WO2016037429A1 - 一种信号增益控制的方法、装置及存储介质 - Google Patents

一种信号增益控制的方法、装置及存储介质 Download PDF

Info

Publication number
WO2016037429A1
WO2016037429A1 PCT/CN2014/093464 CN2014093464W WO2016037429A1 WO 2016037429 A1 WO2016037429 A1 WO 2016037429A1 CN 2014093464 W CN2014093464 W CN 2014093464W WO 2016037429 A1 WO2016037429 A1 WO 2016037429A1
Authority
WO
WIPO (PCT)
Prior art keywords
slow
threshold
control
gain control
callback
Prior art date
Application number
PCT/CN2014/093464
Other languages
English (en)
French (fr)
Inventor
王列虎
李从伟
李小飞
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14901787.3A priority Critical patent/EP3193543B1/en
Priority to JP2017513439A priority patent/JP6395926B2/ja
Publication of WO2016037429A1 publication Critical patent/WO2016037429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3068Circuits generating control signals for both R.F. and I.F. stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver

Definitions

  • the present invention relates to signal processing technologies in mobile communications, and in particular, to a signal gain control method, apparatus, and storage medium.
  • the distributed base station in the mobile communication system is mainly composed of a baseband unit (BBU) and a radio remote unit (RRU); the uplink function of the base station mainly receives the signal transmitted by the mobile terminal from the air through the antenna.
  • the received signal is amplified and mixed to a lower frequency, and then the analog signal is converted into a digital signal by an analog-to-digital converter, and finally sent to the BBU through a series of digital intermediate frequency processing.
  • the dynamic range of the analog-to-digital converter in the uplink receiving link is fixed, the dynamic receiving range of the receiver may not be satisfied, and the radio frequency device in the uplink receiving link not only deteriorates the noise figure, but also has a 1 dB compression point and The third-order intermodulation interception point is equal to saturation and intermodulation point; therefore, in order to satisfy the dynamic reception range of the receiver and improve the anti-interference ability of the receiver, it is necessary to perform gain control on the output signal of the radio frequency link.
  • the basic idea of gain control is to increase the gain of the receiver when the receiver receives a weak signal, and reduce the gain of the receiver when the receiver receives a strong signal, so that the output signal is kept at an appropriate level, not because of the output. The signal is too weak for the receiver to work properly, and the receiver is not saturated or blocked because the output signal is too strong.
  • the uplink signal gain control of the base station is usually adopted by the method of fast control and slow control; wherein the fast control is to calculate the instantaneous power of the sampled signal after the analog to digital converter (ADC), after the ADC
  • the gain adjustment of the intermediate frequency variable gain amplifier (VGA) and the RF attenuator is performed immediately.
  • the slow control is to calculate the average power of the ADC sampling signal in a certain period of the current time slot of the current frame, and perform gain adjustment on the intermediate frequency VGA and the RF attenuator according to the power detection result and the preset threshold, and in the next frame.
  • the corresponding time slot will be configured for gain.
  • the above gain control strategy has the following drawbacks: (1) When using the average power as the basis for gain adjustment, it is difficult to determine the gain control threshold of the Time Division Duplexing (TDD) system, which cannot meet the requirements of the TDD system; Using the average power as the basis for gain adjustment, when there is time-division interference, such as DME interference of the ranging device commonly used in the vehicle equipment, it is difficult to determine the gain control threshold of the TDD system, and it is unable to effectively cope with the time division interference; (3) The gain adjustment of a wireless base station suitable for a specific standard or specification has low versatility.
  • TDD Time Division Duplexing
  • embodiments of the present invention are directed to a method, an apparatus, and a storage medium for signal gain control, which are capable of satisfying the receiving range and anti-interference capability of a wireless base station of various application formats and specifications, and effectively coping with time division interference.
  • Embodiments of the present invention provide a method for signal gain control, including: determining a gain control parameter; detecting a peak value of an output signal of an ADC device in a fast attenuation search peak window and a slow control search peak window respectively; The thresholds in the gain control parameters are compared, and the signals are gain controlled according to the comparison results.
  • the threshold in the gain control parameter includes: one or more of a fast decay threshold, a slow decay threshold, a slow callback threshold, and a slow callback target threshold; Comparing the thresholds in the gain control parameters includes:
  • the gain control of the signal according to the comparison result includes: when the detected real-time peak value is greater than the fast decay threshold, the cumulative number of over-fast decay thresholds is increased by one, and the cumulative fast-decay threshold is equal to the fast decay gate.
  • Limit time perform a fast decay according to the fast decay step; and/or, when the detected real-time peak is greater than the slow decay threshold, increase the cumulative number of slow decay thresholds by one, and the cumulative number of slow decay thresholds is greater than the slow decay.
  • the number of times threshold, which is not fast decayed during the control period at the end of the slow control search window, and the slow control attenuation value is calculated according to the slow decay step, and the slow control is performed at the beginning of the next control period; / or, when the detected maximum peak value is less than or equal to the slow callback threshold, the slow control attenuation value is calculated according to the slow callback step in the gain control parameter, and the slow control is performed at the beginning of the next control period; and/or, in continuous
  • the ultra-slow callback step in the gain control parameter calculates the slow control attenuation value, and performs slow control at the beginning of the next control period, where N is a positive integer greater than or equal to 2.
  • the determining the gain control parameter comprises: when the base station is powered on or the configuration of the base station changes, selecting a gain control parameter that matches the application standard of the base station in the pre-stored gain control parameters according to the configuration of the base station.
  • the method further comprises: compensating for the amount of gain adjustment by delay.
  • the embodiment of the invention further provides a device for controlling signal gain, the device comprising: a determining module, a detecting module, a comparing module and a gain control module; wherein
  • the determining module is configured to determine a gain control parameter
  • the detecting module is configured to detect a peak value of an output signal of the ADC device in the fast decay search peak window and the slow control search peak window;
  • the comparing module is configured to compare the detected peak value with a threshold in the gain control parameter
  • the gain control module is configured to perform gain control on the signal according to the comparison result.
  • the threshold in the gain control parameter includes: one or more of a fast decay threshold, a slow decay threshold, a slow callback threshold, and a slow callback target threshold;
  • the comparison module is configured to compare the detected real-time peak with the fast decay threshold in the fast decay search peak window; and/or, in the slow control search peak window, the detected real-time peak and the slow decay threshold Compare; and/or, in the slow control search window, compare the detected maximum peak with the slow callback threshold and the slow callback target threshold.
  • the gain control module is configured to increase the first over-peak number by one when the detected real-time peak is greater than the fast-attenuation threshold, and follow the fast decay step when the first over-peak is equal to the fast-attenuation threshold. Performing a fast decay; and/or, when the detected real-time peak is greater than the slow decay threshold, the second over-peak number is incremented by one, and the second over-peak is greater than the slow-attenuation threshold, which ends at the slow control search peak
  • the slow control attenuation value is calculated according to the slow decay step, and the slow control is performed at the beginning of the next control period; and/or the detected maximum peak is less than or equal to the slow callback
  • the slow control attenuation value is calculated according to the slow callback step in the gain control parameter, and the slow control is performed at the beginning of the next control period; and/or, the maximum peak detected in consecutive N control periods is greater than the slow speed.
  • the slow control attenuation value is calculated according to the ultra-slow callback step in the gain control parameter, in the next Slow control is performed at the beginning of the control cycle, and N is a positive integer greater than or equal to 2.
  • the determining module is configured to select, when the base station is powered on or the configuration of the base station changes, select a gain control parameter that matches the application standard of the base station in the pre-stored gain control parameters according to the configuration of the base station.
  • the apparatus further includes a compensation module configured to compensate for the amount of gain adjustment by delay.
  • An embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions for performing the above signal gain control. Methods.
  • the method, device and storage medium for signal gain control provided by the embodiments of the present invention determine gain control parameters; detecting peak values of output signals of the ADC device in the fast decay search peak window and the slow control search peak window respectively; Comparing with the threshold in the gain control parameter, the signal is gain controlled according to the comparison result.
  • the peak power is used as the basis for the gain adjustment, so that the peak-to-average ratio of the signal, the time domain characteristic of the interference signal, and the time-division characteristic of the TDD signal have little influence on the AGC control threshold, which is beneficial to the determination of each control threshold.
  • Unifying pre-storing the optimal gain control parameters of the base stations of various application systems, and when the configuration of the base station is powered on or the base station is changed, the application of the base station is selected in the pre-stored gain control parameters according to the configuration of the base station.
  • the gain control parameter enables the signal gain control method according to the embodiment of the present invention to satisfy the receiving range and anti-interference capability of the wireless base station of various application formats and specifications, and effectively cope with time division interference.
  • FIG. 1 is a schematic diagram of a basic processing flow of a method for signal gain control according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of dividing a control period and a time period according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of gain control including a GSM mode according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of gain control without a GSM mode according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of relationship between a control threshold and a gain control strategy according to an embodiment of the present invention
  • FIG. 6 is a detailed processing flow of a method for signal gain control according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a device for controlling signal gain according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a base station of a device for applying signal gain control according to an embodiment of the present invention.
  • the gain control parameter is determined; respectively, in the fast decay search peak window and the slow speed Controlling the peak value of the output signal of the ADC device in the search peak window; comparing the detected peak value with the threshold in the gain control parameter, and performing gain control on the signal according to the comparison result.
  • the basic processing flow of the method for signal gain control in the embodiment of the present invention, as shown in FIG. 1, includes the following steps:
  • Step 101 determining a gain control parameter
  • the digital intermediate frequency unit in the base station pre-stores optimal gain control parameters of the base stations of various application systems, and when the base station powers up or the configuration of the base station changes, the selected optimal gain control parameters are selected according to the configuration of the base station. a gain control parameter matched by the application standard of the base station;
  • the application system of the base station includes: a Global System for Mobile Communication (GSM) system, a Universal Mobile Telecommunications System (UMTS) system, and Code Division Multiple Access (CDMA).
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • System Time Division-Long Term Evolution (TD-LTE) system
  • TD-CDMA Time Division-Long Term Evolution
  • FDD Frequency Division Duplexing
  • Control parameters include: gain control mode, control cycle, control threshold, adjustment step, gain control strategy, cumulative number of times, and adjustment time;
  • the control period includes three types.
  • the first control period is applicable to the time division structure of the GSM system, and the first control period is 577 ⁇ s;
  • the second control period is applicable to other FDD systems other than the GSM system, and the second type
  • the control period can be configured as an integer multiple of one subframe;
  • the third control period is applicable to the TDD system or a system with time division interference, and the third control period can be configured as an integer multiple of one radio frame;
  • the control period and time period Schematic diagram of the division as shown in FIG. 2, the control period P1 is determined according to the application standard and specifications of the wireless base station, and the lengths of the fast decay search peak window P2 and the slow control search peak window P3 are based on the length of the control period P1 and the application of the wireless base station.
  • the system determines jointly, the automatic gain control system performs the conditional judgment and gain configuration of the fast decay control in the P2 time period, and the conditions of the slow control and the ultra-slow callback control in the P3 time period. It is judged that the timing of the slow control and the super slow callback control is at the time T1, the ⁇ 1 time period is used for the calculation of the current attenuation amount for each control cycle, and the ⁇ 2 time period is set according to the characteristics of the device and the transmission speed of the transmission interface.
  • the device response time, ⁇ 3 time period is used for the attenuation calculation and storage time of the next control period corresponding to the current control period; for FDD LTE system, P1 can be set to 1ms, P2 is 0.1ms, P3 is 0.9ms, ⁇ 1 is 0.002 ms, ⁇ 2 is 0.005 ms, and ⁇ 3 is 0.093 ms.
  • the control mode includes two types, the first control mode, namely: a GSM mode, a GMS system and a mixed mode system including a GMS system, and a gain control diagram including a GSM mode, as shown in FIG. 3, including a GSM mode.
  • the slow control or the super slow callback attenuation calculated by the current time slot of the current Time Division Multiple Access (TDMA) frame is corresponding to the corresponding time slot of the next TDMA frame;
  • the second control mode is : No GSM mode, suitable for non-GMS single-mode or mixed-mode system, no GSM mode gain control diagram, as shown in Figure 4, directly control the slow control attenuation at the beginning of the control cycle.
  • the control threshold includes: a fast decay threshold, a fast decay threshold, a slow decay threshold, a slow decay threshold, a super slow callback threshold, a slow callback target threshold, and a slow callback threshold; the fast decay threshold is greater than The slow decay threshold, the slow decay threshold is greater than the slow callback target threshold, and the slow callback target threshold is greater than the slow callback threshold; the control threshold includes a threshold in the gain control parameter;
  • the adjustment step includes: a fast decay step, a slow decay step, a slow callback step, and a super slow callback step;
  • the gain control strategy includes: fast decay and slow speed control, the slow speed control includes: slow speed decay, slow speed callback, and ultra slow speed callback;
  • the cumulative number of times includes: the cumulative number of over-fast decay thresholds, the cumulative number of over-speed decay thresholds, and the cumulative number of super-slow callback thresholds; the thresholds include: fast decay threshold, slow decay threshold, and super slow Callback threshold; the fast decay gate The limit, the slow decay threshold and the ultra-slow callback threshold are determined according to the characteristics of the signal to ensure the accuracy of the judgment; by calculating the cumulative number, some specific and known super-interference signals can be effectively shielded;
  • the adjustment time includes: a fast adjustment time and a slow adjustment time; the position of the fast adjustment time in the control period is not fixed, specifically, a moment when the fast attenuation decision is valid immediately; the slow control adjustment The position in the control period is fixed, specifically the fixed point after the start of each control period; the adjustment time is used for gain control.
  • Step 102 detecting a peak value of an output signal of the ADC device in the fast decay search peak window and the slow control search peak window respectively;
  • the digital intermediate frequency device performs modulus detection on the output signal of the ADC device in the fast decay search peak window and the slow control search peak window;
  • the fast decay search peak window is a preset time period less than the control period, and is used for fast attenuation peak search and peak comparison; the slow control search peak window is preset to be less than the control period. Time period, peak search and peak comparison for slow decay.
  • Step 103 Compare the detected peak value with a threshold in the gain control parameter, and perform gain control on the signal according to the comparison result;
  • the threshold in the gain control parameter includes: one or more of a fast decay threshold, a slow decay threshold, a slow callback threshold, and a slow callback target threshold;
  • the digital intermediate frequency device compares the detected real-time peak value with the fast decay threshold, and increases the cumulative number of over-fast decay thresholds by one when the detected real-time peak value is greater than the fast decay threshold.
  • the cumulative number of attenuation thresholds is equal to the threshold of fast decay times, a fast decay is performed according to the fast decay step; at the same time, the cumulative number of over-fast decay thresholds is cleared; when the detected real-time peak is less than or equal to the fast decay threshold, no processing is performed;
  • the digital intermediate frequency device compares the detected real-time peak with the slow decay threshold, and when the detected real-time peak is greater than the slow decay threshold, the slow-speed decay threshold is accumulated. The number of counts is increased by one. When the cumulative number of slow decay thresholds is greater than the slow decay threshold, at the end of the slow control search window, if the fast decay is not performed during this control period, the slow decay step is calculated slowly. Speed control attenuation value, slow control at the beginning of the next control cycle; the cumulative number of over-speed decay thresholds is cleared at the beginning of each control cycle;
  • the digital intermediate frequency device calculates the slow control attenuation value according to the slow callback step in the gain control parameter, and performs slow at the beginning of the next control period.
  • the digital intermediate frequency device follows the ultra-slow speed adjustment step in the gain control parameter.
  • the slow control attenuation value is calculated, and the slow control is performed at the beginning of the next control period, where N is a positive integer greater than or equal to 2;
  • the digital intermediate frequency device When performing fast attenuation and slow speed control, the digital intermediate frequency device first needs to query the total gain adjustment amount stored in the previous control period, and then query the gain adjustment amount of each gain adjustment unit of the RF link according to the pre-stored attenuation strategy table. Specifically, fast decay or slow control can be performed by the gain control module in the digital intermediate frequency.
  • the target region is an ideal sampling region of the signal peak, that is, the peak of the signal is greater than the threshold of the slow callback target, and is smaller than the region of the slow decay threshold; slow decay The threshold is further retracted by a certain reserved amount on the basis of the fast fading threshold, and the slow callback threshold is smaller than the slow decay threshold by a certain adjustment interval, and the slow callback target threshold is smaller than the slow decay threshold but greater than the slow callback threshold;
  • the relative relationship between the fast decay threshold, the slow decay threshold, the slow callback target threshold, and the slow callback threshold is fixed.
  • the values of the control thresholds can be flexibly set according to requirements; the fast decay step and slow decay.
  • the values of the step, slow callback step and super slow callback step may need to be set according to the threshold to ensure that the ping-pong operation will not occur during the gain control.
  • the fast decay threshold can be set to -1dBfs
  • the slow decay threshold is -2.5dBfs
  • the slow callback threshold is -8dBfs, slow.
  • the fast callback target threshold is -5dBfs
  • the fast decay step is 6dB
  • the slow decay step is 2dB
  • the slow callback step is 2dB
  • the super slow callback step is 1dB
  • the target area is [-5dBfs, -2.5dBfs ].
  • the method further includes:
  • Step 104 compensating for a gain adjustment amount by delay
  • the digital intermediate frequency device first delays the gain adjustment amount to align with the uplink data of the compensation position, and then compensates the gain adjustment amount to the uplink data through the gain back check; compensates the gain adjustment amount by delay, thereby ensuring the antenna port power and
  • the consistency of baseband power reduces the impact of baseband demodulation and improves the performance of the gain control system.
  • the detailed processing flow of the method for signal gain control in the embodiment of the present invention, as shown in FIG. 6, includes the following steps:
  • Step 201 Store optimal gain control parameters of base stations of various application standards.
  • the application format of the base station includes a GSM system, a UMTS system, a CDMA system, a TD-CDMA system, a TD-LTE system, an FDD-LTE system, and various modes of mixed mode, etc.;
  • the gain control parameters include: gain control Mode, control period, control threshold, adjustment step, gain control strategy, cumulative number of times, and adjustment time;
  • the control period includes three types.
  • the first control period is applicable to the time division structure of the GSM system, and the first control period is 577 ⁇ s;
  • the second control period is applicable to other FDD systems other than the GSM system, and the second type
  • the control period can be configured as an integer multiple of one subframe;
  • the third control period is applicable to a TDD system or a system with time division interference, and the third control period can be configured as an integer multiple of one radio frame;
  • the control mode includes two types, the first control mode, namely: GSM mode, suitable for GMS system and a mixed mode system including GMS; the second control mode, namely: no GSM mode, suitable for non-GMS standard Single mode or mixed mode system;
  • the control threshold includes: a fast decay threshold, a fast decay threshold, a slow decay threshold, a slow decay threshold, a super slow callback threshold, a slow callback target threshold, and a slow speed.
  • a callback threshold the fast decay threshold is greater than a slow decay threshold
  • the slow decay threshold is greater than a slow callback target threshold
  • the slow callback target threshold is greater than a slow callback threshold
  • the adjustment step includes: a fast decay step, a slow decay step, a slow callback step, and a super slow callback step;
  • the gain control strategy includes: fast decay and slow speed control, the slow speed control includes: slow speed decay, slow speed callback, and ultra slow speed callback;
  • the cumulative number of times includes: the cumulative number of over-fast decay thresholds, the cumulative number of over-speed decay thresholds, and the cumulative number of super-slow callback thresholds; the thresholds include: fast decay threshold, slow decay threshold, and super slow The threshold of the number of callbacks; the threshold of the fast decay times, the threshold of the slow decay times, and the threshold of the number of super slow callbacks are determined according to the characteristics of the signals to ensure the accuracy of the judgment; and the calculation of the cumulative number of times can effectively block some specific Known oversized interference signals;
  • the adjustment time includes: a fast adjustment time and a slow adjustment time; the position of the fast adjustment time in the control period is not fixed, specifically, a moment when the fast attenuation decision is valid immediately; the slow control adjustment The position in the control period is fixed, specifically the fixed point after the start of each control period; the adjustment time is used for gain control.
  • Step 202 determining a gain control parameter
  • the digital intermediate frequency device selects a gain control parameter that matches the application standard of the base station in the pre-stored gain control parameters according to the configuration of the base station;
  • the configuration of the base station includes: an application standard, a specification, and current carrier configuration information of the base station.
  • Step 203 when the control period comes, obtain a total gain adjustment amount
  • the digital intermediate frequency unit queries the total gain adjustment amount stored in the previous control period
  • the above operation can be performed by a gain control module in the digital intermediate frequency.
  • Step 204 Acquire a gain adjustment amount of each gain adjustment unit in the radio frequency link, and perform gain control according to the gain adjustment amount;
  • the digital intermediate frequency unit queries the gain adjustment amount of each gain adjustment unit of the radio frequency link according to the pre-stored attenuation strategy table; the gain adjustment amount of each gain adjustment unit of the radio frequency link in the pre-stored attenuation strategy table is according to the radio frequency link Calculate the saturation point and noise figure of each device;
  • the gain configuration will be performed according to the calculated slow control attenuation value; if the fast decay is performed in the previous control cycle, the value of the fast decay in the previous cycle will be used here.
  • Gain configuration if the slow control attenuation value is not calculated in the previous control cycle, and the fast attenuation is not performed, the gain adjustment amount here maintains the effective value of the previous control cycle; here, it can be performed by the gain control module in the digital intermediate frequency device. The above operation.
  • Step 205 detecting a peak value of the output signal of the digital-to-analog conversion ADC device in the fast decay search peak window and the slow control search peak window respectively;
  • the digital intermediate frequency device performs modulus detection on the output signal of the ADC device in the fast decay search peak window and the slow control search peak window;
  • the fast decay search peak window is a preset time period less than the control period, and is used for fast attenuation peak search and peak comparison; the slow control search peak window is preset to be less than the control period. Time period, peak search and peak comparison for slow decay.
  • the digital intermediate frequency device clears the control parameters, including: initial peak value of the signal, cumulative number of over-fast decay thresholds, cumulative number of over-speed decay thresholds, and accumulation of ultra-slow callback thresholds. The number of times.
  • Step 206 it is determined whether the detected peak meets the fast decay condition, when satisfied, step 207 is performed, and if not, step 208 is performed;
  • the digital intermediate frequency device compares the detected real-time peak with the fast decay threshold, and the fast decay occurs when the detected real-time peak is greater than the fast decay threshold.
  • the cumulative number of decrement thresholds is increased by one. When the cumulative number of fast decay thresholds is equal to the threshold of fast decay times, it is judged that the peak satisfies the fast decay condition; otherwise, the peak value is not satisfied.
  • Step 207 performing fast attenuation according to the fast decay step, and then performing step 203;
  • the digital intermediate frequency device performs fast attenuation according to fast decay steps
  • the fast decay step is obtained in step 202.
  • Step 208 it is determined whether the detected peak meets the slow decay condition, when satisfied, step 209 is performed, and if not, step 210 is performed;
  • the digital intermediate frequency device compares the detected real-time peak with the slow decay threshold, and increases the cumulative number of over-speed decay thresholds when the detected real-time peak is greater than the slow decay threshold.
  • the cumulative number of slow decay thresholds is greater than the slow decay threshold.
  • Step 209 calculating a slow control attenuation value according to a slow decay step
  • the slow decay step is obtained in step 202, and the digital intermediate frequency performs slow control at the beginning of the next control period.
  • Step 210 it is determined whether the detected peak meets the super slow callback condition, when satisfied, step 211 is performed, and if not, step 212 is performed;
  • the digital intermediate frequency device determines that the ultra-slow callback condition is satisfied; otherwise , does not meet the ultra-slow callback conditions.
  • Step 211 calculating a slow control attenuation value according to the ultra-slow callback step
  • the super slow callback step is obtained in step 202, and the digital intermediate frequency unit performs slow speed control at the beginning of the next control period.
  • Step 212 Determine whether the detected peak value satisfies the slow callback condition. If yes, perform step 213. If not, keep the current attenuation amount unchanged.
  • the digital intermediate frequency device determines that the slow callback condition is satisfied; otherwise, it determines that the slow callback condition is not satisfied.
  • the slow callback step is obtained in step 202, and the digital intermediate frequency unit performs slow speed control at the beginning of the next control period.
  • step 214 the digital intermediate frequency unit stores the obtained attenuation amount.
  • steps 201 to 214 described above may be performed by a gain control module in the digital intermediate frequency device.
  • the embodiment of the present invention further provides a device for controlling the signal gain.
  • the device structure of the device is as shown in FIG. 7 , and includes: a determining module 11 , a detecting module 12 , and a comparing module 13 . And a gain control module 14; wherein
  • the determining module 11 is configured to determine a gain control parameter
  • the detecting module 12 is configured to detect a peak value of a digital-to-analog conversion ADC device output signal in a fast decay search peak window and a slow control search peak window;
  • the comparing module 13 is configured to compare the detected peak value with a threshold in the gain control parameter
  • the gain control module 14 is configured to perform gain control on the signal according to the comparison result.
  • the threshold in the gain control parameter includes: one or more of a fast decay threshold, a slow decay threshold, a slow callback threshold, and a slow callback target threshold;
  • the comparison module is specifically configured to compare the detected real-time peak with the fast decay threshold in the fast decay search peak window; and/or, in the slow control search peak window, the detected real-time peak and slow decay The thresholds are compared; and/or, within the slow control search peak window, the detected maximum peak is compared to the slow callback threshold and the slow callback target threshold.
  • the gain control module 14 is specifically configured to detect that the real-time peak value is greater than When the threshold is fast decayed, the first over-peak number is incremented by one, and when the first over-peak is equal to the fast-attenuation threshold, a fast decay is performed according to the fast decay step; and/or, when the detected real-time peak is greater than the slow decay threshold , the second over-peak number is increased by one, and the second over-peak is greater than the slow-attenuation threshold, and at the end of the slow-control search peak, no fast decay is performed during the control period, and the slow decay step is followed.
  • the ultra-slow callback step calculates the slow control attenuation value, and performs slow control at the beginning of the next control period, where N is a positive integer greater than or equal to 2.
  • the determining module 11 is configured to: when the configuration of the base station is powered on or the base station changes, select a gain control parameter that matches the application standard of the base station in the pre-stored gain control parameters according to the configuration of the base station. .
  • the apparatus further comprises: a compensation module 15 for compensating for the amount of gain adjustment by delay.
  • the application format of the base station includes a GSM system, a UMTS system, a CDMA system, a TD-CDMA system, a TD-LTE system, an FDD-LTE system, and various modes of mixing modes, and the like;
  • the gain control parameters include : Gain control mode, control cycle, control threshold, adjustment step, gain control strategy, cumulative number of times, and adjustment time.
  • the control period includes three types.
  • the first control period is applicable to the time division structure of the GSM system, and the first control period is 577 ⁇ s;
  • the second control period is applicable to other FDD systems other than the GSM system, and the second type
  • the control period can be configured as an integer multiple of one subframe;
  • the third control period is applicable to a TDD system or a system with time division interference, and the third control period can be configured as an integer multiple of one radio frame.
  • the control mode includes two types, the first control mode, namely: GSM mode, suitable for GMS system and a mixed mode system including GMS; the second control mode, namely: no GSM mode, suitable for non-GMS standard Single mode or mixed mode system.
  • the control threshold includes: a fast decay threshold, a fast decay threshold, a slow decay threshold, a slow decay threshold, a super slow callback threshold, a slow callback target threshold, and a slow callback threshold; the fast decay threshold is greater than The slow decay threshold, the slow decay threshold is greater than the slow callback target threshold, and the slow callback target threshold is greater than the slow callback threshold.
  • the adjustment step includes: a fast decay step, a slow decay step, a slow callback step, and an ultra slow callback step.
  • the gain control strategy includes: fast decay and slow speed control, the slow speed control includes: slow speed decay, slow speed callback, and ultra slow speed callback.
  • the cumulative number of times includes: the cumulative number of over-fast decay thresholds, the cumulative number of over-speed decay thresholds, and the cumulative number of super-slow callback thresholds; the thresholds include: fast decay threshold, slow decay threshold, and super slow The threshold of the number of callbacks; the threshold of the fast decay times, the threshold of the slow decay times, and the threshold of the number of super slow callbacks are determined according to the characteristics of the signals to ensure the accuracy of the judgment; and the calculation of the cumulative number of times can effectively block some specific Known oversized interference signals.
  • the adjustment time includes: a fast adjustment time and a slow adjustment time; the position of the fast adjustment time in the control period is not fixed, specifically, a moment when the fast attenuation decision is valid immediately; the slow control adjustment The position of the moment in the control period is fixed, specifically the fixed point after the start of each control period.
  • the configuration of the base station includes: an application standard, a specification, and current carrier configuration information of the base station.
  • a schematic structural diagram of a base station of a device for applying signal gain control according to an embodiment of the present invention includes: a low noise amplifier 21, a radio frequency gain adjuster 22, a mixer 23, An intermediate frequency gain adjuster 24, an ADC device 25, a digital intermediate frequency unit 26, and a signal gain control device 27;
  • the low noise amplifier 21 is configured to amplify a signal received by an antenna
  • the RF gain adjuster 22 is configured to adjust the amplitude of the signal in the radio frequency portion
  • the mixer 23 is configured to convert a radio frequency signal containing baseband information into a medium frequency band and/or a low frequency band signal for further information and signal processing;
  • the intermediate frequency gain adjuster 24 is configured to adjust the amplitude of the signal in the intermediate frequency portion
  • the ADC device 25 is configured to convert an analog signal into a digital signal
  • the digital intermediate frequency unit 26 is configured to perform digital down conversion processing and intermediate frequency auxiliary functions
  • the intermediate frequency auxiliary functions include: interface conversion, gain control, peak clipping, digital pre-distortion, etc.;
  • the signal gain control device 27 is configured to determine a gain control parameter, and detect a peak value of the output signal of the digital-to-analog conversion ADC device in the fast decay search peak window and the slow control search peak window, respectively, and the detected peak value and the gain control
  • the thresholds in the parameters are compared, and the signals are gain controlled according to the comparison results.
  • the determining module 11, the detecting module 12, the comparing module 13, the gain control module 14, and the compensating module 15 proposed in the embodiments of the present invention may be implemented by a processor, or may be implemented by a specific logic circuit; It may be a processor on a base station.
  • the processor may be a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP), or a field programmable gate array (FPGA).
  • the above method of signal gain control is implemented in the form of a software function module and sold or used as a stand-alone product, it may also be stored in a computer readable storage medium.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • Make a computer device (available All or part of the method described in the various embodiments of the present invention is performed as a personal computer, server, or network device.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • an embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores a computer program for performing the above method for signal gain control of the embodiment of the present invention.

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本发明公开了一种信号增益控制的方法,包括:确定增益控制参数,分别在快速衰减搜峰窗和慢速控制搜峰窗内检测数模转换ADC器件输出信号的峰值;将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制。本发明还同时公开了一种信号增益控制的装置及存储介质。

Description

一种信号增益控制的方法、装置及存储介质 技术领域
本发明涉及移动通信中的信号处理技术,尤其涉及一种信号增益控制的方法、装置及存储介质。
背景技术
移动通信系统中的分布式基站主要由基带单元(Base Band Unit,BBU)和射频拉远单元(Radio Remote Unit,RRU)组成;基站的上行功能主要是通过天线从空中接收移动终端发射的信号,对接收到的信号进行放大后混频至较低的频率,再通过模数转换器将模拟信号转换为数字信号,最后通过一系列的数字中频处理后发送至BBU。
由于上行接收链路中的模数转换器的动态范围是固定的,可能不满足接收机的动态接收范围,并且上行接收链路中的射频器件不仅会使噪声系数恶化,还存在1dB压缩点和三阶交调截取点等饱和以及互调点;因此,为满足接收机的动态接收范围、提高接收机的抗干扰能力,需要对射频链路的输出信号进行增益控制。增益控制的基本思想是:在接收机接收弱信号时,提高接收机的增益,在接收机接收强信号时,降低接收机的增益,从而使输出信号保持在适当的电平,不会因为输出信号太弱而导致接收机无法正常工作,也不会因为输出信号太强而导致接收机饱和或堵塞。
目前,通常采用快速控制和慢速控制的方法对基站的上行信号增益控制;其中,快速控制是对模数转换(Analog to DigitalConverter,ADC)后的采样信号的瞬时功率进行计算,在ADC后的采样信号的瞬时功率超过设定的功率门限的次数大于预设的次数门限时,立即对中频可变增益放大器(Variable Gain Amplifier,VGA)和射频衰减器进行增益调整。
慢速控制是通过在当前帧的当前时隙的某段时间内对ADC采样信号的平均功率进行计算,根据功率检测结果和预设门限对中频VGA和射频衰减器进行增益调整,并在下一帧对应的时隙将进行增益配置。
但是,上述增益控制策略存在以下缺陷:(1)利用平均功率作为增益调整的依据时,难以确定时分双工(Time Division Duplexing,TDD)制式的增益调控门限,不能满足TDD制式的需求;(2)利用平均功率作为增益调整的依据,当存在时分干扰时,如:车载台设备中常见的测距装置DME干扰时,难以确定TDD制式的增益调控门限,无法有效应对时分干扰;(3)仅仅适用于某一种特定制式或规格的无线基站的增益调整,通用性低。
发明内容
有鉴于此,本发明实施例期望提供一种信号增益控制的方法、装置及存储介质,能够满足各种应用制式和规格的无线基站的接收范围和抗干扰能力,有效应对时分干扰。
本发明实施例的技术方案是这样实现的:
本发明实施例提供一种信号增益控制的方法,包括:确定增益控制参数;分别在快速衰减搜峰窗和慢速控制搜峰窗内检测ADC器件输出信号的峰值;将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制。
在一实施例中,所述增益控制参数中的门限包括:快速衰减门限、慢速衰减门限、慢速回调门限和慢速回调目标门限中的任意一个或多个;所述将检测的峰值与所述增益控制参数中的门限进行比较包括:
在快速衰减搜峰窗内,将检测的实时峰值与快速衰减门限进行比较;和/或,在慢速控制搜峰窗内,将检测的实时峰值与慢速衰减门限进行比较;和/或,在慢速控制搜峰窗内,将检测的最大峰值与慢速回调门限和慢速回调目标门限进行比较。
在一实施例中,所述根据比较结果对信号进行增益控制包括:检测的实时峰值大于快速衰减门限时,将过快速衰减门限累计次数加一,在过快速衰减门限累计次数等于快速衰减次数门限时,按照快速衰减步进进行一次快速衰减;和/或,检测的实时峰值大于慢速衰减门限时,将过慢速衰减门限累计次数加一,在过慢速衰减门限累计次数大于慢速衰减次数门限,其在慢速控制搜峰窗结束时,在此控制周期内未进行快速衰减,则按照慢速衰减步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,检测的最大峰值小于等于慢速回调门限时,按照增益控制参数中的慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,在连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,按照增益控制参数中的超慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制,N为大于等于2的正整数。
在一实施例中,所述确定增益控制参数包括:基站上电或基站的配置发生变化时,根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数。
在一实施例中,所述方法还包括:通过延迟对增益调节量进行补偿。
本发明实施例还提供一种信号增益控制的装置,所述装置包括:确定模块,检测模块、比较模块和增益控制模块;其中,
所述确定模块,配置为确定增益控制参数;
所述检测模块,配置为在快速衰减搜峰窗和慢速控制搜峰窗内检测ADC器件输出信号的峰值;
所述比较模块,配置为将检测的峰值与所述增益控制参数中的门限进行比较;
所述增益控制模块,配置为根据比较结果对信号进行增益控制。
在一实施例中,所述增益控制参数中的门限包括:快速衰减门限、慢速衰减门限、慢速回调门限和慢速回调目标门限中的任意一个或多个;
所述比较模块,配置为在快速衰减搜峰窗内,将检测的实时峰值与快速衰减门限进行比较;和/或,在慢速控制搜峰窗内,将检测的实时峰值与慢速衰减门限进行比较;和/或,在慢速控制搜峰窗内,将检测的最大峰值与慢速回调门限和慢速回调目标门限进行比较。
在一实施例中,所述增益控制模块,配置为检测的实时峰值大于快速衰减门限时,将第一过峰值数量加一,在第一过峰值等于快速衰减次数门限时,按照快速衰减步进进行一次快速衰减;和/或,检测的实时峰值大于慢速衰减门限时,将第二过峰值数量加一,在第二过峰值大于慢速衰减次数门限,其在慢速控制搜峰窗结束时,在此控制周期内未进行快速衰减,则按照慢速衰减步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,检测的最大峰值小于等于慢速回调门限时,按照增益控制参数中的慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,在连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,按照增益控制参数中的超慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制,N为大于等于2的正整数。
在一实施例中,所述确定模块,配置为基站上电或基站的配置发生变化时,根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数。
在一实施例中,所述装置还包括:补偿模块,配置为通过延迟对增益调节量进行补偿。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行上述信号增益控制 的方法。
本发明实施例所提供的信号增益控制的方法、装置及存储介质,确定增益控制参数;分别在快速衰减搜峰窗和慢速控制搜峰窗内检测ADC器件输出信号的峰值;将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制。本发明实施例中,利用峰值功率作为增益调整的依据,使得信号的峰均比、干扰信号的时域特性、TDD信号的时分特性对AGC调控门限的影响很小,利于各个调控门限的确定和统一;预先存储各种应用制式的基站的最优增益控制参数,在基站上电或基站的配置发生变化时,根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数使得本发明实施例所述信号增益控制方法能够满足各种应用制式和规格的无线基站的接收范围和抗干扰能力,有效应对时分干扰。
附图说明
图1为本发明实施例信号增益控制的方法的基本处理流程示意图;
图2为本发明实施例控制周期及时间段的划分示意图;
图3为本发明实施例含GSM模式的增益控制示意图;
图4为本发明实施例无GSM模式的增益控制示意图;
图5为本发明实施例控制门限与增益控制策略的关系示意图;
图6为本发明实施例信号增益控制的方法的详细处理流程;
图7为本发明实施例信号增益控制的装置的组成结构示意图;
图8为应用本发明实施例所述信号增益控制的装置的基站的组成结构示意图。
具体实施方式
本发明实施例中,确定增益控制参数;分别在快速衰减搜峰窗和慢速 控制搜峰窗内检测ADC器件输出信号的峰值;将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制。
本发明实施例信号增益控制的方法的基本处理流程,如图1所示,包括以下步骤:
步骤101,确定增益控制参数;
具体地,基站中的数字中频器预先存储各种应用制式的基站的最优增益控制参数,基站上电或基站的配置发生变化时,根据基站的配置在预存的最优增益控制参数中选择与所述基站的应用制式匹配的增益控制参数;
这里,所述基站的应用制式包括:全球移动通信系统(Global System for Mobile Communication,GSM)制式、通用移动通信系统(Universal Mobile Telecommunications System,UMTS)制式、码分多址(Code Division Multiple Access,CDMA)制式、时分同步长期演进(Time Division-Long Term Evolution,TD-LTE)制式、TD-CDMA制式、频分双工(Frequency Division Duplexing,FDD)LTE制式及各种制式混模等;所述增益控制参数包括:增益控制的模式、控制周期、控制门限、调整步进、增益控制策略、累计次数和调整时刻等;
其中,所述控制周期包括三种,第一种控制周期适用于GSM系统的时分结构,第一种控制周期为577μs;第二种控制周期适用于除GSM系统以外的其它FDD系统,第二种控制周期可以配置为一个子帧的整数倍;第三种控制周期适用于TDD系统或者存在时分干扰的系统,第三种控制周期可以配置为一个无线帧的整数倍;所述控制周期及时间段的划分示意图,如图2所示,控制周期P1根据无线基站的应用制式和规格确定,快速衰减搜峰窗P2和慢速控制搜峰窗P3的长度根据控制周期P1的长度以及无线基站的应用制式共同确定,自动增益控制系统在P2时间段进行快速衰减控制的条件判断和增益配置,在P3时间段进行慢速控制及超慢速回调控制的条件 判断,在T1时刻是慢速控制及超慢速回调控制的执行时刻,Δ1时间段用于每个控制周期当前衰减量的计算,Δ2时间段为根据器件的自身特性及传输接口的传输速度设置的器件响应时间,Δ3时间段用于当前控制周期对应的下一控制周期的衰减量计算和存储时间;对于FDD LTE系统,可设置P1为1ms,P2为0.1ms,P3为0.9ms,Δ1为0.002ms,Δ2为0.005ms,Δ3为0.093ms。
所述控制模式包括两种,第一种控制模式,即:含GSM模式,适用于GMS制式及包含GMS制式的混模系统,含GSM模式的增益控制示意图,如图3所示,含GSM模式将当前时分多址(Time Division Multiple Access,TDMA)帧的当前时隙计算的慢速控制或者超慢速回调衰减量对应于下一个TDMA帧的相应时隙再生效;第二种控制模式,即:无GSM模式,适用于非GMS制式的单模或混模系统,无GSM模式的增益控制示意图,如图4所示,在控制周期的起始位置直接进行慢速控制衰减量的调控。
所述控制门限包括:快速衰减门限、快速衰减次数门限、慢速衰减门限、慢速衰减次数门限、超慢速回调次数门限、慢速回调目标门限和慢速回调门限;所述快速衰减门限大于慢速衰减门限,慢速衰减门限大于慢速回调目标门限,慢速回调目标门限大于慢速回调门限;所述控制门限包括增益控制参数中的门限;
所述调整步进包括:快速衰减步进、慢速衰减步进、慢速回调步进和超慢速回调步进;
所述增益控制策略包括:快速衰减和慢速控制,所述慢速控制包括:慢速衰减、慢速回调和超慢速回调;
所述累计次数包括:过快速衰减门限累计次数、过慢速衰减门限累计次数以及超慢速回调门限累计次数;所述的次数门限包括:快速衰减次数门限、慢速衰减次数门限以及超慢速回调次数门限;所述快速衰减次数门 限、慢速衰减次数门限以及超慢速回调次数门限根据信号的特征进行确定,以保证判断的准确性;通过累计次数的计算,可有效屏蔽一些特定的、已知的超大干扰信号;
所述调整时刻包括:快速调整时刻和慢速调整时刻;所述快速调整时刻在控制周期内的位置不是固定的,具体为在快速衰减判决有效之后立即进行衰减的时刻;所述慢速控制调整时刻在控制周期内的位置是固定的,具体为每个控制周期起始后的固定点;所述调整时刻用于进行增益控制。
步骤102,分别在快速衰减搜峰窗和慢速控制搜峰窗内检测ADC器件输出信号的峰值;
具体地,数字中频器在快速衰减搜峰窗和慢速控制搜峰窗内对ADC器件输出信号进行模值检测;
其中,所述快速衰减搜峰窗为预设的小于控制周期的一个时间段,用于快速衰减的峰值检索和峰值比较;所述慢速控制搜峰窗为预设的小于控制周期的另一个时间段,用于慢速衰减的峰值检索和峰值比较。
步骤103,将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制;
其中,所述增益控制参数中的门限包括:快速衰减门限、慢速衰减门限、慢速回调门限和慢速回调目标门限中的任意一个或多个;
具体地,在快速衰减搜峰窗内,数字中频器将检测的实时峰值与快速衰减门限进行比较,在检测的实时峰值大于快速衰减门限时,将过快速衰减门限累计次数加一,在过快速衰减门限累计次数等于快速衰减次数门限时,按照快速衰减步进进行一次快速衰减;同时,将过快速衰减门限累计次数清零;在检测的实时峰值小于等于快速衰减门限时,不做任何处理;
在慢速控制搜峰窗内,数字中频器将检测的实时峰值与慢速衰减门限进行比较,在检测的实时峰值大于慢速衰减门限时,将过慢速衰减门限累 计次数加一,在过慢速衰减门限累计次数大于慢速衰减次数门限,其在慢速控制搜峰窗结束时,在此控制周期内未进行快速衰减,则按照慢速衰减步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;在每个控制周期的起始处对过慢速衰减门限累计次数清零;
在慢速控制搜峰窗内,检测的最大峰值小于等于慢速回调门限时,数字中频器按照增益控制参数中的慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;
在慢速控制搜峰窗内,在连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,数字中频器按照增益控制参数中的超慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制,N为大于等于2的正整数;
数字中频器在进行快速衰减和慢速控制时,需先查询上一个控制周期所存储的总的增益调节量,再根据预存的衰减策略表查询获取射频链路的各个增益调节单元的增益调节量;具体的,可以由数字中频器中的增益控制模块执行快速衰减或慢速控制。
控制门限与增益控制策略的关系示意图,如图5所示,目标区域为信号峰值的理想采样区域,即信号的峰值大于慢速回调目标门限,小于慢速衰减门限的这段区域;慢速衰减门限在快衰门限的基础上再回退一定预留量,慢速回调门限比慢速衰减门限小一定的调整间隔,慢速回调目标门限小于慢速衰减门限但大于慢速回调门限;所述快速衰减门限、慢速衰减门限、慢速回调目标门限和慢速回调门限的相对关系是固定的,所述各调控门限的值均可以根据需要灵活设置;所述快速衰减步进、慢速衰减步进、慢速回调步进和超慢速回调步进的值可需要根据门限值进行设定,以保证增益控制过程中不会不会发生乒乓操作。对于FDD LTE系统,可设置快速衰减门限为-1dBfs,慢速衰减门限为-2.5dBfs,慢速回调门限为-8dBfs,慢 速回调目标门限为-5dBfs,快速衰减步进为6dB,慢速衰减步进为2dB,慢速回调步进为2dB,超慢速回调步进为1dB,目标区域为[-5dBfs,-2.5dBfs]。
在执行完步骤103后,所述方法还包括:
步骤104,通过延迟对增益调节量进行补偿;
具体地,数字中频器先将增益调节量延迟到和补偿位置的上行数据对齐,再通过增益反查将增益调节量补偿到上行数据;通过延迟对增益调节量进行补偿,可保证天线口功率和基带功率的一致性,降低基带解调的影响,提高增益控制系统的性能。
本发明实施例信号增益控制的方法的详细处理流程,如图6所示,包括以下步骤:
步骤201,存储各种应用制式的基站的最优增益控制参数;
这里,所述基站的应用制式包括GSM制式、UMTS制式、CDMA制式、TD-CDMA制式、TD-LTE制式、FDD-LTE制式及各种制式混模等;所述增益控制参数包括:增益控制的模式、控制周期、控制门限、调整步进、增益控制策略、累计次数和调整时刻等;
其中,所述控制周期包括三种,第一种控制周期适用于GSM系统的时分结构,第一种控制周期为577μs;第二种控制周期适用于除GSM系统以外的其它FDD系统,第二种控制周期可以配置为一个子帧的整数倍;第三种控制周期适用于TDD系统或者存在时分干扰的系统,第三种控制周期可以配置为一个无线帧的整数倍;
所述控制模式包括两种,第一种控制模式,即:含GSM模式,适用于GMS制式及包含GMS制式的混模系统;第二种控制模式,即:无GSM模式,适用于非GMS制式的单模或混模系统;
所述控制门限包括:快速衰减门限、快速衰减次数门限、慢速衰减门限、慢速衰减次数门限、超慢速回调次数门限、慢速回调目标门限和慢速 回调门限;所述快速衰减门限大于慢速衰减门限,慢速衰减门限大于慢速回调目标门限,慢速回调目标门限大于慢速回调门限;
所述调整步进包括:快速衰减步进、慢速衰减步进、慢速回调步进和超慢速回调步进;
所述增益控制策略包括:快速衰减和慢速控制,所述慢速控制包括:慢速衰减、慢速回调和超慢速回调;
所述累计次数包括:过快速衰减门限累计次数、过慢速衰减门限累计次数以及超慢速回调门限累计次数;所述的次数门限包括:快速衰减次数门限、慢速衰减次数门限以及超慢速回调次数门限;所述快速衰减次数门限、慢速衰减次数门限以及超慢速回调次数门限根据信号的特征进行确定,以保证判断的准确性;通过累计次数的计算,可有效屏蔽一些特定的、已知的超大干扰信号;
所述调整时刻包括:快速调整时刻和慢速调整时刻;所述快速调整时刻在控制周期内的位置不是固定的,具体为在快速衰减判决有效之后立即进行衰减的时刻;所述慢速控制调整时刻在控制周期内的位置是固定的,具体为每个控制周期起始后的固定点;所述调整时刻用于进行增益控制。
步骤202,确定增益控制参数;
具体地,基站上电或基站的配置发生变化时,数字中频器根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数;
其中,所述基站的配置包括:基站的应用制式、规格和当前的载波配置信息等。
步骤203,在控制周期到来时,获取总的增益调节量;
具体地,数字中频器查询上一个控制周期所存储的总的增益调节量;
这里,可以由数字中频器中的增益控制模块执行上述操作。
步骤204,获取射频链路中各个增益调节单元的增益调节量,根据增益调节量进行增益控制;
具体地,数字中频器根据预存的衰减策略表查询获取射频链路的各个增益调节单元的增益调节量;预存的衰减策略表内射频链路的各个增益调节单元的增益调节量根据射频链路的各个器件的饱和点以及噪声系数计算获得;
若在上一个控制周期计算慢速控制衰减值,这里将按照计算获得的慢速控制衰减值进行增益配置;若在上一个控制周期进行了快速衰减,这里将按照上一周期快速衰减的值进行增益配置;若在上一个控制周期未计算慢速控制衰减值,也未进行快速衰减,这里的增益调节量保持上一控制周期的生效值;这里,可以由数字中频器中的增益控制模块执行上述操作。
步骤205,分别在快速衰减搜峰窗和慢速控制搜峰窗内检测数模转换ADC器件输出信号的峰值;
具体地,数字中频器在快速衰减搜峰窗和慢速控制搜峰窗内对ADC器件输出信号进行模值检测;
其中,所述快速衰减搜峰窗为预设的小于控制周期的一个时间段,用于快速衰减的峰值检索和峰值比较;所述慢速控制搜峰窗为预设的小于控制周期的另一个时间段,用于慢速衰减的峰值检索和峰值比较。
在峰值检索前,器件响应后,数字中频器对控制参数进行清零,所述控制参数包括:信号初始峰值、过快速衰减门限累计次数、过慢速衰减门限累计次数、超慢速回调门限累计次数等。
步骤206,判断检测的峰值是否满足快速衰减条件,满足时,执行步骤207,不满足时,执行步骤208;
具体地,在快速衰减搜峰窗内,数字中频器将检测的实时峰值与快速衰减门限进行比较,在检测的实时峰值大于快速衰减门限时,将过快速衰 减门限累计次数加一,在过快速衰减门限累计次数等于快速衰减次数门限时,判断峰值满足快速衰减条件;否则,判断峰值不满足快速衰减条件。
步骤207,按照快速衰减步进进行快速衰减,再执行步骤203;
具体的,数字中频器按照快速衰减步进进行快速衰减;
其中,所述快速衰减步进在步骤202中获取。
步骤208,判断检测的峰值是否满足慢速衰减条件,满足时,执行步骤209,不满足时,执行步骤210;
具体地,在慢速控制搜峰窗内,数字中频器将检测的实时峰值与慢速衰减门限进行比较,在检测的实时峰值大于慢速衰减门限时,将过慢速衰减门限累计次数加一,在过慢速衰减门限累计次数大于慢速衰减次数门限,其在慢速控制搜峰窗结束时,在此控制周期内未进行快速衰减,判断满足慢速衰减条件;否则,判断不满足慢速衰减条件。
步骤209,按照慢速衰减步进计算慢速控制衰减值;
具体地,慢速衰减步进在步骤202中获得,数字中频器在下一控制周期开始时进行慢速控制。
步骤210,判断检测的峰值是否满足超慢速回调条件,满足时,执行步骤211,不满足时,执行步骤212;
具体地,在慢速控制搜峰窗内,连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,数字中频器判断满足超慢速回调条件;否则,不满足超慢速回调条件。
步骤211,按照超慢速回调步进计算慢速控制衰减值;
具体地,超慢速回调步进在步骤202中获得,数字中频器在下一控制周期开始时进行慢速控制。
步骤212,判断检测的峰值是否满足慢速回调条件,满足时,执行步骤213,不满足时,保持当前衰减量不变;
具体地,在慢速控制搜峰窗内,检测的最大峰值小于等于慢速回调门限时,数字中频器判断满足慢速回调条件;否则,判断不满足慢速回调条件。
步骤213,按照慢速回调步进计算慢速控制衰减值;
具体地,慢速回调步进在步骤202中获得,数字中频器在下一控制周期开始时进行慢速控制。
步骤214,数字中频器存储获得的衰减量。
本发明实施例中,可以由数字中频器中的增益控制模块执行上述步骤201~步骤214的操作。
为实现上述信号增益控制的方法,本发明实施例还提供一种信号增益控制的装置,所述装置的组成结构示意图,如图7所示,包括:确定模块11、检测模块12、比较模块13和增益控制模块14;其中,
所述确定模块11,用于确定增益控制参数;
所述检测模块12,用于在快速衰减搜峰窗和慢速控制搜峰窗内检测数模转换ADC器件输出信号的峰值;
所述比较模块13,用于将检测的峰值与所述增益控制参数中的门限进行比较;
所述增益控制模块14,用于根据比较结果对信号进行增益控制。
在一实施例中,所述增益控制参数中的门限包括:快速衰减门限、慢速衰减门限、慢速回调门限和慢速回调目标门限中的任意一个或多个;
所述比较模块,具体用于在快速衰减搜峰窗内,将检测的实时峰值与快速衰减门限进行比较;和/或,在慢速控制搜峰窗内,将检测的实时峰值与慢速衰减门限进行比较;和/或,在慢速控制搜峰窗内,将检测的最大峰值与慢速回调门限和慢速回调目标门限进行比较。
在一实施例中,所述增益控制模块14,具体用于检测的实时峰值大于 快速衰减门限时,将第一过峰值数量加一,在第一过峰值等于快速衰减次数门限时,按照快速衰减步进进行一次快速衰减;和/或,检测的实时峰值大于慢速衰减门限时,将第二过峰值数量加一,在第二过峰值大于慢速衰减次数门限,其在慢速控制搜峰窗结束时,在此控制周期内未进行快速衰减,则按照慢速衰减步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,检测的最大峰值小于等于慢速回调门限时,按照增益控制参数中的慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,在连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,按照增益控制参数中的超慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制,N为大于等于2的正整数。
在一实施例中,所述确定模块11,具体用于基站上电或基站的配置发生变化时,根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数。
在一实施例中,所述装置还包括:补偿模块15,用于通过延迟对增益调节量进行补偿。
在一实施例中,所述基站的应用制式包括GSM制式、UMTS制式、CDMA制式、TD-CDMA制式、TD-LTE制式、FDD-LTE制式及各种制式混模等;所述增益控制参数包括:增益控制的模式、控制周期、控制门限、调整步进、增益控制策略、累计次数和调整时刻等。
其中,所述控制周期包括三种,第一种控制周期适用于GSM系统的时分结构,第一种控制周期为577μs;第二种控制周期适用于除GSM系统以外的其它FDD系统,第二种控制周期可以配置为一个子帧的整数倍;第三种控制周期适用于TDD系统或者存在时分干扰的系统,第三种控制周期可以配置为一个无线帧的整数倍。
所述控制模式包括两种,第一种控制模式,即:含GSM模式,适用于GMS制式及包含GMS制式的混模系统;第二种控制模式,即:无GSM模式,适用于非GMS制式的单模或混模系统。
所述控制门限包括:快速衰减门限、快速衰减次数门限、慢速衰减门限、慢速衰减次数门限、超慢速回调次数门限、慢速回调目标门限和慢速回调门限;所述快速衰减门限大于慢速衰减门限,慢速衰减门限大于慢速回调目标门限,慢速回调目标门限大于慢速回调门限。
所述调整步进包括:快速衰减步进、慢速衰减步进、慢速回调步进和超慢速回调步进。
所述增益控制策略包括:快速衰减和慢速控制,所述慢速控制包括:慢速衰减、慢速回调和超慢速回调。
所述累计次数包括:过快速衰减门限累计次数、过慢速衰减门限累计次数以及超慢速回调门限累计次数;所述的次数门限包括:快速衰减次数门限、慢速衰减次数门限以及超慢速回调次数门限;所述快速衰减次数门限、慢速衰减次数门限以及超慢速回调次数门限根据信号的特征进行确定,以保证判断的准确性;通过累计次数的计算,可有效屏蔽一些特定的、已知的超大干扰信号。
所述调整时刻包括:快速调整时刻和慢速调整时刻;所述快速调整时刻在控制周期内的位置不是固定的,具体为在快速衰减判决有效之后立即进行衰减的时刻;所述慢速控制调整时刻在控制周期内的位置是固定的,具体为每个控制周期起始后的固定点。
所述基站的配置包括:基站的应用制式、规格和当前的载波配置信息等。
应用本发明实施例所述信号增益控制的装置的基站的组成结构示意图,如图8所示,包括:低噪放大器21、射频增益调节器22、混频器23、 中频增益调节器24、ADC器件25、数字中频器26和信号增益控制装置27;其中,
所述低噪放大器21,用于将天线接收的信号放大;
所述射频增益调节器22,用于在射频部分对信号的幅值进行调节;
所述混频器23,用于将含有基带信息的射频信号转为中频段和/或低频段的信号,以便进行进一步信息及信号处理;
所述中频增益调节器24,用于在中频部分对信号的幅值进行调节;
所述ADC器件25,用于将模拟信号转换为数字信号;
所述数字中频器26,用于进行数字下变频处理和中频辅助功能;
其中,中频辅助功能包括:接口转换、增益控制、削峰、数字预失真等;
所述信号增益控制装置27,用于确定增益控制参数,分别在快速衰减搜峰窗和慢速控制搜峰窗内检测数模转换ADC器件输出信号的峰值,将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制。
本发明实施例中提出的确定模块11、检测模块12、比较模块13、增益控制模块14和补偿模块15都可以通过处理器来实现,当然也可通过具体的逻辑电路实现;其中所述处理器可以是基站上的处理器,在实际应用中,处理器可以为中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等。
本发明实施例中,如果以软件功能模块的形式实现上述信号增益控制的方法,并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可 以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机程序,该计算机程序用于执行本发明实施例的上述信号增益控制的方法。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (11)

  1. 一种信号增益控制的方法,所述方法包括:
    确定增益控制参数;
    分别在快速衰减搜峰窗和慢速控制搜峰窗内检测数模转换ADC器件输出信号的峰值;
    将检测的峰值与所述增益控制参数中的门限进行比较,根据比较结果对信号进行增益控制。
  2. 根据权利要求1所述信号增益控制的方法,其中,所述增益控制参数中的门限包括:快速衰减门限、慢速衰减门限、慢速回调门限和慢速回调目标门限中的任意一个或多个;所述将检测的峰值与所述增益控制参数中的门限进行比较包括:
    在快速衰减搜峰窗内,将检测的实时峰值与快速衰减门限进行比较;和/或,
    在慢速控制搜峰窗内,将检测的实时峰值与慢速衰减门限进行比较;和/或,
    在慢速控制搜峰窗内,将检测的最大峰值与慢速回调门限和慢速回调目标门限进行比较。
  3. 根据权利要求1所述信号增益控制的方法,其中,所述根据比较结果对信号进行增益控制包括:
    检测的实时峰值大于快速衰减门限时,将过快速衰减门限累计次数加一,在过快速衰减门限累计次数等于快速衰减次数门限时,按照快速衰减步进进行一次快速衰减;和/或,
    检测的实时峰值大于慢速衰减门限时,将过慢速衰减门限累计次数加一,在过慢速衰减门限累计次数大于慢速衰减次数门限,其在慢速控制搜 峰窗结束时,在此控制周期内未进行快速衰减,则按照慢速衰减步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,
    检测的最大峰值小于等于慢速回调门限时,按照增益控制参数中的慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,
    在连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,按照增益控制参数中的超慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制,N为大于等于2的正整数。
  4. 根据权利要求1所述信号增益控制的方法,其中,所述确定增益控制参数包括:基站上电或基站的配置发生变化时,根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数。
  5. 根据权利要求1所述信号增益控制的方法,其中,所述方法还包括:通过延迟对增益调节量进行补偿。
  6. 一种信号增益控制的装置,所述装置包括:确定模块,检测模块、比较模块和增益控制模块;其中,
    所述确定模块,配置为确定增益控制参数;
    所述检测模块,配置为在快速衰减搜峰窗和慢速控制搜峰窗内检测ADC器件输出信号的峰值;
    所述比较模块,配置为将检测的峰值与所述增益控制参数中的门限进行比较;
    所述增益控制模块,配置为根据比较结果对信号进行增益控制。
  7. 根据权利要求6所述信号增益控制的装置,其中,所述增益控制参数中的门限包括:快速衰减门限、慢速衰减门限、慢速回调门限和慢速回调目标门限中的任意一个或多个;
    所述比较模块,配置为在快速衰减搜峰窗内,将检测的实时峰值与快速衰减门限进行比较;和/或,
    在慢速控制搜峰窗内,将检测的实时峰值与慢速衰减门限进行比较;和/或,
    在慢速控制搜峰窗内,将检测的最大峰值与慢速回调门限和慢速回调目标门限进行比较。
  8. 根据权利要求6所述信号增益控制的装置,其中,所述增益控制模块,配置为检测的实时峰值大于快速衰减门限时,将第一过峰值数量加一,在第一过峰值等于快速衰减次数门限时,按照快速衰减步进进行一次快速衰减;和/或,
    检测的实时峰值大于慢速衰减门限时,将第二过峰值数量加一,在第二过峰值大于慢速衰减次数门限,其在慢速控制搜峰窗结束时,在此控制周期内未进行快速衰减,则按照慢速衰减步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,
    检测的最大峰值小于等于慢速回调门限时,按照增益控制参数中的慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制;和/或,
    在连续N个控制周期内检测的最大峰值大于慢速回调门限,且小于等于慢速回调目标门限时,按照增益控制参数中的超慢速回调步进计算慢速控制衰减值,在下一控制周期开始时进行慢速控制,N为大于等于2的正整数。
  9. 根据权利要求6所述信号增益控制的装置,其中,所述确定模块,配置为基站上电或基站的配置发生变化时,根据基站的配置在预存的增益控制参数中选择与所述基站的应用制式匹配的增益控制参数。
  10. 根据权利要求6所述信号增益控制的装置,其中,所述装置还包 括:补偿模块,配置为通过延迟对增益调节量进行补偿。
  11. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令用于执行权利要求1至5任一项所述的信号增益控制的方法。
PCT/CN2014/093464 2014-09-10 2014-12-10 一种信号增益控制的方法、装置及存储介质 WO2016037429A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14901787.3A EP3193543B1 (en) 2014-09-10 2014-12-10 Signal gain control method and device and storage medium
JP2017513439A JP6395926B2 (ja) 2014-09-10 2014-12-10 信号ゲイン制御方法、装置及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410459586.8A CN105407523B (zh) 2014-09-10 2014-09-10 一种信号增益控制的方法及装置
CN201410459586.8 2014-09-10

Publications (1)

Publication Number Publication Date
WO2016037429A1 true WO2016037429A1 (zh) 2016-03-17

Family

ID=55458305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093464 WO2016037429A1 (zh) 2014-09-10 2014-12-10 一种信号增益控制的方法、装置及存储介质

Country Status (4)

Country Link
EP (1) EP3193543B1 (zh)
JP (1) JP6395926B2 (zh)
CN (1) CN105407523B (zh)
WO (1) WO2016037429A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143866A (zh) * 2020-09-04 2022-03-04 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105871481B (zh) * 2016-06-24 2019-01-08 成都成广电视设备有限公司 一种射频接收机自动增益控制方法及装置
CN111313952B (zh) * 2018-12-12 2022-05-13 中国移动通信集团北京有限公司 直放站增益智能调节方法、装置、直放站及存储介质
CN111009251B (zh) * 2019-10-31 2023-04-18 惠州华阳通用电子有限公司 一种车载混音方法及装置
CN113381958B (zh) * 2020-02-25 2022-07-08 大唐移动通信设备有限公司 一种自适应峰值门限的调整方法及装置
CN117560023B (zh) * 2023-05-22 2024-04-09 东方空间技术(北京)有限公司 一种运载火箭的箭上信号处理方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705238A (zh) * 2004-06-01 2005-12-07 大唐移动通信设备有限公司 移动通信终端的自动增益控制装置及其方法
CN1719751A (zh) * 2005-07-19 2006-01-11 凯明信息科技股份有限公司 时分双工移动通信系统中突发接收自动增益控制的方法
CN102231906A (zh) * 2011-06-22 2011-11-02 中兴通讯股份有限公司 一种增益控制方法及射频拉远单元

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917865A (en) * 1996-12-31 1999-06-29 Lucent Technologies, Inc. Digital automatic gain control employing two-stage gain-determination process
KR19990084784A (ko) * 1998-05-11 1999-12-06 윤종용 피.지.에이, 협대역 잡음제거 장치 및 이들을 구비한 초고속 디지털 가입자 회선 수신기
EP1231721A1 (en) * 2001-02-12 2002-08-14 Telefonaktiebolaget Lm Ericsson Method for controlling receive signal levels at a network node in TDMA point to multi-point radio communications systems
JP2005151262A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd 自動利得制御装置、無線通信装置及び自動利得制御方法
JP2009065312A (ja) * 2007-09-05 2009-03-26 Fuji Electric Device Technology Co Ltd 無線受信装置
CN102355721B (zh) * 2011-06-29 2017-03-29 中兴通讯股份有限公司 一种多模系统的混合自动增益控制的方法和装置
CN103532585B (zh) * 2012-07-05 2016-12-21 中兴通讯股份有限公司 自动增益控制方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705238A (zh) * 2004-06-01 2005-12-07 大唐移动通信设备有限公司 移动通信终端的自动增益控制装置及其方法
CN1719751A (zh) * 2005-07-19 2006-01-11 凯明信息科技股份有限公司 时分双工移动通信系统中突发接收自动增益控制的方法
CN102231906A (zh) * 2011-06-22 2011-11-02 中兴通讯股份有限公司 一种增益控制方法及射频拉远单元

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143866A (zh) * 2020-09-04 2022-03-04 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质
CN114143866B (zh) * 2020-09-04 2023-08-15 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质

Also Published As

Publication number Publication date
JP2017533623A (ja) 2017-11-09
EP3193543A4 (en) 2017-08-09
CN105407523B (zh) 2020-08-21
CN105407523A (zh) 2016-03-16
EP3193543A1 (en) 2017-07-19
EP3193543B1 (en) 2019-06-19
JP6395926B2 (ja) 2018-09-26

Similar Documents

Publication Publication Date Title
WO2016037429A1 (zh) 一种信号增益控制的方法、装置及存储介质
US8731500B2 (en) Automatic gain control based on bandwidth and delay spread
EP2089989B1 (en) Base station repeater
JP3397677B2 (ja) 送信電力制御装置及び無線通信装置
WO2012174947A1 (zh) 一种增益控制方法及射频拉远单元
JPH08330986A (ja) 無線受信機における受信信号の品質を最適化する装置および方法
GB2360406A (en) Receiving a communication signal in a bandwidth then if the noise level is above a predetermined level adjusting the bandwidth to accurately measure noise
CN102215556B (zh) 一种收发信单元、无线接收系统自动增益控制方法及装置
US6775336B1 (en) Receiver and gain control method of the same
EP1271976A1 (en) Cellular handset transceiver system for minimal power consumption
JP2000040997A (ja) 通信方法、送信電力制御方法及び移動局
JP2009518905A (ja) 無線加入者通信ユニットおよびバックオフでの電力制御方法
CN101969687A (zh) 一种数字gsm时隙alc的实现方法
CN103199881B (zh) 自动增益控制方法、系统和接收机
CN113242076B (zh) 目标链路的增益控制方法及装置、存储介质、中继设备
US7006842B2 (en) Communication system transmit power control method
CN104247276B (zh) 用于在无线通信系统中匹配天线阻抗的装置和方法
US20010046846A1 (en) Mobile terminal and reception gain control method in mobile terminal
US6611679B1 (en) Device and method for controlling a receiving amplifier in a radio terminal
Jing et al. Automatic gain control algorithm with high-speed and double closed-loop in UWB system
US8811549B2 (en) Apparatus and method for automatically controlling gain in portable communication system
KR100293367B1 (ko) 이동통신시스템에서의 이동국송신전력제어회로 및 그 제어방법
KR20140086328A (ko) 상향링크 이득 제어 방법 및 장치
US7778154B2 (en) Techniques for reducing interference in a communication system
JP2003332920A (ja) 無線送信装置および無線送信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017513439

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014901787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901787

Country of ref document: EP