 2 a and the low pressure turbine 2 b without passing through the combustor 20.
  • a part of the turbine cooling air 23 is used for cooling the stationary blades 24 and the moving blades 25 constituting the turbine 2.
  • the terminal of the M / G 6 that rotates together with the high-pressure turbine shaft 12a is connected to the system (power system) via the frequency converter 10 and the transformer 50, and the high-pressure turbine shaft is exchanged with the system.
  • the operation of 12a can be adjusted. Specifically, by supplying power to the M / G 6 by the frequency converter 10, the M / G 6 operates as a motor and supplies energy to the high-pressure turbine shaft 12a. Conversely, by extracting electric power from the M / G 6 by the frequency converter 10, the M / G 6 operates as a generator and reduces the energy of the high-pressure turbine shaft 12a.
  • the GT control device 7a includes a high pressure turbine rotational speed detected by the high pressure turbine rotational speed detector 26a, a low pressure turbine rotational speed detected by the low pressure turbine rotational speed detector 26b, and a target value of output power from the generator 5 to the system.
  • An FFD signal for receiving the input including the generator output command value (MWD) indicating the output and the sub-generator output command value (IMWD) indicating the target value of the output power from the M / G 6 to the system and controlling the fuel flow control valve 8
  • the CIGV signal for controlling the opening degree of the IGV 9 and the frequency converter control signal for controlling the frequency converter 10 are generated and transmitted.
  • the GT control device 7a may include a protection function for preventing an excessive temperature rise of each part, propagation of an accident, and the like. Further, the GT control device 7a obtains measurement values from sensors that measure the atmospheric temperature, the exhaust temperature that is the temperature of the exhaust 14 of the low-pressure turbine 2b, the transformer cooling water temperature that is the temperature of the cooling water of the transformer 50, and the like. . The exhaust temperature changes according to the gas turbine inlet temperature, which is the temperature of the combustion gas 22 at the inlet of the high-pressure turbine 2a.
  • ⁇ Two-shaft gas turbines without M / G6 are difficult to follow abrupt power generation requirements due to mechanical delays.
  • the high-speed turbine shaft 12a is set to a variable speed, and the fluctuation is absorbed by the change in the high-pressure turbine rotational speed due to M / G6.
  • improvement of atmospheric temperature characteristics and improvement of efficiency at the time of partial load are realized.
  • the GT control device 7a controls the output power of the two-shaft gas turbine power generation device 100 by controlling the high-pressure turbine rotational speed using the M / G 6 in addition to the control of the fuel flow rate. For example, when it is desired to increase the output, the GT control device 7a decreases the high-pressure turbine rotational speed by M / G6, releases the rotational energy of the shaft as electric power, and decreases the output by M / G6 to increase the high-pressure turbine. The number of revolutions can be increased and power can be stored as the rotational energy of the shaft. By performing the output change not depending on the fuel flow rate, it is possible to obtain a high output change rate while avoiding a decrease in life due to thermal fatigue of the turbine 2 or the like.
  • the capacity of the frequency converter 10 of this embodiment can be made smaller than the capacity of the generator 5.
  • the low-pressure turbine 2b that bears most of the output rotates at a constant speed.
  • the frequency converter 10 is required only on the side of the high-pressure turbine 2a that performs variable speed operation, and thus the capacity of the frequency converter 10 can be reduced.
  • it can be handled by using the frequency converter 10 having a capacity of 10% of the rated output. Thereby, the cost of the frequency converter 10 can be reduced.
  • the GT control device 7a performs control so that the energy recovered by the high-pressure turbine and the energy consumed by the compressor 1 are balanced.
  • this control method includes changing the compressor intake air flow rate by adjusting the opening of the IGV 9. For example, when the high-pressure turbine rotational speed is higher than the set value, the GT control device 7a increases the opening of the IGV 9 and increases the compressor intake air flow rate, thereby increasing the kinetic energy consumed by the compressor 1. High-speed turbine speed decreases. Conversely, when the high-pressure turbine rotational speed is lower than the set value, the GT control device 7a decreases the opening of the IGV 9, thereby increasing the high-pressure turbine rotational speed.
  • the GT control device 7a changes the output of the generator 5 by changing the fuel flow rate.
  • the GT control device 7a calculates a fuel flow rate command value (FFD) indicating a required fuel flow rate according to a generator output command value (MWD) instructed from the outside, and sends it to the fuel flow rate control valve 8.
  • FFD fuel flow rate command value
  • MWD generator output command value
  • the GT control device 7a balances the energy recovered from the combustion gas 22 by the high-pressure turbine 2a with the energy necessary for driving the compressor 1 so that the high-pressure turbine rotational speed becomes equal to the set value.
  • the opening degree of IGV9 is controlled.
  • the high-pressure turbine rotational speed is not uniquely determined with respect to the output, but can be changed.
  • FIG. 2 shows the output of the two-shaft gas turbine power generator 100 with respect to demand fluctuation.
  • the demand increases in the two-shaft gas turbine power generator of the comparative example not including M / G6 and the two-shaft gas turbine power generator 100 of the present embodiment will be described.
  • the first column on the left represents the operation when the demand fluctuation rate is small (demand gradually increases) in the gas turbine of the comparative example.
  • the row represents the operation when the demand fluctuation speed is large (the demand suddenly increases) in the gas turbine of the comparative example
  • the third column on the right side shows the demand fluctuation speed in the two-shaft gas turbine power generator 100 of the present embodiment. It represents the operation when it is large.
  • the top row of the first row represents the power fluctuation over time (demand fluctuation).
  • the graph in the second row below represents the time variation of the gas turbine output.
  • the graph in the third row below represents the time change of the system frequency.
  • the graph in the fourth row below represents the time change of the high-pressure turbine rotational speed.
  • the graph in the lowermost fifth row represents the time change of the low-pressure turbine speed.
  • the horizontal axis of these five-line graphs is a common time axis.
  • the fluctuation in demand can be absorbed by the output control based on the fuel flow rate.
  • the demand fluctuation becomes large, the output change with respect to the target value according to the demand fluctuation.
  • the low-pressure turbine rotational speed decreases and the system frequency also decreases.
  • the low-pressure turbine rotational speed increases and the system frequency also increases.
  • the frequency converter 10 is used to extract the shortage of the output change due to the control of the fuel flow rate from the M / G 6.
  • the frequency converter 10 controls to reduce the high-pressure turbine rotational speed, and the rotational energy is converted into electric power to compensate for the shortage.
  • the opening degree of the IGV 9 is determined so that the energy consumed by the compressor 1 and the recovered energy by the high-pressure turbine 2a are balanced even with the reduced high-pressure turbine rotational speed.
  • the output frequency of the M / G 6 corresponding to the high-pressure turbine rotational speed is converted into a reference frequency by the frequency converter 10.
  • the frequency converter 10 converts AC power input from one terminal into DC power, and further converts the AC power into AC power having a designated frequency and outputs the AC power to the other terminal.
  • the control device 200 increases the fuel flow rate of the combustor 20 by controlling the combustor 20 and also controls the frequency converter 10 to control the high-pressure turbine shaft using the M / G 6.
  • the control device 200 reduces the fuel flow rate by controlling the combustor 20, and controls the frequency converter 10 to control the high-pressure turbine using the M / G6.
  • the axis 12a is accelerated. Since the response of the output by the control of the frequency converter 10 is faster than the response of the output by the control of the combustor 20, the two-shaft gas turbine power generator 100 of the present embodiment can follow a sudden change in demand.
  • the GT control device 7a opens the opening of the IGV 9 so that the kinetic energy consumed by the compressor 1 and the kinetic energy received by the high-pressure turbine 2a from the combustion gas 22 are balanced. To decide. Specifically, the GT control device 7a opens the IGV 9 when the high-pressure turbine rotational speed decreases, and closes the IGV 9 when the high-pressure turbine rotational speed increases, thereby making the compressor intake air flow rate substantially constant. keep. Thereby, the output of the generator 5 which maintains an air fuel ratio with respect to a fuel flow rate can be maintained at a command value.
  • the efficiency of the compressor 1 is improved when the IGV 9 is opened.
  • the GT control device 7a increases the output by increasing the fuel and the M / G 6 reduces the high-pressure turbine rotation speed by braking the compressor 1, the IGV 9 is opened.
  • the efficiency of the compressor 1 is improved, the discharge air temperature of the compressor 1 is lowered, and the energy consumed by the compressor 1 is reduced. Therefore, in addition to the increase in output due to the increase in fuel, the output also increases due to the decrease in energy consumption by the compressor 1.
  • the temperature of the combustion gas 22 decreases due to a decrease in the discharge air temperature
  • the amount of increase in the temperature of the combustion gas 22 due to the increase in fuel can be reduced, and the reliability can be improved.
  • the GT control device 7a decreases the output by reducing the fuel and the M / G 6 increases the high-pressure turbine rotation speed by assisting the compressor 1, the IGV 9 is closed.
  • compressor efficiency falls, the discharge air temperature of the compressor 1 increases, and the energy consumption by the compressor 1 increases. Therefore, in addition to a decrease in output due to a decrease in fuel, an increase in energy consumption by the compressor 1 also decreases the output.
  • the temperature of the combustion gas 22 increases due to the increase in the discharge air temperature
  • the amount of decrease in the temperature of the combustion gas 22 due to the fuel decrease can be reduced, and the reliability can be improved. Such a beneficial synergistic effect can be obtained.
  • the operating point may be set so that the compressor efficiency increases when the high-pressure turbine rotational speed decreases and the compressor efficiency decreases when the high-pressure turbine rotational speed increases.
  • FIG. 3 shows the configuration of the power generation system of the first embodiment.
  • This power generation system includes a wind power generation device 30, a two-shaft gas turbine power generation device 100, a control device 200, a support tool 910, an input device 900, and an image display device 950.
  • the wind power generator 30 includes a plurality of wind power generators 31.
  • the wind power generator 30 includes an anemometer for measuring the wind condition, and controls the blade pitch and the windmill direction (yaw) according to the wind condition.
  • the wind power generator 30 generates power by receiving a wind speed of a certain level or more, and changes the pitch so that the wind is not received by the blade when the wind is strong.
  • the characteristic of the power generation output with respect to the wind speed depends on the design of the wind power generator 30.
  • the wind condition information obtained by the wind power generator 30 and the measurement signal 120 necessary for control and the control signal 130 for controlling the wind power generator 30 are accumulated in the control device 200.
  • the two-shaft gas turbine power generator 100 is controlled to a desired state in response to the control signal 150 from the controller 200.
  • the control signal 150 (output command) includes an MWD for controlling the combustor 20 and an IMWD for controlling the frequency converter 10.
  • the state quantity of each part of the two-shaft gas turbine power generator 100 is taken into the control device 200 as a measurement signal 140.
  • the control device 200 operates various operation ends so as to be in an appropriate operation state with respect to the power generation request based on the measurement signal 140 from the two-shaft gas turbine power generation device 100.
  • the related information database 300 stores information for predicting wind power generation and grasping the current situation.
  • the operation information database 600 stores measurement signals 120 and 140 obtained from the wind power generator 30 and the two-shaft gas turbine power generator 100, respectively. The form of these data will be described in detail later.
  • the model calculation unit 400 calculates a predicted value of the wind power generation output that is the output of the wind power generator 30 based on information obtained from the measurement signals 120 and 140, and outputs a signal that cancels the fluctuation of the wind power generation as a biaxial type.
  • the output value at the time of inputting to the gas turbine power generator 100 is calculated.
  • examples of data necessary for calculating a predicted value of wind power generation output include atmospheric information such as outside air (atmosphere) temperature and humidity, wind speed, output of the wind power generator 31, and the like. The form of these data will be described in detail later.
  • the control unit 500 receives the result of the model calculation unit 400 and calculates and outputs an appropriate control signal 130. Based on the control signal 130, the air amount and fuel flow rate of the two-shaft gas turbine power generator 100 are manipulated to control the output. The same applies to the control signal of the frequency converter 10. The signals and information generated by these control devices 200 are also output to the support tool 910 as necessary. The algorithm for obtaining the control signal 130 will be described in detail later.
  • a user such as an operator related to the two-shaft gas turbine power generator 100 can use the support tool 910 to view various information regarding the two-shaft gas turbine power generator 100.
  • the support tool 910 is connected to an input device 900 including a keyboard 901 and a mouse 902, and an image display device 950. Further, the support tool 910 can access information in the control device 200.
  • the support tool 910 includes an external input interface 920, a data transmission / reception processing unit 930, and an external output interface 940.
  • the support tool 910 may be a computer including a memory and a microprocessor.
  • the input signal 800 generated by the input device 900 is taken into the support tool 910 via the external input interface 920.
  • information from the control device 200 is taken into the support tool 910 via the external input interface 920.
  • the data transmission / reception processing unit 930 processes the input signal 801 received by the external input interface 920 and transmits it as an output signal 802 to the external output interface 940.
  • the output signal 803 is displayed on the image display device 950.
  • FIG. 4 shows the contents of the related information database 300.
  • the related information database 300 includes climate state information.
  • the climate state information here includes not only items related to wind power generation but also items related to solar power generation.
  • the climate state information is information periodically measured by an external sensor or the wind power generator 30 and has an entry for each time. An entry at a certain time includes time, weather, temperature, wind direction, wind speed, humidity, and solar radiation. The period of time is determined by the measurable time width.
  • the weather is expressed using 15 types sent to the general public by the Japan Meteorological Agency.
  • As for the wind direction 16 directions are generally used in Japan.
  • 360 directions expressed by dividing 360 degrees in the clockwise direction with reference to true north are used. In the figure, 360 azimuths are represented, but even in 16 azimuths, if a ratio of 22.5 degrees is given to each azimuth, it can be numerically expressed in degrees as well.
  • the related information database 300 also stores design information of the wind power generator 30, design information of the two-shaft gas turbine power generator 100, information such as system connection regulations and rules.
  • FIG. 5 shows the contents of the operation information database 600.
  • the operation information database 600 stores information periodically measured by the wind power generator 30 and the two-shaft gas turbine power generator 100 for each measured time. Each time entry has an item for each measurement value.
  • the PID number is a unique number assigned to each measured value so that the data stored in the driving information database 600 can be easily used.
  • the alphabet below the PID number is a symbol indicating the measurement target.
  • the flow rate value F, the temperature value T, the pressure value P, the power generation output value E, and the concentration value D is stored at a cycle of 1 second, but the sampling cycle of data collection differs depending on the target two-shaft gas turbine power generator 100.
  • the temperature value T is an atmospheric temperature, an exhaust temperature, a transformer cooling water temperature, or the like.
  • the model calculation unit 400 creates a wind power generation model for obtaining the future wind power generation output from the wind condition and the current wind power output, and inputs the measured value to the wind power generation model, thereby obtaining the output of the wind power generation model. Calculated as the predicted value of renewable energy output.
  • FIG. 6 shows the configuration of the wind power generation model.
  • the wind power generation model has an input layer, an intermediate layer, and an output layer, and each layer includes a plurality of nodes. These nodes are linked from the input layer to the output layer, and a weighting coefficient representing the strength of the link is set. That is, there are as many weighting coefficients as the number of connections between nodes.
  • the wind power generation model is called a neural network, which simulates a human cranial nerve network. By giving an input value to the wind power generation model and adjusting the weighting coefficient so that a desired output value for the input value is output, the correlation of the input value can be expressed as a model. This adjustment is called learning.
  • the input value is the temperature, wind speed, humidity, or the operation information stored in the related information database 300 past the target time.
  • the output of the wind power generator 30 and the like stored in the database 600, and the output value is the output of the wind power generator 30 at the target time.
  • the function set for each node generally uses an exponential function called a sigmoid function, but is not limited thereto.
  • many algorithms have been devised that appropriately adjust the weighting factor during learning. In general, the back propagation method is used.
  • the model calculation unit 400 learns parameters in the wind power generation model based on data or design data accumulated in the past to construct the wind power generation model. After the start of operation, the model calculation unit 400 performs prediction based on the parameters obtained by learning. If the magnitude of the difference between the predicted value and the actually measured value becomes larger than a predetermined set value, Based on the data accumulated in, learn again and build a wind power generation model.
  • the predicted time which is the length of time for which the predicted value is calculated, is determined by the characteristics of the power generation output of the two-shaft gas turbine power generator 100. That is, it is necessary to predict in advance the delay from when the MWD is given to the two-shaft gas turbine power generator 100 until the output of the two-shaft gas turbine power generator 100 actually becomes equal to the MWD. This will be described later.
  • model calculation unit 400 uses a gas turbine model that represents the two-shaft gas turbine power generation device 100 for MWD to the two-shaft gas turbine power generation device 100, and outputs a target value and a measured value to the gas turbine model. Is input, the output of the two-shaft gas turbine power generator 100 is predicted.
  • a gas turbine model is set in advance.
  • a dynamic characteristic model based on a mass balance of pressure and flow rate is generally used, but modeling using a neural network is also possible in the same manner as a wind power generation model.
  • the amount of power that the two-shaft gas turbine power generation apparatus 100 should cover is the output that offsets the wind power generation output, that is, the system output target value (total output target value) that is the target of the power generation system output. Value.
  • This value is referred to as a gas turbine output target value that is an output target value of the two-shaft gas turbine power generator 100.
  • a delay due to a mechanical element occurs, so that the output of the generator 5 is delayed with respect to the input MWD change.
  • the model calculation unit 400 uses the gas turbine model to calculate the output of the generator 5 when the system output target value is given as the MWD to the two-shaft gas turbine power generator 100 when the M / G 6 is not used.
  • the maximum load change rate of the two-shaft gas turbine power generator 100 when the M / G 6 is not used may be set. In this case, the gas turbine model behaves so as to follow the system output command value within the maximum load change rate.
  • the control unit 500 sets the output of the gas turbine model as MWD to the two-shaft gas turbine power generation device 100, and sets the difference that cannot be followed by the gas turbine model as IMWD that is given to the frequency converter 10.
  • the gas turbine model may use a transfer function that has a lighter calculation load than the dynamic characteristic model.
  • the transfer function in this case takes into account the first-order delay or dead time so that the mechanical delay of the gas turbine can be simulated.
  • FIG. 7 shows the gas turbine control process
  • step 501 the control unit 500 determines a system output target value from the connection conditions of the system.
  • System connection conditions indicate conditions for the power generation system to be connected (connected) to the system, and vary depending on countries and regions. Many connection conditions specify a load fluctuation tolerance and a frequency fluctuation tolerance. If the system is such that several power sources are connected in addition to the power generation system of the present embodiment, the system can absorb frequency fluctuations even if the output of the two-shaft gas turbine power generation device 100 is rapidly changed. . Therefore, the control unit 500 calculates the system output target value in consideration of the load fluctuation allowable width.
  • the system output target value may be a power supply command value issued from the central power supply command station and instructing the output of the power generation system.
  • step 502 the control unit 500 measures the renewable energy output that is the predicted value of the renewable energy output obtained by the model calculation unit 400 and the current measured value of the wind power generator 30 obtained from the operation information database 600.
  • the error is calculated by subtracting the measured value of the renewable energy output from the predicted value of the renewable energy output, and it is determined whether or not the magnitude of the error is equal to or less than a preset allowable error value.
  • control unit 500 shifts the process to step 503. Otherwise (No), the control unit 500 shifts the process to step 504.
  • step 503 the control unit 500 calculates the gas turbine output target value by subtracting the wind power generation output predicted value from the system output target value, and shifts the processing to step 506.
  • the two-shaft gas turbine power generator 100 can absorb the output fluctuation of the renewable energy power generator such as the wind power generator 30.
  • the control unit 500 determines the power supply and demand of the grid based on the demand for power in the power grid in the grid and information on other generators. A predicted value of fluctuation may be calculated, and a gas turbine output target value may be calculated based on the predicted value of power supply and demand fluctuation. As a result, it is possible to predict power supply and demand fluctuations using information acquired from the outside, and to calculate a gas turbine output target value.
  • step 504 the control unit 500 re-learns the wind power generation model. Thereafter, in step 505, the gas turbine output target value is calculated by subtracting the renewable energy output measurement value from the system output target value, and the process proceeds to step 506. That is, in this case, the control unit 500 does not use the renewable energy output predicted value.
  • step 506 the control unit 500 inputs the gas turbine output target value to the model calculation unit 400 to calculate the predicted generator output value.
  • the model calculation unit 400 calculates the generator output prediction value by inputting the gas turbine output target value and the measurement value to the gas turbine model.
  • control unit 500 calculates the output difference value by subtracting the generator output predicted value from the gas turbine output target value. Thereafter, in step 508, control unit 500 sets the generator output prediction value to MWD, and sets the output difference value to IMWD.
  • control unit 500 sets the generator output prediction value to MWD, and sets the output difference value to IMWD.
  • step 509 the control unit 500 performs an atmospheric temperature correction process for correcting IMWD based on the atmospheric temperature.
  • FIG. 8 shows the relationship between the atmospheric temperature and the power generation output when M / G6 is not used.
  • the power generation output is 100% (rated) until the atmospheric temperature reaches a certain design temperature (atmospheric temperature threshold), but the output decreases as the atmospheric temperature rises above the design temperature.
  • the M / G 6 connected to the compressor 1 serves as an electric motor by being supplied with electric energy from the frequency converter 10, and the motion of the compressor 1. It receives energy and outputs electrical energy to the frequency converter 10 to act as a generator.
  • the output can be improved even when the atmospheric temperature is higher than the design temperature by assisting the compressor 1 by the M / G 6 supplied with electricity from the frequency converter 10.
  • the power input from the frequency converter 10 to the M / G 6 is referred to as an M / G input.
  • IMWD represents the power output from the M / G 6 to the frequency converter 10
  • the sign of the M / G input is opposite to the sign of the IMWD.
  • FIG. 9 shows the relationship between M / G input and power generation output.
  • the atmospheric temperature is higher than the design temperature and the M / G input is 0, that is, the power generation output is lower than 100%.
  • the kinetic energy of the compressor 1 is increased by the M / G 6, and even if the IGV opening is fully open, the compressor 1 Therefore, the mass flow rate of the compressed air 21 increases, and the compressed air 21 that reacts with the mass flow rate of the fuel set according to the MWD increases.
  • the output can be increased.
  • the output of the generator 5 cannot be increased indefinitely.
  • the compressed air 21 increases, the fuel that reacts increases, so that the combustion temperature rises and the exhaust gas temperature is set in advance. When the value is reached, the fuel is squeezed, so it decreases. That is, there is a limit to M / G input.
  • FIG. 10 shows the relationship between M / G input and power generation efficiency.
  • the power generation efficiency is the same as the power generation output.
  • the efficiency is lowered. This is because the compressor 1 is designed to be most efficient at the rated point.
  • the ambient temperature is higher than the design temperature and the M / G input is 0, the operating point of the compressor 1 approaches the rated point when electric energy is input to the M / G 6 by increasing the M / G input. The efficiency of the compressor 1 increases.
  • the control unit 500 determines the M / G input (assist amount) so as to be optimal in the atmospheric temperature state and the partial load state, and the IMWD.
  • the IMWD is corrected by subtracting the M / G input from.
  • the control unit 500 determines the M / G input that maximizes the total value of the increase amount of the power generation output and the increase amount of the power generation efficiency with respect to the increase of the M / G input.
  • the controller 500 may select an M / G input that maximizes either the amount of increase in power generation output or the amount of increase in power generation efficiency.
  • control unit 500 may set a value obtained by inverting the sign of the M / G input to IMWD without using the IMWD set in step 508.
  • the output of the generator 5 can be brought close to the MWD when the atmospheric temperature is higher than the design temperature.
  • the controller 500 determines whether or not the state of the two-shaft gas turbine power generator 100 satisfies a predetermined M / G restriction condition (frequency converter restriction condition).
  • the M / G limit condition is, for example, that IMWD is outside a predetermined IMWD limit range, or that the coolant temperature of the transformer 50 exceeds a preset coolant temperature limit value.
  • the control unit 500 outputs an output command including MWD and IMWD to the two-shaft type. It outputs to the gas turbine power generator 100, and this flow is complete
  • step 511 when it is determined in step 511 that the state of the two-shaft gas turbine power generation device 100 satisfies the M / G restriction condition (Yes), the control unit 500 restricts IMWD in step 512 and proceeds to step 511. Transition.
  • IMWD limit range when M / G6 increases or decreases the torque of compressor 1 according to the amount of assist by IMWD (when M / G6 operates as a motor) or the amount of brake (when M / G6 operates as a generator) (Command value range) exists.
  • IMWD when M / G6 operates as a motor
  • brake when M / G6 operates as a generator
  • Common value range exists.
  • the M / G input when the atmospheric temperature is high, if the M / G input is increased, the kinetic energy of the compressor 1 is increased, and if the amount of air taken in is increased, the fuel can be increased and the output is increased. .
  • Increasing the M / G input indefinitely does not increase the output indefinitely.
  • the gas turbine inlet temperature and the exhaust temperature rise in proportion to the amount of fuel input, and the exhaust temperature reaches the exhaust temperature limit value.
  • the IMWD at this time is set as the lower limit value of the IMWD restriction range.
  • the IMWD at this time is set as the upper limit value of the IMWD restriction range.
  • the upper limit value and the lower limit value of the IMWD limit range are desirably about 10% or less of the rated output of the generator 5, and there is a considerable difference between the voltage of the generator 5 and the voltage of the frequency converter 10. Therefore, the transformer 50 is required between the generator 5 and the frequency converter 10.
  • the technique of Patent Document 3 since the main generator and the inverter device are not connected by a transformer, the technique cannot be applied to a use where a voltage difference occurs.
  • the capacity of the frequency converter is desirably 10% or less of the rated output of the gas turbine power generator. This is because the gas turbine inlet temperature may exceed the limit value at higher inputs.
  • the control unit 500 changes the IMWD to the upper limit value of the IMWD limit range in step 512.
  • the control unit 500 changes IMWD to the lower limit value of the IMWD limit range.
  • step 512 when it is determined in step 511 that the cooling water temperature exceeds the cooling water temperature upper limit value, in step 512, the control unit 500 sets IMWD to 0 so that M / G6, the frequency converter 10, and the transformer 50 are set. Stop the operation. Thereby, the control part 500 is controlled so that an electric current may not be sent through the transformer 50 until a cooling water temperature becomes below a cooling water temperature limit value.
  • the output of the two-shaft gas turbine power generation device 100 follows the gas turbine output target value at high speed by using M / G6, the electric power travels back and forth in the frequency converter 10 in a short time. Therefore, the voltage applied to both ends of the transformer 50 between the frequency converter 10 and the system changes suddenly. Thereby, since the cooling water temperature of the transformer 50 changes suddenly, the state quantity of the transformer 50 such as the cooling water temperature is constantly monitored, and the condition of the cooling water temperature is included in the M / G restriction condition.
  • steps 507 and 508 and step 509 can be interchanged.
  • control part 500 may give a restriction
  • the frequency converter 10 converts the output of the M / G 6 based on an instruction from the control device 200 and outputs it to the system.
  • the M / G 6 outputs power obtained by decelerating the high-pressure turbine shaft 12a to the frequency converter 10, and the transformer 50 boosts the output of the frequency converter 10 and outputs it to the system.
  • the frequency converter 10 converts a part of the output of the generator 5 based on an instruction from the control device 200 to M / G6.
  • the transformer 50 steps down a part of the output of the generator 5 and outputs it to the frequency converter 10, and the M / G 6 accelerates the high-pressure turbine shaft 12 a using the output of the frequency converter 10.
  • the output of the two-shaft gas turbine power generator 100 can be made to follow at high speed with respect to the fluctuation in the demand of the system and the output fluctuation of the renewable energy power generator.
  • the generator 5 in the case where the combustor 50 is controlled to match the output of the generator 5 with the gas turbine output target value using a dynamic characteristic model that simulates the dynamic characteristic of the two-shaft gas turbine power generator 100.
  • the output delay of the generator 5 due to the control of the combustor 20 is calculated. This can be reflected in the control, and the gas turbine output target value can be appropriately distributed to the generator 5 and the M / G 6. Further, by using the transformer 50 to suppress the output of the M / G 6 to be lower than the output of the generator 5, it is possible to prevent an excessive increase in the gas turbine inlet temperature and the like. Reliability can be improved.
  • the reliability of the two-shaft gas turbine power generation device 100 can be improved by restricting the operation of the frequency converter 10.
  • the cooling water temperature exceeds the cooling water temperature limit value
  • an excessive increase in the cooling water temperature of the transformer 50 can be prevented by stopping the operation of the frequency converter 10.
  • IMWD is outside the IMWD limit range
  • an excessive increase in the gas turbine inlet temperature or the like can be prevented by changing IMWD to a value within the IMWD limit range.
  • FIG. 11 shows a modification of the gas turbine control process.
  • step 520 the control unit 500 generates a system output target value from the connection conditions of the system. Thereafter, in step 521, the control unit 500 calculates the gas turbine output target value by subtracting the renewable energy output measurement value from the system output target value.
  • control unit 500 executes Steps 522 to 533 similar to Steps 506 to 513 described above.
  • the operator of the power generation system can use the support tool 910 to monitor the state of the power generation system.
  • the support tool 910 causes the image display device 950 to display a screen showing information on the measurement signal 120, the control signal 130, the related information database 300, the set value, and the driving information database 600.
  • the operator performs an operation such as inputting a parameter value in an input field in the screen using the keyboard 901 and the mouse 902.
  • FIG. 12 shows the initial screen.
  • the initial screen includes an operation state display button 951 and a trend display button 952.
  • the operator selects a necessary button from the operation state display button 951 and the trend display button 952, moves the cursor 953 using the mouse 902, and clicks the mouse 902 to display a desired screen.
  • the data transmission / reception processing unit 930 causes the image display device 950 to display an operation state display screen.
  • the trend display button 952 is clicked, the data transmission / reception processing unit 930 causes the image display device 950 to display a trend display setting screen.
  • FIG. 13 shows an operation state display screen.
  • the operation state display screen includes a system information display field 961, a time input field 962, a display button 963, a characteristic state display field 964, a setting condition display field 965, a related information display field 966, a display button 967, and a return button 968.
  • the data transmission / reception processing unit 930 causes the image display device 950 to display an initial screen.
  • the system information display column 961 shows a system diagram of the power generation system.
  • the operator inputs the time of information to be displayed on the image display device 950 in the time input field 962 and clicks the display button 963, so that the data transmission / reception processing unit 930 designates each part in the system information display field 961.
  • the status of the specified time is displayed.
  • the system information display column 961 displays state quantities such as temperature and pressure at the currently measured location at corresponding locations in the system diagram.
  • the characteristic state display column 964 displays characteristic states such as a power generation prediction error and a power generation output delay calculated based on values obtained by the gas turbine control process.
  • the controller 500 calculates a power generation prediction error by subtracting the actual measurement value from the predicted value of the output of the power generation system. Further, the control unit 500 compares the gas turbine output target value with the measured value of the output of the two-shaft gas turbine power generation apparatus 100, thereby giving an output command based on the gas turbine output target value to the two-shaft gas turbine power generation. The time from the time of transmission to the apparatus 100 to the time when the output of the two-shaft gas turbine power generation apparatus 100 reaches the gas turbine output target value is calculated as a power generation output delay.
  • the setting condition display field 965 displays various setting conditions for the gas turbine control process.
  • the setting conditions are, for example, the above-described prediction allowable error, load fluctuation allowable width [%], and frequency fluctuation allowable width [%].
  • the setting condition may include an IWMD restriction range.
  • the related information display field 966 shows options for items such as weather, temperature, wind direction, wind speed, humidity, and solar radiation.
  • the data transmission / reception processing unit 930 displays the information on the selected item as related.
  • the information is searched from the information database 300 and displayed on the image display device 950.
  • the operator selects items to be displayed for the gas turbine (GT) inlet temperature, the GT exhaust temperature, and the transformer cooling water temperature, which are the restrictions, and clicks the display button 967, so that the data transmission / reception processing unit
  • GT gas turbine
  • the controller 500 may estimate the GT inlet temperature based on the GT exhaust temperature.
  • FIG. 14 shows a trend display setting screen.
  • the trend display setting screen includes a measurement signal display field 981, a time input field 982, a display button 983, a related information display field 984, a time input field 985, a display button 986, and a return button 989.
  • the data transmission / reception processing unit 930 causes the image display device 950 to display an initial screen.
  • the operator selects a measurement signal or an operation signal to be displayed on the image display device 950 in the measurement signal display field 981, and inputs a range (upper limit / lower limit) of the value of the selected signal.
  • the signals include system output target value, renewable energy output predicted value, renewable energy output measurement value, gas turbine output target value, MWD, IMWD, FFD, generator 5 output, M / G6 output, 2-axis This is the output of the gas turbine power generator 100.
  • the operator inputs the time range of the selected signal in the time input field 982.
  • the data transmission / reception processing unit 930 searches the related information database 300 for the selected signal, and displays the trend graph display screen including the trend graph of the obtained signal as an image. It is displayed on the display device 950.
  • the related information display column 984 shows the same items as the related information display column 966 as options.
  • the operator selects any item from the weather, temperature, wind direction, wind speed, humidity, and solar radiation amount in the related information display field 984, inputs the time range into the time input field 985, and clicks the display button 986.
  • the data transmission / reception processing unit 930 searches the related information database 300 for information on the selected item, and causes the image display device 950 to display a trend graph display screen including the obtained information.
  • the trend graph about weather is expressed using 15 types which the Meteorological Agency has transmitted to the general public as mentioned above.
  • the data transmission / reception processing unit 930 assigns a number to each type, and uses this as a trend graph. That is, the data transmission / reception processing unit 930 sequentially assigns numbers up to 14, such as 0 for clear weather, 1 for clear weather, and 2 for light cloudiness.
  • the operator selects an arbitrary item from the GT inlet temperature, the GT exhaust temperature, and the transformer coolant temperature, which are restrictions, in the related information display field 984, and inputs the time range in the time input field 985.
  • the display button 986 is clicked, the data transmission / reception processing unit 930 searches the related information database 300 for information on the selected item, and displays a trend graph display screen including the obtained information on the image display device 950. Display.
  • FIG. 15 shows a trend graph screen.
  • the trend graph screen includes a trend graph 992 for each item selected on the trend display setting screen and a return button 991.
  • the range of the horizontal axis of the trend graph 992 is the time range specified on the trend display setting screen.
  • the range of the vertical axis of the trend graph 992 is a range designated on the trend display setting screen.
  • the trend graph 992 may display a time change such as a measured value of the output of the two-shaft gas turbine power generation device 100 and a gas turbine output target value, or may display a trend graph comparing them. .
  • the data transmission / reception processing unit 930 causes the image display device 950 to display a trend display setting screen.
  • the operator can monitor the state of the power generation system together with the environment and the climate. Further, the support tool 910 compares the gas turbine output target value, the gas turbine output measured value that is the measured value of the output of the two-shaft gas turbine power generation device 100, and the comparison result of the gas turbine output measured value and the gas turbine output target value. Etc. are displayed on the image display device 950, the operator can monitor whether or not the two-shaft gas turbine power generation device 100 is following the demand. Moreover, the support tool 910 can monitor the abnormality due to the operation of the M / G 6 by displaying the cooling water temperature or the like on the image display device 950.
  • FIG. 16 shows the configuration of the power generation system of the second embodiment.
  • the power generation system of the present embodiment includes a solar power generation apparatus 1000 instead of the wind power generation apparatus 30 as a renewable energy power generation apparatus.
  • the solar power generation apparatus 1000 is a combination of a plurality of solar panels 1100.
  • the control device 200 predicts the output of the photovoltaic power generation apparatus 1000 using a photovoltaic power generation model that is a model of the photovoltaic power generation apparatus 1000 instead of the model calculation unit 400, and predicts a renewable energy output predicted value.
  • a model calculation unit 401 is included.
  • FIG. 17 shows the configuration of the photovoltaic power generation model.
  • This solar power generation model is represented by a neural network similar to the wind power generation model, and is a model for predicting the future power generation output of the solar power generation apparatus 1000 from input values of past temperature, humidity, solar radiation amount, and power generation output. .
  • the database is described in the format included in the control device 200, but the database may be a device outside the control device 200.
  • the output to the system is supplied to the renewable energy power generation device.
  • twin-shaft gas turbine power generator 100 is used, but the present invention can also be applied to a combined cycle plant. In the present embodiment, differences from the first embodiment will be described.
  • FIG. 18 shows the configuration of the power generation system of the third embodiment.
  • the power generation system of the present embodiment includes a steam turbine power generation device 710 instead of the wind power generation device 30.
  • a power generation device that combines the two-shaft gas turbine power generation device 100 and the steam turbine power generation device 710 is referred to as a combined cycle plant 700.
  • the steam turbine power generation device 710 includes an exhaust heat recovery boiler 720, a steam turbine 730, a generator 740, a condenser 750, a feed water pump 760, and a stack 770.
  • the exhaust heat recovery boiler 720 uses the exhaust heat of the exhaust 14 of the two-shaft gas turbine power generation device 100 to drive the steam turbine 730 by generating steam by heat exchange.
  • the control unit 500 uses the M / G 6 as a brake of the compressor 1 in normal operation, so that the air in the combustor 20 is reduced. Since the exhaust gas temperature rises, steam generation is promoted by an increase in the amount of heat in the exhaust heat recovery boiler 720 connected to the rear stage of the gas turbine, and the efficiency of the entire power generation system is improved. Since the efficiency of the two-shaft gas turbine power generation device 100 alone is reduced, it is not normally performed, so the operation is specific to the combined cycle plant 700.
  • the control unit 500 executes the same process as the modified example of the gas turbine control process, but does not use the wind power generation output and sets the system output target value as the gas turbine output target value.
  • the model calculation unit 400 uses the dynamic characteristic model of the combined cycle plant 700 as a gas turbine model instead of the dynamic characteristic model of the two-shaft gas turbine power generator 100.
  • the present invention can be applied to a plurality of combined cycle plants.
  • differences from the third embodiment will be described.
  • FIG. 19 shows the configuration of the power generation system of the fourth embodiment.
  • the power generation system of this embodiment includes a plurality of combined cycle plants.
  • any one, any plurality, or all are the two-shaft gas turbine power generation devices 100 similar to those in the third embodiment. is there.
  • a combined cycle plant including a two-shaft gas turbine power generator that does not include M / G 6 is referred to as a normal combined cycle plant 701
  • a control device of the normal combined cycle plant 701 is referred to as a normal control device 201.
  • the control unit 500 uses the M / G 6 as a brake for the compressor 1 during normal operation.
  • the number of the two-shaft gas turbine power generation devices 100 among the plurality of gas turbine power generation devices increases, the amount of change in power that can follow the system load fluctuation or the system output target value increases. Distributes the system output target value to the gas turbine output target values in a range not exceeding the amount of change for a plurality of gas turbine power generators.
  • the control unit 500 may equally distribute the system output target value to the plurality of two-shaft gas turbine power generators 100, or one biaxial gas from the plurality of two-shaft gas turbine power generators 100 sequentially.
  • the turbine power generation device 100 may be selected and distributed such that the maximum change amount that can be followed with respect to the selected two-shaft gas turbine power generation device 100 may be obtained.
  • the control unit 500 takes into account the influence of the change in the exhaust temperature of the two-shaft gas turbine power generator 100 on the thermal stress of the exhaust heat recovery boiler 720, and the change in the exhaust temperature is determined in advance. Control may be performed within an appropriate range, or an operator may monitor as a monitoring item and may set an M / G restriction condition using the support tool 910 when determined to be necessary. For example, by including the exhaust temperature condition in the M / G restriction condition, the control unit 500 may apply a restriction such as setting IMWD to 0 (does not transmit IMWD) when the change in the exhaust temperature exceeds the appropriate range. Good.
  • the cost and size of the power generation system can be suppressed.
  • the mechanical delay of the gas turbine can be compensated by absorbing / releasing the kinetic energy of the compressor 1 to follow the power generation request, and the frequency fluctuation of the system can be suppressed.
  • IMWD can be determined in consideration of output delay of the two-shaft gas turbine power generator.
  • the gas turbine can be optimally operated according to the atmospheric temperature and the load zone with the assistance of the compressor 1 by the M / G 6.
  • the high-pressure turbine shaft the high-pressure turbine shaft 12a or the like may be used.
  • the compressor 1 etc. may be used as a compressor.
  • the combustor the combustor 20 or the like may be used.
  • the high-pressure turbine the high-pressure turbine 2a or the like may be used.
  • the low-pressure turbine shaft 12b or the like may be used as the low-pressure turbine shaft.
  • the low pressure turbine the low pressure turbine 2b or the like may be used.
  • the generator 5 or the like may be used as the first generator.
  • the multi-shaft gas turbine the gas generator 15 and the power turbine 16 may be used.
  • M / G6 etc. may be used as a 2nd generator.
  • a frequency converter 10 or the like may be used as the frequency converter.
  • the transformer the transformer 50 or the like may be used.
  • the control unit the GT control device 7a, the control device 200, and the like may be used.
  • a gas turbine output target value may be used as the output target value.
  • a generator output command value (MWD) or the like may be used as the first generator output command value.
  • An auxiliary generator output command value (IMWD) or the like may be used as the second generator output command value.
  • IGV9 etc. may be used as an inlet guide vane.
  • a support tool 910, an image display device 950, or the like may be used.
  • the renewable energy generator the wind power generator 30 or the solar power generator 1000 may be used.
  • a system output target value or the like may be used as the total output target value.
  • An exhaust heat recovery boiler 720 or the like may be used as the exhaust heat recovery boiler.
  • a steam turbine 730 or the like may be used as the steam turbine.
  • a generator 740 or the like may be used as the steam turbine generator.
  • a combined cycle plant 700 or the like may be used as the combined cycle plant.
  • Operation information database 700 ... Combined cycle plant 710 ... Steam turbine power generation device 720 ... Waste heat recovery boiler 730 ... Steam Turbine 740 ... Generator 750 ... Condenser 60 ... the water supply pump 770 ... stack 1000 ... solar power generation apparatus 1100 ... solar panel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

 負荷変動に対する発電設備の追従性能を高めると共に、発電設備の信頼性を高める。多軸ガスタービンの動特性を模擬する動特性モデルを用いて、第一発電機の出力を出力目標値に合わせるように燃焼器を制御した場合の第一発電機の出力の予測値を算出し、出力目標値及び第一発電機の出力の予測値に基づいて、第一発電機から電力系統への出力の指令値である第一発電機出力指令値と、第二発電機から電力系統への出力の指令値である第二発電機出力指令値とを算出し、第一発電機出力指令値に基づいて燃焼器を制御し、第二発電機出力指令値に基づいて周波数変換器を制御する。

Description

発電システムおよび発電方法
 本発明は、発電システムに関する。
 火力発電プラントは、主に化石燃料から燃焼によって取り出された燃焼熱をもとに発電機器を駆動させて発電する発電装置であり、燃料や発電機器の組合せでさまざまな発電装置がある。例えば、石炭や重油などをボイラで燃焼し、その燃焼熱で蒸気を発生させ、蒸気タービンを駆動させ発電する蒸気タービン発電装置や、大気を圧縮機で圧縮し燃焼器にて燃料と圧縮空気を混合燃焼させ、その燃焼空気により、ガスタービンを駆動させて発電するガスタービン発電装置や、ガスタービンで燃焼した排ガスを利用し、排熱回収ボイラにて蒸気を発生させ、その蒸気にて蒸気タービンを駆動させるコンバインドサイクル発電装置がある。
 一方、近年、二酸化炭素低減の観点から自然エネルギーを利用した再生可能エネルギー発電が注目されている。特に、風力発電や太陽光発電を利用した発電が急速に広まっている。しかしながら、自然の状況は制御することができないため、得られる発電出力は一定とならず変動する。このような電源を系統に接続すると系統が不安定になり、系統周波数を一定に保てなくなる恐れがある。また、ガスタービンをはじめとする汽力発電は、定格負荷時に効率が最大となるよう設計されるのが一般的であるため、部分負荷時の運転では、効率が低下する。
 特許文献1では、風力発電や太陽光発電の不安定電源に対し、ガスエンジンやガスタービン発電機など複数の容量の異なる電源や熱電負荷が接続された電力系統において、系統負荷に応じた発電指令の発生と熱電負荷の排熱回収量や蓄熱量を調整する制御装置が記載されている。
 特許文献2では、風力発電設備とガスタービン設備による余剰電力を重質油改質設備へ供給する複合プラントが記載されている。
 特許文献3では、複数スプールをもつ多軸ガスタービンエンジンに補助発電機/モータを接続し、スプールへの動力注入あるいはスプールからの動力抽出で部分負荷効率向上を実現するシステムが記載されている。
特開2005-151746号公報 特開2008-285571号公報 特表2007-505261号公報
 再生可能エネルギー、特に風力発電や太陽光発電については、その発電出力は気候の変動に影響を受けるため、系統の安定化に影響を与える。今後、環境の観点やエネルギー源の多様化から再生可能エネルギーの導入増加は一層加速し、系統に与える影響はまずまず顕著化する。
 特許文献1および2に記載されている方法では、再生可能エネルギー発電装置と、ガスタービン発電装置等の発電装置とが組み合わされており、更に必要とされる給電量に対し余剰分を回収するための別装置がさらに設けられている。このような技術において、各発電装置の出力特性が考慮されていないため、発電指令に対する発電装置の実際の出力と再生可能エネルギー発電装置から得られる発電出力が合わせられると、必ずしも接続系統の規制を満たすとは限らない。従って、再生可能エネルギーの出力変動に対し接続系統の規制内で発電供給することに対応することは困難である。
 また、特許文献3に記載されている方法では、ガスタービン発電装置に補助発電機/モータの発電が加わることにより、ガスタービン入口温度が制限値以上になる場合がある。
 本発明は、上記の問題に鑑みてなされたものであり、負荷変動に対する発電設備の追従性能を高めると共に、発電設備の信頼性を高める技術を提供することを目的とする。
 上記課題を解決するために、本発明の一態様である発電システムは、高圧タービン軸と、前記高圧タービン軸の回転に応じて圧縮空気を生成する圧縮機と、前記圧縮空気及び燃料を混合して燃焼させることにより燃焼ガスを生成する燃焼器と、前記燃焼ガスを受けて回転し前記高圧タービン軸を駆動する高圧タービンと、低圧タービン軸と、前記高圧タービンから排出されるガスを受けて回転し前記低圧タービン軸を駆動する低圧タービンと、電力系統に接続され、前記低圧タービン軸の回転を用いて発電し、発電した電力を前記電力系統へ出力する第一発電機と、を含む多軸ガスタービンと、電力の入出力に応じて前記高圧タービン軸の加減速を行う第二発電機と、前記第二発電機の端子に接続される周波数変換器と、前記周波数変換器及び前記第一発電機の端子の間に接続される変圧器と、前記発電システムの出力の時系列の目標値である出力目標値を記憶し、前記多軸ガスタービンの動特性を模擬する動特性モデルを用いて、前記第一発電機の出力を前記出力目標値に合わせるように前記燃焼器を制御した場合の前記第一発電機の出力の予測値を算出し、前記出力目標値及び前記第一発電機の出力の予測値に基づいて、前記第一発電機から前記電力系統への出力の指令値である第一発電機出力指令値と、前記第二発電機から前記電力系統への出力の指令値である第二発電機出力指令値とを算出し、前記第一発電機出力指令値に基づいて前記燃焼器を制御し、前記第二発電機出力指令値に基づいて前記周波数変換器を制御する制御部と、を備える。前記第一発電機出力指令値が前記出力目標値より小さい場合、前記周波数変換器は、前記制御部からの指示に基づいて前記第二発電機の出力を周波数変換して前記電力系統へ出力することにより、前記第二発電機は、前記高圧タービン軸を減速させて得られる電力を前記周波数変換器へ出力し、前記変圧器は、前記周波数変換器の出力を昇圧して前記電力系統へ出力する。前記第一発電機出力指令値が前記出力目標値より大きい場合、前記周波数変換器は、前記制御部からの指示に基づいて前記第一発電機の出力の一部を周波数変換して前記第二発電機へ出力することにより、前記変圧器は、前記第一発電機の出力の一部を降圧して前記周波数変換器へ出力し、前記第二発電機は、前記周波数変換器の出力を用いて前記高圧タービン軸を加速させる。
 負荷変動に対する発電設備の追従性能を高めると共に、発電設備の信頼性を高めることができる。
本発明の実施例に係る2軸式ガスタービン発電装置100を示す。 需要変動に対する2軸式ガスタービン発電装置100の出力を示す。 実施例1の発電システムの構成を示す。 関連情報データベース300の内容を示す。 運転情報データベース600の内容を示す。 風力発電モデルの構成を示す。 ガスタービン制御処理を示す。 M/G6を用いない場合の大気温度と発電出力の関係を示す。 M/G入力と発電出力の関係を示す。 M/G入力と発電効率の関係を示す。 ガスタービン制御処理の変形例を示す。 初期画面を示す。 運転状態表示画面を示す。 トレンド表示設定画面を示す。 トレンドグラフ画面を示す。 実施例2の発電システムの構成を示す。 太陽光発電モデルの構成を示す。 実施例3の発電システムの構成を示す。 実施例4の発電システムの構成を示す。
 以下、本発明の実施例について図面を用いて説明する。
 本実施例では、本発明が適用された2軸式ガスタービンと、その2軸式ガスタービンを含む
について説明する。
 図1は、本発明の実施例に係る2軸式ガスタービン発電装置100を示す。
 2軸式ガスタービン発電装置100は、ガスジェネレータ15、パワータービン16、GT(Gas Turbine)制御装置(制御器)7a、周波数変換器10を含む。
 パワータービン16は、低圧タービン2b、その軸である低圧タービン軸12b、低圧タービン軸12bの回転力を電力に変換する発電機5を含む。発電用ガスタービンにおいては、電力周波数を略一定とするために、パワータービン16が略一定の低圧タービン回転数で回転することにより、発電機5を略一定の低圧タービン回転数で駆動する。発電機5で発電された電力は電力ケーブルを経て電力需要家へと送電される。
 ガスジェネレータ15は、圧縮機1、燃焼器20、高圧タービン2a、電動機/副発電機(M/G)6、高圧タービン軸12aを含むように構成される。M/G6、圧縮機1、高圧タービン2aは、高圧タービン軸12aを共有している。
 ガスジェネレータ15は、パワータービン16と機械的に分離された構造となっているため、低圧タービン回転数と異なる高圧タービン回転数で回転することが可能である。
 圧縮機1は、大気を吸気し圧縮することにより圧縮空気21を生成する。また、圧縮機1の吸気の入口(取り込み口)には、IGV(Inlet Guide Vane:入口案内翼)9が設けられている。IGV9は自身が回転することで、圧縮機1の開口面積を変化させる。GT制御装置7aがIGV9の開度CIGVを変更することで圧縮機1へ流入する空気の量を変化させることができる。なお、IGV9に限らず、高圧タービン回転数を調整する他の調速機が用いられてもよい。本実施例においては、圧縮機1へ流入する空気の量は、M/G6が高圧タービン回転数を調整することによっても変化させることができる。
 燃焼器20は、圧縮機1により生成された圧縮空気21と燃料配管からの燃料とを、略一定の空燃比(質量比)で混合し、バーナ18において燃焼させて燃焼ガス22を生成する。燃焼ガス22は燃焼器ライナ19を経てまず、高圧タービン2aへ流入する。バーナ18で燃焼される燃料は、燃料配管に設けられた燃料流量制御弁8によって調整される。GT制御装置7aは、燃料流量制御弁8を制御する。
 高圧タービン2aは、高温高圧の燃焼ガス22の運動エネルギーにより回転力を得る。回転力は高圧タービン軸12aを通じて圧縮機1へ伝わり、圧縮機1を回転駆動する。燃焼ガス22は、高圧タービン2aにより運動エネルギーの一部を抽出された後にパワータービン16の低圧タービン2bへ流入する。低圧タービン2bは、燃焼ガス22の運動エネルギーにより回転力を得て、低圧タービン軸12bを通じてその回転力を発電機5へ伝え、発電機5を回転駆動する。低圧タービン2bを通過した燃焼ガス22は、排気14として排出される。
 また、圧縮機1により生成された圧縮空気21の一部は、タービン冷却空気23として抽気され、燃焼器20を経ずに高圧タービン2a及び低圧タービン2bを含むタービン2へ供給される。タービン冷却空気23の一部は、タービン2を構成する静翼24と動翼25の冷却に使用される。
 また、高圧タービン軸12aと共に回転するM/G6の端子は、周波数変換器10および変圧器50を介して系統(電力系統)に接続されており、系統と電力を授受することで、高圧タービン軸12aの動作を調整することができる。具体的には、周波数変換器10によりM/G6へ電力を供給することで、M/G6はモータとして動作し、高圧タービン軸12aにエネルギーを供給する。逆に周波数変換器10によりM/G6から電力を抽出することでM/G6は発電機として動作し、高圧タービン軸12aのエネルギーを減ずる。
 GT制御装置7aは、高圧タービン回転数検出器26aによって検出される高圧タービン回転数、低圧タービン回転数検出器26bによって検出される低圧タービン回転数、発電機5から系統への出力電力の目標値を示す発電機出力指令値(MWD)、M/G6から系統への出力電力の目標値を示す副発電機出力指令値(IMWD)を含む入力を受け付け、燃料流量制御弁8を制御するFFD信号、IGV9の開度を制御するCIGV信号、周波数変換器10を制御する周波数変換器制御信号を生成して送出する。なお、GT制御装置7aは、各部の過度の温度上昇や事故の伝搬等を防ぐための保護機能を含んでいても良い。また、GT制御装置7aは、大気温度、低圧タービン2bの排気14の温度である排気温度、変圧器50の冷却水の温度である変圧器冷却水温度等を計測するセンサから計測値を取得する。排気温度は、高圧タービン2aの入口における燃焼ガス22の温度であるガスタービン入口温度に応じて変化する。
 M/G6を持たない2軸式ガスタービンは機械的な遅れ等により、急激な発電要求に完全に追従することは難しい。本実施例では、高速タービン軸12aを可変速とし、M/G6による高圧タービン回転数の変化で変動を吸収する。また、M/G6による電気的な圧縮機1のアシストにより大気温度特性の向上や部分負荷時の効率向上を実現する。
 本実施例において、GT制御装置7aは、燃料流量の制御に加え、M/G6を用いて高圧タービン回転数を制御することにより、2軸式ガスタービン発電装置100の出力電力を制御する。例えば、GT制御装置7aは、出力を増加させたいとき、M/G6により高圧タービン回転数を低下させ、軸の回転エネルギーを電力として放出し、出力を低下させたいとき、M/G6により高圧タービン回転数を上昇させ、電力を軸の回転エネルギーとして貯蔵することができる。燃料流量によらない出力変化を行うことにより、タービン2の熱疲労などに起因する寿命低下を避けつつ高い出力変化速度を得ることができる。
 さらに、本実施例の周波数変換器10の容量は、発電機5の容量に比べて小さくすることができる。本実施例の2軸式ガスタービン発電装置100において、出力の大部分を担う低圧タービン2bは定速回転をする。周波数変換器10を要するのは、可変速運転をする高圧タービン2a側のみであり、このことから周波数変換器10の容量を小さくすることができる。例えば、燃料流量による出力変化に加え、発電機5の定格出力の10%以下の出力を変化させたい場合は、定格出力の10%の容量の周波数変換器10を用いることで対応できる。これにより周波数変換器10のコストを低減することが可能である。
 以下、2軸式ガスタービン発電装置100の動作について説明する。
 GT制御装置7aは、高圧タービンで回収されるエネルギーと圧縮機1で消費されるエネルギーとが等しくなるようにバランスさせるように制御する。この制御手法として一般的には、IGV9の開度調整による圧縮機吸い込み空気流量の変更が挙げられる。例えば、高圧タービン回転数が設定値よりも高いとき、GT制御装置7aが、IGV9の開度を増加させ、圧縮機吸い込み空気流量を増やすことで、圧縮機1により消費される運動エネルギーが増え、高圧タービン回転数が減少する。逆に、高圧タービン回転数が設定値よりも低いとき、GT制御装置7aがIGV9の開度を減少させることで、高圧タービン回転数が増加する。
 また、GT制御装置7aは、燃料流量を変化させて発電機5の出力を変化させる。このとき、GT制御装置7aは、外部から指示された発電機出力指令値(MWD)に応じて、必要な燃料流量を示す燃料流量指令値(FFD)を算出して燃料流量制御弁8へ送出することにより、必要な燃料を燃焼器20へ供給し、発電機5の出力と低圧タービン2bにより燃焼ガス22から回収されるエネルギーとをバランスさせる。これにより、低圧タービン回転数は略一定に制御される。さらにこのとき、GT制御装置7aは、高圧タービン2aにより燃焼ガス22から回収されるエネルギーと、圧縮機1の駆動に必要なエネルギーとをバランスさせ、高圧タービン回転数が設定値に等しくなるように、IGV9の開度を制御する。このように高圧タービン回転数は出力に対し一意に決められるのではなく、変更が可能である。
 図2は、需要変動に対する2軸式ガスタービン発電装置100の出力を示す。
 M/G6を含まない比較例の2軸式ガスタービン発電装置と、本実施例の2軸式ガスタービン発電装置100とにおいて、需要が増加した場合について説明する。この図において5行3列に配置されたグラフのうち、左側の第1列が比較例のガスタービンにおいて需要変動速度が小さい(需要が緩やかに増加した)場合の動作を表し、中央の第2列が比較例のガスタービンにおいて需要変動速度が大きい(需要が急に増加した)場合の動作を表し、右側の第3列が本実施例の2軸式ガスタービン発電装置100において需要変動速度が大きい場合の動作を表す。
 各列における5行のグラフのうち、最も上の第1行のグラフは、電力変動の時間変化(需要変動)を表す。その下の第2行のグラフは、ガスタービン出力の時間変化を表す。その下の第3行のグラフは、系統周波数の時間変化を表す。その下の第4行のグラフは、高圧タービン回転数の時間変化を表す。最も下の第5行のグラフは、低圧タービン回転数の時間変化を表す。これらの5行のグラフの横軸は共通の時間軸である。
 比較例のガスタービンでは、需要変動が小さい場合、燃料流量による出力制御により需要の変動を吸収可能であるが、需要変動が大きくなった場合、需要変動に合わせた目標値に対して出力変化が追いつかずに出力不足となった場合、低圧タービン回転数が低下し、系統周波数も合わせて低下する。逆に、出力過剰となった場合、低圧タービン回転数が上昇し、系統周波数も合わせて上昇する。
 本実施例の2軸式ガスタービン発電装置100では、周波数変換器10を用いて、燃料流量の制御による出力変化の不足分をM/G6から抽出する。燃料流量の制御だけでは出力が不足する場合、周波数変換器10の制御により、高圧タービン回転数が低下し、回転エネルギーが電力へと変換されることで不足分が補填される。このとき、IGV9の開度は、低下した高圧タービン回転数でも圧縮機1による消費エネルギーと、高圧タービン2aによる回収エネルギーがバランスするように決定される。また、高圧タービン回転数に応じたM/G6の出力周波数は、周波数変換器10により基準周波数へと変換される。こうすることで、需要の急変時にも系統周波数を安定化させることができる。ここで、周波数変換器10としては、公知のインバータ及びコンバータの組み合わせなどを利用することができる。例えば、周波数変換器10は、一方の端子から入力された交流電力を、直流電力に変換し、更に指示された周波数の交流電力に変換して他方の端子へ出力する。
 需要が増加した場合、制御装置200は、燃焼器20を制御することにより、燃焼器20の燃料流量を増加させると共に、周波数変換器10を制御することにより、M/G6を用いて高圧タービン軸12aを減速させ、需要が減少した場合、制御装置200は、燃焼器20を制御することにより、燃料流量を減少させると共に、周波数変換器10を制御することにより、M/G6を用いて高圧タービン軸12aを加速させる。周波数変換器10の制御による出力の応答は、燃焼器20の制御による出力の応答に比べて高速であるため、本実施例の2軸式ガスタービン発電装置100は、需要の急変に追従できる。
 前述のように、燃料流量の増加と共に、GT制御装置7aは、圧縮機1により消費される運動エネルギーと、高圧タービン2aが燃焼ガス22から受ける運動エネルギーとをバランスさせるように、IGV9の開度を決定する。具体的には、GT制御装置7aは、高圧タービン回転数が低下した場合に、IGV9を開き、高圧タービン回転数が上昇した場合に、IGV9を閉じることにより、圧縮機吸い込み空気流量を略一定に保つ。これにより、燃料流量に対して空燃比を保つ、発電機5の出力を指令値に保つことができる。
 ここで、一般に、ガスタービンは、最大負荷で最も効率が良くなるように設計されているため、IGV9を開くと圧縮機1の効率は向上する。例えば、GT制御装置7aが、燃料増加により出力を増加させると共に、M/G6が圧縮機1をブレーキすることにより高圧タービン回転数を低下させた場合、IGV9を開く。これにより、圧縮機1の効率が向上し、圧縮機1の吐出空気温度が低下すると共に、圧縮機1による消費エネルギーが減少する。そのため、燃料増加による出力の増加に加え、圧縮機1による消費エネルギーの減少分も出力が増加する。さらに、吐出空気温度の低下により、燃焼ガス22の温度が低下するため、燃料増加による燃焼ガス22の温度の上昇量を小さくすることができ、信頼性を向上させることができる。逆に、GT制御装置7aが、燃料減少により出力を減少させると共に、M/G6が圧縮機1をアシストすることにより高圧タービン回転数を増加させた場合、IGV9を閉じる。これにより、圧縮機効率が低下し、圧縮機1の吐出空気温度が増加すると共に、圧縮機1による消費エネルギーが増加する。そのため、燃料減少による出力の減少に加え、圧縮機1による消費エネルギーの増加分も出力が減少する。さらに、吐出空気温度の増加により、燃焼ガス22の温度が上昇するため、燃料減少による燃焼ガス22の温度の低下量を小さくすることができ、信頼性を向上させることができる。このような有益な相乗効果を得ることができる。
 また、圧縮機1の設計において、高圧タービン回転数低下時に圧縮機効率が上昇し、高圧タービン回転数上昇時に圧縮機効率が低下するように動作点を設定しておいても良い。こうすることで、上記と同様の有益な相乗効果を得ることができる。
 以下、2軸式ガスタービン発電装置と再生可能エネルギー発電装置とを組み合わせた発電システムについて説明する。ここでは、再生可能エネルギーとして風力を用いる。
 図3は、実施例1の発電システムの構成を示す。
 この発電システムは、風力発電装置30、2軸式ガスタービン発電装置100、制御装置200、支援ツール910、入力装置900、画像表示装置950を含む。
 風力発電装置30は、複数機の風力発電機31からなる。風力発電装置30は、風況を計測するための風速計を含み、風況に応じてブレードのピッチや風車の向き(ヨー)を制御する。風力発電装置30は、一定以上の風速を受けることで発電し、強風時はブレードで風を受けないようピッチを変え、停止する。風速に対する発電出力の特性は、風力発電装置30の設計に依存する。風力発電装置30で得られる風況情報や制御に必要な計測信号120と、風力発電装置30を制御するための制御信号130とは、制御装置200に蓄積される。
 2軸式ガスタービン発電装置100は、制御装置200からの制御信号150を受けて所望の状態に制御される。制御信号150(出力指令)は、燃焼器20の制御のためのMWDと、周波数変換器10の制御のためのIMWDとを含む。2軸式ガスタービン発電装置100の各部の状態量は、計測信号140として制御装置200に取り込まれる。
 制御装置200は、2軸式ガスタービン発電装置100からの計測信号140をもとに、発電要求に対し適切な運転状態となるよう各種操作端を操作する。
 関連情報データベース300は、風力発電の予測や現状を把握するための情報を格納する。運転情報データベース600は、風力発電装置30と2軸式ガスタービン発電装置100から得られた計測信号120、140をそれぞれ格納する。これらのデータの形態については、後述にて、詳しく説明する。
 モデル計算部400は、計測信号120、140から得られる情報に基づいて、風力発電装置30の出力である風力発電出力の予測値を計算し、風力発電の変動分を相殺する信号を2軸式ガスタービン発電装置100に入力した際の出力値を計算する。ここで、風力発電出力の予測値を計算するために必要なデータは、例えば、外気(大気)温度、湿度などの大気情報、風速、風力発電機31の出力などが挙げられる。これらデータの形態については、後述にて、詳しく説明する。
 制御部500では、モデル計算部400の結果を受け、適切な制御信号130を算出して出力する。この制御信号130に基づいて、2軸式ガスタービン発電装置100の空気量や燃料流量が操作され、出力が制御される。また、周波数変換器10の制御信号についても同様である。これら制御装置200により生成された信号や情報は、必要に応じて、支援ツール910にも出力される。制御信号130を求めるアルゴリズムについては、後述にて、詳しく説明する。
 2軸式ガスタービン発電装置100に関わる運転員等のユーザは、支援ツール910を用いることにより、2軸式ガスタービン発電装置100に関する様々な情報を見ることが可能である。支援ツール910は、キーボード901とマウス902を含む入力装置900と、画像表示装置950とに接続されている。また、支援ツール910は、制御装置200内の情報にアクセスすることができる。
 支援ツール910は、外部入力インターフェイス920、データ送受信処理部930、外部出力インターフェイス940を含む。支援ツール910は、メモリ及びマイクロプロセッサを含むコンピュータであってもよい。
 入力装置900により生成された入力信号800は、外部入力インターフェイス920を介して支援ツール910に取り込まれる。また、制御装置200からの情報についても、同様に外部入力インターフェイス920を介して支援ツール910に取り込まれる。データ送受信処理部930は、外部入力インターフェイス920により受信された入力信号801を処理し、出力信号802として外部出力インターフェイス940に送信する。出力信号803は、画像表示装置950に表示される。
 以下では、関連情報データベース300と運転情報データベース600に格納されている計測信号について説明する。
 図4は、関連情報データベース300の内容を示す。
 関連情報データベース300は、気候状態情報を含む。ここでの気候状態情報は、風力発電に関する項目だけでなく太陽光発電に関する項目も含む。気候状態情報は、外部のセンサ又は風力発電装置30により定期的に計測された情報であり、時刻毎のエントリを有する。ある時刻のエントリは、時刻、天気、気温、風向、風速、湿度、日射量を含む。時刻の周期は、計測可能な時間幅により決定される。天気は、気象庁が一般向けに発信している15種類を用いて表現する。風向きは日本では16方位を用いるのが一般的であるが、国際式では、真北を基準とし、時計回りの方向に360度に分割して表現する360方位が用いられている。図中では、360方位で表現しているが、16方位においてもそれぞれの方位に対して22.5度の割合を与えれば、同様に度で数値化できる。
 関連情報データベース300は、その他、風力発電装置30の設計情報、2軸式ガスタービン発電装置100の設計情報、系統接続の規制やルールなどの情報も格納する。
 図5は、運転情報データベース600の内容を示す。
 運転情報データベース600は、風力発電装置30および2軸式ガスタービン発電装置100により定期的に計測された情報を、計測された時刻毎に格納する。各時刻のエントリは、計測値毎の項目を有する。PID番号とは、運転情報データベース600に格納されているデータを容易に活用できるよう、各計測値に割り付けられた固有の番号である。PID番号の下のアルファベットは、被計測対象を示す記号である。例えば、流量値F、温度値T、圧力値P、発電出力値E、濃度値Dである。尚、この図の例では1秒周期でデータを保存しているが、データ収集のサンプリング周期は対象となる2軸式ガスタービン発電装置100によって異なる。温度値Tは、大気温度、排気温度、変圧器冷却水温度等である。
 次に、制御装置200におけるモデル計算部400について説明する。
 モデル計算部400は、風況と現在の風力発電の出力から将来の風力発電出力を求めるための風力発電モデルを作成し、風力発電モデルへ計測値を入力することにより、風力発電モデルの出力を再生可能エネルギー出力予測値として算出する。
 図6は、風力発電モデルの構成を示す。
 風力発電モデルは、入力層、中間層、出力層を持ち、それぞれの層には、複数のノードが含まれる。これらのノードは、入力層から出力層に向かって、リンクされており、リンクの強さを表す重み係数が設定されている。つまり、重み係数はノード間の連結数だけ存在する。風力発電モデルはニューラルネットワークと呼ばれており、人間の持つ脳神経ネットワークを模擬したものである。風力発電モデルに、入力値を与え、その入力値に対する所望の出力値が出力されるよう重み係数を調整することで、入力値のもつ相関関係をモデルとして表現できるようになる。この調整を学習と呼んでいる。例えば、運転情報データベース600に格納されている或る時刻を学習の対象時刻とするとき、入力値は、対象時刻より過去の関連情報データベース300に格納されている温度、風速、湿度や、運転情報データベース600に格納されている風力発電装置30の出力等であり、出力値は、対象時刻の風力発電装置30の出力である。学習が完了すると、風力発電モデルに入力値を入力することで、その時の入力値のもつ相関関係をもとに、出力値を推定することが可能となる。各ノードに設定する関数はシグモイド関数と呼ばれる指数関数を用いるのが一般的であるが、それに限定するものではない。また、学習時に、重み係数を適切に調整するアルゴリズムは多数考案されている。一般的には、バックプロパゲーション法が用いられる。
 従って、モデル計算部400は、風力発電モデルを構築するために過去に蓄積されたデータあるいは設計データをもとに風力発電モデル内のパラメータを学習する。運転開始後、モデル計算部400は、学習で得られたパラメータをもとに予測を実施するが、予測値と実測値の差の大きさが予め定められた設定値よりも大きくなると、それまでに蓄積されたデータをもとに再度学習して風力発電モデルを構築する。
 また、それぞれの風力発電機31に対し個別の風力発電モデルを作成するのか、風力発電装置30(ウィンドファーム)一括で1つの風力発電モデルとするのかは、適用する形態に応じて決定する。
 なお、予測値を算出する対象の時間の長さである予測時間は、2軸式ガスタービン発電装置100の発電出力の特性で決定される。つまり、2軸式ガスタービン発電装置100へMWDを与えてから2軸式ガスタービン発電装置100の出力が実際にMWDに等しくなるまでの遅れ分を事前に予測する必要がある。これについては後述する。
 更にモデル計算部400は、2軸式ガスタービン発電装置100へのMWDのために、2軸式ガスタービン発電装置100を表現するガスタービンモデルを用い、ガスタービンモデルへ出力の目標値及び計測値を入力することにより、2軸式ガスタービン発電装置100の出力を予測する。
 モデル計算部400には、ガスタービンモデルが予め設定される。ガスタービンモデルとして、圧力や流量のマスバランスを基本とする動特性モデルを用いるのが一般的であるが、風力発電モデルの作成と同様にして、ニューラルネットワークによるモデル化も可能である。
 2軸式ガスタービン発電装置100が賄うべき電力量は、風力発電出力を相殺する出力、つまり、発電システムの出力の目標であるシステム出力目標値(合計出力目標値)から風力発電出力を差し引いた値である。この値を、2軸式ガスタービン発電装置100の出力目標値であるガスタービン出力目標値と呼ぶ。ただし、M/G6を用いない場合の2軸式ガスタービン発電装置100は、機械的要素による遅れが生じるため、入力されるMWDの変化に対して発電機5の出力が遅れる。そのため、風力発電装置30の出力と、M/G6を用いない場合の2軸式ガスタービン発電装置100の出力との合計は、システム出力目標値に一致せずに、差分(漏れ)が発生する場合がある。モデル計算部400は、ガスタービンモデルを用いて、M/G6を用いない場合の2軸式ガスタービン発電装置100にMWDとしてシステム出力目標値を与えた場合の発電機5の出力を計算する。ガスタービンモデルには、M/G6を用いない場合の2軸式ガスタービン発電装置100の最大負荷変化率が設定されていてもよい。この場合、ガスタービンモデルは、最大負荷変化率以内でシステム出力指令値に追従するように振る舞う。制御部500は、ガスタービンモデルの出力を2軸式ガスタービン発電装置100へのMWDとし、ガスタービンモデルにより追従できない差分を、周波数変換器10に与えるIMWDとする。
 なお、制御部500の各ステップの計算に要する時間に対して、発電要求に応答するための時間が短い場合などにおいて、ガスタービンモデルは動特性モデルより計算負荷が軽い伝達関数を用いてもよい。この場合の伝達関数は、ガスタービンの機械的遅れを模擬できるように一次遅れあるいはむだ時間を考慮する。
 次に、制御部500が2軸式ガスタービン発電装置100を制御するガスタービン制御処理について説明する。
 図7は、ガスタービン制御処理を示す。
 ステップ501で制御部500は、系統の接続条件よりシステム出力目標値を決定する。系統の接続条件は、発電システムが系統に接続(連系)するための条件を示し、国や地域等によって異なる。多くの接続条件は、負荷変動許容幅と周波数変動許容幅を規定している。本実施例の発電システム以外に幾つかの電源が接続されているような系統であれば、2軸式ガスタービン発電装置100の出力を急速に変化させても、周波数の変動を系統が吸収できる。そのため、制御部500は、負荷変動許容幅を考慮してシステム出力目標値を算出する。一方、アイランドオペレーションに代表されるように系統に接続されている電源が少ない場合、2軸式ガスタービン発電装置100の出力を急速に変化させると、低圧タービン回転数が変化し、系統周波数に影響を与えることになる。従って、その場合には、周波数の変動が周波数変動許容幅に収まるように負荷変化率を予め決定し、2軸式ガスタービン発電装置100の出力を負荷変化率以下で変化させる必要がある。なお、システム出力目標値は、中央給電指令所から発令され、発電システムの出力を指示する給電指令値であってもよい。
 ステップ502で制御部500は、モデル計算部400により得られた再生可能エネルギー出力予測値と、運転情報データベース600により得られた現在の風力発電装置30の出力の計測値である再生可能エネルギー出力計測値とを取得し、再生可能エネルギー出力予測値から再生可能エネルギー出力計測値を差し引くことにより誤差を計算し、誤差の大きさが予め設定された誤差許容値以下であるか否かを判定する。
 誤差の大きさが誤差許容値以下であれば(Yes)、制御部500は処理をステップ503へ移行させる。そうでなければ(No)、制御部500は処理をステップ504へ移行させる。
 ステップ503で制御部500は、システム出力目標値から風力発電出力予測値を差し引くことによりガスタービン出力目標値を算出し、処理をステップ506へ移行させる。これにより、2軸式ガスタービン発電装置100は、風力発電装置30等の再生可能エネルギー発電装置の出力変動を吸収することができる。なお、モデル計算部400が、再生可能エネルギー出力予測値を算出する代わりに、制御部500は、系統における電力系統における電力の需要と、他の発電機に関する情報とに基づいて、系統の電力需給変動の予測値を算出し、電力需給変動の予測値に基づいて、ガスタービン出力目標値を算出してもよい。これにより、外部から取得した情報を用いて電力需給変動を予測し、ガスタービン出力目標値を算出することができる。
 ステップ504で制御部500は、風力発電モデルを再学習する。その後、ステップ505では、システム出力目標値から再生可能エネルギー出力計測値を差し引くことにより、ガスタービン出力目標値を算出し、処理をステップ506へ移行させる。つまり、この場合、制御部500は、再生可能エネルギー出力予測値を用いない。
 ステップ506で制御部500は、モデル計算部400へガスタービン出力目標値を入力することにより発電機出力予測値を計算させる。ここでモデル計算部400は、ガスタービン出力目標値及び計測値をガスタービンモデルへ入力することにより、発電機出力予測値を計算する。
 その後、ステップ507で制御部500は、ガスタービン出力目標値から発電機出力予測値を差し引くことにより、出力差分値を算出する。その後、ステップ508で制御部500は、発電機出力予測値をMWDへ設定し、出力差分値をIMWDへ設定する。これにより、ガスタービン出力目標値のうち、MWDによる燃焼器20の制御で追従できないと予測された分を、IMWDによる周波数変換器10の制御に配分することができる。
 その後、ステップ509で制御部500は、大気温度に基づいてIMWDを補正する大気温度補正処理を行う。
 ここでは、大気温度補正処理について説明する。
 図8は、M/G6を用いない場合の大気温度と発電出力の関係を示す。
 大気温度が高くなると、圧縮機1から入力される圧縮空気21の質量流量が下がるため、MWDに応じて設定された燃料の質量流量に対して、圧縮空気21の質量流量が不足し、発電出力が減少する。この特性は、ガスタービンの基本特性である。大気温度がある設計温度(大気温度閾値)になるまで発電出力は100%(定格)となるが、大気温度が設計温度を超えて上昇するにつれて出力が減少する。
 本実施例における2軸式ガスタービン発電装置100では、圧縮機1に接続されたM/G6は、周波数変換器10から電気エネルギーを供給されることで電動機の役割をし、圧縮機1の運動エネルギーを受け電気エネルギーを周波数変換器10へ出力することで発電機の役割をする。周波数変換器10から電気を供給されたM/G6が圧縮機1をアシストすることで大気温度が設計温度より高い場合でも出力を向上させることができる。以後、周波数変換器10からM/G6へ入力される電力をM/G入力と呼ぶ。ここで、IMWDは、M/G6から周波数変換器10へ出力される電力を表すため、M/G入力の符号は、IMWDの符号と逆である。
 図9は、M/G入力と発電出力の関係を示す。
 ここで、大気温度が設計温度より高く、且つM/G入力が0であり、つまり発電出力が100%より低いとする。ここで、M/G入力を増加させることによりM/G6へ電気エネルギーを入力すると、M/G6により圧縮機1の運動エネルギーが増し、たとえIGV開度が全開となっていても、圧縮機1が取り込む空気量を増加させることができるため、圧縮空気21の質量流量が増加し、MWDに応じて設定された燃料の質量流量に対して、反応する圧縮空気21が増加し、発電機5の出力を増加させることができる。ただし、発電機5の出力を無限に増加できるわけではなく、圧縮空気21の増加に伴って、反応する燃料が増加することにより、燃焼温度が上昇し、排気温度が予め設定された排気温度制限値に達すると燃料が絞られるため逆に低下する。即ち、M/G入力には限界がある。
 図10は、M/G入力と発電効率の関係を示す。
 発電効率も発電出力と同様である。2軸式ガスタービン発電装置100を定格負荷以外の部分負荷で運転すると効率は低下する。圧縮機1は定格点でもっとも効率が良くなるように設計されているからである。大気温度が設計温度より高く、且つM/G入力が0である場合に、M/G入力を増加させることによりM/G6に電気エネルギーを入力すると圧縮機1の動作点が定格点に近づくため、圧縮機1の効率が上昇する。
 大気温度補正処理において、制御部500は、大気温度が設定温度より高い場合、大気温度の状態と部分負荷の状態においてそれぞれが最適となるようにM/G入力(アシスト量)を決定し、IMWDからM/G入力を減ずることにより、IMWDを補正する。具体的には、制御部500は、M/G入力の増加に対する発電出力の増加量と発電効率の増加量との合計値が最大となるようなM/G入力を決定する。ただし、合計値に限定するものではない。制御部500は、発電出力の増加量と発電効率の増加量のどちらか一方が最大となるM/G入力を選択してもよい。また、制御部500は、大気温度が設計温度より高い場合、ステップ508で設定されたIMWDを用いずに、M/G入力の符号を反転させた値をIMWDへ設定してもよい。M/G6に高圧タービン軸12aを加速させ、圧縮空気21の流量を増加させることにより、大気温度が設計温度より高い場合に、発電機5の出力をMWDに近づけることができる。
 以上が大気温度補正処理である。
 その後、ステップ511で制御部500は、2軸式ガスタービン発電装置100の状態が予め定められたM/G制限条件(周波数変換器制限条件)を満たすか否かを判定する。M/G制限条件は例えば、IMWDが予め定められたIMWD制限範囲外である、又は変圧器50の冷却水温度が予め設定された冷却水温度限界値を上回ることである。ステップ511で2軸式ガスタービン発電装置100の状態がM/G制限条件を満たさないと判定された場合(No)、ステップ513で制御部500は、MWD及びIMWDを含む出力指令を2軸式ガスタービン発電装置100へ出力し、このフローを終了する。一方、ステップ511で2軸式ガスタービン発電装置100の状態がM/G制限条件を満たすと判定された場合(Yes)、制御部500は、ステップ512でIMWDを制限し、処理をステップ511へ移行させる。
 IMWDによるアシスト量(M/G6が電動機として動作する場合)やブレーキ量(M/G6が発電機として動作する場合)に従って、M/G6が圧縮機1のトルクを増減する場合において、IMWD制限範囲(指令値範囲)が存在する。例えば、前述のように、大気温度が高い場合、M/G入力を増加させると圧縮機1の運動エネルギーが増加し、取り込む空気量が増加すると、燃料の増加が可能になり、出力が増加する。M/G入力を無限に増加させれば出力が無限に増加する訳ではない。燃料投入量に比例してガスタービン入口温度及び排気温度が上昇し、排気温度が排気温度制限値に達する。このときのIMWDを、IMWD制限範囲の下限値とする。ブレーキ量についても同様で、ブレーキにより取り込み空気量が減少し、ガスタービン入口温度や排気温度が上昇しやすくなる。従って、IMWDを大きくすると、排気温度が排気温度制限値に達する。このときのIMWDを、IMWD制限範囲の上限値とする。
 IMWD制限範囲の上限値と下限値の大きさは、発電機5の定格出力の10%程度以下であることが望ましく、発電機5の電圧と周波数変換器10の電圧にはかなりの差があるため、発電機5と周波数変換器10の間に変圧器50が必要となる。特許文献3の技術では、主発電機とインバータ装置の間が変圧器により接続されていないため、電圧差が生じる場合の用途には適用できない。ガスタービン発電装置、特に、数十MW以上のガスタービン発電装置になると周波数変換器の容量はガスタービン発電装置の定格出力の10%以下であることが望ましい。なぜならば、それ以上の入力ではガスタービン入口温度が制限値以上になる恐れがあるからである。
 ステップ511でIMWDがIMWD制限範囲の上限値を上回る場合、ステップ512で制御部500は、IMWDをIMWD制限範囲の上限値へ変更する。ステップ511でIMWDがIMWD制限範囲の下限値を下回る場合、ステップ512で制御部500は、IMWDをIMWD制限範囲の下限値へ変更する。
 また、ステップ511で冷却水温度が冷却水温度上限値を上回ると判定された場合、ステップ512で制御部500は、IMWDを0にすることにより、M/G6、周波数変換器10、変圧器50の動作を停止させる。これにより、制御部500は、冷却水温度が冷却水温度制限値以下になるまで、変圧器50に電流を流さないように制御する。
 本実施例では、M/G6を用いることにより2軸式ガスタービン発電装置100の出力がガスタービン出力目標値に対して高速に追従するため、電力が短い時間で周波数変換器10を行き来する。そのため、周波数変換器10と系統の間にある変圧器50の両端にかかる電圧が急変する。これにより、変圧器50の冷却水温度が急変するため、冷却水温度など、変圧器50の状態量を常に監視し、冷却水温度の条件をM/G制限条件に含める。
 なお、ガスタービン制御処理における処理の順序は交換可能である。例えば、ステップ507、508とステップ509とは交換可能である。
 なお、制御部500は、2軸式ガスタービン発電装置100の状態に基づいて発電機出力予測値に制限を与え、制限された値をMWDとして設定してもよい。
 以上がガスタービン制御処理である。MWDがガスタービン出力目標値より小さい(IMWDが正である)場合、周波数変換器10は、制御装置200からの指示に基づいてM/G6の出力を周波数変換して系統へ出力することにより、M/G6は、高圧タービン軸12aを減速させて得られる電力を周波数変換器10へ出力し、変圧器50は、周波数変換器10の出力を昇圧して系統へ出力する。MWDがガスタービン出力目標値より大きい(IMWDが負である)場合、周波数変換器10は、制御装置200からの指示に基づいて発電機5の出力の一部を周波数変換してM/G6へ出力することにより、変圧器50は、発電機5の出力の一部を降圧して周波数変換器10へ出力し、M/G6は、周波数変換器10の出力を用いて高圧タービン軸12aを加速させる。これにより、系統の需要変動や再生可能エネルギー発電装置の出力変動に対して、2軸式ガスタービン発電装置100の出力を高速に追従させることができる。また、2軸式ガスタービン発電装置100の動特性を模擬する動特性モデルを用いて、発電機5の出力をガスタービン出力目標値に合わせるように燃焼器50を制御した場合の発電機5の出力の予測値を算出し、ガスタービン出力目標値及び発電機5の出力の予測値に基づいて、MWDとIMWDとを算出することにより、燃焼器20の制御による発電機5の出力の遅れを制御に反映することができ、ガスタービン出力目標値を発電機5とM/G6へ適切に配分することができる。また、変圧器50を用いて、M/G6の出力を発電機5の出力より低く抑えることにより、ガスタービン入口温度の過度な上昇等を防ぐことができ、2軸式ガスタービン発電装置100の信頼性を向上させることができる。
 制御装置200が、M/G制限条件を満たすと判定した場合に、周波数変換器10の動作を制限することにより、2軸式ガスタービン発電装置100の信頼性を向上させることができる。特に、冷却水温度が冷却水温度限界値を上回ると判定された場合、周波数変換器10の動作を停止させることにより、変圧器50の冷却水温度の過度な上昇を防ぐことができる。また、IMWDがIMWD制限範囲外であると判定された場合、IMWDをIMWD制限範囲内の値に変更することにより、ガスタービン入口温度の過度な上昇等を防ぐことができる。
 以下、ガスタービン制御処理の変形例として、モデル計算部400が風力発電モデル及び再生可能エネルギー出力予測値を用いない場合について説明する。
 図11は、ガスタービン制御処理の変形例を示す。
 ステップ520で制御部500は、系統の接続条件よりシステム出力目標値を生成する。その後、ステップ521で制御部500は、このシステム出力目標値から再生可能エネルギー出力計測値を差し引くことによりガスタービン出力目標値を算出する。
 その後、制御部500は、前述のステップ506~513と同様の、ステップ522~533を実行する。
 以上がガスタービン制御処理の変形例である。
 以下、支援ツール910による表示について説明する。
 発電システムの運転員は、支援ツール910を用いて、発電システムの状態を監視することができる。支援ツール910は、計測信号120、制御信号130、関連情報データベース300、設定値、運転情報データベース600の情報を示す画面を、画像表示装置950に表示させる。運転員は、キーボード901、マウス902を用いて画面内の入力欄にパラメータ値を入力するなどの操作を実行する。
 図12は、初期画面を示す。
 初期画面は、運転状態表示ボタン951、トレンド表示ボタン952を含む。運転員は、運転状態表示ボタン951、トレンド表示ボタン952、の中から必要なボタンを選択し、マウス902を用いてカーソル953を移動させ、マウス902をクリックすることにより所望の画面を表示させる。運転状態表示ボタン951がクリックされた場合、データ送受信処理部930は、運転状態表示画面を画像表示装置950に表示させる。トレンド表示ボタン952がクリックされた場合、データ送受信処理部930は、トレンド表示設定画面を画像表示装置950に表示させる。
 図13は、運転状態表示画面を示す。
 運転状態表示画面は、系統情報表示欄961、時刻入力欄962、表示ボタン963、特性状態表示欄964、設定条件表示欄965、関連情報表示欄966、表示ボタン967、戻るボタン968を含む。
 運転員が運転状態表示画面において戻るボタン968をクリックすることにより、データ送受信処理部930は、画像表示装置950に初期画面を表示させる。
 系統情報表示欄961は、発電システムの系統図を示す。運転員は、画像表示装置950に表示させる情報の時刻を時刻入力欄962に入力し、表示ボタン963をクリックすることにより、データ送受信処理部930は、系統情報表示欄961内の各部に、指定された時刻の状態を表示させる。具体的には、系統情報表示欄961は、現在、計測している箇所の温度や圧力などの状態量を、系統図内の対応する箇所に表示する。
 特性状態表示欄964は、ガスタービン制御処理で得られる値に基づいて算出される、発電予測誤差や発電出力遅れ等の特性状態を表示する。制御部500は、発電システムの出力の予測値から実測値を減ずることにより、発電予測誤差を算出する。また、制御部500は、ガスタービン出力目標値と、2軸式ガスタービン発電装置100の出力の計測値とを比較することにより、ガスタービン出力目標値に基づく出力指令を2軸式ガスタービン発電装置100へ送信した時刻から、2軸式ガスタービン発電装置100の出力がガスタービン出力目標値に達した時刻までの時間を、発電出力遅れとして算出する。
 設定条件表示欄965は、ガスタービン制御処理の各種の設定条件を表示する。設定条件は例えば、前述の、予測許容誤差、負荷変動許容幅[%]、周波数変動許容幅[%]である。設定条件は、IWMD制限範囲等を含んでもよい。
 関連情報表示欄966は、天気、気温、風向、風速、湿度、日射量等の項目の選択肢を示す。運転員が、関連情報表示欄966に示された項目の中から表示させたい項目を選択し、表示ボタン967をクリックすることで、データ送受信処理部930は、選択された項目の情報を、関連情報データベース300から検索し、画像表示装置950に表示させる。また、運転員が、制限事項であるガスタービン(GT)入口温度、GT排気温度、変圧器冷却水温度についても表示させたい項目を選択し、表示ボタン967をクリックすることで、データ送受信処理部930は、選択された項目の情報を、運転情報データベース600から検索し、画像表示装置950に表示させる。なお、GT入口温度が計測できない場合、制御部500は、GT排気温度に基づいてGT入口温度を推定してもよい。
 図14は、トレンド表示設定画面を示す。
 トレンド表示設定画面は、計測信号表示欄981、時刻入力欄982、表示ボタン983、関連情報表示欄984、時刻入力欄985、表示ボタン986、戻るボタン989を含む。
 運転員がトレンド表示設定画面において戻るボタン989をクリックすることにより、データ送受信処理部930は、初期画面を画像表示装置950に表示させる。
 運転員は、計測信号表示欄981において、画像表示装置950に表示させたい計測信号、あるいは操作信号を選択し、選択された信号の値のレンジ(上限/下限)を入力する。例えば、信号は、システム出力目標値、再生可能エネルギー出力予測値、再生可能エネルギー出力計測値、ガスタービン出力目標値、MWD、IMWD、FFD、発電機5の出力、M/G6の出力、2軸式ガスタービン発電装置100の出力である。更に、運転員は、選択された信号の時刻の範囲を時刻入力欄982に入力する。その後、運転員が表示ボタン983をクリックすることにより、データ送受信処理部930は、選択された信号を、関連情報データベース300から検索し、得られた信号のトレンドグラフを含むトレンドグラフ表示画面を画像表示装置950に表示させる。
 関連情報表示欄984は、関連情報表示欄966と同様の項目を選択肢として示す。運転員が、関連情報表示欄984において、天気、気温、風向、風速、湿度、日射量の中から任意の項目を選択し、時刻の範囲を時刻入力欄985に入力し、表示ボタン986をクリックすることで、データ送受信処理部930は、選択された項目の情報を、関連情報データベース300から検索し、得られた情報を含むトレンドグラフ表示画面を画像表示装置950に表示させる。なお、天気についてのトレンドグラフは、前述したように、気象庁が一般向けに発信している15種類を用いて表現する。データ送受信処理部930は、各種類に対して番号を割り振り、これをトレンドグラフとする。つまり、データ送受信処理部930は、快晴を0、晴れを1、薄曇を2というように、順次、14まで番号を割り振る。
 更に、運転員が、関連情報表示欄984において、制限事項であるGT入口温度、GT排気温度、変圧器冷却水温度の中から任意の項目を選択し、時刻の範囲を時刻入力欄985に入力し、表示ボタン986をクリックすることで、データ送受信処理部930は、選択された項目の情報を、関連情報データベース300から検索し、得られた情報を含むトレンドグラフ表示画面を画像表示装置950に表示させる。
 図15は、トレンドグラフ画面を示す。
 トレンドグラフ画面は、トレンド表示設定画面において選択された項目毎のトレンドグラフ992と、戻るボタン991とを含む。トレンドグラフ992の横軸の範囲は、トレンド表示設定画面において指定された時刻の範囲である。トレンドグラフ992の縦軸の範囲は、トレンド表示設定画面において指定されたレンジである。例えば、トレンドグラフ992は、2軸式ガスタービン発電装置100の出力の計測値、ガスタービン出力目標値等の時間変化を表示してもよいし、それらを比較したトレンドグラフを表示してもよい。
 運転員が戻るボタン991をクリックすることにより、データ送受信処理部930は、トレンド表示設定画面を画像表示装置950に表示させる。
 支援ツール910によれば、運転員は、環境、気候と合わせて、発電システムの状態を監視できる。また、支援ツール910が、ガスタービン出力目標値と、2軸式ガスタービン発電装置100の出力の計測値であるガスタービン出力計測値と、ガスタービン出力計測値及びガスタービン出力目標値の比較結果等を、画像表示装置950に表示させることにより、運転員は、2軸式ガスタービン発電装置100が需要に追従しているか否かを監視できる。また、支援ツール910が、冷却水温度等を画像表示装置950に表示させることにより、M/G6の動作による異常を監視できる。
 本実施例では、再生可能エネルギーとして太陽光発電を用いる発電システムについて説明する。本実施例では、実施例1との相違点について説明する。
 図16は、実施例2の発電システムの構成を示す。
 実施例1の発電システムと比較すると、本実施例の発電システムは、再生可能エネルギー発電装置として、風力発電装置30の代わりに太陽光発電装置1000を含む。太陽光発電装置1000は、太陽光パネル1100が複数組み合わされたものである。本実施例の制御装置200は、モデル計算部400の代わりに、太陽光発電装置1000のモデルである太陽光発電モデルを用いて太陽光発電装置1000の出力を予測し、再生可能エネルギー出力予測値とするモデル計算部401を含む。
 図17は、太陽光発電モデルの構成を示す。
 この太陽光発電モデルは、風力発電モデルと同様のニューラルネットワークで表され、過去の温度、湿度、日射量、発電出力の入力値から将来の太陽光発電装置1000の発電出力を予測するモデルである。
 本実施例におけるその他の装置やMWDの生成に関するフローおよび動作は実施例1と同様である。ただし、関連する計測値は異なる場合がある。
 なお、実施例1、2において、データベースは、制御装置200内に含まれる形式で説明したが、データベースは制御装置200外の装置であっても良い。
 本実施例によれば、発電システムが、風量発電装置以外の他の再生可能エネルギー発電装置を含んでいる場合であっても、実施例1と同様、系統への出力を、再生可能エネルギー発電装置の出力と2軸式ガスタービン発電装置100とに分担させることができる。
 また、実施例1、2のそれぞれでは、2軸式ガスタービン発電装置100を用いているが、コンバインドサイクルプラントにも本発明を適用することができる。本実施例では、実施例1との相違点について説明する。
 図18は、実施例3の発電システムの構成を示す。
 実施例1の発電システムと比較すると、本実施例の発電システムは、風力発電装置30の代わりに、蒸気タービン発電装置710を含む。2軸式ガスタービン発電装置100と蒸気タービン発電装置710を組み合わせた発電装置をコンバインドサイクルプラント700と呼ぶ。蒸気タービン発電装置710は、排熱回収ボイラ720、蒸気タービン730、発電機740、復水器750、給水ポンプ760、スタック770を含む。蒸気タービン発電装置710において、排熱回収ボイラ720は、2軸式ガスタービン発電装置100の排気14の排熱を利用し、熱交換で蒸気を発生することで蒸気タービン730を駆動し、発電機740が蒸気タービン730の回転力を電力に変換し、2軸式ガスタービン発電装置100の出力と共に系統へ出力する。蒸気タービン730から排出される蒸気は、復水器750により凝縮されて水になり、給水ポンプ760により排熱回収ボイラ720へ供給される。排熱回収ボイラ720からの排気は、スタック770を介して排出される。
 発電システム(プラント)全体の効率向上のためには、制御部500は、通常運転において、M/G6を圧縮機1のブレーキとして用いることで、燃焼器20における燃料に対して空気が減少し、排気温度が上昇するため、ガスタービンの後段に接続されている排熱回収ボイラ720における熱量増加で蒸気発生が促進され、発電システム全体としては高効率化される。2軸式ガスタービン発電装置100単独では効率低下となるため、通常は実施しないため、コンバインドサイクルプラント700に特有の運転となる。
 制御部500は、ガスタービン制御処理の変形例と同様の処理を実行するが、風力発電出力を用いず、システム出力目標値をガスタービン出力目標値とする。モデル計算部400は、ガスタービンモデルとして、2軸式ガスタービン発電装置100の動特性モデルの代わりに、コンバインドサイクルプラント700の動特性モデルを用いる。
 複数のコンバインドサイクルプラントにも本発明を適用することができる。本実施例では、実施例3との相違点について説明する。
 図19は、実施例4の発電システムの構成を示す。
 本実施例の発電システムは、複数のコンバインドサイクルプラントを含む。これらの複数のコンバインドサイクルプラントにそれぞれ含まれている複数のガスタービン発電装置のうち、いずれか一つ、いずれか複数、又は全てが、実施例3と同様の2軸式ガスタービン発電装置100である。ここで、M/G6を含まない2軸式ガスタービン発電装置を含むコンバインドサイクルプラントを通常コンバインドサイクルプラント701と呼び、通常コンバインドサイクルプラント701の制御装置を通常制御装置201と呼ぶ。
 実施例3と同様、制御部500は、通常運転において、M/G6を圧縮機1のブレーキとして用いる。複数のガスタービン発電装置の中の2軸式ガスタービン発電装置100の数が多いほど、系統の負荷変動あるいはシステム出力目標値への追従が可能な電力の変化量が増加するため、制御部500は、複数のガスタービン発電装置に対し、システム出力目標値を、この変化量を超えない範囲のガスタービン出力目標値に分配する。制御部500は、システム出力目標値を、複数の2軸式ガスタービン発電装置100に等しく分配してもよいし、複数の2軸式ガスタービン発電装置100の中から順次一つの2軸式ガスタービン発電装置100を選択し、選択された2軸式ガスタービン発電装置100に対して追従可能な最大の変化量となるように分配してもよい。
 実施例3及び4では、制御部500は、2軸式ガスタービン発電装置100の排気温度の変化が排熱回収ボイラ720の熱応力に与える影響を考慮し、排気温度の変化が予め定められた適正範囲内となるよう制御してもよいし、運転員が監視項目としてモニタし、必要と判断した場合に支援ツール910を用いてM/G制限条件を設定してもよい。例えば、M/G制限条件に排気温度の条件を含めることにより、制御部500が排気温度の変化が適正範囲を超える場合にIMWDを0にする(IMWDを送信しない)などの制限をかけてもよい。
 以上の実施例によれば、急激な余剰電力の発生に対応するための熱電負荷等の設備が必要ないため、発電システムのコスト及びサイズを抑えることができる。また、圧縮機1の運動エネルギーの吸収・放出によりガスタービンの機械的遅れを補償し、発電要求に追従し、系統の周波数変動を抑制することができる。また、系統に対して定められた変動の許容量に基づいて、MWDとIMWDを決定することにより、系統の規制の範囲で出力することができる。また、2軸式ガスタービン発電装置の出力遅れを考慮してIMWDを決定することができる。また、M/G6による圧縮機1のアシストにより大気温度や負荷帯に応じたガスタービンの最適運転を行うことができる。
 本発明の表現のための用語について説明する。高圧タービン軸として、高圧タービン軸12a等が用いられてもよい。圧縮機として、圧縮機1等が用いられてもよい。燃焼器として、燃焼器20等が用いられてもよい。高圧タービンとして、高圧タービン2a等が用いられてもよい。低圧タービン軸として、低圧タービン軸12b等が用いられてもよい。低圧タービンとして、低圧タービン2b等が用いられてもよい。第一発電機として、発電機5等が用いられてもよい。多軸ガスタービンとして、ガスジェネレータ15及びパワータービン16等が用いられてもよい。第二発電機として、M/G6等が用いられてもよい。周波数変換器として、周波数変換器10等が用いられてもよい。変圧器として、変圧器50等が用いられてもよい。制御部として、GT制御装置7a及び制御装置200等が用いられてもよい。出力目標値として、ガスタービン出力目標値が用いられてもよい。第一発電機出力指令値として、発電機出力指令値(MWD)等が用いられてもよい。第二発電機出力指令値として、副発電機出力指令値(IMWD)等が用いられてもよい。入口案内翼として、IGV9等が用いられてもよい。表示部として、支援ツール910及び画像表示装置950等が用いられてもよい。再生可能エネルギー発電機として、風力発電装置30又は太陽光発電装置1000等が用いられてもよい。合計出力目標値として、システム出力目標値等が用いられてもよい。排熱回収ボイラとして、排熱回収ボイラ720等が用いられてもよい。蒸気タービンとして、蒸気タービン730等が用いられてもよい。蒸気タービン発電機として、発電機740等が用いられてもよい。コンバインドサイクルプラントとして、コンバインドサイクルプラント700等が用いられてもよい。
 本発明は、以上の実施例に限定されるものでなく、その趣旨から逸脱しない範囲で、他の様々な形に変更することができる。
 1…圧縮機 2…タービン 2a…高圧タービン 2b…低圧タービン 5…発電機 7a…GT制御装置 8…燃料流量制御弁 9…IGV 10…周波数変換器 12a…高圧タービン軸 12b…低圧タービン軸 14…排気 15…ガスジェネレータ 16…パワータービン 20…燃焼器 26a…高圧タービン回転数検出器 26b…低圧タービン回転数検出器 30…風力発電装置 31…風力発電機 50…変圧器 100…2軸式ガスタービン発電装置 200…制御装置 300…関連情報データベース 400…モデル計算部 401…モデル計算部 500…制御部 600…運転情報データベース 700…コンバインドサイクルプラント 710…蒸気タービン発電装置 720…排熱回収ボイラ 730…蒸気タービン 740…発電機 750…復水器 760…給水ポンプ 770…スタック 1000…太陽光発電装置 1100…太陽光パネル
 

Claims (14)

  1.  発電システムであって、
     高圧タービン軸と、
     前記高圧タービン軸の回転に応じて圧縮空気を生成する圧縮機と、
     前記圧縮空気及び燃料を混合して燃焼させることにより燃焼ガスを生成する燃焼器と、
     前記燃焼ガスを受けて回転し前記高圧タービン軸を駆動する高圧タービンと、
     低圧タービン軸と、
     前記高圧タービンから排出されるガスを受けて回転し前記低圧タービン軸を駆動する低圧タービンと、
     電力系統に接続され、前記低圧タービン軸の回転を用いて発電し、発電した電力を前記電力系統へ出力する第一発電機と、
    を含む多軸ガスタービンと、
     電力の入出力に応じて前記高圧タービン軸の加減速を行う第二発電機と、
     前記第二発電機の端子に接続される周波数変換器と、
     前記周波数変換器及び前記第一発電機の端子の間に接続される変圧器と、
     前記発電システムの出力の時系列の目標値である出力目標値を記憶し、前記多軸ガスタービンの動特性を模擬する動特性モデルを用いて、前記第一発電機の出力を前記出力目標値に合わせるように前記燃焼器を制御した場合の前記第一発電機の出力の予測値を算出し、前記出力目標値及び前記第一発電機の出力の予測値に基づいて、前記第一発電機から前記電力系統への出力の指令値である第一発電機出力指令値と、前記第二発電機から前記電力系統への出力の指令値である第二発電機出力指令値とを算出し、前記第一発電機出力指令値に基づいて前記燃焼器を制御し、前記第二発電機出力指令値に基づいて前記周波数変換器を制御する制御部と、
    を備え、
     前記第一発電機出力指令値が前記出力目標値より小さい場合、前記周波数変換器は、前記制御部からの指示に基づいて前記第二発電機の出力を周波数変換して前記電力系統へ出力することにより、前記第二発電機は、前記高圧タービン軸を減速させて得られる電力を前記周波数変換器へ出力し、前記変圧器は、前記周波数変換器の出力を昇圧して前記電力系統へ出力し、
     前記第一発電機出力指令値が前記出力目標値より大きい場合、前記周波数変換器は、前記制御部からの指示に基づいて前記第一発電機の出力の一部を周波数変換して前記第二発電機へ出力することにより、前記変圧器は、前記第一発電機の出力の一部を降圧して前記周波数変換器へ出力し、前記第二発電機は、前記周波数変換器の出力を用いて前記高圧タービン軸を加速させる、
    発電システム。
  2.  前記制御部は、前記周波数変換器の動作を制限する条件である周波数変換器制限条件を記憶し、前記発電システムの状態が前記周波数変換器制限条件を満たすと判定した場合、前記周波数変換器の動作を制限する、
    請求項1に記載の発電システム。
  3.  前記周波数変換器制限条件は、前記変圧器の冷却水温度の限界値である冷却水温度限界値を含み、
     前記制御部は、前記冷却水温度を取得し、前記冷却水温度が前記冷却水温度限界値を上回ると判定された場合、前記周波数変換器の動作を停止させる、
    請求項2に記載の発電システム。
  4.  前記周波数変換器制限条件は、前記第二発電機出力指令値の範囲である指令値範囲を含み、
     前記制御部は、前記第二発電機出力指令値が前記指令値範囲外であると判定された場合、前記第二発電機出力指令値を前記指令値範囲内の値に変更する、
    請求項3に記載の発電システム。
  5.  前記出力目標値が増加した場合、前記制御部は、前記燃焼器を制御することにより、前記燃焼器の燃料流量を増加させると共に、前記周波数変換器を制御することにより、前記第二発電機を用いて前記高圧タービン軸を減速させ、
     前記出力目標値が減少した場合、前記制御部は、前記燃焼器を制御することにより、前記燃料流量を減少させると共に、前記周波数変換器を制御することにより、前記第二発電機を用いて前記高圧タービン軸を加速させる、
    請求項4に記載の発電システム。
  6.  前記圧縮機への空気の入口に設けられた入口案内翼を更に備え、
     前記制御部は、前記高圧タービン軸の回転数に応じて前記入口案内翼の開度を制御することにより、前記圧縮空気の流量を略一定に保つ、
    請求項5に記載の発電システム。
  7.  前記高圧タービン軸の回転数が減少すると、前記圧縮機の効率が向上し、
     前記高圧タービン軸の回転数が増加すると、前記圧縮機の効率が低下する、
    請求項6に記載の発電システム。
  8.  前記制御部は、前記第一発電機の出力の予測値を前記第一発電機出力指令値として算出し、前記出力目標値から前記第一発電機出力指令値を減ずることにより前記第二発電機出力指令値を算出する、
    請求項7に記載の発電システム。
  9.  前記出力目標値と、前記発電システムから前記電力系統への出力の計測値である出力計測値と、前記出力目標値及び前記出力計測値の比較結果と、前記冷却水温度との、少なくとも何れかを表示する表示部を更に備える、
    請求項8に記載の発電システム。
  10.  前記制御部は、前記電力系統における電力の需要と、他の発電機に関する情報とに基づいて、前記電力系統の電力需給変動の予測値を算出し、前記電力需給変動の予測値に基づいて、前記出力目標値を算出する、
    請求項9に記載の発電システム。
  11.  再生可能エネルギーを用いて発電し前記電力系統へ出力する再生可能エネルギー発電機を更に備え、
     前記制御部は、前記再生可能エネルギー発電機及び前記発電システムの出力の合計の目標値である合計出力目標値を記憶し、前記再生可能エネルギー発電機の出力の予測値を算出し、前記合計出力目標値から前記再生可能エネルギー発電機の出力の予測値を減ずることにより、前記出力目標値を算出する、
    請求項10に記載の発電システム。
  12.  前記ガスタービンの排熱を用いて水を加熱して蒸気を発生させる排熱回収ボイラと、
     前記蒸気を受けて回転する蒸気タービンと、
     前記蒸気タービンの回転を用いて発電し、発電した電力を前記電力系統へ出力する蒸気タービン発電機と、
    を更に備え、
     前記動特性モデルは、前記ガスタービンと前記排熱回収ボイラと前記蒸気タービンと前記蒸気タービン発電機とを含むコンバインドサイクルプラントの動特性を示す、
    請求項9に記載の発電システム。
  13.  前記制御部は、大気温度を取得し、前記大気温度が予め定められた大気温度閾値より高い場合、前記周波数変換器を制御することにより前記第二発電機に前記高圧タービン軸を加速させ、前記圧縮空気の流量を増加させることにより、前記第一発電機の出力を増加させる、
    請求項9に記載の発電システム。
  14.  高圧タービン軸と、前記高圧タービン軸の回転に応じて圧縮空気を生成する圧縮機と、前記圧縮空気及び燃料を混合して燃焼させることにより燃焼ガスを生成する燃焼器と、前記燃焼ガスを受けて回転し前記高圧タービン軸を駆動する高圧タービンと、低圧タービン軸と、前記高圧タービンから排出されるガスを受けて回転し前記低圧タービン軸を駆動する低圧タービンと、電力系統に接続され、前記低圧タービン軸の回転を用いて発電し、発電した電力を前記電力系統へ出力する第一発電機と、を含む多軸ガスタービンと、電力の入出力に応じて前記高圧タービン軸の加減速を行う第二発電機と、前記第二発電機の端子に接続される周波数変換器と、前記周波数変換器及び前記第一発電機の端子の間に接続される変圧器と、を用いる発電方法であって、
     前記発電システムの出力の時系列の目標値である出力目標値を記憶し、
     前記多軸ガスタービンの動特性を模擬する動特性モデルを用いて、前記第一発電機の出力を前記出力目標値に合わせるように前記燃焼器を制御した場合の前記第一発電機の出力の予測値を算出し、
     前記出力目標値及び前記第一発電機の出力の予測値に基づいて、前記第一発電機から前記電力系統への出力の指令値である第一発電機出力指令値と、前記第二発電機から前記電力系統への出力の指令値である第二発電機出力指令値とを算出し、
     前記第一発電機出力指令値に基づいて前記燃焼器を制御し、前記第二発電機出力指令値に基づいて前記周波数変換器を制御し、
     前記第一発電機出力指令値が前記出力目標値より小さい場合、前記周波数変換器により、前記制御部からの指示に基づいて前記第二発電機の出力を周波数変換して前記電力系統へ出力することにより、前記第二発電機により、前記高圧タービン軸を減速させて得られる電力を前記周波数変換器へ出力し、前記変圧器により、前記周波数変換器の出力を昇圧して前記電力系統へ出力し、
     前記第一発電機出力指令値が前記出力目標値より大きい場合、前記周波数変換器により、前記制御部からの指示に基づいて前記第一発電機の出力の一部を周波数変換して前記第二発電機へ出力することにより、前記変圧器により、前記第一発電機の出力の一部を降圧して前記周波数変換器へ出力し、前記第二発電機により、前記周波数変換器の出力を用いて前記高圧タービン軸を加速させる、
    ことを備える発電方法。
     
PCT/JP2014/073756 2014-09-09 2014-09-09 発電システムおよび発電方法 WO2016038672A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/323,458 US10094297B2 (en) 2014-09-09 2014-09-09 Power generation system and power generation method
PCT/JP2014/073756 WO2016038672A1 (ja) 2014-09-09 2014-09-09 発電システムおよび発電方法
JP2016547280A JP6228316B2 (ja) 2014-09-09 2014-09-09 発電システムおよび発電方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073756 WO2016038672A1 (ja) 2014-09-09 2014-09-09 発電システムおよび発電方法

Publications (1)

Publication Number Publication Date
WO2016038672A1 true WO2016038672A1 (ja) 2016-03-17

Family

ID=55458465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073756 WO2016038672A1 (ja) 2014-09-09 2014-09-09 発電システムおよび発電方法

Country Status (3)

Country Link
US (1) US10094297B2 (ja)
JP (1) JP6228316B2 (ja)
WO (1) WO2016038672A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143563A (ja) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 二軸ガスタービン発電設備、その制御装置、及びその制御方法
CN111808622A (zh) * 2020-07-26 2020-10-23 佟进伟 一种垃圾能源化热分解发电装置
JP2023531454A (ja) * 2020-07-02 2023-07-24 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ ハイブリッドガスタービンシステムを監視及び制御するための方法、並びにそのシステム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015014810B4 (de) * 2015-11-14 2022-08-11 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
US11444464B1 (en) * 2016-03-25 2022-09-13 Goal Zero Llc Portable hybrid generator
US10934935B2 (en) * 2017-01-30 2021-03-02 Ge Aviation Systems Llc Engine core assistance
KR101971337B1 (ko) * 2017-04-24 2019-04-22 두산중공업 주식회사 가스터빈 시스템 및 제어 방법
KR101893689B1 (ko) * 2017-04-26 2018-08-30 두산중공업 주식회사 가스터빈 시스템 및 제어 방법
US11770047B2 (en) * 2018-03-09 2023-09-26 Alexey TYSHKO Power grid stabilization system utilizing two generators mechanically linked via continuous variable transmission
US11415044B2 (en) * 2018-06-19 2022-08-16 Raytheon Technologies Corporation Multi-engine architecture with linkages to multiple spools
US10955899B2 (en) 2018-06-20 2021-03-23 Intel Corporation System, apparatus and method for responsive autonomous hardware performance state control of a processor
US10961921B2 (en) * 2018-09-19 2021-03-30 Pratt & Whitney Canada Corp. Model-based control system and method for a turboprop engine
EP3716437A1 (de) * 2019-03-28 2020-09-30 Siemens Aktiengesellschaft Verfahren und system zum überwachen des betriebszustandes von hochspannungsgeräten eines energieversorgungsnetzes
DE102019204301A1 (de) 2019-03-28 2020-10-01 Siemens Aktiengesellschaft Verfahren und System zum Überwachen des Betriebszustandes eines Energieversorgungsnetzes
US10907494B2 (en) * 2019-04-30 2021-02-02 Rolls-Royce North American Technologies Inc. Parallel hybrid propulsion system
CN110829487B (zh) * 2019-10-22 2023-04-07 电子科技大学 一种电力系统的频率动态预测方法
CN110992803B (zh) * 2019-11-19 2021-07-27 国网江苏省电力有限公司 油浸式变压器火灾模型及火灾模拟方法
JP7330090B2 (ja) * 2019-12-20 2023-08-21 株式会社日立製作所 再生可能エネルギー系統安定化システム及び系統安定化支援方法
CN111058998A (zh) * 2020-01-19 2020-04-24 象山侧风电子技术有限公司 一种秸秆燃烧发电装置
US11845388B2 (en) 2021-05-20 2023-12-19 General Electric Company AC electrical power system for a vehicle
US11949233B1 (en) * 2023-09-20 2024-04-02 8Me Nova, Llc Renewable energy power plant simulator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060150633A1 (en) * 2003-12-18 2006-07-13 Honeywell International Inc. Starting and controlling speed of a two spool gas turbine engine
JP2007505261A (ja) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド 多軸タービン発電機システム及び制御方法
JP2008285571A (ja) * 2007-05-17 2008-11-27 Hitachi Ltd 重質油改質方法、及び重質油改質複合プラント
JP2010025069A (ja) * 2008-07-24 2010-02-04 Hitachi Ltd 2軸式ガスタービンシステムの制御装置
JP2010065636A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 2軸式ガスタービン
JP2010156308A (ja) * 2009-01-05 2010-07-15 Hitachi Ltd ガスタービン・エンジンの制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053965B2 (ja) 2003-11-18 2008-02-27 株式会社日立製作所 熱電併給型系統制御方法及び熱電併給型系統制御装置
EP2119891B1 (en) 2008-05-15 2023-09-13 Mitsubishi Heavy Industries, Ltd. Control of working fluid flow of a two-shaft gas turbine
DE112012006770B4 (de) * 2012-08-03 2019-05-09 Hitachi, Ltd. Zweiwellengasturbinen-Stromerzeugungssystem und Steuervorrichtung und Steuerverfahren für ein Gasturbinensystem
JP5899133B2 (ja) * 2013-02-01 2016-04-06 株式会社日立製作所 2軸ガスタービン
EP3075982B1 (en) * 2013-11-27 2020-01-08 Hitachi, Ltd. Gas turbine suitable for renewable energy and control method thereof
JP6318256B2 (ja) * 2014-03-14 2018-04-25 株式会社日立製作所 ガスタービン発電システム
JP6216872B2 (ja) * 2014-05-30 2017-10-18 株式会社日立製作所 ガスタービン複合発電装置
JP6314226B2 (ja) * 2014-06-18 2018-04-18 株式会社日立製作所 多軸可変速ガスタービン装置およびその制御方法
WO2016098220A1 (ja) * 2014-12-18 2016-06-23 株式会社日立製作所 ガスタービン発電システム、ガスタービン発電システムの制御方法、およびガスタービン発電システムの制御装置
US10263550B2 (en) * 2014-12-19 2019-04-16 Hitachi, Ltd. Gas turbine power generation system and control system used in the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505261A (ja) * 2003-09-12 2007-03-08 メス インターナショナル,インコーポレイテッド 多軸タービン発電機システム及び制御方法
US20060150633A1 (en) * 2003-12-18 2006-07-13 Honeywell International Inc. Starting and controlling speed of a two spool gas turbine engine
JP2008285571A (ja) * 2007-05-17 2008-11-27 Hitachi Ltd 重質油改質方法、及び重質油改質複合プラント
JP2010025069A (ja) * 2008-07-24 2010-02-04 Hitachi Ltd 2軸式ガスタービンシステムの制御装置
JP2010065636A (ja) * 2008-09-12 2010-03-25 Hitachi Ltd 2軸式ガスタービン
JP2010156308A (ja) * 2009-01-05 2010-07-15 Hitachi Ltd ガスタービン・エンジンの制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143563A (ja) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 二軸ガスタービン発電設備、その制御装置、及びその制御方法
WO2019163955A1 (ja) * 2018-02-22 2019-08-29 三菱日立パワーシステムズ株式会社 二軸ガスタービン発電設備、その制御装置、及びその制御方法
KR20200100852A (ko) * 2018-02-22 2020-08-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 2축 가스 터빈 발전 설비, 그 제어 장치, 및 그 제어 방법
CN111771047A (zh) * 2018-02-22 2020-10-13 三菱日立电力系统株式会社 双轴燃气轮机发电设备、其控制装置及控制方法
KR102274783B1 (ko) 2018-02-22 2021-07-08 미츠비시 파워 가부시키가이샤 2축 가스 터빈 발전 설비, 그 제어 장치, 및 그 제어 방법
CN111771047B (zh) * 2018-02-22 2022-11-04 三菱重工业株式会社 双轴燃气轮机发电设备、其控制装置及控制方法
JP2023531454A (ja) * 2020-07-02 2023-07-24 ヌオーヴォ・ピニォーネ・テクノロジー・ソチエタ・レスポンサビリタ・リミタータ ハイブリッドガスタービンシステムを監視及び制御するための方法、並びにそのシステム
CN111808622A (zh) * 2020-07-26 2020-10-23 佟进伟 一种垃圾能源化热分解发电装置

Also Published As

Publication number Publication date
JP6228316B2 (ja) 2017-11-08
US20170145925A1 (en) 2017-05-25
JPWO2016038672A1 (ja) 2017-04-27
US10094297B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6228316B2 (ja) 発電システムおよび発電方法
JP6248124B2 (ja) 再生可能エネルギー対応ガスタービンおよびその制御方法
Andersson et al. Wind farm control‐Part I: A review on control system concepts and structures
Li et al. A real-time dispatch model of CAES with considering the part-load characteristics and the power regulation uncertainty
US10184406B2 (en) Multi-shaft variable speed gas turbine apparatus and method of controlling the same
CN110943481B (zh) 考虑含频率响应控制的风电机组安全域的机组组合方法
CN106786807A (zh) 一种基于模型预测控制的风电场有功功率控制方法
Aho et al. Active power control of wind turbines for ancillary services: A comparison of pitch and torque control methodologies
Burkart et al. Nonlinear control of wind turbines: An approach based on switched linear systems and feedback linearization
Zalkind et al. The fatigue loading effects of yaw control for wind plants
CN112994042A (zh) 考虑风电机组参与电网一次调频的机组组合建模及优化方法
Hovgaard et al. MPC for wind power gradients—utilizing forecasts, rotor inertia, and central energy storage
Wang et al. Optimal ancillary control for frequency regulation of wind turbine generator based on improved fatigue load sensitivity
Yao et al. New design of a wind farm frequency control considering output uncertainty and fatigue suppression
Miryousefi Aval et al. A novel method for reliability and risk evaluation of wind energy conversion systems considering wind speed correlation
Pintea et al. LQG control of horizontal wind turbines for blades and tower loads alleviation
Shaltout et al. An economic model predictive control approach for wind power smoothing and tower load mitigation
Isa et al. Review on optimal wind farm control techniques and prospects of artificial intelligence
JP6166894B2 (ja) 複合エネルギーシステムの最適制御装置及びその方法
GB2483315A (en) Control of water current turbines
Liu et al. Active power dynamic interval control based on operation data mining for wind farms to improve regulation performance in AGC
Singh et al. Dynamic wake analysis of a wind turbine providing frequency containment reserve in high wind speeds
Basit et al. Analysis of Highly Wind Power Integrated Power System model performance during Critical Weather conditions
Coral Model Predictive Control for Enhancing Wind Farms Participation in Ancillary Services
Giles et al. Integrated Research Programme on Wind Energy: Offshore array control Work Package 6.3-Deliverable number 63.4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547280

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15323458

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901653

Country of ref document: EP

Kind code of ref document: A1