WO2016035934A1 - Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도 - Google Patents

Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도 Download PDF

Info

Publication number
WO2016035934A1
WO2016035934A1 PCT/KR2014/011207 KR2014011207W WO2016035934A1 WO 2016035934 A1 WO2016035934 A1 WO 2016035934A1 KR 2014011207 W KR2014011207 W KR 2014011207W WO 2016035934 A1 WO2016035934 A1 WO 2016035934A1
Authority
WO
WIPO (PCT)
Prior art keywords
ipscs
gangliosidosis
cells
gml
gal
Prior art date
Application number
PCT/KR2014/011207
Other languages
English (en)
French (fr)
Inventor
조이숙
손미영
곽재은
설빛나
전혜진
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to JP2016546728A priority Critical patent/JP2016533770A/ja
Priority to EP14880388.5A priority patent/EP3012321B1/en
Priority to US14/820,353 priority patent/US20160069865A1/en
Priority to US14/820,348 priority patent/US10035830B2/en
Publication of WO2016035934A1 publication Critical patent/WO2016035934A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • A61K38/2006IL-1
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/55Protease inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0202Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-X-X-C(=0)-, X being an optionally substituted carbon atom or a heteroatom, e.g. beta-amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0656Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • C12N5/0678Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0695Stem cells; Progenitor cells; Precursor cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5023Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on expression patterns
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2301Interleukin-1 (IL-1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention provides human-derived GM1 gangliosidosis by producing induced pluripotent stem cells (iPSCs) derived from GM1 gangliosidosis patients and tissue-specific cells derived therefrom.
  • iPSCs induced pluripotent stem cells
  • GM1 gangliosidosis is a rare genetic disease caused by a defect of lysosomal ⁇ -galactosidase ( ⁇ -gal), which is classified as a lysosomal storage disease (LSD).
  • ⁇ -gal lysosomal storage disease
  • ⁇ -gal is an enzyme encoded by the GLB1 gene present in lysosomes, and serves to hydrolyze various in vivo molecules.
  • the most representative substrate of ⁇ -gal is GM1 ganglioside, the sphingolipid of lysosomes.
  • GM1 gangliosides are abundant in the brain and are known to play an important role in the development and general function of neurons (Yu RK et. Al, Neurochemical research?,!, 1230-1244, 2012). Lack of ⁇ -gal activity causes the accumulation of GM1 gangliosides in other organelles, including lysosomes and endoplasmic reticulum (ER), causing seizures, ataxia and hepatosplenomegaly Causes various symptoms such as: The extent of clinical symptoms and the onset of disease have been reported to be associated with levels of residual ⁇ -gal activity. A clear clinical symptom of GM1 is progressive neurodegeneration in the central nervous system (CNS), so GM1 is primarily considered a neurological disorder.
  • CNS central nervous system
  • Inflammatory asomes have recently been identified with new roles in diseases associated with chronic inflammation (Walsh JG et. Al, Nature reviews Neuroscience 15, 84-97, 2014; Choi AM and Nakahira, Nature i unology 2, 379 -380, 2011; Franchi L et. Al, Nature immunology 10, 241-247, 2009; Kufer TA and Sansonetti PJ, Nature immunology 12, 121-128, 2011).
  • Inflammatory regulatory complexes have been reported as complex proteins consisting of three major proteins: sensor protein, adapter protein and enzyme caspase-l. Various stimuli caused by infection, cell damage or other intracellular stress promote the formation of inflammatory complexes and activate caspase-1.
  • Active caspase-1 processes the proinflammatory cytokine IL1P into a mature form and produces cytokines through ⁇ secretion, ultimately causing chronic inflammation.
  • inflammatory regulatory complexes have been studied in immune cells, including macrophage and microglia, and further studies have been conducted to provide evidence that inflammatory complexes function in CNS neurons. Walsh JG et. Al, Nature reviews Neuroscience 15, 84-97, 2014).
  • activation of inflammatory regulatory complexes has been described as the molecular mechanism of neuropathic diseases including Alzheimer's disease and Parkinson's disease (Heneka MT, et al. Nature 93, 674-678, 2013).
  • Amyloid-beta well known as a molecule responsible for Alzheimer's disease, induces the activation of inflammatory regulatory complexes through lysosomal destruction (Hal le A, et al. Nature inmmology 9, 857-865, 2008).
  • Fibrillar ⁇ -synuclein a major factor in Parkinson's disease, has also been reported to activate the inflammatory control complex by increasing the production of reactive oxygen species (R0S) and inducing lysosomes unstable (Codolo G, et al. PloSon S, e55375, 2013).
  • R0S reactive oxygen species
  • Codolo G et al. PloSon S, e55375, 2013.
  • the molecular mechanisms for understanding the development of human GM1 have not been largely known to date, and thus are currently incurable.
  • GM1 human-derived GMr cell model that can reproduce the pathogenesis of GM1 may be useful for understanding the cause of disease and developing effective treatments.
  • Stem cells are cells in the pre-differentiation stage of each cell constituting the tissue, and can be obtained from embryonic, fetal and adult tissues. Cells with potential pluripotency that can be differentiated into cells of various tissues Say.
  • Stem cells are differentiated into specific cells by differentiation stimulation (environment), and unlike differentiated cells in which cell division is stopped, they can proliferate because they can produce the same cells as themselves by cell division. ferat ion, expansion), and can be differentiated into other cells by different environment or differentiation stimulus, so it has plasticity in differentiation.
  • hPSCs Human pluripotent stem cells
  • iPSCs induced pluripotent stem cells
  • hPSCs Human pluripotent stem cells
  • iPSCs induced pluripotent stem cells
  • patient-derived iPSCs can produce tissue-specific differentiated cells with the same immunogenetic properties as patients in the in vitro differentiation system, as well as in the development of patient-specific cell therapy products without immune rejection reactions. It is known to be an effective evaluator for understanding the mechanisms of complex diseases during the early development of organogenesis. Muotri, AR (2009) Epilepsy Behav 14 Supl 1: 81-85; Marchetto, MC, B. Winner, et al. (2010) Hum Mo 1 Genet 19 (R1): R71-76).
  • iPSCs derived from patients with various genetic diseases show disease-specific phenotypes when directly differentiated into disease-related cell types (Park, IH et al. Cell). 134, 877-886 (2008); Tiscornia, G. et al. Nature medicine 17, 1570-1576 (2011)). Because these disease-specific iPSCs can be differentiated into tissue cells that are directly related to the cause or damage site of the disease, differentiated tissue-cells with disease characteristics can be used to study specific mechanisms or develop therapeutics to identify the cause of the disease. It can be useful.
  • GM1 gangliosidosis GM1 gangliosidosis
  • iPSCs Produced pluripotent stem cells
  • EB embryonic body
  • NPCs neural progenitor cells
  • IPSCs derived from GM1 patients have pluripotency in vitro (/ ' ?) And in vivo (/ 77> (?), And cause genetic mutations and resulting ⁇ -gal in GM1 patients
  • Induction of differentiation from iPSCs derived from GM1 patients into neural progenitor cells resulted in increased ⁇ -gal expression but decreased activity resulting in increased accumulation of GM1 gangliosides and lysosomes in cells.
  • gene expression levels of inflammation-related pathways, in particular, metabolic pathways related to inflammatory auxiliaries are increased.
  • iPSGs Induced pluri potent stem cells
  • iPSC-derived neuronal progenitor cells have been used to validate disease-specific phenotypes, suggesting that inflammatory complexes may be key molecular targets for the development of GM1 therapeutics.
  • the present invention proposes an ocular cell model of GM1 gangliosidosis which can be usefully used for the investigation of the cause of GM1 and the development of a therapeutic agent. Completed.
  • An object of the present invention is to develop a human cell model that can directly reflect the disease characteristics of GM1 gangliosidosis (GM1) patients using induced pluripotent stem cells (iPSCs) technology, Improved study and treatment of GM1 gangliosidosis using this onset human cell model We want to provide a development method.
  • the present invention provides a GM1 gangliosidosis iPSCs model characterized by any one or more of the following i) to Viii):
  • a pluri potency maker comprising 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 and TRA-1-60;
  • GMl inducing fibroblasts isolated from the patient into induced pluri potent stem cells (iPSCs);
  • the present invention is characterized by any one or more of the following 0 to viii)
  • a GM1 gangliosidosis neuroprogenitor model is provided:
  • neural marker genes including NEST IN, NCAM, PAX6 and 0TX2; ii) expressing neuronal marker proteins including NESTIN, MAP2, TUJ1 and S100;
  • V increased expression of GLB1 gene and ⁇ -gal protein
  • NPCs neural progenitor cells
  • iii) providing a method for producing a GM1 gangliosidosis neural progenitor cell model in vitro, comprising obtaining NPCs derived in step ii).
  • EB embryonic body
  • NPCs neural progenitor cells
  • GMl gangliosidosis iPSCs model GMl gangliosidosis iPSCs model
  • a method to use as a model comprising analyzing the differentiation markers of the embryoid bodies induced in step i), the characteristics of neural progenitor cells or the morphological characteristics of neural progenitor cells.
  • test compound or composition treating the test compound or composition to neuronal progenitor cells or neurospheres differentiated from a GMl gangliosidosis iPSCs model;
  • iii) a method for screening a candidate drug for treating GM1 gangliosidosis, comprising comparing the analysis result of step ii) with an untreated control group.
  • the present invention is Z-YVAD-FMK (methyl
  • the present invention provides an antagonist protein of interleukin 1-receptor (Interleukin-1).
  • compositions for the prevention and treatment of GM1 gangliosidosis comprising a receptor Antagonist protein) as an active ingredient.
  • the present invention also provides the use of a GM1 gangliosidosis iPSCs model characterized by one or more of the following i) to viii):
  • pluripotency makers including 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 and TRA-1-60;
  • V increased expression of GLBr gene and ⁇ -gal protein
  • GM1 ganglioside and lysosome accumulation of GM1 ganglioside and lysosome.
  • the present invention also provides the use of a GM1 gangliosidosis neural progenitor cell model characterized by any one or more of the following i) to viii):
  • the present invention also provides a method for preventing and treating GM1 gangliosidosis comprising administering a pharmaceutically effective amount of Z-YVAD-FMK to a GM1 gangliosidosis patient.
  • the present invention also provides a method of preventing and treating GM1 gangliosidosis comprising administering a pharmaceutically effective amount of an antagonist protein of interleukin 1-receptor to GM1 gangliosidosis patients.
  • the present invention also provides the use of Z-YVAD-FMK for use as an active ingredient in the pharmaceutical composition for the prevention and treatment of GM1 gangliosidosis.
  • the present invention provides a use of an antagonist protein of an interleukin 1-receptor for use as an active ingredient in a pharmaceutical composition for preventing and treating GM1 gangliosidosis.
  • the present invention also provides a variant cell model of GM1 gangliosidosis transformed with a ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of the ⁇ -gal protein.
  • ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of the ⁇ -gal protein
  • step iii) providing a cell model of GM1 gangliosidosis in vitro, comprising obtaining the variant cells transformed in step ii).
  • the present invention also provides a method of using a variant cell transformed with a ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of the ⁇ -gal protein as a GMr gangliosidosis cell model.
  • the present invention provides the use of variant cells transformed with a ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of ⁇ -gal protein for use as a GM1 gangliosidosis cell model.
  • Induction-pluripotent stem cells derived from fibroblasts of GM1 gangliosidosis (GM1) patients of the present invention are neural progenitors that reproduce disease characteristics in GM1 patients. cells, NPCs) and neurosphere cells, and the cells can effectively identify the accumulation of GM1 gangliosides and lysosomes, gene mutations, and the like, which are symptoms of GM1 disease. It was suggested that the GM1 human cell model of the present invention can be usefully used for the study of the pathogenesis of GM1 and the study of therapeutic agent development.
  • the transformed cells exhibiting the newly discovered E186A mutation as the causative protein mutation of GM1 gangliosidosis can reproduce the molecular symptoms of the GM1 patient, thus, a variant cell comprising the E186A mutation derived therefrom. May be usefully used as a cell model of GM1 gangliosidosis.
  • GM1 gangliosidosis GM1 gangliosidosis
  • Figure 2 is a diagram confirming the GM1 causal gene mutation of fibroblasts derived from GM1 patient:
  • E186A mutation is a GM1 cause protein mutation in GM00918 cell line derived from GM1 patient.
  • Figure 2b is a diagram confirming the GM1 causal gene mutation in GM02439 cell line derived from GM1 patient.
  • FIG. 3 is a diagram confirming the characteristics of the fibroblast line derived from GM1 patient:
  • 3A is a diagram confirming lysosomal accumulation in fibroblast line derived from GM1 patient
  • 3b is a diagram confirming the accumulation of GM1 in the fibroblast line derived from GM1 patient
  • Figure 3c is a diagram confirming the activity of ⁇ -gal protein through X-gal staining in fibroblast line derived from GM1 patient;
  • FIG. 3D shows reduced ⁇ -gal activity in cells transformed with a gene encoding ⁇ -gal E186A variant protein
  • Figure 3e is a diagram confirming the activity of ⁇ -gal protein through X-gal staining in cells transformed with the gene encoding ⁇ -gal E186A variant protein;
  • Figure 3f is a diagram confirming the amount of ⁇ -gal protein expression in cells transformed with a gene encoding the ⁇ -gal E186A variant protein.
  • Figure 4 shows the structural analysis of the ⁇ -gal E186A variant protein:
  • Figure 4A shows a sequence comparison of GLB1-associated proteins in prokaryotes and eukaryotes;
  • 4B is a diagram showing three-dimensional structural analysis of E186A variant protein based on human ⁇ -gal protein.
  • 4C shows the E186 residue position site in the E186A variant protein based on human ⁇ -gal protein.
  • Figure 5 is a schematic diagram showing the process of producing induced pluri potent stem cells (iPSCs) from GM1 patient-derived fibroblasts.
  • 6 is a diagram confirming GM1 causal gene mutation of GM1-derived iPSCs (GMl-iPSCs) and neural progenitor cells (NPCs).
  • iPSCs induced pluri potent stem cells
  • FIG. 7A is a diagram confirming the morphological characteristics of GMl-iPSCs
  • Figure 7b is a diagram confirming the micronization by alkaline phosphatase staining (Alkaline phosphatase, AP staining) GMl-iPSCs;
  • Figure 7c is a diagram confirming the expression of the multipotent marker (plur ipotency maker) protein in GMl-iPSCs.
  • STR short tandem repeat
  • FIG. 10 is a diagram confirming the area size of teratoma differentiated from GMl-iPSCs in vivo.
  • FIG. 11 shows teratoma differentiated from GMl-iPSCs in vivo (/).
  • FIG. 12 shows ⁇ -galactosidase ( ⁇ -galactosidase, ⁇ -gal) activity in GMl-iPSCs compared to fibroblasts.
  • Fig. 11 shows the characteristics of GMl-iPSCs (Epi-GMl-iPSCs);
  • 13A is a diagram showing cell morphology, AP staining and expression of multipotency markers of Epi-GMl-iPSCs;
  • Figure 13b is a diagram showing the results of karyotype analysis of Epi -GMl-iPSCs
  • FIG. 13C shows teratoma formed from Epi-GMl—iPSCs.
  • FIG. 14 is a schematic diagram showing a process for differentiating GMl-NPCs from GMl-iPSCs.
  • 15 is a diagram confirming the expression of ectoderm, mesoderm and endoderm markers of embryonic body (EB) differentiated from GMl-iPSCs.
  • GMl-NPCs neural progenitor cells differentiated from GMl-iPSCs.
  • 17 is a diagram confirming the expression of neural marker protein in GMl-NPCs.
  • FIG. 18 is a diagram showing the shape and size of neurospheres derived from GMl-NPCs, the red arrow indicates cyst ic neurosphere.
  • 19 is a diagram confirming the neural rosettes differentiation formed from GMl-iPSCs.
  • FIG. 20 is a schematic diagram illustrating the production of iPSCs and the differentiation of NPCs from GM1 patient-derived fibroblast line of the present invention and a summary of symptoms in GM1 patient cells.
  • Figure 21 is a diagram confirming the expression level of GLB1 gene and protein in GMl-iPSCs and GMl-NPCs differentiated from it.
  • 22 is a diagram showing the results of X-gal staining performed to confirm ⁇ -gal activity in GMl-iPSCs and GMl-NPCs.
  • Figure 23 is a diagram confirming the accumulation of GMl-gangl ioside and lysosome in GMl-iPSCs and GMl-NPCs.
  • Figure 24 is a diagram showing the gene expression pattern confirmed by macroarray analysis in GM1-fibroblasts, GMl-iPSCs and GMl-NPCs.
  • 25 shows relative expression levels of GM1 metabolic related genes altered in GM1-fibroblasts, GMl-iPSCs and GMl-NPCs.
  • FIG. 26 is a diagram confirming gene expression changes in GM1-fibroblasts, GMl-iPSCs and GMl-NPCs for genes previously reported to show unfolded protein response (UPR) in the GM1 mouse model;
  • Figure 26a is a diagram showing the UPR genes of GM1-fibroblasts, GMl-iPSCs and GMl-NPCs;
  • Figure 26b is a diagram showing the change in the relative mRNA expression level of the UPR gene.
  • Figure 27 is a diagram confirming the pathway specifically expressed in GMl-NPCs
  • Figure 27a is a diagram confirming the path by which the expression level is increased more than two times compared to normal cells through KEGG analysis
  • Figure 27b is a diagram confirming the path of the expression level increased through the IPA analysis.
  • Figure 28 shows the results of microarray analysis of the genes constituting the inflammatory response element in cells derived from GM1 patients.
  • 29 is a quantitative comparison of mRNA expression levels of genes constituting the inflammatory response element in GM1 patient-derived cells.
  • FIG. 30 shows morphological changes of GM1-neutrophils differentiated by treatment with an inf la ⁇ asome inhibitor
  • FIG. 30A is a diagram showing the morphology of GM1-neutrophils differentiated by treatment with an innariaiasome inhibitor
  • FIG. 30A is a diagram showing the morphology of GM1-neutrophils differentiated by treatment with an innariaiasome inhibitor
  • Figure 30b is a diagram showing the change in cell diameter of GM1-neutrophils differentiated by treatment with inflammatory complex inhibitors
  • Figure 30c is a diagram showing the reduction of cystic neurosphere formation in the GM1-neutrophils differentiated by treatment with inflammatory regulatory complex inhibitors.
  • Figure 31 shows the results of microarray analysis of GM1-neural bulb genes treated by treatment with inflammatory regulatory complex inhibitors.
  • 32 is a diagram comparing the expression of sphingolipid metabolism-related enzymes in GM1 'neuroblasts differentiated by treatment with inflammatory regulatory complex inhibitors.
  • 33 is a diagram comparing gene expression of inflammatory regulatory complex-related pathways in GM1 'neuroblasts treated with inflammatory regulatory conjugate inhibitors.
  • Figure 34 shows the results of a microarray analysis of the gene expression of inflammatory regulatory complex-related pathways in GM1-neurospheres differentiated by treatment with inflammatory regulatory complex inhibitors.
  • the present invention provides a GM1 gangliosidosis iPSCs model characterized by any one or more of the following i) to viii):
  • iii) iPSCs form of normal cells
  • pluripotency makers including 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 and TRA—1-60;
  • V increased expression of GLB1 gene and ⁇ -gal protein
  • the present invention also provides the use of a GM1 gangliosidosis iPSCs model characterized by any one or more of the following i) to viii):
  • GMl-iPSCs iPSCs
  • the GM1-derived iPSCs model of the present invention exhibits differentiation capacity while maintaining the same characteristics as the cells of GM1 patients, and thus, the method for preparing the iPSCs model is useful as a human-derived cell model for GM1 mechanism analysis and therapeutic development. Can be used.
  • the present invention
  • GM1 gangliosidosis GM1 gangliosidosis
  • iPSCs induced pluripotent stem cells
  • Induction of the step i) is preferably characterized by using ectopic expression of the pluripotent marker (pluripotent marker), specifically, the ectopic expression is a reprogramming factor (reprograging factor) 0CT4, Methods for using retroviruses comprising SOx2, C-MYC and KLF4 (Son MY et. Al, Stem cells 31, 2374-2387; 2013) or transformation of episomal vectors expressing the reprogramming factor Any method known in the art for producing iPSCs can be used, including methods throughout.
  • the preparation method of the iPSCs model may be usefully used as a human-derived cell model for GM1 mechanism analysis and therapeutic development.
  • the present invention is characterized by any one or more of the following i) to viii)
  • a GM1 gangliosidosis neuroprogenitor model is provided:
  • the present invention also provides the use of a GM1 ganglioside layer neural progenitor cell model characterized by any one or more of the following i) to viii):
  • V increased expression of GLB1 gene and ⁇ -gal protein
  • iPSCs inducing differentiation from iPSCs derived from GM1 into embryoid bodies (EBs), neural progenitor eel Is (NPCs) or neurospheres; and
  • ii) analyzing iPSCs, neuroprogenitors or neurospheres of GM1 gangliosidosis comprising analyzing the differentiation markers of the embryoid body induced in step i), the characteristics of neuronal progenitor cells or the morphological characteristics of neuronal progenitor cells.
  • the differentiation markers of the embryoid body of step ⁇ ) are the ectoderm markers NESTIN and TUJ1, the endoderm markers S0X17 and F0XA2, and the mesoderm marker alpha-smooth muscle actin (a) One or more of -SMA) and DESMI, but is not limited thereto.
  • the composite control inflammation-related genes is an inflammatory cascade Paget (inflammatory caspase) 'genes (Allan SM et ⁇ al, Nature reviews Immunology 5, 629-640, 2005;. Mcllwain DR et al, Cold Spring Harbor perspect ives in biology 5, a008656, 2013), or genes encoding proinflammatory cytokine and downstream molecules thereof, including interleukine l ⁇ (ILip) (Walsh JG et. al, Nature reviews Neurosciencel 5, 84 -97, 2014; John GR et. Al, Glia 49, 161-176, 2005; Liu L et.
  • ILip interleukine l ⁇
  • GMl-iPSCs iPSCs
  • the inventors confirm that the molecular phenotype of GM1 is maintained in GMl-iPSCs and GMl-NPCs, whereas the expression levels of GLB1 gene and protein are significantly increased compared to normal cells (see FIGS. 20 and 21). , ⁇ -galactosidase ( ⁇ -gal) activity is markedly reduced, it was confirmed that the accumulation of GM1 gangliosides and lysosomes in the cells increased (see Figs. 22 and 23).
  • GMl-NPCs showed gene expression patterns that showed the most difference from normal cells in GMl-NPCs among fibroblasts, iPSCs and NPCs (FIG. 24). 25 and 26), specifically, gene expression of inflammation-related pathways was increased, and inflammatory caspase, ⁇ and IL1
  • iPSCs derived from GM1 patients and neural progenitor cells differentiated from the GM1 patients of the present invention can effectively identify expression patterns of genes expressed in GM1 while maintaining the characteristics exhibited in cells of GM1 patients.
  • Progenitor cells can be usefully used as human-derived cell models for the onset of GM1.
  • the present invention
  • NPCs neural progenitor cells
  • iii) providing a method for producing a GM1 gangliosidosis neural progenitor cell model in vitro, comprising obtaining NPCs derived in step ii).
  • IPSCs derived from GM1 patients of the present invention and neural progenitor cells differentiated therefrom are provided.
  • iPSCs and neural progenitor cells can be usefully used as human-derived cell models for the study of GM1, since expression patterns of genes expressing GM1 can be effectively identified while maintaining the characteristics of the cells of GM1 patients. .
  • the present invention
  • test compound or composition i) treating the test compound or composition to neuronal progenitor cells or neurospheres differentiated from iPSCs of the invention
  • iii) a method for screening a candidate drug for treating GM1 gangliosidosis, comprising comparing the analysis result of step ii) with an untreated control group.
  • Characteristics of the neural progenitor cells or neurospheres of step ii) are as follows a) to c) It is preferably one or more of the above, but is not limited thereto.
  • IPSCs derived from GM1 patients of the present invention and neuronal progenitor cells differentiated therefrom exhibit recovery of cell morphology and gene expression patterns similar to those of normal cells following treatment with an inflammatory complex inhibitor. It can be usefully used as a human-derived cell model for development.
  • the present inventors show a specifically increased expression level of the genes of the metabolic pathways associated with the inflammatory control complex in GM1, ILIL antagonist and caspase inhibitors to inhibit it
  • GM1 ILIL antagonist
  • caspase inhibitors to inhibit it
  • the differentiated neurosphere cells were restored to normal cell morphology from the form of cystic cells, and accordingly, diameters also increased (see FIG. 30).
  • the expression patterns of genes in GMl-NPCs were significantly decreased by GMl-NPCs according to the treatment of inflammatory complex inhibitors (see FIGS. 31 to 34). .
  • iPSCs derived from GM1 patients of the present invention and neural progenitor cells differentiated therefrom exhibit a recovery in cell morphology and gene expression patterns similar to those of normal cells following treatment with an inflammatory control complex inhibitor. It can be usefully used as a human-derived cell model for the development of therapeutic agents.
  • the present invention also provides a variant cell model of GM1 gangliocyte H transformed with a ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of the ⁇ -gal protein.
  • the present invention i) preparing a ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of the ⁇ -gal protein ⁇ ;
  • step iii) providing a cell model of GM1 gangliosidosis in vitro, comprising the step of obtaining the variant cells transformed in step ii).
  • the present invention provides a method of using a variant cell transformed with a ⁇ -gal variant vector comprising an E186A mutation in the amino acid sequence of the ⁇ -gal protein as a GM1 gangliosidosis cell model.
  • the present invention provides the use of variant cells transformed with a ⁇ -gal variant vector comprising an E186A variant in the amino acid sequence of ⁇ -gal protein for use as a GM1 gangliosidosis cell model.
  • the present inventors found a mutation of the GLB1 gene in the genome of a fibroblast cell derived from GM1 patient, and found E186A as a novel GM1 causal gene mutation in the GLB1 gene (see FIG. 2).
  • the cells exhibiting the E186A mutation were found to exhibit reduced ⁇ -gal activity and thereby intracellular accumulation of GM1 ganglioside, which is a molecular symptom seen in GM1 patients (see FIGS. 3A to 3C).
  • the transformed cells exhibiting the newly discovered E186A mutation as the causative protein mutation of GM1 gangliosidosis can reproduce the molecular symptoms of the GM1 patient, and thus, a variant cell comprising the E186A mutation derived therefrom. May be usefully used as a cell model of GM1 gangliosidosis.
  • the present invention also relates to Z-YVAD-FMK (methyl (3S) — 3- [(2S) — 2- [(2S) -2- (2- ⁇ [(benzyloxy) carbonyl] amino ⁇ -3- ( 4-hydroxyphenyl) propaneamido) -3-methylbutaneamido] propaneamido] -5-fluro-4-oxopentanoate (methyl
  • the present invention provides a pharmaceutical composition for preventing and treating GM1 gangliosidosis comprising an interleukin 1-receptor antagonist protein (Inter leukin-l Receptor Antagoni st protein) as an active ingredient.
  • an interleukin 1-receptor antagonist protein Inter leukin-l Receptor Antagoni st protein
  • the present invention also provides a method for preventing and treating GM1 gangliosidosis comprising administering a pharmaceutically effective amount of Z-YVAD-FMK to a GM1 gangliosidosis patient.
  • the present invention also provides a method for preventing and treating GM1 gangliosidosis comprising administering a pharmaceutically effective amount of an antagonist protein of interleukin 1-receptor to GM1 gangliosidosis patients.
  • the present invention also provides the use of Z-YVAD-FMK for use as an active ingredient in the pharmaceutical composition for the prevention and treatment of GM1 gangliosidosis.
  • compositions for the prevention and treatment of GM1 gangliosidosis Provided is the use of an antagonist protein of an interleukin 1-receptor for use as an active ingredient.
  • the Z-YVAD-FMK may be represented by the amino acid sequence of SEQ ID NO: 1, may be represented by the structure of the following [formula 1], but is not limited thereto.
  • the Z_YVAE ) -FMK is a caspase-1 inhibitor Vl-calbiochem (product number: cat #
  • caspase-l inhibitor including merck mi l ipore
  • the antagonist protein of the interleukin 1-receptor may be represented by the amino acid sequence of SEQ ID NO: 2, but is not limited thereto.
  • the antagonist protein of the interleukin 1-receptor is an antagonist protein of the interleukin-1 receptor, such as IL1RA (product number: cat # 280-RA-050 (rhlL-lra); R & D systems). Can be used.
  • Z-YVAD-FMK or IL1RA of the present invention exhibits the effect of restoring cell types and gene expression patterns that are specific to GM1 patients to levels similar to those of normal cells in iPSCs and GM neurons derived from GM1 patients. Therefore, the Z-YVAD-FMK or IL1RA may be usefully used as an active ingredient of the pharmaceutical composition for the prevention and treatment of GM1 gangliosidosis.
  • Z-YVAD-FMK or IL1RA of the invention can be administered parenterally during clinical administration. It is possible and can be used in the form of general pharmaceutical preparations. Parenteral administration may mean administration via a route other than oral such as rectal, intravenous, peritoneal, intramuscular, arterial, transnasal, nasal, inhaled, ocular and subcutaneous.
  • the Z-YVAD-FMK or IL1RA of the present invention can be administered in various parenteral formulations, and when formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrants, surfactants, etc., which are commonly used Is prepared using.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations, suppositories.
  • the non-aqueous solvent and the suspension solvent propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used.
  • a suppository base witepsol, macrogol, tween 61, cacao butter, uririn, glycerogelatin and the like may be used.
  • the Z-YVAD-FMK or IL1RA of the present invention can be used in combination with a number of carriers, such as physiological saline or organic solvents, to increase the stability or absorption, glucose, sucrose or dextran Carbohydrates such as, ascorbic acid or antioxidants such as glutathione, chelating agents, small molecule proteins or other stabilizers can be used as medicaments.
  • carriers such as physiological saline or organic solvents, to increase the stability or absorption
  • glucose, sucrose or dextran Carbohydrates such as, ascorbic acid or antioxidants such as glutathione, chelating agents, small molecule proteins or other stabilizers can be used as medicaments.
  • the effective dose of Z-YVAD-FMK or IL1RA of the present invention is 0.01 to 100 mg / kg, preferably 0.1 to 10 mg / kg, and may be administered once to three times a day.
  • the total effective amount of Z-YVAD-FMK or IL1RA of the present invention in the pharmaceutical composition of the present invention is administered to the patient at a single dose by infusion or the like for a relatively short period of time. It can be administered, and multiple doses can be administered by a long term administered fractional treatment protocol. Since the concentration is determined in consideration of various factors such as the age and health status of the patient as well as the route and frequency of treatment of the drug, in view of this point, the present invention can be used by those skilled in the art.
  • Appropriate effective dosages may be determined depending upon the particular use as a composition.
  • the present invention will be described in detail by way of examples.
  • Fibroblasts derived from GM1 gangliosidosis patients were cultured to identify the GLB1 ⁇ sequence, which is the gene causing GM1 gangliosidosis.
  • GM1 gangliosidosis patients derived fibroblasts GM00918, GM02439, GM03589, GM05335, GM05652, GM05653, GM10919 and GM12369 (Cor iel 1 Institute for Medical Research, USA) was purchased.
  • GM00918, GM03589, GM05335, GM05652, GM05653, GM10919 and GM12369 cell lines were derived from patients diagnosed in infancy, and GM02439 cell lines were used as derived from patients diagnosed in adolescence (http://ccr.coriell.org).
  • Each cell contains 10% fetal bovine serum (FBS; Invitrogen, USA), 1% non-essential amino acids (NEAA; Invitrogen, USA), 1 mM L-glutamine (L Incubated in Dulbecco's modified Eagles medium (DMEM), including -glutamine (Invitrogen, USA) and 0.1 mM beta-mercaptoethanol ( ⁇ -mercaptoethanol; Sigma, USA). After incubation, RNA was extracted from the cultured cells using RNAiso Plus (Takara, Japan) or RNeasy mini kit (Qiagen, USA) following the protocol provided by the manufacturer.
  • FBS fetal bovine serum
  • NEAA non-essential amino acids
  • DMEM Dulbecco's modified Eagles medium
  • ⁇ -mercaptoethanol beta-mercaptoethanol
  • PCR was performed to synthesize GLB1 ⁇ ⁇ cDNA using the primers (SEQ ID NOs: 3 and 4) and Superscript IlKlnvitrogen, USA) described in Table 1 below.
  • PCR products were isolated on 1% agarose gel. Full-length bands were cut out and purified using a QIAquick Gel Extraction Kit (Qiagen, USA). Purified oligomer was analyzed for the entire sequence of ffi cDNA using the primers (SEQ ID NO: 5 to 10) described in Table 1 below.
  • GLBl cDNA was synthesized using wild-type fibroblast cell line CRL-2097 American Cell Line Bank, ATCC), using the same method as above, and the wild type fibroblast cell line was identified as GM1 gangliosidosis cell line. Compared. ;
  • GM1 patient-derived cell lines were previously reported GM1 causal genes, including six missense mutations, one nonsense mutation, and two. Polymorphic variation of the species was identified (Table 2). All GM1 patient cell lines except the GM03589 cell line had homozygous mutations, and the GM03589 cell line had two heterozygous mutations, and these mutations destroyed ⁇ -gal activity.
  • the P.P10L mutation was identified as the most common mutation in seven cell lines among the eight cell lines, and the P.S352G mutation was found in three cell lines, indicating that ⁇ -gal activity was decreased.
  • GM00918 cell line shows a P.E186A mutation as a novel homozygous GM1 gene mutation (Fig. 2a)
  • GM02439 cell line shows a nucleotide sequence mutation of C.601OT in the GLB1 gene, the gene It was confirmed that the R201C mutation appears in the synthetic 3 ⁇ 4 ⁇ -gal protein in (Fig. 2b).
  • the GM00918 cell line showing the newly identified E186A mutation as the GM1 causal gene was identified. Specifically, after incubating the GM00918 cell line in the same environment as in Example ⁇ 1-1>, the culture medium was treated with LysoTr acker Red DND-99 (1: 20000 seats; Invitrogen, USA) and 37 ° C for 30 minutes. Reaction at C was confirmed the content of lysosome in the cell (lysosome).
  • a CRL2097 cell line was used as a normal control, and a fibroblast line derived from a patient with minimal brain dysfunct ion (MBD) was used as a control for comparing the accumulation of GM1 ganglioside in the cell.
  • MBD minimal brain dysfunct ion
  • GM00918 cell line showed a significantly increased lysosomal storage degree compared to the normal cell line CRL2097 cells (Fig. 3a), compared to the cells derived from MBD patients in GM00918 cell line It was confirmed that large accumulation of GM1 gangliosides appeared with decreasing ⁇ -gal activity (FIGS. 3B and 3C).
  • the GLB1 gene was amplify from the CRL2097 cell line, which is a normal fibroblast line, and insert it into the pEGFP-N3 vector (BD bioscience Clonetech Co., Ltd.), and the FLAG tag is located between the 3, terminal of the GLB1 gene and the 5, terminal of the GFP protein.
  • a vector comprising the wild type GLB1 gene was prepared.
  • a vector containing the variant GLB1 gene was constructed by site-directed mutation of the E186A position in the GLB1 gene in the prepared vector (s i te-directed mutagenesi s).
  • the constructed variant GLB1 gene vector was transformed into a 293T cell line to induce the expression of the mutant gene.
  • the negative control group showed 16% level of ⁇ -gal activity in the negative control group to confirm ⁇ -gal activity expressed from GLB1 of the 293T genome.
  • the levels were similar to the negative control group (FIG. 3D).
  • the activity of ⁇ -gal activity in X-gal staining decreased (Fig. E)
  • the expression level of E186A ⁇ -gal mutant protein decreased by 25% through Western blot It was confirmed (FIG. 3F).
  • the level of E186A ⁇ -gal mutant protein did not increase to the normal control level, and showed similar molecular symptoms as in the cells of GM1 patients.
  • E186A mutation of GLB1 protein In order to determine the effect of E186A mutation of GLB1 protein on the decrease in activity, the structure of E186A variant protein was modeled and analyzed.
  • the E186A variant of GLB1 protein was analyzed using human, mouse, Drosophila, Arabidopsis, trichoderma (7Wc cter ?? a) and Asrobacter C4r using ClustalW2 and BoxShade servers.
  • the GLB1 sequence of? robac er) was sequenced.
  • a variant model was generated through the PyMOL program, with the crystal structure of human GLB1 (PDB code: 3THC) as a template.
  • reprogramming cultures using retroviruses expressing four reprogramming factors including 0CT4, S0X2, C-MYC and KLF4 were prepared iPSCs (GMl-iPSCs) having multipotency from GMl patient somatic cells (Fig. 5).
  • Example ⁇ 1-1> after transfection of GM02439 cells, which are fibroblast line of GM1 patient, which has confirmed the mutant gene, transfecting retroviruses encoding 0CT4, S0X2, C-MYC and KLF4, Cultured for 5 days in somatic cell medium (somatic cell medium). After 5 days, infected cells were transferred to a mat rigel-coated plate containing human embryonic stem cell (hESCs) culture medium (hESCs-CM) and added for 2 to 3 weeks. Incubated to obtain a colony of iPSCs. GM1-derived iPSCs (GMl-iPSCs) were obtained by using the method of Example ⁇ 1-1>. cDNA was synthesized and sequenced. As a control, the CRL-2097 cell line was subjected to the same method as described above to induce the production of wild-type iPSCs (WT-iPSCs).
  • WT-iPSCs wild-type iPSCs
  • GMl-iPSCs were produced from GM1 patient-derived fibroblasts, it was confirmed that the same sequence variation of C.601OT as GM1-derived fibroblasts (Fig. 6).
  • GMl-iPSCs GM1-derived fibroblasts
  • GMl-iPSCs HumanPass Inc., Korea
  • alkaline ine phosphatase staining (AP staining), a multipotent marker, was performed. Specifically, using an AP staining kit (Alkaline phosphatase kit, Sigma Aldrich, USA), 1 mi, acetone 2.6 mi and 37% formaldehyde (Formaldehyde; Sigma Aldrich, USA) 320 ⁇ Combined to prepare a fixed solution (fixative solution), the prepared fixed solution was added to the GMl-iPSCs prepared in Example 2 and left at room temperature for 15 minutes in the dark.
  • AP staining Alkaline phosphatase kit
  • the GMl-iPSCs prepared in Example 2 were treated with 4% formaldehyde (formaldehyde) and fixed at room temperature for 10 minutes, and the PBS solution containing 0.1% Triton X-100 (triton X-100). was treated for 15 minutes to impart permeability to the cell membrane. After treatment, the treated cells were washed in PBS containing 4% bovine serum albumin (BSA), and then the anti-0CT4 antibody (1: 100 dilution, sc-9081, Cruz Biotechnology) was used as the primary antibody.
  • BSA bovine serum albumin
  • a secondary antibody (Invitrogen, USA) bound with Alexa Fluor 488 or Alexa Fluor 594 and left at room temperature for 2 hours to immunofluorescein GMl-iPSCs, was observed by fluorescence microscopy (fluorescence, microscope) was confirmed 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 , and expressing the protein Tra_l_61.
  • fluorescence microscopy fluorescence, microscope
  • teratoma format ion of GMl-iPSCs was performed in immunocompromised nude mice.
  • GMl-iPSCs prepared by the same method as in ⁇ Example 2> were counted as IX 10 6 cells, and each of three 6-week-old SPF / VAF immunodeficient nude mice (Orient Bio Co., Korea) After injection, mice were bred. After 12 weeks, the mice were sacrificed, then teratomas were obtained, and 4% formaldehyde was added and embedded in paraffin. Then, teratoma of endoderm, ectoderm and mesoderm by treatment with Heris hematoxylin and Eos inol and by H & E staining. ) Formation was confirmed.
  • each teratoma zone was photographed and each size was calculated using ImageJ software.
  • CRL2097 fibroblast-derived iPSCs (WT-iPSCs) were used as a control group to induce teratoma formation in a total of 5 mice in the same manner as described above, and teratomas obtained from each mouse were 2-5 fragments. Divided by statistical analysis Used.
  • teratomas derived from GMl-iPSCs formed teratomas of a similar size as compared to WT-iPSCs as shown in Figures 10 and 11 (Fig. 10), ectoderm neural tissue and pigment cells, mesoderm Teratoma forms in phospholipid cells, cartilage and muscle, and endothelial cells (epi thel ium), but has been shown to have less differentiation into neural structures than teratomas derived from WT-iPSCs ( ⁇ ).
  • GM02439 fibroblast line and GMl-iPSCs prepared by the same method as in ⁇ Example 2>, pH containing 10 mM citrate, 30 mM NaCl and 1 mM MgCl 2 4.5 Suspended in Assay Buffer. Cells were then lysed through freeze / thaw repeats of 5-10 h and centrifuged at 14, 000 rpm, 4 ° C. for 5 minutes to remove cell debris. After removal, 2 mM protein lysate was added to 2 mM
  • CRL2097 fibroblasts and WT-iPSCs were identified for ⁇ -gal activity in the same manner as above, and then the relative ⁇ -gal activities of GM1 fibroblasts and GMl-iPSCs were compared.
  • non-viral reprogramming method which is different from Example 2, was carried out to perform GMl- Induced to produce iPSCs.
  • the GM02439 fibroblast cell line was prepared by counting IX 10 6 cells, and then, through the protocol provided by the manufacturer using Neon TM trans feet ion system ddn trogen, USA), 0CT4, S0X2, KLF4, NANOG, LIN28, EBNAl / Or iP-based pCET4 episomal vectors expressing L-MYC and SV40LT were transformed by electroporat ion. Electroporation conditions were set to 1650 V pulse voltage, 10 ms pulse width and 3 pulses. After transfection through electroporation, cells were inoculated in 35 mm diameter Matrigel® coated wells and cultured in iPSCs culture medium.
  • Non-viral induced GM1-derived i PSCs cells obtained by culturing were prepared according to the examples ⁇ 3-1>, ⁇ 3-2>, ⁇ 3-3> and ⁇ 3-4>.
  • epithelial morphology, karyotype, AP staining, expression of 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4, and TRA-1-60 proteins, which are multipotent markers, and in vivo teratoma formation were performed. -Characterization of GMl-iPSCs was confirmed.
  • Epi—GMl-iPSCs prepared by transforming the pCET4 episomal vector show similar properties to those of GMl-iPSCs prepared by transfecting retroviruses. It was confirmed that there is no difference in the properties of the PSCs (FIG. 13).
  • NPCs GM1-derived Neural Progenitor Cels
  • EB Embryoid Body
  • NPCs Neural Progenitor Cells
  • GMl-derived GMl-iPSCs in vitro (/ / / ⁇ ) from GMl-iPSCs following the process of the schematic diagram shown in FIG.
  • Differentiation was induced to form embryoid bodies (EB) and neural progenitor cells (NPCs) (FIG. 14).
  • EB embryoid bodies
  • NPCs neural progenitor cells
  • the embryoid body is a DMED / F12 medium containing 10% serum replacement (SR) Differentiation was induced in the embryoid body (GM1-EB) derived from GMl-iPSCs by incubating for 7 days in differentiation medium (embryo id body differentiation medium).
  • differentiation medium embryoid body differentiation medium
  • Differentiated GM1-EBs include lxN2 / B27 (Invitrogen, USA), 20 ng / mt bFGF, 20 ng / m EGF (Invi trogen, USA) and 10 ng / mt leukemia inhibitory factor (Sigma-Aldr). ich Inc., USA) was further incubated for 2 weeks in NPCs medium, DMEM / F12 medium containing, to obtain differentiated GM1-derived neuronal progenitor cells (GMl-NPCs). During differentiation cultures, differentiated cell bodies were passaged weekly using a McClain tissue chopper (Mickle Engineering, UK) and the medium was changed every two days.
  • McClain tissue chopper McClain tissue chopper
  • GMl-NPCs were attached to Matrigel-coated coverslips in NPCs medium containing no growth factors for 3-4 weeks. Incubated. Differentiated GMl-NPCs were subjected to the same method as in Example ⁇ 1-1> to identify the GMBl gene, GLBl ⁇ nucleotide sequence mutation.
  • WT-iPSCs were cultured in the same manner as above to induce differentiation into embryonic bodies (WT-EB) and NPCs (WT-NPCs) derived from -iPSCs.
  • GM1-derived NPCs can maintain the spherical form of the neurosphere (neurosphere) ⁇ , the base of C.601OT of GLB1 gene represented by GM1 fibroblasts and GMl-iPSCs It was confirmed that the sequence variations are identical (FIG. 4). ⁇ 4-2> Confirmation of Differentiation Capacity of GMl-iPSCs Derivatives
  • GMl-iPSCs-derived embryos GM1-embryos
  • ectoderm markers NESTIN and TUJ1 ectoderm markers NESTIN and TUJ1
  • endoderm markers S0X17 and F0XA2 ectoderm markers in GM1-embryos
  • mesoderm markers in GM1-embryos Alpha-smooth muscle Expression of three germ layer markers of a-smooth muscle actin (a-SMA) and DESMIN was confirmed.
  • a-SMA a-smooth muscle actin
  • GM1-EB which induced differentiation in the same manner as in Example ⁇ 4-1>, and immunofluorescent staining in the same manner as in Example ⁇ 3-3> to NESTIN, TUJ1, S0X17, F0XA2, ⁇ - Expression of SMA or DESMIN protein was confirmed.
  • Anti-NESTIN antibody (1: 100 dilution; MAB5326.
  • anti-TUJ1 antibody 500 dilution; PRB-435P, Covance, USA
  • anti- as a primary antibody for immunofluorescence staining S0X17 antibody 1: 100 dilution; MAB1924, R & D Systems, USA
  • anti-F0XA2 antibody 1000 dilution; ab40874, Abeam, USA
  • anti- ⁇ -SMA antibody 400 dilution; A5228, Sigma -Aldrich, USA
  • anti-DESMIN antibody 1:50 dilution; AB907, Chemicon, USA
  • 4'6-diimidino-2-phenylindole (4) was used to control the degree of expression.
  • DAPI '6-diamidino— 2-phenylindole
  • GM1 differentiated cells expressed all three morphoderm markers of ESTIN, TUJl, S0X17, F0XA2, ⁇ -SMA, or DESMIN protein and confirmed that they exhibited multipotency (FIG. 15).
  • GMl-iPSCs-derived NPCs GMl-NPCs
  • quantitative real-time PCR qPCR was performed to identify neural marker genes in GM1-fibroblasts, GMl-iPSCs and GMl-NPCs.
  • GMl-iPSCs were prepared by performing the method of ⁇ Example 2>, and the differentiation of GM1-NPCs was induced by performing the method of Example ⁇ 4-1>. Then RNA from GM1-fibroblast line, induced GMl-iPSCs or GMl-NPCs cells, following the manufacturer's provided protocol using RNAiso Plus (Takara, Japan) or R easy mini kit (Qiagen, USA). was extracted. Extracted RNA 1-2 was used as a template, and a reverse transcription PCR reverse transcrupt ion PCR (PT PCR) for synthesizing cDNA of the cell genome was performed using Superscript IlKlnvitrogen, USA).
  • PT PCR reverse transcription PCR reverse transcrupt ion PCR
  • WT-NPCs and GM1—induced differentiation from WT-iPSCs and GM1 ′ iPSCs were expressed in the neuronal marker genes NESTIN, NCAM, PAX6 and 0TX2% in NPCs.
  • NESTIN neuronal marker genes
  • NCAM neuronal marker genes
  • PAX6 0TX2%
  • NPCs neuron specific marker proteins NESTIN, MAP2, TUJ1 and S100 in differentiation-induced NPCs, neurons and glial cells derived from GMl-iPSCs Expression of the protein was confirmed.
  • Example ⁇ 4-1> was performed to induce differentiation of GMl-NPCs, and differentiated neurons (GM1 'neurons) and glial cells (GM1-glia cells) differentiated therefrom. Then, immunofluorescence staining was performed in the same manner as in Example ⁇ 1 3> to confirm the expression of NESTIN, MAP2, TUJ1 and S100 proteins.
  • Anti-NESTIN antibody was used for NPCs as the primary antibody for immunofluorescence staining, and anti-TUJ1 antibody and anti-MAP2 antibody (1: 500 dilution; AB5622, Chemicon Co., USA), and anti-S100 antibody (1: 100 dilution; ab52642, Abeam Co., USA) were used for the glial cells, and 4'6-diamidino-2 was used to compare the expression level.
  • the nuclei of cells were stained by treatment with -phenylindole (4'6-diamidino-2—phenylindole, DAPI).
  • WT-NPCs, neuronal cells differentiated therefrom, and glial cells were immunofluorescent stained under the same conditions as above to confirm the expression of neuronal specific marker proteins.
  • Example ⁇ 4-1> was performed to induce differentiation of GMl-NPCs, and differentiated neurospheres therefrom, and then the size of neurons derived from GMl-NPCs under phase-contrast microscopy. And morphology was confirmed.
  • differentiated neurospheres were obtained from WT-NPCs, and their size and shape were compared.
  • GM1 neurospheres showed an uneven shape, and the average size was about 36.28% compared to that of most WT-NPCs-derived neurospheres with a sharp and clear border (FIG. 18). ).
  • cystic neurospheres were abundantly expressed from GMl-iPSCs, and cystic neurosphere yield was 7.31 ⁇ 1.43% in WT-neurons, and more than 40% cystic neurosphere yield in GM1 neurospheres. .
  • GMl-iPSCs To confirm the effective differentiation of GMl-iPSCs into neurons, columnar neuroepithelial cells were constructed. To confirm the formation of neural rosettes, which appear to be the major structure for neuroectoderm formation, neural rosettes were identified in teratomas produced in immunodeficient mice from GMl-iPSCs.
  • Example ⁇ 1-4> was performed to induce teratoma generation from GMl-iPSCs in immunodeficient mice. Then, after obtaining neural tissue and cartilage (cart iage) tissue, mature neurons in GM1 teratoma were observed by H & E staining, and immunocytochemistry was performed using anti-TUJ1 antibody and anti-TH antibody. teratoma generated by i ⁇ unocytochemi stry).
  • the mesoderm or endoderm-derived tissues such as cartilage tissue did not show a significant difference between teratomas derived from WT-iPSCs and teratomas derived from GMl-iPSCs, whereas those derived from GMl-iPSCs.
  • Teratoma contains a small number of neural rosettes, which represent less than 1% of the total area, compared to teratomas derived from WT-iPSCs, which contain about 9% of the total area as neural rosettes. It was confirmed that it did not (Fig. 19).
  • iPSCs derived from GM1 patients and GMl-NPCs differentiated therefrom exhibit the molecular phenotype seen in GM1 patients as shown in FIG. 20 (FIG. 20).
  • fibroblasts derived from GM1 patients, GMl- Expression levels of GLB1 gene and protein were confirmed in iPSCs and GMl-NPCs.
  • GMl-iPSCs are produced by performing the method of ⁇ Example 2>, The method of Example ⁇ 4-1> was performed to induce differentiation of GMl-NPCs. Then, qPCR reaction was performed in the GM1 fibroblast line, GMl-iPSCs and GMl-NPCs by the method of Example ⁇ 4-2> to confirm the mRNA expression level of the GLB1 gene. In addition, the induced GM1 fibroblast line, GMl-iPSCs or GMl-NPCs were obtained, dissolved in RIPA buffer solution, and centrifuged at 4 ° C. to remove cell debris.
  • GMl-iPSCs were prepared by performing the method of ⁇ Example 2>, and differentiation of GMl-NPCs was induced by performing the method of Example ⁇ 4-1>. Subsequently, replace the PBS buffer with a low pH buffer of pH 4: 5 containing 50 mM citrate, 150 mM NaCl, and the other procedure was followed by the manufacturer's protocol. Corp., Korea) was used to dye X-gal. X-gal staining was terminated when blue color appeared, and the culture time was adjusted from 4 hours to overnight depending on the cell type.
  • GM1 gagl ioside accumulation was due to reduced ⁇ -gal activity as seen in GM1 patients. Confirmed. Specifically, the production of GMl-iPSCs was induced by performing the method of ⁇ Example 2>, and the differentiation of GMl-NPCs was induced by performing the method of Example ⁇ 4-1>. Then, the method of Example 3-3 was performed to immunofluorescein GM1 ganglioside in GM1—fibroblasts and GMl-iPSCs.
  • Anti-GM1 antibody (1:50 dilution; ab23943, Abeam, USA) was used as a primary antibody for the immunofluorescence staining.
  • the culture medium was treated with LysoTracker Red DND-99 (1: 20000 dilution; Invi trogen, USA) and reacted at 37 ° C for 30 minutes. Intracellular lysosomes were observed.
  • WT-fibroblasts, WT-iPSCs and WT-NPCs were confirmed by accumulation of GM1 gangliosides or lysosomes in the same manner as described above.
  • Example 2> was performed to induce the production of GMl-iPSCs
  • Example ⁇ 4-1> was performed to induce differentiation of GM1 'NPCs.
  • GM1-fibroblasts, induced GMl-iPSCs and GMl-NPCs were respectively obtained, ' Low RNA input l inear ampl if icat ion ki t, cRNA cleanup module and Whole Human Genome Mi cr oar ray 4X44K (Agi lent'). Technology Inc. ", USA), and the microarray analysis was performed according to the manufacturer's protocol.
  • the microarray images examined were subjected to normal cell populations of WT-fibroblasts, WT-iPSCs and WT-NPCs.
  • the corrected results were prepared by heat maps using MeV program, and genes that showed no significant expression change (less than two-fold change) were removed.
  • GMl-NPCs derived from GMl-iPSCs of the present invention are suitable for use as a model of GMl, unfolded protein response (UPR) appearing in a previously reported GM1 mouse model (p-gar / _ ) ) Is also present in GMl-NPCs (Tessitore A, et al. Molecular eel 115, 753-766, 2004).
  • URR unfolded protein response
  • GMl-iPSCs production of GMl-iPSCs was induced by performing the method of ⁇ Example 2>, and the differentiation of GMl-NPCs was induced by performing the method of Example ⁇ 4-1>. Then, GM1-fibroblasts, induced GMl-iPSCs and GMl-NPCs were obtained, respectively, and microarray analysis was performed in the same manner as in ⁇ Example 1> to select genes showing changes in normal cells and expression levels. The increase and decrease of expression was confirmed.
  • mRNA expression levels of CHOP, BiP, XBP1, PDIA4 and CALR which have been reported as UPR genes that are synergistically expressed in the GM1 model, were subjected to qPCR in the same manner as in Example ⁇ 5-1> to perform WPC-NPCs. And relative mRNA expression levels in GMl-NPCs.
  • GMl-iPSCs were prepared by performing the method of ⁇ Example 2>, and differentiation of GMl-NPCs was induced by performing the method of Example ⁇ 4-1>. Then, GM1-fibroblasts, induced GMl-iPSCs and GMl-NPCs were obtained, respectively, and microarray analysis was performed in the same manner as in Example ⁇ 7-1> to identify genes showing changes in normal cells and expression levels. Screened. The selected genes were then run on the DAVID Bioinformatics Resource (http: /Aiavid.abcc.nc if crf.gov).
  • KEGG analysis was performed and the interaction pathway analysis (I PA analysis) was performed by Ingenuity Systems (EBIOGEN Inc.). After analysis, mRNA expression levels of CHOP, BiP, XBPl, PDIA4, and CALR, which have been reported as UPR genes that are synergistically expressed in the GM1 model, were subjected to qPCR in the same manner as in Example ⁇ 5-1> to perform WT-NPCs. And relative mRNA expression levels in GMl-NPCs.
  • FIG. 27 it was confirmed that various metabolic pathways were expressed and expressed in GMl-NPCs, and in particular, cytokine-cytokine receptor interacting ion was increased (FIG. 27A). .
  • the immune response has an important role in the neuropathic symptoms of GM1 by significantly increasing the expression of metabolic pathways associated with immune response (Fig. 27B).
  • GMl-iPSCs were prepared by performing the method of ⁇ Example 2>, and differentiation of GMl-NPCs was induced by performing the method of Example ⁇ 4-1>. Then, GM1-fibroblasts, induced GMl-iPSCs, and GMl-NPCs were obtained, respectively, and microarray analysis was performed in the same manner as in Example ⁇ 1> to confirm the increase and decrease of inflammatory complex-related gene expression. Genes showing significant differences in expression compared to WT-NPCs were selected and compared with relative mRNA expression levels in WT-NPCs and GMl-NPCs through qPCR in the same manner as in Example ⁇ 5-1>.
  • FIG. 28 and FIG. 29 in contrast to most of the inflammatory regulatory elements expressed in GMl-NPCs, It was confirmed that the metabolic pathways associated with the inflammation regulatory complex were highly activated (FIG. 28). In addition, apoptosis caspase showed similar expression levels in WT-NPCs and GMl-NPCs, whereas inflammatory caspases, inflammatory interleukins, downstream genes and Inflammation-related metabolic factors were found to show significantly increased expression levels in GMl-NPCs compared to WT-NPCs (FIG. 29).
  • Î ⁇ ⁇ antagonist rhILIRA
  • caspase-1 inhibitor caspase—1 inhibi tor
  • GMl-NPCs differentiation of GMl-NPCs was induced by performing the method of Example 4-4. Inflammation was then incubated in culture media treated with 1 g / m «rhILlRA (R & D Systems, USA) or 10 ⁇ Z-YVAD-FM (Merck Mi li ipore, Germany), respectively, on induced GM1—NPCs. Regulatory complexes induced inhibition. After 2 to 4 weeks, cultured neurons derived from GMl-NPCs were obtained, and the morphology of neurosphere cells was confirmed by phase-contrast mi croscopy.
  • Example ⁇ 4-1> was performed to induce differentiation of GMl-NPCs, and rhILIRA or Z-YVAD-FMK was treated in the same manner as in Example ⁇ 9-1>.
  • the microarray analysis was performed in the same manner as in Example ⁇ 7-1> to confirm the increase and decrease of the expression of the inflammatory complex complex.
  • Genes showing significant differences in expression compared to WT ⁇ NPCs were selected and compared with relative mRNA expression levels in WT-NPCs and GMl-NPCs through qPCR in the same manner as in Example ⁇ 5-1>.
  • WT-NPCs were used.
  • GMl-NPCs were treated with DMS0 without treatment with rhILIRA or Z-YVAD-FMK, followed by the same method as above. The degree was confirmed.
  • FIGS. 31 to 34 the expression pattern of the genes in GMl-NPCs was changed according to the treatment of the inflammatory control complex inhibitors. Expression was significantly decreased (FIG. 34), and the expression level of 9.3% of the probe pairs was changed among 27,375 oligo probe pairs in GMl-NPCs treated with the caspase-1 inhibitor Z-YVAD-FMK. It was confirmed that (Fig. 31). The majority of genes with altered expression levels were found to exhibit a tendency to restore gene changes associated with neuronal defects due to GM1, similar to normal cell patterns (FIG. 31).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Neurosurgery (AREA)
  • Toxicology (AREA)
  • Transplantation (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)

Abstract

본 발명은 GM1 강글리오시드증(GM1 gangliosidosis)의 인간 세포 모델, 이의 유도-만능 줄기세포(induced pluripotent stem cells; iPSCs) 및 iPSCs 유래 신경 전구세포를 기반으로 한 모델 세포 제조 방법, 및 상기 GM1 모델 세포를 GM1 강글리오시드증의 치료제 개발에 이용하는 용도에 관한 것으로, 본 발명의 GM1 환자의 섬유아세포로부터 유래한 iPSCs는 GM1 환자에서 나타나는 특징을 재현하는 신경 전구체 세포(Neural progenitor cell, NPC) 및 신경구 세포로 분화할 수 있으며, 상기 세포는 GM1의 모델 세포로서 GM1의 증상인 세포 내 GM1 강글리오시드 및 리소좀의 축적, 및 유전자 발현 양상이 변화를 효과적으로 확인할 수 있으므로, GM1의 발병 기전 분석 연구 및 치료제 개발을 위한 연구에 유용하게 사용될 수 있다. 또한 본 발명의 상기 GM1 세포 모델을 이용하여 염증조절복합체 억제제인 rhIL1RA 또는 Z-YVAD-FMK을 발굴하여 GM1 강글리오시드증의 증상완화제/치료제로 이용할 수 있음을 확인하였다. 아울러, 본 발명에서 GM1 강글리오시드증의 원인 단백질 변이로서 신규하게 발견한 E186A 변이를 나타내는 형질전환 세포에서 GM1 환자의 분자적 증상을 재현할 수 있으므로, 이로부터 유도된 E186A 변이를 포함하는 변이체 세포는 GM1 강글리오시드증의 세포 모델로서 유용하게 사용될 수 있다.

Description

【명세서】
[발명의 명칭】
GM1 강글리오시드증의 인간 세포 모델 및 이의 용도 [기술분야]
본 발명은 GM1 강글리오시드증 (GM1 gangliosidosis) 환자로부터 유래된 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs) 및 이로부터 분화 유도된 조직-특이적 세포를 제작함으로써 GM1 강글리오시드증의 인간 세포모델 제조 방법, 및 상기 세포 모델을 GM1강글리오시드증의 치료제 스크리닝 방법에 이용하는 용도에 관한 것이다.
【배경기술】
GM1 강글리오시드증 (GM1 gangliosidosis, GM1)은 리소좀 β-갈락토시다제 (lysosomal β -galactosidase, β-gal)의 결함에 의한 희귀 유전병으로, 리소좀의 저장 질환 (lysosomal storage disease, LSD)으로 분류된다 (Brunetti-Pierr i N and Scagl i a F, molecular genetics and metabolism 94, 391-396, 2008) . β-gal은 리소좀에 존재하는 GLB1 유전자에 의해 암호화되는 효소로서, 다양한 생체 내 분자를 가수분해하는 역할을 한다. β-gal의 가장 대표적인 기질은 리소좀의 스핑고지질인 GM1 강글리오시드 (GM1 ganglioside)이다. GM1 강글리오시드는 뇌에 풍부하게 존재하며, 신경 세포의 발달 및 일반적인 기능에 있어서 중요한 역할을 하는 것으로 알려져 있다 (Yu RK et. al, Neurochemical research?,! , 1230-1244 , 2012) . β -gal활성의 결핍은 리소좀 및 소포체 (endoplasmic reticulum, ER)를 포함하는 다른 세포 기관에서 GM1 강글리오시드의 축적을 유발하여, 발작 (seizures), 운동실조 (ataxia) 및 간비장비대증 (hepatosplenomegaly)과 같은 다양한 증상을 유발한다. 임상적인 증상의 정도 및 질환의 발병 시기는 잔여 β-gal 활성의 수준과 연관되는 것으로 보고되고 있다. GM1의 뚜렷한 임상적 증상으로는 중추신경계 (CNS)에서 진행형의 신경퇴화가 있으며, 따라서 GM1은 1차적으로 신경 장애로 여겨지며 다른 신경병성 질환과 매우 유사한 성질을 공유하고 있는 것으로 여져지고 있다 (Vitner EB et . al , The Journal of biological chemistry 2^, 20423-20427, 2010; Sandhof f K and Harzer K. The Journal of neuroscience the official journal of the Society for Neuroscience 33, 10195-10208, 2013).
GM1 질환의 기작에 관한 연구에 있어서, β-gal이 결여된 마우스 모델을 이용한 방법이 보고되었으며, 이를 통해 단백질 열림 반웅 (Unfolded Protein Response , UPR), 미토콘드리아 기능손상 (mitochondrial dysfunction), 증가된 자가소화작용 (autophagy) 및 Trk 신호전달 활성화 등과 같은 신경 세포 사멸에 대웅되는 다양한 기작이 제시되고 있다 (Tessitore A, et al. molecular cell 15, 753-766, 2004; Sano R, et al. 분자적 ceJ J 36, 500-511, 2009; Takamura A, et al . Biochemical and biophysical research communi cat ions 367, 616-622, 2008; Takamura A, et al. Journal of neurochemistry 118, 399-406 , 2011). 염증성 인자의 활성화는 p-gal_/_ 마우스 뇌에서 보고된 바 있으며, 진행형의 CNS 염증은 이로 인한 임상적 증상과 밀접하게 연관된다 (Jeyakumar M, et al. Brain a journal of neurology 126, 974-987, 2003) . CNS에서 만성 염증은 신경병성 질환의 넓은 범주에서 다루어져 왔으며, 뇌 구조 및 뇌 기능 이상의 악화를 유발하는 원인이 되는 것으로 알려져 있다. 그러나, 만성 신경염증의 분자적 기작에 대한 연구는 많이 보고되지 않았다.
염증조절복합체 (infla麵 asome)는 만성 염증과 관련한 질병에서 최근 새로운 역할이 확인되었다 (Walsh JG et. al, Nature reviews Neuroscience 15, 84-97, 2014; Choi AM and Nakahira , Nature i unology 2, 379-380, 2011; Franchi L et. al , Nature immunology 10 , 241-247, 2009; Kufer TA and Sansonetti PJ, Nature immunology 12, 121-128, 2011). 염증조절복합체는 센서 단백질 (sensor protein), 어댑터 단백질 (adaptor protein) 및 효소 캐스파제 -l(caspase-l)의 3 종류의 주요 단백질로 구성된 복합 단백질로 보고되었다. 감염, 세포 손상 또는 다른 세포 내 스트레스로 인해 유발되는 다양한 자극은 염증조절복합체의 형성을 촉진하고 캐스파제 -1을 활성화한다. 활성 캐스파제 -1은 전염증의 사이토카인인 IL1P를 성숙한 형태로 가공하고, ΙΙΙβ 분비를 통해 사이토카인을 생산하여, 궁극적으로 만성 염증을 유발하도록 한다. 따라서, 염증조절복합체는 대식세포 (macrophage) 및 소신경교세포 (microglia)를 포함하는 면역 세포에서 연구되었으며, 또한 CNS 신경 세포에서 염증조절복합체가 기능을 나타내는 증거를 제시하기 위한 연구가 계속되고 있다 (Walsh JG et. al , Nature reviews Neuroscience 15, 84-97, 2014). 중요하게는, 염증조절복합체의 활성화는 알츠하이머 병 및 파킨슨 병을 포함하는 신경병성 질환의 분자적 기작으로서 설명되었다 (Heneka MT, et al.Nature 93, 674-678, 2013). 알츠하이머 병의 원인이 되는 분자로서 잘 알려진 아밀로이드 -베타 (Amyloid-β)는 리소좀 파괴를 통해 염증조절복합체의 활성화를 유도한다 (Hal le A, et al. Nature inmmology9, 857-865, 2008) . 또한, 파킨슨 병에서 주요한 인자로 작용하는 섬유성 알파-시뉴클린 (Fibrillar α-synuclein)은 활성산소종 (R0S) 생산을 증가시키고 리소좀을 불안정하게 유도함으로써 염증조절복합체를 활성화하는 것으로 보고되었다 (Codolo G, et al. PloS onS, e55375, 2013) . 인간 GM1 발병을 이해하기 위한 분자적 기작에 관하여는 현재까지 크게 알려진 바 없으며, 이에 따라 현재 치료가 불가능한 상태이다. GM1의 마우스 모델이 개발되에 인간 GM1의 많은 특징올 유사하게 모방할 수 있음에도 불구하고, 이를 인간 질환에 완벽하게 대체할 수 없으므로, GM1 마우스 모델을 이용한 연구에 한계를 가져은다는 단점이 있다. 따라서, GM1의 질환 발병 기작을 재현할 수 있는 인간 유래의 GMr세포 모델을 개발하는 것은 질환의 원인을 이해하고 효과적인 치료법을 개발하는 데 유용하게 사용될 수 있다. 줄기세포 (stem cell)는 조직을 구성하는 각 세포로 분화되기 전단계의 세포로서, 배아, 태아 및 성체의 각 조직에서 얻을 수 있을 수 있으며, 미분화 상태에서 무한 증식이 가능한 자가증식능 및 특정 분화 자극에 의해 다양한 조직의 세포로 분화될 수 있는 잠재적 가능성인 다분화능을 가진 세포를 말한다. 줄기세포는 분화 자극 (환경)에 의하여 특정 세포로 분화가 진행되며, 세포분열이 정지된 분화된 세포와는 달리 세포분열에 의해 자신과 동일한 세포를 생산 (self-renewal)할 수 있어 증식 (proli ferat ion, expansion)하는 특성이 있으며, 다른 환경 또는 다른 분화 자극에 의해 다른 세포로도 분화될 수 있어 분화에 유연성 (plasticity)을 가지고 있는 것이 특징이다.
유도만능줄기세포 (induced pluripotent stem cells; iPSCs)를 포함하는 인간 다능성 줄기세포 (Human pluripotent stem cells; hPSCs)는 인체를 구성하는 거의 모든 조직 세포 종류로 분화할 수 있는 우수한 분화능을 가지고 있다. 특히, 환자 -유래 iPSCs의 경우 사험관 내 분화 시스템에서 환자와 같은 면역적 유전적 특성을 가진 조직-특이적 분화세포를 생산할 수 있음으로 인해 면역 거부반웅이 없는 환자-맞춤형 세포치료제 개발에서뿐만 아니라, 기관 형성 (organogenesis)의 초기 발달 동안에 복합적 질병의 메커니즘을 이해하는데 효과적인 평가자로 알려져 있다 Muotri, A. R. (2009) Epilepsy Behav 14 Sup l 1: 81-85; Marchetto, M. C., B. Winner, et al. (2010) Hum Mo 1 Genet 19(R1): R71-76) .
현재까지, 다양한 유전적 질병을 가지는 환자로부터 유래된 iPSCs가 질병과 -관련 있는 세포 종류로 직접 분화되었을 때 질병-특이적인 표현형 (phenotypes)을 나타냄이 보고되고 바 있다 (Park, I. H. et al. Cell 134, 877-886 (2008); Tiscornia, G. et al. Nature medicine 17, 1570-1576 (2011)). 이러한 질병-특이적인 iPSCs는 질병의 직접적인 원인 또는 손상부위와 관련 있는 조직 세포로 분화될 수 있음으로 인해, 질환 특성을 보유한 분화 조직-세포는 질병의 원인을 규명하기 위한 구체적인 기작 연구 또는 치료제 개발에 유용하게 활용될 수 있다. 따라서, 본 발명자들은 환자ᅳ유래 iPSCs 기술을 기반으로 GM1 강글라오시드증 (GM1)을 연구하기 위한 인간 세포 모델을 확립하기 위해 노력한 결과, 우선적으로 GM1 환자의 섬유아세포로부터 GM1 유래의 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs)를 제작하였고, 이로부터 배상체 (embryoid body, EB) 및 신경 전구세포 (Neural progenitor cellss , NPCs)의 분화를 유도하였다. 상기 GM1 환자 유래의 iPSCs는 시험관 내 (/'? vitro) 및 생체 내 (/ 77>(?)에서 다분화능 (pluripotency)을 가짐과 동시에, GM1 환자에서 나타나는 원인 유전자 변이와 이로 인해 인한 β-gal 활성의 저하를 나타냄올 확인하였다. GM1 환자 유래의 iPSCs로부터 신경 전구세포로 분화를 유도한 결과, β— gal의 발현량은 증가하나 활성이 감소하여 세포 내 GM1 강글리오시드 및 리소좀의 축적이 증가함을 확인하였다. 상기 GM1 유래의 신경 전구세포의 유전자 발현 양상을 정상 세포와 비교한 결과, 염증 관련 경로,특히 염증조절복합체 (infla醒 asome)관련 대사경로의 유전자 발현 수준이 증가하는 것을 확인하였다. 또한, GM1 환자 유래 iPSCs로부터 분화된 신경 전구서 j포에 염증조절복합체 억제제를 처리하였을 때, 세포의 형태 및 크기 뿐 아니라 유전자의 발현 양상이 정상 세포와 유사하게 복원되는 것을 확인함으로써, GM1의 발병과 염증조절복합체의 활성화가 연관되어 있음을 확인하였고, 염증조절복합체의 억제가 GM1의 치료에 순기능을 하고 있음을 확인하였다. 본 발명의 GM1 환자 -유래 유도 -만능 줄기세포 (induced pluri potent stem cells; iPSGs) 및 iPSCᅳ유래 신경전구세포를 이용하여 질환-특이적 표현형을 검증한 결과 염증조절복합체가 GM1 치료제 개발의 핵심 분자타겟이 될 수 있고, 염증조절복합체 억제제가 GM1 치료에 양성효과가 있음을 확인함으로써, 본 발명은 GM1의 발병 원인 규명 연구 및 치료제 개발에 유용하게 사용될 수 있는 GM1 강글리오시드증의 안간 세포 모델을 제시함으로써 본 발명을 완성하였다.
【발명의 상세한 설명】 '
【기술적 과제】
본 발명의 목적은 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs) 기술을 이용하여 GM1 강글리오시드증 (GM1 gangliosidosis, GM1) 환자의 질환 특성을 그대로 반영할 수 있는 인간 세포 모델을 개발하고, 본 발병의 인간 세포 모델을 이용하여 개선된 GM1 강글리오시드증 발병 연구 및 치료제 개발 방법을 제공하고자 한다. 【기술적 해결방법】
상기 목적을 달성하기 위해서, 본 발명은 하기 i) 내지 Viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 iPSCs 모델을 제공한다:
i) GLB1 유전자의 C.601OT 변이;
ϋ) β-갈락토시다제 (β-galactosidase, β-gal) 단백질의 R201C 변이; iii) 정상 세포의 iPSCs 형태;
iv) 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 및 TRA-1-60를 포함하는 다분화능 마커 (pluri potency maker)를 발현;
v) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β -gal 활성 감소; 및
viii) GMl 강글리오시드 (GMl ganglioside) 및 리소좀 (lysosome)의 축적. 또한, 본 발명은
i) 시험관 내 (In vitro)에서 GMl 강글리오시드증 (GMl gangliosidosis,
GMl) 환자로부터 분리된 섬유아세포 (fibroblasts)를 유도 -만능 줄기세포 (induced pluri potent stem cells; iPSCs)로 유도하는 단계; 및
ii)상기 단계 i)에서 .유도된 iPSCs를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증 iPSCs 모델의 제조 방법을 제공한다.
또한, 본 발명은 하기 0 내지 viii) 중 어느 하나 이상올 특징으로 하는
GM1 강글리오시드증 신경 전구세포 모델을 제공한다:
i) NEST IN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJ1 및 S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태;
iv) 신경 로제트 (neural rosettes) 형성의 감소;
V) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성의 감소; vii) GMl강글리오시드 (GMl ganglioside)및 리소좀 ( lysosome)의 축적 ; 및 viii) 염증관련 유전자의 발현 증가.
또한, 본 발명은
i) 시험관 내 에서 GM1 강글리오시드증 환자로부터 분리된 섬유아세포를 유도-만능 줄기세포를 제작하는 단계; 및
ii) 상기 단계 0에서 제작한 iPSCs를 신경 전구세포 (Neural progenitor cells, NPCs)로 유도하는 단계; 및
iii) 상기 단계 ii)에서 유도된 NPCs를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증 신경 전구세포 모델의 제조 방법을 제공한다.
- 또한, 본 발명은
i) GMl강글리오시드증 iPSCs모델로부터 배상체 (embryoidbody, EB),신경 전구세포 (Neural progenitor cells, NPCs) 또는 신경구 (neurosphere)로 분화를 유도하는 단계 ; 및
ii)상기 단계 i)에서 유도된 배상체의 분화 마커, 신경 전구세포의 특징 또는 신경 전구세포의 형태학적 특징을 분석하는 단계를 포함하는, iPSCs, 신경 전구세포 또는 신경구를 GM1 강글리오시드증의 모델로 사용하는 방법을 제공한다.
또한, 본 발명은
i) GMl 강글리오시드증 iPSCs 모델로부터 분화된 신경 전구세포 또는 신경구에 피검 화합물 또는 조성물을 처리하는 단계;
ii) 상기 단계 i)의 신경 전구세포 또는 신경구의 특성을 분석하는 단계; 및
iii) 상기 단계 ii)의 분석한 결과를 무처리 대조군과 비교하는 단계를 포함하는, GM1강글리오시드증의 치료제 후보물질의 스크리닝 방법을 제공한다. 또한, 본 발명은 Z-YVAD-FMK (메틸
(3S)-3-[(2S)-2-[(2S)-2-(2-{ [(벤질옥시)카르보닐]아미
노}-3-(4-하이드록시페닐)프로판아미도 )-3-메틸부탄아미도]프로판아미도] -5-플 루로 -4-옥소펜타노에이트 (methyl ( 3S ) -3- [ ( 2S ) -2- [ ( 2S ) -2- ( 2- { [ ( benzy 1 oxy ) c ar bony 1 ] am i no } _3_ ( 4-hydroxypheny 1 )pr opanam i do ) -3-me thylbut anam idolpropanami do]-5ᅳ f luoro-4-oxopentanoate))를 유효성분으로 포함하는 GM1 강글리오시드증 의 예방 및 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 인터류킨 1-수용체의 길항제 단백질 (Interleukin-1
Receptor Antagonist protein)를 유효성분으로 포함하는 GM1 강글리오시드증의 예방 및 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 하기 i) 내지 viii)중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 iPSCs 모델의 용도를 제공한다:
i) GLB1 유전자의 C.601OT 변이;
ii) β_갈락토시다제 (β-galactosidase, -gal) 단백질의 R201C 변이; iii) 정상 세포의 iPSCs 형태;
iv) 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 및 TRA-1-60를 포함하는 다분화능 마커 (pluripotency maker)를 발현;
V) GLBr유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성 감소; 및
viii) GM1 강글리오시드 (GM1 ganglioside) 및 리소좀 ( lysosome)의 축적. 또한, 본 발명은 하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 신경 전구세포 모델의 용도를 제공한다:
i) NESTIN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJ1 및 S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태; iv) 신경 로제트 (neural rosettes) 형성의 감소;
v) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성의 감소;
vii) GM1강글리오시드 (GM1 ganglioside)및 리소좀 ( lysosome)의 축적 ; 및 viii) 염증관련 유전자의 발현 증가. 또한, 본 발명은 약학적으로 유효한 양의 Z-YVAD-FMK를 GM1 강글리오시드증 환자에 투여하는 단계를 포함하는 GM1 강글리오시드증의 예방 및 치료 방법을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의 인터류킨 1-수용체의 길항제 단백질을 GM1 강글리오시드증 환자에 투여하는 단계를 포함하는 GM1 강글리오시드증의 예방 및 치료 방법을 제공한다.
또한, 본 발명은 GM1강글리오시드증 의 예방 및 치료용 약학적 조성물의 유효성분으로 사용하기 위한 Z-YVAD— FMK의 용도를 제공한다.
또한, GM1 강글리오시드증의 예방 및 치료용 약학적 조성물의 유효성분으로 사용하기 위한 인터류킨 1-수용체의 길항제 단백질의 용도를 제공한다.
또한, 본 발명은 β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 GM1 강글리오시드증의 변이체 세포 모델을 제공한다. ,
또한, 본 발명은
i) β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터를 제조하는 단계;
ii) 상기 단계 i)에서 제조한 β-gal 변이체 발현 백터를 분리된 세포로 형질전환하는 단계;
iii) 상기 단계 ii)에서 형질전환된 변이체 세포를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증의 세포 모델 제조 방법을 제공한다.
또한, 본 발명은 β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 변이체 세포를 GMr강글리오시드증 세포 모델로 사용하는 방법을 제공한다.
아을러, 본 발명은 GM1 강글리오시드증 세포 모델로 사용하기 위한, β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 벡터로 형질전환된 변이체 세포의 용도를 제공한다. [유리한 효과】
본 발명의 GM1 강글리오시드증 (GM1 gangliosidosis, GM1) 환자의 섬유아세포로부터 유래한 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs)를 GM1 환자에서 나타나는 질환 특징을 재현하는 신경 전구세포 (Neural progenitor cellss, NPCs) 및 신경구 세포로 분화할 수 있으며, 상기 세포에서 GM1의 질환 증상인 세포 내 GM1 강글리오시드 및 리소좀의 축적, 및 유전자 변이 등을 효과적으로 확인할 수 있음으로써, 상기 세포를 GM1의 모델 세포로 개발하였고, 본 발명의 GM1 인간 세포 모델은 GM1의 발병 기전 분석 연구 및 치료제 개발 연구에 유용하게 사용될 수 있음을 제시하였다.
또한, 본 발명에서 GM1강글리오시드증의 원인 단백질 변이로서 신규하게 발견한 E186A 변이를 나타내는 형질전환 세포에서 GM1 환자의 분자적 증상을 재현할 수 있으므로, 이로부터 유도된 E186A 변이를 포함하는 변이체 세포는 GM1 강글리오시드증의 세포 모델로서 유용하게 사용될 수 있다.
[도면의 간단한 설명】
도 1은 본 발명의 GM1 강글리오시드증 (GM1 gangliosidosis, GM1) 유래 iPSCs 제조 과정 및 이의 용도에 관한 모식도이다.
도 2는 GM1 환자 유래의 섬유아세포 (fibroblasts)의 GM1 원인 유전자 변이를 확인한 도이다:
도 2a는 GM1 환자 유래의 GM00918 세포주에서 GM1 원인 단백질 변이인 E186A 변이의 유전자 변이를 확인한 도이며; 및
도 2b는 GM1 환자 유래의 GM02439 세포주에서 GM1 원인 유전자 변이를 확인한 도이다.
도 3은 GM1 환자 유래의 섬유아세포주의 특징을 확인한 도이다:
도 3a는 GM1 환자 유래의 섬유아세포주에서 리소솜 축적을 확인한 도이며; 도 3b는 GM1 환자 유래의 섬유아세포주에서 GM1 축적을 확인한 도이고; 도 3c는 GM1 환자 유래의 섬유아세포주에서 X-gal 염색을 통한 β-gal 단백질의 활성을 확인한 도이며;
도 3d는 β-gal E186A 변이체 단백질을 암호화하는 유전자로 형질전환된 세포에서 감소된 β-gal 활성을 확인한 도이고;
도 3e는 β-gal E186A 변이체 단백질을 암호화하는 유전자로 형질전환된 세포에서 X-gal 염색을 통한 β-gal 단백질의 활성을 확인한 도이며; 및
도 3f는 β-gal E186A 변이체 단백질을 암호화하는 유전자로 형질전환된 세포에서 β-gal 단백질 발현량을 확인한 도이다.
도 4는 β-gal E186A 변이체 단백질의 구조적인 분석을 나타낸 도이다: 도 4a는 원핵생물 및 진핵생물에서 GLB1-연관된 단백질의 서열 배열 비교를 나타낸 도이며;
도 4b는 인간 β-gal 단백질에 기반한 E186A 변이체 단백질의 3차원 구조분석을 나타낸 도이고; 및
도 4c는 인간 β-gal 단백질에 기반한 E186A 변이체 단백질에서 E186 잔기 위치 부위를 나타낸 도이다.
도 5은 GM1 환자 유래 섬유아세포로부터 유도 -만능 줄기세포 (induced pluri potent stem cells; iPSCs)를 제작하는 과정을 나타내는 모식도이다. 도 6는 GM1 유래 iPSCs(GMl-iPSCs) 및 신경 전구세포 (Neural progenitor cellss, NPCs)의 GM1 원인 유전자 변이를 확인한 도이다.
도 7는 GMl-iPSCs의 특징을 확인한 도이다:
도 7a는 GMl-iPSCs의 형태학적 특징을 확인한 도이고;
도 7b는 GMl-iPSCs를 알칼라인 포스파타아제 염색 (Alkaline phosphatase staining, AP staining)하여 미분화 여부를 확인한 도이며; 및
도 7c는 GMl-iPSCs에서 다분화능 마커 (plur ipotency maker) 단백질의 발현을 확인한 도이다.
도 8은 GMl-iPSCs의 단연쇄반복 (Short Tandem Repeat , STR) 분석 결과를 나타낸 도이다. 도 9은 GMl-iPSCs의 핵형 (karyotype) 분석 결과를 나타낸 도이다.
도 10은 생체 내 에서 GMl-iPSCs로부터 분화된 기형종 (teratoma)의 면적 크기를 확인한 도이다.
도 11는 생체 내 ( / 에서 GMl-iPSCs로부터 분화된 기형종 (teratoma)을 나타낸 도이다.
도 12은 GMl-iPSCs에서 β—갈락토시다제 ( β— galactosidase , β -gal ) 활성을 섬유아세포주의 것과 비교하여 나타낸 도이다.
도 13은 비바이러스 방법을 이용하여 제작한
GMl-iPSCs(Epi-GMl-iPSCs)의 특징을 나타내는 도이다;
도 13a는 Epi -GMl-iPSCs의 세포 형태, AP 염색 및 다분화능 마커의 발현 확인을 나타낸 도이고;
도 13b는 Epi -GMl-iPSCs의 핵형 분석 결과를 나타낸 도이며;
도 13c는 Epi-GMl— iPSCs로부터 형성된 기형종을 나타낸 도이다.
도 14는 GMl-iPSCs로부터 GMl-NPCs를 분화하기 위한 과정을 나타내는 모식도이다.
도 15은 GMl-iPSCs로부터 분화된 배상체 (embryoid body, EB)의 외배엽 (ectoderm) , 중배엽 (mesoderm) 및 내배엽 (endoderm) 마커 발현을 확인한 도이다.
도 16은 GMl-iPSCs로부터 분화된 신경 전구세포 (GMl-NPCs)에서 신경 마커 유전자의 mRNA 발현을 확인한 도이다.
도 17는 GMl-NPCs에서 신경 마커 단백질의 발현을 확인한 도이다.
도 18은 GMl-NPCs 유래의 신경구 형태 및 크기를 나타낸 도이며, 적색 화살표는 낭포성 신경구 (cyst ic neurosphere)를 가리킨다.
도 19은 GMl-iPSCs로부터 형성된 신경 로제트 (neural rosettes) 분화를 확인한 도이다.
도 20은 본 발명의 GM1 환자 유래 섬유아세포주로부터 iPSCs의 제작 및 NPCs의 분화 단계를 나타내며, GM1 환자 세포에서 나타나는 증상을 요약한 모식도이다. 도 21는 GMl-iPSCs 및 이로부터 분화된 GMl-NPCs에서 GLB1 유전자 및 단백질의 발현 수준을 확인한 도이다.
도 22은 GMl-iPSCs및 GMl—NPCs에서 β -gal 활성을 확인하기 위해 수행한 X-gal 염색 결과를 나타낸 도이다.
도 23은 GMl-iPSCs 및 GMl-NPCs에서 GM1 강글리오시드 (GMl-gangl ioside) 및 리소좀 ( lysosome)의 축적을 확인한 도이다.
도 24는 GM1-섬유아세포, GMl-iPSCs 및 GMl-NPCs에서 마아크로어레이 분석으로 확인한 유전자 발현 양상을 나타내는 도이다.
도 25은 GM1-섬유아세포, GMl-iPSCs 및 GMl-NPCs에서 변화된 GM1 대사 관련 유전자의 상대적인 발현 수준을 나타내는 도이다.
도 26는 GM1 마우스 모델에서 단백질 열림 반웅 (Unfolded Protein Response , UPR)이 나타나는 것으로 기존에 보고된 유전자에 대해, GM1-섬유아세포, GMl-iPSCs 및 GMl-NPCs에서 나타나는 유전자 발현 변화를 확인한 도이다;
도 26a는 GM1-섬유아세포, GMl-iPSCs 및 GMl-NPCs의 UPR유전자를 확인한 도이며;
도 26b는 상기 UPR 유전자의 상대적 mRNA 발현 수준의 변화를 나타내는 도이다.
도 27는 GMl-NPCs에서 특이적으로 발현되는 경로를 확인한 도이다;
도 27a는 KEGG 분석을 통해 발현 정도가 정상 세포에 비해 2 배 이상 상승한 경로를 확인한 도이며;
도 27b는 IPA 분석을 통해 발현 정도가 상승한 경로를 확인한 도이다. 도 28은 GM1 환자 유래 세포에서 염증 반웅 요소를 구성하는 유전자의 마이크로어레이 분석 결과를 나타낸다.
도 29은 GM1 환자 유래 세포에서 염증 반웅 요소를 구성하는 유전자의 mRNA 발현 수준을 정량적으로 비교한 도이다.
도 30은 염증조절복합체 ( inf la隱 asome) 억제제를 처리하여 분화된 GM1-신경구의 형태적 특징 변화를 나타낸 도이다; 도 30a는 염증조절복합체 (innaraiasome) 억제제를 처리하여 분화된 GM1-신경구의 형태를 나타낸 도이며;
도 30b는 염증조절복합체 억제제를 처리하여 분화된 GM1-신경구의 세포 직경 변화를 나타낸 도이고;
도 30c는 염증조절복합체 억제제를 처리하여 분화된 GM1-신경구 중 낭포성 신경구 형성의 감소를 나타낸 도이다.
도 31는 염증조절복합체 억제제를 처리하여 분화된 GM1-신경구 유전자에 대한 마이크로 어레이 분석 결과를 나타낸 도이다.
도 32은 염증조절복합체 억제제를 처리하여 분화된 GM1ᅳ신경구에서 스핑고지질 대사관련 효소의 발현을 비교한 도이다.
도 33은 염증조절 합체 억제제를 처리하여 분화된 GM1ᅳ신경구에서 염증조절복합체 관련 경로의 유전자 발현을 비교한 도이다.
도 34는 염증조절복합체 억제제를 처라하여 분화된 GM1-신경구에서 염증조절 복합체 관련 경로의 유전자 발현에 대한 마이크로 어레이 분석 결과를 나타낸 도이다.
【발명의 실시를 위한 최선의 형태】
이하, 본 발명을 상세히 설명한다. 본 발명은 하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 iPSCs 모델을 제공한다:
i) GLB1 유전자의 C.601OT 변이;
ϋ) β-갈락토시다제 (β-galactosidase, β-gal) 단백질의 201C 변이; iii) 정상 세포의 iPSCs 형태;
iv) 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 및 TRA—1-60를 포함하는 다분화능 마커 (pluripotency maker)를 발현;
V) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성 감소; 및 viii) GM1 강글리오시드 (GM1 ganglioside) 및 리소좀 ( lysosome)의 축적. 또한, 본 발명은 하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 iPSCs 모델의 용도를 제공한다:
i) GLB1 유전자의 C.601OT 변이;
ϋ) β-갈락토시다제 (β-galactosidase, β-gal) 단백질의 R201C 변이; iii) 정상 세포의 iPSCs 형태;
iv) 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 및 TRA-1-60를 포함하는 다분화능마커 (pluripotency maker)를 발현;
V) GLB1 유전자 및 -gal 단백질의 발현 증가;
vi) β-gal 활성 감소 ; 및
viii) GM1 강글리오시드 (GM1 ganglioside) 및 리소좀 ( lysosome)의 축적. 본 발명와 구체적인 실시예에서, 본 발명자들은 GM1강글리오시드증 환자 유래의 섬유아세포주에서 GM1의 변이 유전자를 확인하였고 (도 2 참조), 상기 환자의 섬유아세포로부터 iPSCs(GMl-iPSCs)를 제작하여 (도 5 및 도 6 참조), 상기 GM1— iPSCs의 특징을 확인한 결과, GMl-iPSCs는 시험관 내 ( vitro) 및 생체 내 / α)에서 다분화능을 가짐과 동시에, GM1 환자에서 나타나는 원인 유전자 변이로 인한 β-gal활성의 저하를 나타내는 것을 확인하였다 (도 7내지 도 13 참조).
따라서, 본 발명의 GM1 유래의 iPSCs 모델은 GM1 환자의 세포와 동일한 특성을 유지하면서 다분화능을 나타내므로, 상기 iPSCs 모델의 제조 방법은 GM1의 기전 분석 연구 및 치료제 개발을 위한 인간 유래 세포 모델로서 유용하게 사용될 수 있다. 또한, 본 발명은
i) 시험관 내 (In vitro)에서 GM1 강글리오시드증 (GM1 gangliosidosis, GM1) 환자로부터 분리된 섬유아세포 (fibroblasts)를 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs)로 유도하는 단계; 및 ii)상기 단계 i)에서 유도된 iPSCs를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증 iPSCs 모델의 제조 방법을 제공한다.
상기 단계 i)의 유도는 다분화능 마커 (pluripotent marker)의 이소성 발현 (ectopic expression)을 사용하는 것을 특징으로 하는 것이 바람직하며, 구체적으로 상기 이소성 발현은 리프로그래밍 인자 (reprogra隱 ing factor)인 0CT4, S0X2, C-MYC및 KLF4을 포함하는 레트로바이러스 (retrovirus)를 이용하는 방법 (Son MY et. al, Stem cells 31, 2374-2387; 2013) 또는 상기 리프로그래밍 인자를 발현하는 에피솜 백터의 형질전환을 통한 방법을 포함하는, iPSCs를 제조하기 위해 당업계에 알려진 방법이라면 어떠한 것도 사용할 수 있다.
본 발명의 GM1 유래의 iPSCs 모델은 GM1 환자의 세포와 동일한 특성을 유지하면서 다분화능을 나타내므로,상기 iPSCs모델의 제조 방법은 GM1의 기전 분석 연구 및 치료제 개발을 위한 인간 유래 세포 모델로서 유용하게 사용될 수 있다. 또한, 본 발명은 하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는
GM1 강글리오시드증 신경 전구세포 모델을 제공한다:
i) NESTIN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJ1 및 S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태;
iv) 신경 로제트 (neural rosettes) 형성의 감소;
v) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성의 감소;
vii) GM1강글리오시드 (GMl ganglioside)및 리소좀 ( lysosome)의 축적 ; 및 viii) 염증관련 유전자의 발현 증가.
또한, 본 발명은 하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드층 신경 전구세포 모델의 용도를 제공한다:
i) NESTIN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJl 및 S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태;
iv) 신경 로제트 (neural rosettes) 형성의 감소;
V) GLB1 유전자 및 β-gal 단백질의 발현 증가;
- vi) β-gal 활성의 감소;
vii) GM1강글리오시드 (GM1 ganglioside)및 리소좀 (lysosome)의 축적 ; 및 viii) 염증관련 유전자의 발현 증가.
또한, 본 발명은
i) GM1 유래의 iPSCs로부터 배상체 (embryoid body, EB), 신경 전구세포 (Neural progenitor eel Is, NPCs) 또는 신경구 (neurosphere)로 분화를 유도하는 단계; 및
ii)상기 단계 i)에서 유도된 배상체의 분화 마커, 신경 전구세포의 특징 또는 신경 전구세포의 형태학적 특징을 분석하는 단계를 포함하는, iPSCs,신경 전구세포 또는 신경구를 GM1 강글리오시드증의 모델로 사용하는 방법을 제공한다.
상기 단계 Π)의 배상체의 분화마커는 외배엽 (ectoderm) 마커인 NESTIN 및 TUJ1, 내배엽 (endoderm)마커인 S0X17및 F0XA2, 및 중배엽 (mesoderm)마커인 알파-평활근 액틴 ( a— smooth muscle actin, α-SMA) 및 DESMI 중 어느 하나 이상인 것이 바람직하나, 이에 한정되지 않는다.
상기 염증조절복합체 관련 유전자는 염증성 캐스파제 (inflammatory caspase) '관련 유전자 (Allan SM et · al , Nature reviews Immunology 5, 629-640 , 2005; Mcllwain DR et . al , Cold Spring Harbor perspect ives in biology 5, a008656 , 2013), 또는 인터류킨 l 3(interleukine 1β, ILip)를 포함하는 전염증성 사이토카인 (proinflammatory cytokine) 및 이의 하류 분자 (downstream molecule)를 암호화하는 유전자 (Walsh JG et . al , Nature reviews Neurosciencel5, 84-97, 2014; John GR et . al, Glia49, 161-176, 2005; Liu L et . al , Journal of neur o i nf 1 ammat i on8 , 175, 2011; Manso Y et . al , Journal of biological inorganic chemi stry 16 , 1103-1113, 2011)와 같이 당업계에서 염증조절복합체의 증가에 관련되어 보고된 모든 유전자 중 어느 하나 이상일 수 있으나, 이에 한정되지 않는다. 본 발명의 또 다른 구체적인 실시예에 있어서, 본 발명자들은 GM1 환자 유래의 iPSCs(GMl-iPSCs)를 배상체 (embryoid body, EB)로 분화 유도하였을 때 (도 14 참조), 내배엽, 중배엽 및 외배엽의 모든 분화 마커를 발현하는 것을 확인함으로써 GM1ᅳ iPSCs 유래 배상체가 분화능을 나타내는 것을 확인하였다 (도 15 참조) . 또한, GMl-iPSCs를 신경 전구세포 (GMl-NPCs)의 분화 유도한 결과, GM1의 원인 유전자 변이가 유지되고 신경 마커 유전자 및 단백질이 발현되는 것을 확인하였으며 (도 6, 도 16 및 도 17 참조) , GM1 유래의 신경구는 정상 세포에 비해 크기가 작고, 낭포성 신경구의 형태를 나타내며, 신경 로제트의 형성 수율 역시 감소하는 것을 확인하였다 (도 18 및 도 19 참조) .
또한, 본 발명자들은 GMl-iPSCs 및 GMl-NPCs에서 GM1의 분자적 표현형 유지되는지 확인한 결과, GLB1 유전자 및 단백질의 발현 수준은 정상 세포에 비해서 유의적으로 증가하는 것에 반해 (도 20 및 도 21 참조), β -갈락토시다제 ( β -gal )의 활성은 현저히 감소하여, 세포 내에 GM1 강글리오시드 및 리소좀 ( lysosome)의 축적이 증가하는 것을 확인하였다 (도 22 및 도 23 참조) .
또한, 본 발명자들은 GM1의 발병 원인 기작을 확인하기 위해
GMl-NPCs에서 정상 세포와 비교하여 발현 양상이 변화되는 유전자를 확인한 결과, GM1 유래의 섬유아세포주, iPSCs 및 NPCs 중 GMl-NPCs에서 정상 세포와 가장 차이를 나타내는 유전자 발현 양상을 보였으며 (도 24 , 도 25 및 도 26), 구체적으로는 염증관련 경로의 유전자 발현이 증가되었으며, 염증조절복합체 ( inf la瞧 asome) 대사경로의 유전자인 염증성 캐스파제 ( inf la讓 atory caspase) , ΙΙΙβ 및 IL1|3의 하류 분자를 암호화하는 유전자군의 발현이 증가하는 패턴을 나타내는 것을 확인하였다 (도 27a 내지 도 29 참조) . 따라서, 본 발명의 GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경 전구세포는 GM1 환자의 세포에서 나타나는특징을 유지하면서 , GM1 특이적으로 발현되는 유전자의 발현 패턴을 효과적으로 확인할 수 있으므로,상기 iPSCs및 신경 전구세포는 GM1의 발병 연구를 위한 인간 유래 세포 모델로서 유용하게 사용될 수 있다. 또한, 본 발명은
i) 시험관 내 에서 GM1 강글리오시드증 환자로부터 분리된 섬유아세포를 유도 -만능 줄기세포를 제작하는 단계 ; 및
ii) 상기 단계 i)에서 제작한 iPSCs를 신경 전구세포 (Neural progenitor cells, NPCs)로 유도하는 단계; 및
iii) 상기 단계 ii)에서 유도된 NPCs를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증 신경 전구세포 모델의 제조 방법을 제공한다.
본 발명의 GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경 전구세포는
GM1 환자의 세포에서 나타나는 특징을 유지하면서, GM1 특이적으로 발현되는 유전자의 발현 패턴을 효과적으로 확인할 수 있으므로, 상기 iPSCs 및 신경 전구세포는 GM1의 발병 연구를 위한 인간 유래 세포 모델로서 유용하게 사용될 수 있다. 또한, 본 발명은
i) 본 발명의 iPSCs로부터 분화된 신경 전구세포 또는 신경구에 피검 화합물 또는 조성물을 처리하는 단계 ;
ii) 상기 단계 i)의 신경 전구세포 또는 신경구의 특성을 분석하는 단계 ; 및
iii) 상기 단계 ii)의 분석한 결과를 무처리 대조군과 비교하는 단계를 포함하는, GM1강글리오시드증의 치료제 후보물질의 스크리닝 방법올 제공한다. 상기 단계 ii)의 신경 전구세포 또는 신경구의 특성은 하기 a) 내지 c) 중 어느 하나 이상인 것이 바람직하나, 이에 한정되지 않는다.
a) 낭포성 신경구 형태로부터 정상 신경구 세포의 형태로의 회복;
b) 신경구 세포 크기의 증가; 및
c) 염증 대사관련 유전자 발현의 감소. 본 발명의 GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경 전구세포는 염증조절복합체 억제제 처리에 따라 정상 세포와 유사한 세포 형태 및 유전자 발현 패턴의 회복이 나타내므로, 상기 iPSCs 및 신경 전구세포는 GM1의 치료제 개발을 위한 인간 유래 세포모델로서 유용하게 사용될 수 있다. 본 발명의 또 다른 구체적인 실시예에서, 본 발명자들은 GM1에서 염증조절복합체와 관련된 대사경로의 유전자들이 특이적으로 증가하는 발현 수준을 나타내므로, 이를 억제하기 위해 염증조절복합체 억제제인 ILlp 길항제 및 캐스파제 -1 억제제를 처리하여 GMl-iPSCs로부터 신경구 세포를 분화한 결과, 분화된 신경구 세포는 낭포성 세포의 형태에서 정상 세포 형태로 복원되었으며, 이에 따라 직경 또한 증가하는 것을 확인하였다 (도 30 참조) . 또한, 염증조절복합체 억제제의 처리에 따라 GMl-NPCs에서 유전자의 발현 패턴이 변화하여 GMl-NPCs에서 증가하였던 염증조절복합체 인자들의 발현이 유의적으로 감소하는 것을 확인하였다 (도 31 내지 도 34 참조) .
따라서, 본 발명의 GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경 전구세포는 염증조절복합체 억제제 처리에 따라 정상 세포와 유사한 세포 형태 및 유전자 발현 패턴의 회복이 나타내므로, 상기 iPSCs 및 신경 전구세포는 GM1의 치료제 개발을 위한 인간 유래 세포 모델로서 유용하게 사용될 수 있다. 또한, 본 발명은 β -gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β -gal 변이체 백터로 형질전환된 GM1 강글리오시 H증의 변이체 세포 모델을 제공한다.
또한, 본 발명은 i) β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터를 제조하는 단계 ;
ϋ) 상기 단계 i)에서 제조한 β-gal 변이체 발현 백터를 분리된 세포로 형질전환하는 단계 ;
iii) 상기 단계 ii)에서 형질전환된 변이체 세포를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증의 세포 모델 제조 방법을 제공한다.
, 또한, 본 발명은 β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 변이체 세포를 GM1 강글리오시드증 세포 모델로 사용하는 방법을 제공한다.
아울러, 본 발명은 GM1 강글리오시드증 세포 모델로 사용하기 위한, β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 변이체 세포의 용도를 제공한다. 본 발명의 또다른 구체적인 실시예에 있어서, 본 발명자들은 GM1 환자 유래의 섬유아세포주의 유전체에서 GLB1 유전자의 변이를 확인한 결과, GLB1 유전자에서 신규한 GM1 원인 유전자 변이로서 E186A를 발견하였고 (도 2 참조), 상기 E186A 변이를 나타내는 세포는 GM1 환자에서 나타나는 분자적 증상인, 감소된 β— gal활성 및 이로 인한 GM1강글리오시드의 세포 내 축적이 나타나는 것을 확인하였다 (도 3a 내지 도 3c 참조).
또한, 본 발명자들은 E186A의 단백질 변이가 GM1환자에서 감소된 β-gal 활성과 직접적으로 연관되는지 확인하기 위해 E186A 변이체를 암호화하는 유전자 발현 백터로 형질전환된 세포에서 β-gal의 활성 및 발현 수준을 확인한 결과, 정상 세포에 비해 β-gal의 발현 수준 및 활성 수준이 현저히 감소하는 것을 확인하였다 (도 3d내지 도 3f 참조).
아을러, 본 발명자들은 E186A의 단백질 변이가 β-gal 활성 감소에 미치는 영향을 확인하기 위해 구조적 분석을 수행한 결과, E186A을 포함하는 GM1 원인 단백질 변이는 정상세포에서 유전학적으로 잘 보존되어있는 위치에서 발생하는 것으로, β— gal 활성 부위 근처에 위치하는 잔기들에서 변이가 나타났을 때 β -gal 활성 감소가 나타나는 원인이 될 수 있음을 확인하였다 (도 4 참조) .
따라서, 본 발명에서 GM1 강글리오시드증의 원인 단백질 변이로서 신규하게 발견한 E186A 변이를 나타내는 형질전환 세포에서 GM1 환자의 분자적 증상을 재현할 수 있으므로, 이로부터 유도된 E186A 변이를 포함하는 변이체 세포는 GM1 강글리오시드증의 세포 모델로서 유용하게 사용될 수 있다. 또한, 본 발명은 Z-YVAD-FMK (메틸 (3S)— 3-[ (2S)— 2-[ (2S)-2-(2-{ [ (벤질옥시)카르보닐]아미노 }-3-(4-하이드록시페 닐)프로판아미도 )-3-메틸부탄아미도]프로판아미도 ]-5-플루로 -4-옥소펜타노에이 트 (methyl
( 3S ) -3- [ ( 2S ) -2- [ ( 2S ) -2- ( 2-{ [ ( benzy 1 oxy ) car bony 1 ] am i no }-3- ( 4-hydr oxypheny 1 )propanam i do )ᅳ 3一 me t hy 1 but anam i do ] pro anam i do ]ᅳ 5— f 1 uoro-4-oxopent anoat e ) ) 를 유효성분으로 포함하는 GM1 강글리오시드증의 예방 및 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 인터류킨 1-수용체의 길항제 단백질 ( Inter leukin-l Receptor Antagoni st protein)를 유효성분으로 포함하는 GM1 강글리오시드증의 예방 및 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의 Z-YVAD-FMK를 GM1 강글리오시드증 환자에 투여하는 단계를 포함하는 GM1 강글리오시드증의 예방 및 치료 방법을 제공한다.
또한, 본 발명은 약학적으로 유효한 양의 인터류킨 1-수용체의 길항제 단백질을 GM1 강글리오시드증 환자에 투여하는 단계를 포함하는 GM1 강글리오시드증의 예방 및 치료 방법을 제공한다.
또한, 본 발명은 GM1강글리오시드증 의 예방 및 치료용 약학적 조성물의 유효성분으로 사용하기 위한 Z-YVAD-FMK의 용도를 제공한다.
아울러, GM1 강글리오시드증의 예방 및 치료용 약학적 조성물의 유효성분으로 사용하기 위한 인터류킨 1-수용체의 길항제 단백질의 용도를 제공한다.
상기 Z-YVAD-FMK은 서열번호 1의 아미노산 서열로 표기될 수 있고, 하기 [일반식 1]의 구조로 표기될 수 있으나, 이에 한정되지 않는다.
상기 Z_YVAE)-FMK은 caspase-1 inhibitor Vl-calbiochem (제품번호: cat #
218746; merck mi l l ipore 사)를 포함하는 캐스파제 -l(Caspase-l)의 억제제로서 당업계에서 시판되는 제품이라면 어떠한 것도사용할수 있다.
[일반식 1]
Figure imgf000025_0001
상기 인터류킨 1-수용체의 길항쎄 단백질은 서열번호 2의 아미노산 서열로 표기될 수 있으나, 이에 한정되지 않는다.
상기 인터류킨 1-수용체의 길항제 단백질은 IL1RA (제품번호: cat # 280-RA-050 (rhlL-lra) ; R&D systems 사)와 같이 인터류킨 -1 수용체의 길항제 단백질로서 당업계에서 시판되는 제품이라면 어떠한 것도 사용할 수 있다. 본 발명의 Z-YVAD-FMK 또는 IL1RA는 GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경전구세포에서, GM1 환자 특이적으로 나타나는 세포 형태 및 유전자 발현 패턴을 정상 세포와 유사한 수준으로 회복시키는 효과를 나타내므로, 상기 Z-YVAD-FMK 또는 IL1RA는 GM1 강글리오시드증의 예방 및 치료용 약학적 조성물의 유효성분으로 유용하게 사용될 수 있다. 발명의 Z-YVAD-FMK 또는 IL1RA는 임상투여시 비경구로 투여가 가능하며 일반적인 의약품 제제의 형태로 사용될 수 있다. 비경구 투여는 직장, 정맥, 복막, 근육, 동맥 경피, 비강 (nasal), 흡입, 안구 및 피하와 같은 경구 이외의 투여경로를 통한 투여를 의미할 수 있다.
즉, 본 발명의 Z-YVAD-FMK 또는 IL1RA는 실제의 비경구의 여러가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제 , 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 비경구투여를 위한 제제에는 멸균된 수용액, 비수용성제, 현탁제, 유제, 동결건조제제, 좌제가 포함된다. 비수용성용제, 현탁용제로는 프로필렌글리콜 (Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔 (witepsol), 마크로골, 트원 (tween) 61, 카카오지, 리우린지, 글리세로제라틴 등이 사용될 수 있다.:
또한, 본 발명의 Z-YVAD-FMK 또는 IL1RA는 생리식염수 또는 유기용매와 같이 약제로 허용된 여러 전달체 (carrier)와 혼합하여 사용될 수 있고, 안정성이나 흡수성을 증가시키기 위하여 글루코스, 수크로스 또는 덱스트란과 같은 카보하이드레이트, 아스코르브 산 (ascorbic acid) 또는 글루타치은과 같은 황산화제 (antioxidants), 킬레이트화제 (chelating agents), 저분자 단백질 또는 다른 안정화제 (stabilizers)들이 약제로 사용될 수 있다.
본 발명의 Z-YVAD-FMK또는 IL1RA의 유효용량은 0.01내지 100 mg/kg이고, 바람직하게는 0.1 내지는 10 mg/kg 이며, 하루 1 회 내지 3회 투여될 수 있다. 본 발명의 약학적 조성물에서 본 발명의 Z-YVAD-FMK 또는 IL1RA의 총 유효량은 볼루스 (bolus) 형태 흑은 상대적으로 짧은 기간 동안 주입 (infusion) 등에 의해 단일 투여량 (single dose)으로 환자에게 투여될 수 있으며, 다중 투여량 (multiple dose)이 장기간 투여되는 분할 치료 방법 (fract ionated treatment protocol)에 의해 투여될 수 있다. 상기 농도는 약의 투여 경로 및 치료 횟수뿐만 아니라 환자의 나이 및 건강상태 등 다양한 요인들을 고려하여 환자의 유효 투여량이 결정되는 것이므로 이러한 점을 고려할 때, 이 분야의 통상적인 지식을 가진 자라면 본 발명의 Z-YVAD-FMK 또는 IL1RA의 약학적 조성물로서의 특정한 용도에 따른 적절한 유효 투여량을 결정할 수 있을 것이다. 이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
<실시예 1> GM1강글리오시드증 (GM1 gangliosidosis, G 1)세포의 특징 확인 <1-1> G 1세포의 신규한 원인 유전자 변이 확인
GM1 강글리오시드증에서 원인이 되는 유전자 변이를 확인하기 위하여,
GM1 강글리오시드증 환자 유래의 섬유아세포 (fibroblasts)를 배양하여, GM1 강글리오시드증 원인 유전자인 GLBl^ 서열을 확인하였다.
구체적으로, GM1 강글리오시드증 환자 유래 섬유아세포주인 GM00918, GM02439, GM03589, GM05335, GM05652, GM05653, GM10919 및 GM12369(Cor iel 1 Institute for Medical Research, 미국)를 구입하였다. GM00918, GM03589, GM05335, GM05652, GM05653, GM10919 및 GM12369 세포주는 유아기에 진단받은 환자로부터 유래되었으며, GM02439 세포주는 청소년기에 진단받은 환자로부터 유래된 것으로서 사용하였다 (http://ccr.coriell.org). 각각의 세포는 10% 소태아혈청 (fetal bovine serum, FBS; Invitrogen 사, 미국), 1% 비 -필수 아미노산 (Non-Essential Amino acids, NEAA; Invitrogen 사, 미국), 1 mM L-글루타민 (L-glutamine; Invitrogen 사, 미국) 및 0.1 mM 베타-머갑토에탄올 (β-mercaptoethanol; Sigma 사, 미국)을 포함하는 둘베코 변이된 이글 배지 (Dulbecco's modified Eagles medium, DMEM)에서 배양하였다. 배양 후에는, RNAiso Plus(Takara사, 일본) 또는 RNeasy미니 키트 (Qiagen사, 미국)를 사용하여 제조사의 제공된 프로토콜을 따라, 배양한 세포로부터 RNA를 추출하였다. 그런 다음, 하기 [표 1]에 기재된 프라이머 (서열목록 3 및 4) 및 Superscript IlKlnvitrogen 사, 미국)을 이용하여 GLB1^\ cDNA를 합성하기 위한 PCR을 수행하였다. PCR 산물은 1% 아가로즈 겔에서 분리하였고, 전장 (full-length)의 밴드를 잘라내어 QIAquick Gel Extraction Kit (Qiagen사, 미국)을 이용하여 정제하였다. 정제한 을리고머는 하기 [표 1]에 기재된 프라이머 (서열목록 5내지 10)을 이용하여 ffi cDNA의 전체 서열을 분석하였다. 대조군으로, 인간 피부 유래의 야생형 섬유아세포주인 CRL-2097 미국 세포주 은행, ATCC)을 상기와 동일한 방법을 사용하여 GLBl cDNA를 합성하여 이의 서열을 확인하였으며, 이를 야생형으로 하여 GM1 강글리오시드증 세포주와 비교하였다. ;
【표 1】
Figure imgf000028_0001
그 결과, 하기 [표 2]에서 나타난 바와 같이, 8 개의 GM1 환자 유래의 세포주는 기존에 보고된 GM1 원인 유전자로서, 6 종류의 미스센스 (missense) 변이 , 1종류의 넌센스 (nonsense)변이 및 2종류의 다형성 (polymorphic)변이를 확인하였다 (표 2). GM03589 세포주를 제외한 모든 GM1 환자 세포주는 동형접합적 (homozygous) 변이를 가지며, GM03589 세포주는 2 종류의 이형접합적 (heterozygous) 변이를 가지고, 이들은 β-gal 활성을 파괴하는 변이임을 확인하였다. P.P10L 변이는 8 개의 세포주 중, 7 개 세포주에서 확인하여 가장 일반적인 변이임을 확인하였으며, P.S352G 변이는 3 개 세포주 내에서 나타나 β-gal의 활성이 감소하는 원인임을 확인하였다. 이 외에, GM1 세포주에서 GM1변이 유전자로서 보고된 p.C127Y, p.R148S, p.W161C, p.R201C및 P.Q255H의 미스센스 변이 및 P.R351X의 넌센스 변이가 나타남을 확인하였다. 또한, 도 2에서 나타난 바와 같이 GM00918세포주에서 신규한 동형접합적 GM1원인 변이 유전자로서 P .E186A변이를 나타내며 (도 2a) , GM02439세포주는 GLB1 유전자에서 C .601OT의 염기서열 변이를 나타내어, 상기 유전자에서 합성 ¾ β -gal 단백질에서 R201C 변이가 나타나는 것을 확인하였다 (도 2b) .
【표 2】
GM1 환자 유래 세포주에서 확인한 GM1 원인 유전자 변이
세포주 변이 종류 뉴클레오티드 변이 아미노산 oil소 출처
변이
Al lele 1 Al lele 2
GM00918 다형성 C >T C >T P10L 1 (Cal lahan 1999) 미스센스 A > C A > C E186A 6 this paper
GM02439 다형성 C >T C >T P10L 1 (Cal lahan 1999) 미스센스 C >T C >T R201C 6 (Yoshida et al 1991)
GM03589 다형성 C >T C >T P10L 1 (Cal lahan 1999)
미스센스 G >A NC C127Y (Het ) 3 (Hofer et al 2010) 미스센스 NC T >G W161G (Het ) 5 (Caciott i et al 2011)
GM05335 미스센스 G >C G >C Q255H 7 ( Iwasaki et al 2006)
GM05652 다형성 C >T. C >T P10L 1 (Cal lahan 1999)
년센스 C >T C >T R351X 10 (Caciott i et al 2011) 다형성 A >G A >G S532G 15 (Zhang et al 2000)
GM05653 다형성 C >T C >T P10L 1 (Cal lahan 1999)
년센스 C >T C >T R351X 10 (Caciott i et al 2011) 다형성 A >G A >G S532G 15 (Zhang et al 2000)
GM10919 다형성 C >T C >T P10L 1 (Cal lahan 1999)
미스'센스 C >A C >A R148S 4 (Zhang et al 2000) 다형성 A >G A >G S532G 15 (Zhang et al 2000)
GM12369 다형성 C >T C >T P10L 1 (Call han 1999) 미스센스 Τ >G T >G W161G 5 (Caciotti et al 2011)
<l-2> GM1 환자유래 섬유아세포의 특징 확인
GM1 환자에서 나타나는 특징을 확인하기 위해, GM1 원인 유전자로서 신규하게 확인한 E186A 변이를 나타내는 GM00918세포주의 특징을 확인하였다. 구체적으로, GM00918 세포주를 상기 실시예 <1-1>과 동일한 환경에서 배양한 후, 배양 배지에 LysoTr acker Red DND-99(1: 20000회석 ; Invitrogen사, 미국)을 처리하고 30 분 동안 37°C에서 반응하여 세포 내 리소좀 (lysosome)의 함량을 확인하였다. 그런 다음, 4% 포름알데히드 (formaldehyde)를 처리하여 실은에서 10 분간 고정하고, 0.1%트리톤 X-100(triton X-100)을 포함하는 PBS 용액을 15 분간 처리하여 세포막에 투과성 (Permeability)를 부여하였다. 처리 후 상기 처리한 세포를 4% 소혈청알부민 (bovine serum albumin, BSA)을 포함하는 PBS에서 세척한 다음, 1차 항체로 항 -GM1 항체 (1:50 희석; ab23943, Abeam 사, 미국)를 처리하여 4°C에서 밤새 방치하고, 세척하였다. 세척 후, 알렉사 풀루오르 488(AIexa Fluor 488) 또는 알렉사 플루오르 594(Alexa Fluor 594)가 결합된 2차 항체 (Invitrogen, 미국)를 처리하고 2 시간 동안 실은에서 방치한 다음, 형광 현미경 (fluorescence microscope)으로 관찰하여 GM1 강글리오시드의 축적을 확인하였다. 발현의 정도를 대조하기 위해 4'6—디아미디노 -2-페닐인돌 (4'6-diamidino-2-phenylindole, DAPI)을 처리하여 세포의 핵을 염색하여 비교하였다.
또한, β-gal활성을 확인하기 위한 X-gal염색법을 수행하기 위해, 50 mM 시트레이트, 150 mM NaCl을 포함하는 pH 4.5의 낮은 pH 완충용액으로 PBS 완층용액을 대체하고, 이외의 과정은 제조사에서 제공하는 프로토콜을 따라 β-gal염색 키트 (INtRon Biotechnology사, 한국)를 사용해 X-gal을 염색하였다. X-gal 염색은 푸른 색깔이 나타나면 종결하였으며 세포 종류에 따라 배양 시간은 4 시간 내지 하룻밤으로 조절하였다. 리소솜 축적을 비교하기 위한 정상 대조군으로는 CRL2097 세포주를 사용하였으며, 세포 내 GM1 강글리오시드의 축적을 비교하기 위한 대조군으로는 미세 뇌기능 장애 (minimal brain dysfunct ion, MBD) 환자로부터 유래된 섬유아세포주를 사용하였다.
그 결과, 도 3a 내지 도 3c에서 나타난 바와 같이 GM00918 세포주에서는 정상 세포주인 CRL2097 세포에 비해 유의적으로 상승한 리소솜 저장도를 나타내었으며 (도 3a), MBD 환자 유래의 세포와 비교하였을 때 GM00918 세포주에서 β -gal 활성의 감소에 따른 GM1 강글리오시드의 거대 축적이 나타나는 것을 확인하였다 (도 3b 및 도 3c) . <1-3> G 1 변이 유무에 따른 세포의 특징 확인
β -gal 활성 감소의 원인으로서 GM1 원인 유전자로서 신규하게 확인한 E186A 변이가 영향을 미치는지 확인하기 위해, 정상 세포 내에서 E186A 변이 유무에 따른 GLB1 단백질의 발현을 확인하였다.
구체적으로, 정상 섬유아세포주인 CRL2097 세포주로부터 GLB1 유전자를 증폭한 다음, 이를 pEGFP-N3 백터 (BD biosc ience Clonetech사) 내에 삽입하고, FLAG 태그는 GLB1유전자의 3、 말단 및 GFP단백질의 5、 말단사이에 삽입하여, 야생형 GLB1 유전자를 포함하는 백터를 제조하였다. 그런 다음, 제조한 백터 내에서 GLB1 유전자에서 E186A 위치를 위치 선택적 변이 (s i te-directed mutagenesi s)하여, 변이체 GLB1유전자를 포함하는 백터를 구축하였다. 구축한 변이체 GLB1 유전자 백터는 293T 세포주 내에 형질전환하여, 변이 유전자의 발현을 유도하였다.
또한, E186A GLB1 변이 유전자 백터로 형질전환된 세포를 RIPA 완충용액에서 용해하고, 4°C에서 원심분리하여 세포 파쇄물을 제거한 다음, 20 내지 30 의 세포 용해물을 4 내지 15% gel (Bio-Rad 사, 미국)에서 전기영동하여 단백질을 분리하고, PVDF막 (PVDF membrane ; Bi으 Rad사,미국)으로 이동하여 힝 -GLB1항체 ( 1 : 500회석 ; AF6464 , R&D systems사, 미국)을 사용하여 웨스턴블럿 (western blot )을 수행하였다. 발색을 보정하기 위한 대조군으로써, 항 -GAPDH 항체를 처리하여 GAPDH를 염색하였다. 아울러ᅳ 상기 실시예 <1-2〉의 방법을 사용해 X-gal 염색을 수행하여 β-gal 활성을 확인하였다. 정상 대조군으로는, 야생형 GLB1 유전자를 포함하는 백터를 형질전환한 세포를 사용하였고, 음성 대조군으로는 GLB1 유전자를 포함하지 않는 백터만을 형질전환한 세포를 사용하였다.
그 결과, 도 3d 내지 도 3f에서 나타난 바와 같이 정상 대조군에 비해 음성 대조군에서는 16% 수준의 β-gal 활성을 나타내어 293T 유전체의 GLB1으로부터 발현된 β-gal 활성을 확인하였으며, 변아체 GLB1 유전자 백터를 형질전환한 세포에서는 정상 대조군에 비해 22.9%의 β-gal 활성을 나타내는 것을 확인하여, 음성 대조군과 유사한 수준을 나타내는 것을 확인하였다 (도 3d). 또한, 정상 대조군과 비교하였을 때, X-gal 염색에서 β-gal 활성의 활성이 감소하는 것을 확인하였으며 (도 e), 웨스턴 블럿을 통해 E186A β-gal 변이 단백질의 발현 수준이 25%로 감소한 것을 확인하였다 (도 3f). 다양한 조건에서 형질전환을 시도하여도 E186A β-gal 변이 단백질의 수준은 정상 대조군 수준으로 증가하지 못하는 것을 확인하여, GM1 환자의 세포에서와 유사한 분자적 증상을 나타내는 것을 확인하였다.
<1-4> G 1원인 단백질 변이인 E186A변이체 단백질의 구조적 분석
GLB1단백질의 E186A변이가 활성 감소에 미치는 영향을 확인하기 위하여, E186A 변이체 단백질의 구조를 모델링하여 분석하였다.
구체적으로, GLB1 단백질의 E186A 변이를 ClustalW2 및 BoxShade 서버를 사용하여, 인간,마우스, 초파리 (Drosophila), 애기장대 (Arabidopsis), 곰광이인 트리코데르마 (7Wc cter??a) 및 아스로박터 C4r ?robac er)의 GLB1 서열을 서열 배열하였다. GLB1 모델링을 위해, 인간 GLB1의 크리스탈 구조 (PDB 코드: 3THC)를 주형으로 하여, PyMOL 프로그램을 통해 변이체 모델을 생성하였다. 그 결과, 도 4에서 나타난 바와 같이 원핵생물인 아스로박터 C4riArobac er)의 GLB1-연관된 단백질의 서열은 곰광이 내지 인간의 진핵생물의 GLB1 연관된 단백질의 서열이 보존되나, 원핵생물에서 보존되는 활성 잔기 (catalytic residue) 및 전체적인 도메인 구조를 포함하는 상동성 정도와는 차이를 나타내는 것을 확인하였다 (도 4a). 상기 [표 2]에서 확인한 6 종류의 미스센스 변이 위치는 단백질의 기능에 있어서 중요한 역할을 수행하는 잔기로서, R148 잔기와 E186 잔기는 다른 네 위차보다도 보존 정도가 높을 뿐 아니라, 활성 잔기인 E188 잔기와 인접한 위치인 것을을 확인한 것을 확인하였다. 인간 β-gal 단백질의 크리스탈 구조에 기반한 3 차원 분석에서, 6 종류의 미스센스 변이 위치의 잔기는 활성 부위를 둘러싸고 있는 TIM 원통 도메인 (TIM barrel)애네 위치하는 것을 확인하였다 (도 4b). 또한, E186잔기는 R148, Q184 및 Y199의 잔기와 이웃하여, 이들과 밀접한 관련이 있을 것으로 확인하였다 (도 4c). 이를 통해, E186잔기와 연관된 모든 잔기들은 진화적으로 잘 보존되어 있으나, GM1 환자 유전자에서는 이러한 잔기들의 변이가 나타나므로, β-gal의 기능적인 역할에 영향을 미치는 것을 확인하였다 (도 4a).
<실시예 2> GM1 유래의 유도 -만능 줄기세포 (induced pluripotent stem cells; iPSCs)의 제조
본 발명의 실시예를 수행하기 위하여, 0CT4, S0X2, C-MYC 및 KLF4를 포함하는 네가지 리프로그래밍 인자 (reprogra瞧 ing factor)를 발현하는 레트로바이러스 (retrovirus)를 이용한 리프로그래밍 배양 (Son MY et. al, Stem cells 31, 2375-2387; 2013)을 통해 GMl 환자 체세포로부터 다분화능을 가진 iPSCs(GMl-iPSCs)를 제작하였다 (도 5).
구체적으로, 상기 실시예 <1-1>에서 변이 유전자를 확안한 GM1 환자의 섬유아세포주인, GM02439 세포에 0CT4, S0X2, C-MYC 및 KLF4를 인코딩 (encoding)하는 레트로바이러스를 형질감염한 후, 체세포 배양 배지 (somatic cell medium)에서 5 일 동안 배양하였다. 5 일 후, 감염 세포를 인간 배아줄기세포 (human embryonic stem cell, hESCs) 배양 배지 (hESCs—CM)을 포함하는 매트리겔 코팅된 플레이트 (mat rigel -coated plate)에 옮겨, 2 내지 3 주 동안 추가로 배양하여, iPSCs집락 (colony)를 수득하였다. 수득한 GM1유래 iPSCs(GMl— iPSCs)는 상기 실시예 <1-1>의 방법을 사용하여 GLB1 유전자의 cDNA를 합성하여 서열을 분석하였다. 대조군으로는, CRL-2097세포주를 상기와 동일한 방법을 수행하여 야생형 iPSCs(WT-iPSCs)의 제작을 유도하였다.
그 결과, 도 6에서 나타난 바와 같이, GM1환자 유래의 섬유아세포로부터 GMl-iPSCs가 제작되었으며, GM1유래 섬유아세포와 동일한 C .601OT의 염기서열 변이를 나타내는 것을 확인하였다 (도 6) .
<실시예 3> GM1유래 iPSCs의 특징 확인
<3-1> GMl-iPSCs의 형태학적 (morphology) 특징 확인
GMl-iPSCs의 형태학적 특징을 확인하기 위하여, GMl-iPSCs의 집락 형태 및 핵형을 확인하였고, 단연쇄반복 (Short Tandem Repeat , STR) 분석을 수행하였다.
구체적으로, 상기 <실시예 2>와 동일한 방법으로 GMl-iPSCs의 리프로그래밍을 유도한 다음, 위상차 현미경 (phase-contrast microscopy)으로 GMl-iPSCs 집락의 형태를 확인하였다. 또한, 젠딕스 사 (GenDix Inc . , 한국)에 의뢰하여 염색체 Gᅳ결합 분석 (Chromosomal G-banding analysis)을 통해 핵형 분석을 수행하였다. 아울러, 휴먼패스 사 (HumanPass Inc . , 한국)에 의뢰하여 GM1 유래 섬유아세포주 (GM02439) 및 GMl-iPSCs의 STR 유전형질 분석 (STR genotyping)을 수행하고, 이를 정상 인간 배아줄기세포주인 H9 hESCs와 비교하였다.
그 결과, 도 7내지 도 9에서 나타난 바와 같이, GM1-섬유아세포주로부터 다분화능 GMl-iPSCs가 성공적으로 유래됨을 확인하였고 (도 8), 제작된 GM1— iPSCs는 인간 배아줄기세포 (hESCs)와 유사한 집락 형태 및 핵형을 나타내는 것을 확인하였다 (도 7a 및 도 9) . <3-2> GMl-iPSCs의 AKAlkal ine phosphatase) 염색
GM1 환자로부터 유래한 GMl-iPSCs의 다분화능 특성을 확인하기 위하여, 다분화능 마커인 알칼라인 포스파타아제 염색 (Alkal ine phosphatase staining, AP staining)을 실시하였다. 구체적으로, AP 염색 키트 (Alkaline phosphatase kit, Sigma Aldrich사, 미국)를사용하여 구연산 용액 (citrate solution) 1 mi, 아세톤 2.6 mi 및 37% 포름알데하이드 (Formaldehyde; Sigma Aldrich사, 미국) 320 ^를 흔합하여 고정 용액 (fixative solution)을 제조하고, 제조한 고정 용액을 상기 <실시예 2〉에서 제작한 GMl-iPSCs에 가하여 어둠 속에서 15 분 동안 상온에 방치하였다. 질산나트륨 용액 (sodium nitrate solution) 100 μΐ 및 FRV-알칼린 용액 (FRV-alkaline solution) 100 ^과 흔합하여 2 분 동안 방치한 다음,' 4.5 ^의 멸균수 및 Naphthol AS-BI 알칼리 용액 100 ^을 첨가하여 호일로 감싸 빛을 차단하여 보관하였다. 고정된 세포는 PBS로 1 회 세척한 후, 상기 준비한 AP 염색 혼합액에 방치한 후, 물 또는 PBS로 2 분씩 2 회 세척하여 AP 염색된 세포를 위상차 현미경 (Phase contrast microscope)으로 관찰하였다. 그 결과, 도 7b에서 나타난 바와 같이 GMl-iPSCs는 다분화능 마커인 AP에 양성 염색됨을 확인하였다 (도 7b). <3-3> GM1유래 iPSCs의 다분화능 (pluripotency) 확인
GM1 환자로부터 유래된 미분화 상태의 GM1ᅳ iPSCs가 다분화능을 나타내는지 추가적으로 확인하기 위하여, GMl-iPSCs에서 다분화능 마커 (pluripotency maker) 단백질의 발현올 확인하였다.
구체적으로, 상기 <실시예 2>에서 제작한 GMl-iPSCs에 4% 포름알데히드 (formaldehyde)를 처리하여 실온에서 10 분간 고정하고, 0.1% 트리톤 X-100(triton X-100)을 포함하는 PBS용액을 15분간 처리하여 세포막에 투과성 (Permeability)를 부여하였다. 처리 후, 상기 처리한 세포를 4% 소혈청알부민 (bovine serum albumin, BSA)을 포함하는 PBS에서 세척한 다음, 1차 항체로 항 -0CT4 항체 (1:100 희석, sc-9081, Cruz Biotechnology 사, 미국), 항 -NAN0G항체 (1:100희석, sc-33759, Cruz Biotechnology사ᅳ 미국),항 -TRA-1-81 항체 (1:100 희석, MAB4381 , Chemicon 사, 미국), 항 -SSEA3 항체 (1:100 희석, MAB1435, R&D Systems 사, 미국), 항 -SSEA4 항체 또는 항ᅳ TRA-1-60 항체 (1:300 희석 , Millipore사, 미국)를 각각 처리하여 4°C에서 밤새 방치하고,세척하였다. 세척 후, 알렉사 플루오르 488(Alexa Fluor 488) 또는 알렉사 플루오르 594(Alexa Fluor 594)가 결합된 2차 항체 (Invitrogen, 미국)를 처리하고 2시간 동안 실온에서 방치하여 GMl-iPSCs를 면역형광염색하고, 형광 현미경 (fluorescence, microscope)으로 관찰하여 0CT4, NANOG, S0X2, SSEA4, Tra-1-80 및 Tra_l_61 단백질의 발현을 확인하였다. 발현의 정도를 대조하기 위해 4'6ᅳ디아미디노 -2-페닐인돌 (4'6-diamidino-2-phenylindole, DAPI)을 처리하여 세포의 핵을 염색하여 비교하였다.
그 결과, 도 7c에서 나타난 바와 같이 GMl-iPSCs에서 다분화능 마커인 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4및 TRA-1-60단백질이 정상 세포 수준으로 발현하는 것을 확인하였다 (도 7c).
<3-4>생체 내 ¾ w o)에서 GM1유래 iPSCs의 다분화능 확인
GM1 유래의 iPSCs가 생체 내에서 다분화능 (pluripotent)을 나타내는지 확인하기 위해, 면역력 저하 누드마우스에서 GMl-iPSCs의 기형종 형성 (teratoma format ion)을 수행하였다.
구체적으로, 상기 <실시예 2>와 동일한 방법을 수행하여 제작한 GMl-iPSCs를 IX 106 세포로 계수하여, 6 주령의 SPF/VAF 면역결핍 누드마우스 (오리엔트 바이오 사, 한국) 3 마리에 각각 주입한 후, 마우스를 사육하였다. 12 주 경과 후에, 상기 마우스를 희생한 후, 기형종을 수득하여, 4% 포름알데하이드를 가하고 파라핀에 포매하였다 (embedding). 그런 다음, 헤리스 헤마토실린 (Harris hematoxylin) 및 에오신 (Eos in)올 처리하여 H&E 염색 (Hematoxylin & Eosin staining)을 통해 내배엽 (endoderm), 외배엽 (ectoderm)및 증배엽 (mesoderm)의 기형종 (teratoma)형성을 확인하였다. 기형종의 생성 정도를 정량화하기 위하여, 각각의 기형종 구역을 사진으로 찍었고, ImageJ 소프트웨어를 사용하여 각각의 크기를 계산하였다. 대조군으로는 CRL2097 섬유아세포-유래의 iPSCs(WT-iPSCs)를 이용하여 상기와 동일한 방법으로 총 5 마리의 마우스 내에서 기형종 형성을 유도하였으며, 각각의 마우스로부터 수득한 기형종은 2내지 5조각으로 나누어 통계적 분석에 사용하였다.
그 결과, 도 10 및 도 11에서 나타난 바와 같이 GMl-iPSCs로부터 유래된 기형종은 WT-iPSCs와 비교하였을 때 유사한 크기의 기형종을 형성하였으며 (도 10) , 외배엽인 신경 조직 및 색소세포, 중배엽인 지방세포, 연골 (cart i lage) 및 근육, 및 내배엽인 상피 세포 (epi thel ium)에서 기형종이 형성되나, WT-iPSCs 유래의 기형종에 비해 신경 구조로의 분화가 적게 나타나는 것을 확인하였다 (도 Π) .
<3-5> GMl-iPSCs의 GM1 원인 단백질 변이 확인
GMl-iPSCs에서 GM1 원인 유전자 변이로 인한 변이체 단백질의 특징을 확인하기 위하여, GMl-iPSCs에서 -gal 단백질의 활성올 확인하였다..
구체적으로, GM02439 섬유아세포주 및 상기 <실시예 2>와 동일한 방법을 수행하여 제작한 GMl-iPSCs를 수득하여, 10 mM시트레이트 (ci trate) , 30 mM NaCl 및 1 mM MgCl2를 포함하는 pH 4.5 분석 완충용액에 현탁하였다. 그런 다음, 세포를 5 내지 10 희의 넁동 /녹임 ( freeze/thaw) 반복을 통해 용해하고, 14, 000 rpm, 4°C에서 5 분 동안 원심분리하여 세포 파쇄물을 제거하였다. 제거 후, 2 의 단백질 용해물을 2 mM
4-메틸룸벨리페릴 -β -으갈락토피라노시드 (4— methykimbel 1 i feryl-β -D-galactop yranoside , MUG; Sigma-Aldr ich사, 미국)를 포함하는 분석 완충용액에 첨가하여 37°C에서 30 분 동안 배양하여 반웅하였다. 30 분 후, 반웅을 종료하기 위해 반웅 부피 절반의 0. Γ M 글리신 -NaOH(glycine-NaOH) 완충용액 (pH 10.5)을 첨가하였다. 그런 다음, 결과된 4-MU의 농도를 445 nm 파장에서 형광 광도를 측정하여ᅳ βᅳ gal의 활성올 확인하였다. 대조군으로, CRL2097 섬유아세포 및 WT-iPSCs를 상기와 동일한 방법으로 β -gal의 활성을 확인한 후, GM1 섬유아세포 및 GMl-iPSCs의 상대적인 β -gal의 활성을 비교하였다.
그 결과, 도 12에서 나타난 바와 같이, CRL2097 섬유아세포 및 WT-iPSCs의 β -gal 활성과 비교하였을 때, GM1섬유아세포주 및 GMl-iPSCs는 약 7%의 -gal을 나타내는 것을 확인하였다 (도 12) . <3-6> 비바이러스 방법을 이용한 GMl-iPSCs의 제작
GMl-iPSCs의 발생 유도에 있어서 다른 iPSCs 제작 유도 방법이 세포의 특성에 영향을 미칠 수 있는지 가능성을 확인하기 위해서, 상기 <실시예 2〉와 다른 방법인 비바이러스성 리프로그래밍 방법을 수행하여 GMl-iPSCs를 제작하도록 유도하였다.
구체적으로, GM02439섬유아세포주를 I X 106세포로 계수하여 준비한 후, Neon™ trans feet ion systemdnvi trogen 사, 미국)을 사용하여 제조사의 제공하는 프로토콜을 통해, 0CT4, S0X2 , KLF4, NANOG, LIN28, L-MYC및 SV40LT를 발현하는 EBNAl/Or iP-기반의 pCET4 에피솜 백터 (episomal vector)를, 전기천공법 (electroporat ion)으로 형질전환하였다. 전기천공법 조건은 1650 V 펄스 전압, 10 ms펄스 너비 (width) 및 3펄스로 설정하였다. 전기천공을 통해 형질감염한 후,세포는 35 mm직경의 매트리겔ᅳ코팅된 웰에 접종하여 iPSCs배양 배지에서 배양하였다. 배양하여 수득한 비바이러스법으로 유도된 GM1 유래 i PSCs세포 (Epi -GMl-iPSCs)는 상기 실시예 <3— 1>, <3-2>, <3-3> 및 <3-4>와 동일한 방법으로 잡락 형태 관찰, 핵형 관찰, AP 염색, 다분화능 마커인 0CT4, NANOG, TRA-1-81 , SSEA3, SSEA4 및 TRA-1-60 단백질 발현 확인, 및 생체 내 기형종 형성을 수행하여 Epi -GMl-iPSCs의 특징을 확인하였다.
그 결과, 도 13에서 나타난 바와 같이 pCET4에피솜 백터를 형질전환하여 제조한 Epi— GMl-iPSCs는, 레트로바이러스를 형질감염하여 제조한 GMl-iPSCs와 유사한 성질을 나타내므로, 제작 유도 방법에 따른 i PSCs의 특성에 차이가 나타나지 않는 것을 확인하였다 (도 13) .
<실시예 4> GM1유래의 신경 전구세포 (Neural progenitor cel ls, NPCs)의 분화 <4-1> GMl-iPSCs로부터 배상체 (embryoid body, EB) 및 신경 전구세포 (NPCs)분화유도
시험관 내 ( / / /Ό)에서 GMl-iPSCs로부터 GM1 유래의 신경 세포 분화를 유도하기 위해, 도 14에 나타난 모식도의 과정을 따라 GMl-iPSCs로부터 배상체 (EB) 및 신경 전구세포 (NPCs)를 형성하도록 분화를 유도하였다 (도 14). 구체적으로, 상기 <실시예 2>와 동일한 방법으로 7일 동안 리프로그래밍을 유도한 GMl-iPSCs의 집락 (colony)을 10% 혈청 대체물 (serum replacement, SR)을 포함하는 DMED/F12배지인 배상체 분화 배지 (embryo id body differentiation medium)에서 7 일간 배양하여 GMl-iPSCs 유래의 배상체 (GM1-EB)로 분화를 유도하였다. 분화된 GM1-EB는 lxN2/B27(Invitrogen 사, 미국), 20 ng/mt bFGF, 20 ng/m EGF( Invi trogen 사, 미국) 및 10 ng/mt 백혈병 억제 인자 (leukemia inhibitory factor; Sigma-Aldr ich 사, 미국)를 포함하는 DMEM/F12 배지인 NPCs 배지에서 2 주 동안 추가로 배양하여, 분화된 GM1유래의 신경 전구세포 (GMl-NPCs)를 수득하였다. 분화 배양 동안, 맥클래인 조직 절편기 (McClain tissue chopper; Mickle Engineering사, 영국)를 이용하여 분화 세포체를 매주 계대 배양하였고, 배지는 2 일에 한 번씩 교체하였다. 신경 세포 (neuronal cell) 및 교질 세포 (glial cell)로 최종 분화하기 위해, 상기 수득한 GMl-NPCs는 매트리겔이 코팅된 커버슬립에 부착하여 3 내지 4 주 동안 생장 인자를 포함하지 않는 NPCs 배지에서 배양하였다. 분화된 GMl-NPCs는 상기 실시예 <1-1>과 동일한 방법을 수행하여 GM1 원인 유전자인 GLBl^ 염기서열 변이를 확인하였다. 대조군으로 WT-iPSCs를 상기와 동일한 방법으로 배양하여 -iPSCs 유래의 배상체 (WT-EB) 및 NPCs(WT-NPCs)로 분화를 유도하였다.
그 결과, 도 4에서 나타난 바와 같이, GM1 유래의 NPCs는 현탁배양에서 구형 형태의 신경구 (neurosphere) 형태를 유지할 수 있으며, GM1 섬유아세포주 및 GMl-iPSCs가 나타내는 GLB1유전자의 C.601OT의 염기서열 변이를 동일하게 나타내는 것을 확인하였다 (도 4). <4-2> GMl-iPSCs유래 배상체의 분화능확안
GMl-iPSCs 유래 배상체 (GM1-배상체)의 분화능을 확인하기 위하여, GM1-배상체에서 외배엽 (ectoderm) 마커인 NESTIN 및 TUJ1, 내배엽 (endoderm) 마커인 S0X17 및 F0XA2, 및 중배엽 (mesoderm) 마커인 알파-평활근 액틴 ( a -smooth muscle actin, a -SMA) 및 DESMIN의 세 가지 배엽 (germ layer) 마커의 발현을 확인하였다.
구체적으로, 상기 실시예 <4-1>과 동일한 방법으로 분화를 유도한 GM1-EB를, 상기 실시예 <3-3>과 동일한 방법으로 면역형광염색하여 NESTIN, TUJ1, S0X17, F0XA2, α-SMA 또는 DESMIN 단백질의 발현을 확인하였다. 상기 면역형광염색을 위한 1차 항체로서 항ᅳ NESTIN 항체 (1:100 희석; MAB5326. Chemicon 사ᅳ 미국), 항 -TUJ1 항체 (1:500 회석; PRB-435P, Covance 사, 미국), 항 -S0X17 항체 (1:100 희석; MAB1924, R&D Systems 사, 미국), 항 -F0XA2 항체 (1:1000희석 ; ab40874, Abeam사, 미국),항 - α-SMA항체 (1:400희석 ; A5228, Sigma-Aldrich사, 미국) 또는 항— DESMIN항체 (1:50 희석; AB907, Chemicon사, 미국)를 각각 사용하였고, 발현의 정도를 대조하기 위해 4'6-디아미디노 -2-페닐인돌 (4'6-diamidino— 2-phenylindole, DAPI)을 처리하여 세포의 핵을 염색하여 비교하였다.
그 결과,도 15에서 나타난 바와 같이 GM1분화세포는 ESTIN, TUJl, S0X17, F0XA2, α-SMA 또는 DESMIN 단백질의 세 가지 형태 배엽 마커를 모두 발현하여 다분화능을 나타내는 것올 확인하였다 (도 15).
<실시예 5> GMl-iPSCs유래 NPCs의 특징 확인
<5-1> GMl-iPSCs유래 NPCs의 신경 마커 유전자 발현 확인
GMl-iPSCs 유래 NPCs(GMl-NPCs)의 분화 효과를 확인하기 위하여, 정량적 실시간 PCR( Quantitative real-time PCR, qPCR)을 수행하여 GM1-섬유아세포, GMl-iPSCs및 GMl-NPCs에서 신경 마커 유전자인 NESTIN, NCAM, 및 0TX2, 및 다분화능 마커 유전자인 ¾의 m NA 전사 수준을 확인하였다.
구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl-iPSCs올 제작하고, 상기 실시예 <4-1>의 방법을 수행하여 GM1— NPCs의 분화를 유도하였다. 그런 다음, RNAiso Plus(Takara사, 일본)또는 R easy미니 키트 (Qiagen사, 미국)를 사용하여 제조사의 제공된 프로토콜을 따라, GM1-섬유아세포주, 유도된 GMl-iPSCs 또는 GMl-NPCs 세포로부터 RNA를 추출하였다. 추출한 RNA 1 내지 2 을 주형으로 하고, Superscript IlKlnvitrogen 사, 미국)을 이용하여 세포 유전체의 cDNA를 합성하기 위한 역전사 PCR reverse transcrupt ion PCR, PT PCR)을 수행하였다. RT PCR 종료 후, 0.2 μί 반웅 산물, 1 μΜ 올리고뉴클레오티드 프라이머, 0.5 ≠ FAST SYBR green master mix(Appl ied Biosystems사, 미국)및 증류수를 흔합한 qPCR반웅 용액 10 ^을 제조한 다음, 7500 Fast Real-time PCR sys tern (Appl ied Biosystems사, 미국)을 이용하여 qPCR 반웅을 수행하였다. 발현 수준을 보정하기 위한 대조군으로 GAPDH 유전자를 상기와 동일한 방법을 수행하여 발현량을 확인하였으며, GAPDH mRNA 발현량을 기준으로 하여 NESTIN, NCAM, PAX6, 0TX2 및 Λ£ mRNA의 발현 배수 (fold change)를 계산하였다.
그 결과, 도 16에서 나타난 바와 같이 WT-iPSCs및 GM1ᅳ iPSCs로부터 분화 유도된 WT-NPCs 및 GM1— NPCs에서 신경 마커 유전자인 NESTIN, NCAM, PAX6 및 0TX2% 발현하는 것에 빈해 다분화능 마커 유전자인 REX1는 현저히 감소한 발현 수준을 나타내는 것을 확인하였다 (도 16). 또한, GMl-NPCs의 신경 마커 유전자의 발현 수준은 FT-NPCs보다 낮아, 이는 신경 세포로의 분화에 대해서 GM-iPSCs의 낮은 분화 효율올 나타냄을 확인하였다 (도 16).
<5-2> GMl-NPCs및 이로부터 분화된 세포의 신경 마커 단백질 발현 확인
GMl-iPSCs 유래의 NPCs, 신경 세포 및 교질 세포가 정상적으로 분화 유도되었는지 확인하기 위하여, GMl-iPSCs로부터 분화 유도된 NPCs, 신경 세포 및 교질 세포에서 신경세포 특이적 마커 단백질인 NESTIN, MAP2, TUJ1 및 S100 단백질의 발현을 확인하였다.
구체적으로, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs, 및 이로부터 분화된 신경 세포 (GM1ᅳ신경 세포) 및 교질 세포 (GM1-교질 세포)의 분화를 유도하였다. 그런 다음, 상기 실시예 <1ᅳ 3>과 동일한 방법으로 면역형광염색하여 NESTIN, MAP2, TUJ1 및 S100 단백질의 발현을 확인하였다. 상기 면역형광염색을 위한 1차 항체로서 NPCs에는 항 -NESTIN 항체를 사용하였고, 신경 세포에는 항 -TUJ1항체 및 항 -MAP2항체 (1:500희석 ; AB5622, Chemicon사, 미국)를 사용하였으며, 교질 세포에는 항 -S100 항체 (1:100 희석; ab52642, Abeam 사, 미국)를 각각 사용하였고, 발현의 정도를 대조하기 위해 4'6-디아미디노 -2-페닐인돌 (4'6-diamidino-2— phenylindole, DAPI)을 처리하여 세포의 핵을 염색하여 비교하였다. 대조군으로는, WT-NPCs, 이로부터 분화된 신경 세포 및 교질 세포를 상기와 동일한 조건에서 면역형광염색하여 신경세포 특이적 마커 단백질의 발현을 확인하였다.
그 결과, 도 17에서 나타난 바와 같이 訂 -NPCs 및 GMl-NPCs 모두로부터, MAP2 및 TUJ1 양성의 신경 세포와 S100 양성의 교질 세포가 최종적으로 분화된 것을 확인하였다 (도 17).
<5-3> GMl-NPCs의 형태학적 특징 확인
GMl-NPCs의 형태학적 특징을 확인하기 위하여, 분화된 GMl-NPCs 유래 신경구의 형태를 확인하였다.
구체적으로, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs , 및 이로부터 분화된 신경구의 분화를 유도한 다음, 위상차 현미경 (phase-contrast microscopy)으로 GMl-NPCs 유래의 신경구의 크기 및 형태를 확인하였다. 대조군으로는 WT-NPCs로부터 분화된 신경구를 수득하여 크기 및 형태를 확인하여 비교하였다.
그 결과, 도 18에서 나타난 바와 같이, 대부분의 WT-NPCs 유래 신경구가 등글고 명확한 테두리를 나타내는 것이 비해 GM1 신경구는 등글지 못한 형상을 나타내며, 평균 크기가 약 36.28%를 나타내는 것을 확인하였다 (도 18). 또한, GMl-iPSCs로부터 낭포성 신경구 (cystic neurosphere)가 풍부하게 나타나, WT-신경구에서는 7.31±1.43%의 낭포성 신경구 수율을 나타내는 반면, GM1 신경구에서는 40% 이상의 낭포성 신경구 수율을 나타내는 것을 확인하였다.
<5-4> G 1유래의 신경 로제트 (neural rosettes) 분화 확인
GMl-iPSCs로부터 신경 세포로 효과적인 분화가 나타나는지 확인하기 위해, 원주 신경상피 세포 (columnar neuroepithelial cell)를 구성하여, 신경외배엽의 형성에 주요한 구조로 나타나는 신경 로제트의 형성을 확인하기 위해, GMl-iPSCs로부터 면역 결핍 마우스에서 생성된 기형종에서 신경 로제트를 확인하였다.
구체적으로, 상기 실시예 <1-4>의 방법을 수행하여 면역 결핍 마우스에서 GMl-iPSCs로부터 기형종의 생성을 유도하였다. 그런 다음, 신경 조직 및 연골 (cart i lage) 조직을 수득한 후, H&E 염색을 통해 GM1 기형종 내의 성숙한 신경 세포를 관찰하였으며, 항 -TUJ1 항체 및 항 -TH 항체를 이용하여 면역세포화학법 ( i隱 unocytochemi stry)으로 생성된 기형종을 확인하였다.
그 결과, 도 19에서 나타난 바와 같이 연골 조직과 같은 중배엽 또는 내배엽 유래의 조직에서는 WT-iPSCs 유래의 기형종과 GMl-iPSCs 유래의 기형종 간에 유의적인 차이를 나타내지 않는 것에 반해, GMl-iPSCs 유래의 기형종은 전체 면적의 1%미만에 해당하는 적은 수의 신경 로제트를 포함하고 있어, 전체 면적의 약 9%를 신경 로제트로 포함하고 있는 WT-iPSCs 유래의 기형종에 비해, 신경 로제트의 형성이 이루어지지 않은 것을 확인하였다 (도 19) . 또한, 시험관 내에서 유도된 신경 로제트 역시 WT-iPSCs로부터 분화된 경우에 비해 GMl-iPSCs로부터 분화된 신경 로제트가 약 13%의 유도 비율을 나타내는 것을 확인하여, GMl-iPSCs는 신경 분화 가능성에 있어서 결함을 가지는 것을 확인하였다. <실시예 6> GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경 세포의 분자적 표현형 확인
<6-1> GMl-iPSCs 및 이로부터 분화된 GMl-NPCs에서 GLB1 유전자 및 단백질의 발현 수준 확인
GM1환자로부터 유래된 iPSCs및 이로부터 분화된 GMl-NPCs가, 도 20에서 나타난 바와.같은 GM1 환자에서 나타나는 분자적인 표현형을 나타내는지 확인하기 위해 (도 20), GM1환자 유래의 섬유아세포, GMl-iPSCs및 GMl-NPCs에서 GLB1 유전자 및 단백질의 발현 수준을 확인하였다.
구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl-iPSCs을 제작하고, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, GM1 섬유아세포주, GMl-iPSCs 및 GMl-NPCs에서 상기 실시예 <4-2>의 방법으로 qPCR 반웅을 수행하여 GLB1유전자의 mRNA 발현 수준을 확인하였다. 또한, 상기 유도한 GM1 섬유아세포주, GMl-iPSCs 또는 GMl-NPCs를 수득하여, 이를 RIPA 완충용액에서 용해하고, 4°C에서 원심분리하여 세포 파쇄물을 제거하였다. 그런 다음, 20 내지 30 //g의 세포 용해물을 4 내지 15% gel (Bio-Rad 사, 미국)에서 전기영동하여 단백질을 분리하고, PVDF 막 (PVDF membrane ; Bio-Rad 사, 미국)으로 이동하여 힝 -GLB1 항체 ( 1 : 500 회석; AF6464, R&D systems 사, 미국)을 사용하여 웨스턴블럿 (western blot )을 수행하였다. 발색을 보정하기 위한 대조군으로써, 항 -GAPDH 항체를 처리하여 GAPDH를 염색하였다.
그 결과, 도 21에서 나타난 바와 같이 정상 세포에 비해 GM1 유래의 세포들에서 GLBl( |3 -gaI )의 mRNA 및 단백질 수준이 모두 증가하였으며, GMl-NPCs에서 발현 수준이 가장 증가된 것을 확인하였다 (도 21) .
<6-2> GMl-iPSCs 및 이로부터 분화된 GMl-NPCs에서 β -gal 활성 확인
GMl-iPSCs 및 GMl-NPCs에서 GLB1의 mRNA 및 단백질 발현 수준이 증가함에도 불구하고 GM1 환자에서는 낮은 β -gal 활성을 나타내므로, GMl-iPSCs 및 GMl-NPCs에서 β -gal 활성을 확인하기 위해 X-gal 염색법을 수행하였다.
구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl-iPSCs을 제작하고, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, 50 mM시트레이트, 150 mM NaCl을 포함하는 pH 4: 5의 낮은 pH완충용액으로 PBS완충용액을 대체하고, 이외의 과정은 제조사에서 제공하는 프로토콜을 따라 β -gal염색 키트 ( INtRon Biotechnology사, 한국)를 사용해 X-gal을 염색하였다. X-gal 염색은 푸른 색깔이 나타나면 종결하였으며, 세포 종류에 따라 배양 시간은 4 시간 내지 하룻밤으로 조절하였다.
그 결과, 도 22에서 나타난 바와 같이 정상 섬유아세포, WT-iPSCs 및 WT-NPCs에서 90% 이상의 X-gal 염색 정도를 나타내는 것에 반해, GM1-섬유아세포, GMl-iPSCs 및 GMl-NPCs의 모든 세포 종류에서 β -gal 활성을 잃어버려 X-gal에 의해 푸른 색으로 염색된 세포가 산발적으로 나타나는 것을 확인하였다 (도 22) .
<6-3> GMl-iPSCs및 GMl-NPCs에서 Oil강글리오시드 (GM1 gagl ioside)축적 확인
GM1 환자에서 나타나는 것과 같이 감소된 β -gal 활성으로 인한 GM1 강글리오시드 (GM1 gagl ioside) 축적이 나타나는지 확인하기 위해, GMl-iPSCs및 GMl-NPCs에서 GM1 강글리오시드 및 리소좀 ( lysosome)의 축적을 확인하였다. 구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl-iPSCs의 제작을 유도하고, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, 상기 실시예 <3ᅳ3〉의 방법을 수행하여 GM1—섬유아세포 및 GMl-iPSCs에서 GM1 강글리오시드를 면역형광염색하였다. 상기 면역형광염색을 위한 1차 항체로서 항 -GM1항체 ( 1: 50희석; ab23943, Abeam 사, 미국)을 사용하였다. 또한, GM1-섬유아세포 및 GMl-NPCs에서 리소좀의 함량을 확인하기 위해서, 배양 배지에 LysoTracker Red DND-99( 1 : 20000 희석; Invi trogen 사, 미국)을 처리하고 30 분 동안 37°C에서 반웅하여 세포 내 리소좀을 관찰하였다. 대조군으로는 WT-섬유아세포, WT-iPSCs 및 WT-NPCs를 상기와 동일한 방법을 수행하여 GM1 강글리오시드 또는 리소좀의 축적올 확인하였다.
그 결과, 도 23에서 나타난 바와 같이 야생형 세포에서는 GM1 강글리오시드의 발현 수준이 낮게 나타나는 반면, GM1ᅳ섬유아세포 및 GMl-iPSCs에서는 높은 수준의 GM1 강글리오시드 축적이 나타나는 것을 확인하였다 (도 23) . 또한, GMl-NPCs 역시 WT-NPCs에 비해 높은 수준의 리소좀 함량을 나타내는 것을 확인하여, GM1 강글리오시드 축적으로 인한 리소좀의 축적이 나타나는 것을 확인하였다 (도 23) . <실시예 Ί> GM1 환자 유래의 iPSCs 및 이로부터 분화된 신경 세포의 전사체 분석
<7-1> GMl-iPSCs 및 GMl- PCs의 유전자 발현 양상확인
GM1 환자에서 나타나는 유전적 원인을 파악하기 위해서 GMl-iPSCs 및 GMl-NPCs에서 나타나는 유전자 발현 변화 양상을 확인하였다.
구체적으로, 상기 <실시예 2〉의 방법을 수행하여 GMl-iPSCs의 제작을 유도하고, 상기 실시예 <4-1>의 방법을 수행하여 GM1ᅳ NPCs의 분화를 유도하였다. 그런 다음, GM1-섬유아세포, 유도된 GMl-iPSCs 및 GMl-NPCs를 각각'수득하여, Low RNA input l inear ampl i f icat ion ki t , cRNA cleanup module 및 Whole Human Genome Mi cr oar ray 4X44K (Agi lent Technology 시", 미국)을 이용하여 제조사의 제공하는 프로토콜에 따라 마이크로어레이 분석을 수행하였다. 수행 후, 조사된 마이크로어레이 이미지는 WT-섬유아세포, WT-iPSCs 및 WT-NPCs의 정상 세포군에 해당하는 시그널로 보정하였다. 보정한 결과값은 MeV프로그램올 사용하여 히트맵 (heatmap)을 작성하고, 유의적인 발현 변화를 나타내지 않는 유전자 (2 배 미만의 변화)는 제거하였다.
그 결과, 도 24에서 나타난 바와 같이 정상 세포와 비교하였을 때, GMl-NPCs에서 가장 많은 유전자 발현 차이를 나타내는 갓올 확인하여, GMl-NPCs가 GM1의 유전적 변화를 분석하기 위한 모델로서 가장 적합한 것을 확인하였다 (도 24) .
또한, 도 25에서 나타난 바와 같이 GMr세포에서 리소좀의 스핑고지질 대入 과정 ( lysosomal sphingol ipid metabol ic pathway)에 있어서, GM2 합성효소로서 GM1 강글리오시드 합성에 있어서 주요한 역할을 하는 B4GALNT1의 발현이 감소하는 것에 반해 , GM1 강글리오시드를 제거하는 역할을 하는 GLB1 효소의 발현 수준이 증가하는 것을 확인하여, GMl-NPCs에서 감소된 β -gal 활성을 보상하고 GM1 강글리오시드 축적을 감소하기 위해 스핑고지질 대사를 증가사키기 위한 유전자 발현을 나타내는 것을 확인하였다 (도 25) .
<7-2> GM1마우스 모델과 GMl-NPCs의 유전적 발현 양상 비교 본 발명의 GMl-iPSCs 유래의 GMl-NPCs가 GMl의 모델로서 사용 적합한지 확인하기 위해서, 기존에 보고된 바 있는 GM1 마우스 모델 (p-gar/_)에서 나타나는 단백질 열림 반웅 (Unfolded Protein Response, UPR)이 GMl-NPCs에서도 나타나는지 확인하였다 (Tessitore A, et al. Molecular eel 115, 753-766, 2004). 구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl-iPSCs의 제작을 유도하고, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, GM1-섬유아세포, 유도된 GMl-iPSCs 및 GMl-NPCs를 각각 수득하여, 상기 실시예 <그1>과 동일한 방법으로 마이크로어레이 분석을 수행해 정상 세포와 발현 수준의 변화를 나타내는 유전자를 선별하여 발현의 증감을 확인하였다. 그런 다음, GM1 모델에서 상승 발현되는 UPR 유전자로서 보고된 바 있는 CHOP, BiP, XBP1, PDIA4 및 CALR의 mRNA 발현 수준을, 상기 실시예 <5-1>과 동일한 방법으로 qPCR을 수행하여 WT-NPCs 및 GMl-NPCs에서의 상대적 mRNA 발현 정도를 비교하였다.
그 결과,. 도 26에서 나타난 바와 같이 GMl-NPCs에서 기존 보고된 UPR 유전자의 발현 증가가 유사하게 나타나는 것을 확인하였으며, 아는 기존 보고된 GM1 마우스 모델과 유사한 차이를 나타내는 반면, GM1-섬유아세포 및 GMl-iPSCs에서는 유의적인 결과를 나타내지 않는 것을 확인하였다 (도 26).
<실시예 8> GMl-NPCs에서 면역 대사경로의 활성 확인
<8-1> GMl-NPCs에서 특이적으로 발현되는 대사경로의 확인
GM1 환자에서 나타나는 증상에 영향을 미치는 대사경로를 확인하기 위해석, GMl-NPCs에서 특이적으로 발현이 증가되는 대사경로를 확인하였다. 구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl— iPSCs을 제작하고, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, GM1-섬유아세포, 유도된 GMl-iPSCs 및 GMl-NPCs를 각각 수득하여, 상기 실시예 <7-1>과 동일한 방법으로 마이크로어레이 분석을 수행해 정상 세포와 발현 수준의 변화를 나타내는 유전자를 선별하였다. 그런 다음, 선별된 유전자는 DAVID Bioinformat ics Resource(http:/Aiavid.abcc.nc if crf.gov)을 이용하여 KEGG 분석하였고, Ingenuity Systems(EBIOGEN Inc . )에 의해 상호연관 경로 분석 ( interact ive pathway analysi s , I PA 분석)올 수행하여 분석하였다. 분석 후, GM1모델에서 상승 발현되는 UPR유전자로서 보고된 바 있는 CHOP, BiP, XBPl , PDIA4및 CALR의 mRNA발현 수준을,상기 실시예 <5ᅳ1>과 동일한 방법으로 qPCR을 수행하여 WT-NPCs 및 GMl-NPCs에서의 상대적 mRNA 발현 정도를 비교하였다.
그 결과, 도 27에서 나타난 바와 같이 GMl-NPCs에서 다양한 대사경로가 증가하여 발현되는 것을 확인하였으며, 특히 사이토카인 -사이토카인 수용체 반웅 (cytokine-cytokine receptor interact ion)이 증가하는 것을 확인하였다 (도 27a) . 또한, 이 외에도 면역적 반웅과 연관된 대사 경로들이 유의적으로 발현 증가함을 통해 GM1의 신경병증성 증상에 있어서 면역 반웅이 중요한 역할을 나타내는 것을 확인하였다 (도 27b) .
<8-2> GMl-NPCs 내 염증조절복합체 (inf lammasome) 관련 대사경로의 발현 확인
GMl-NPCs에서 염증과 관련된 대사경로가 증가함에 따라서 나타나는 염증 반웅의 증가를 확인하기 위해, GMl-NPCs 내에서 염증조절복합체와 관련된 유전자의 발현 양상을 확인하였다.
구체적으로, 상기 <실시예 2>의 방법을 수행하여 GMl-iPSCs올 제작하고, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, GM1-섬유아세포, 유도된 GMl-iPSCs 및 GMl-NPCs를 각각 수득하여, 상기 실시예 <그1〉과 동일한 방법으로 마이크로어레이 분석을 수행해 염증조절복합체 관련 유전자 발현의 증감을 확인하였다. WT-NPCs에 비해 유의적으로 발현 차이를 나타내는 유전자를 선별하여 상기 실시예 <5-1>과 동일한 방법으로 qPCR을 통해 WT-NPCs 및 GMl-NPCs에서의 상대적 mRNA 발현 정도를 비교하였다.
그 결과, 도 28및 도 29에서 나타난 바와 같이 대부분의 염증조절복합체 요소가 WT-NPCs에서 매우 낮게 발현되는 것과는 달리, GMl-NPCs에서 염증조절복합체 관련 대사경로가 높게 활성화된 것을 확인하였다 (도 28) . 또한, 상대적인 mRNA의 발현 수준을 정량적으로 확인하였을 때, 세포사멸 캐스파제 (apoptot i c caspase)는 WT-NPCs와 GMl-NPCs에서 유사한 발현 수준 나타내는 반면, 염증성 캐스파제, 염증관련 인터류킨, 하류의 유전자 및 염증 관련 대사인자들은 WT-NPCs에 비해 GMl-NPCs에서 현저히 증가된 발현 수준을 나타내는 것을 확인하였다 (도 29) .
<실시예 9> GMl-NPCs에서 염증조절복합체 억제에 의한 신경 손상 경감 효과의 확인
<9-1> 염증조절복합체 억제에 따른 GMl-NPCs 형태 희복 확인
GM1에서 염증조절복합체 관련 대사경로가 증가함에 따라 나타나는 신경 손상의 완화 여부를 확인하기 위해서, GMl-NPCs에서 염증조절복합체 억제제인 ΙΙΙ β 길항제 (rhILIRA) 및 캐스파제 -1 억제제 (caspase—1 inhibi tor ; Z-YVAD-FMK)를 처리하여 GMl-NPCs의 형태를 확인하였다.
구체적으로, 상기 실시예 <4ᅳ1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하였다. 그런 다음, 유도된 GM1— NPCs에 1 g/m« rhILlRA(R&D Systems 사, 미국) 또는 10 μ Μ Z-YVAD-FM (Merck Mi l i ipore 사, 독일)을 각각 처리한 배양 배지에서 배양하여 염증조절복합체를 억제를 유도하였다. 2 내지 4 주 후, 배양한 GMl-NPCs 유래 신경구를 수득하여, 위상차 현미경 (phase-contrast mi croscopy)으로 신경구 세포의 형태를 확인하였다.
그 결과, 도 30에서 나타난 바와 같이 염증조절복합체 억제제를 처리하였을 때, GM1 신경구의 비정상적인 형태가 정상 세포 형태로 복원되는 것을 확인하였으며 (도 30a) , 신경구의 형태가 복원됨에 따라 직경 또한 증가하는 것을 확인하였다 (도 30b) . 또한, 낭포성 신경구의 생성 정도가 현저히 감소하여, 온전한 신경구의 수가 증가한 것을 확인하였다 (도 30c) .
<9-2> 염증조절복합체 억제에 따른 GMl-NPCs의 유전자 발현 변화 확인
GM1에서 염증조절복합체 관련 대사경로가 증가함에 따라 나타나는 신경 손상의 완화 여부를 확인하기 위해서, 염증조절복합체 억제제를 처리한
GM1ᅳ NPCs에서 유전자 발현 패턴을 확인하였다.
구체적으로, 상기 실시예 <4-1>의 방법을 수행하여 GMl-NPCs의 분화를 유도하고, 상기 실시예 <9-1>과 동일한 방법으로 rhILIRA 또는 Z-YVAD-FMK를 처리하였다. 그런 다음, 상기 실시예 <7-1>과 동일한 방법으로 마이크로어레이 분석을 수행해 염증조절복합체 관련 유전자 발현의 증감을 확인하였다. WTᅳ NPCs에 비해 유의적으로 발현 차이를 나타내는 유전자를 선별하여 상기 실시예 <5-1>과 동일한 방법으로 qPCR을 통해 WT-NPCs 및 GMl-NPCs에서의 상대적 mRNA 발현 정도를 비교하였다. 정상 대조군으로는 WT-NPCs를 사용하였고, 음성 대조군으로는 GMl-NPCs에 rhILIRA 또는 Z-YVAD-FMK를 처리하지 않고 DMS0를 처리한 후, 상기와 동일한 방법을 수행하여 유전자 발현의 증감 및 mRNA 발현 정도를 확인하였다.
그 결과, 도 31 내지 도 34에서 나타난 바와 같이 염증조절복합체 억제제의 처리에 따라 GMl-NPCs에서' 유전자의 발현 패턴이 변화하여 GMl-NPCs에서 증가하였던 염증조절복합체 인자들의 . 발현이 유의적으로 감소하였으며 (도 34), 캐스파제— 1 억제제인 Z-YVAD-FMK를 처리한 GMl-NPCs에서 총 27 , 375 개의 올리고 프로브 쌍 중에서 9.3%의 프로브 쌍의 발현 수준이 변화한 것을 확인하였다 (도 31) . 발현 수준아 변화한 유전자의 대다수는 GM1으로 인해서 나타나는 신경 결함과 관련된 유전자 변화를 정상 세포의 패턴과 유사하게 복원하는 경향올 나타내는 것을 확인하였다 (도 31) . 예를 들면, GM1의 원인 단백질인 GLB1의 발현이 GMl-NPCs에 .비해서 47%가 감소된 발현 수준을 나타내며, 발현이 감소되었던 B4GALNT1은 2.6 배 증가된 발현 수준을 나타내는 것을 확인하였다 (도 32) . rhILIRA를 처리하여 염증조절복합체를 억제한 경우에는 3.6%의 유전자가 발현 수준 변화를 나타내는 것을 확인하였으며, 이들 역시 GM1 세포에서 나타나는 유전자 발현 이상을 정상 세포의 발현 패턴으로 복원하는 경향을 나타내는 것을 확인하였다 (도 33) .

Claims

【청구와 범위】
【청구항 1】
하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 iPSCs 모델:
i) GLB1 유전자의 C.601OT 변이;
ii) |3_갈락토시다제( 3- 13^0^(1356, β-gal) 단백질꾀 R201C 변이; iii) 정상 세포의 iPSCs 형태;
iv) 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 및 TRA-1-60를 포함하는 다분화능 마커 (pluripotency maker)를 발현 ;
V) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성 감소; 및
viii) GM1 강글리오시드 (GM1 ganglioside) 및 리소좀 (lysosome)의 축적.
【청구항 2】
i) 시험관 내 (In vitro)에서 GM1 강글리오시드증 (GM1 gangliosidosis, GM1) 환자로부터 분리된 섬유아세포 (fibroblasts)를 유도 -만능 줄기세포 (induced pluri otent stem cells; iPSCs)로 유도하는 단계; 및
ii)상기 단계 i)에서 유도된 iPSCs를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증 iPSCs 모델의 제조 방법 .
【청구항 3】
제 2항에 있어서, 상기 단계 i)의 유도는 다분화능 마커 (pluripotent marker)의 이소성 발현 (ectopic expression)을 사용하는 것올 특징으로 하는 시험관 내에서 GM1 강글리오시드증 iPSCs 모델의 제조 방법.
【청구항 4】
하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 신경 전구세포 모델: i) NESTIN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJ1 및 S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태;
iv) 신경 로제트 (neural rosettes) 형성의 감소;
v) GLB1 유전자 및 βᅳ gal 단백질의 발현 증가;
vi) β-gal 활성의 감소;
vii) GM1강글리오시드 (GM1 ganglioside)및 리소좀 (lysosome)의 축적 ; 및 viii) 염증관련 유전자의 발현 증가.
【청구항 5】
i) 시험관 내 에서 GM1 강글리오시드증 환자로부터 분리된 섬유아세포를 유도 -만능 줄기세포를 제작하는 단계; 및
ii) 상기 단계 i)에서 제작한 iPSCs를 신경 전구세포 (Neural progenitor cells, NPCs)로 유도하는 단계; 및
iii) 상기 단계 Π)에서 유도된 NPCs를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증 신경 전구세포 모델의 제조 방법.
【청구항 6】
i) GM1강글리오시드증 iPSCs모델로부터 배상체 (embryoidbody, EB),신경 전구세포 (Neural progenitor eel Is, NPCs) 또는 신경구 (neurosphere)로 분화를 유도하는 단계 ; 및
ii)상기 단계 i)에서 유도된 배상체의 분화 마커, 신경 전구세포와특징 또는 신경 전구세포의 형태학적 특징을 분석하는 단계를 포함하는, iPSCs, 신경 전구세포 또는 신경구를 GM1 강글리오시드증의 모델로 사용하는 방법.
【청구항 7]
제 6항에 있어서, 상기 배상체의 분화마커는 외배엽 (ectoderm) 마커인 NESTIN및 TUJl, 내배엽 (endoderm)마커인 S0X17및 F0XA2, 및 중배엽 (mesoderm) 마커인 알파—평활근 액틴 ( α-smooth muscle actin, Q -SMA) 및 DESMIN 중 어느 하나 이상을 발현하는 것을 특징으로 하는, iPSCs, 신경 전구세포 또는 신경구를 GM1 강글리오시드증의 모델로 사용하는 방법 .
【청구항 8】
제 6항에 있어서, 상기 신경 전구세포는 하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 iPSCs, 신경 전구세포 또는 신경구를 GM1 강글리오시드증의 모델로 사용하는 방법:
i) NESTIN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJl 및 S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태;
iv) 신경 로제트 (neural rosettes) 형성의 감소;
v) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성의 감소;
vii) GM1강글리오시드 (GMl ganglioside)및 리소좀 ( lysosome)의 축적 ; 및 viii) 염증관련 유전자의 발현증가.
【청구항 9】
i) GMl 강글리오시드증 iPSCs 모델로부터 분화된 신경 전구세포 또는 신경구에 피검 화합물 또는 조성물을 처리하는 단계;
ii) 상기 단계 i)의 신경 전구세포 또는 신경구의 특성을 분석하는 단계 ; 및
iii) 상기 단계 ii)의 분석한 결과를 무처리 대조군과 비교하는 단계를 포함하는, GM1 강글리오시드증의 치료제 후보물질의 스크리닝 방법.
【청구항 10] 제 9항에 있어서, 상기 단계 ii)의 신경 전구세포 또는 신경구의 특성은 하기 a) 내지 d) 중 어느 하나 이상인 것을 특징으로 하는, GM1 강글리오시드증의 치료제 후보물질의 스크리닝 방법.
a) 낭포성 신경구 형태로부터 정상 신경구 세포의 형태로의 회복;
b) 신경구 세포 크기의 증가; 및
c) 염증 대사관련 유전자 발현의 감소.
【청구항 11】
Z-YVAD-FMK (메틸 (3S)-3_[(2S)-2-[(2S)-2-(2-{ [(벤질옥시)카르보닐]아미 노}-3ᅳ(4-하이드록시페닐)프로판아미도 )—3-메틸부탄아미도]프로판아미도 ]-5-플 루로 -4-옥소펜타노에이트 ( me t hy 1 ( 3S ) -3- [ ( 2S ) -2- [ ( 2S ) -2- ( 2- { [ ( benzy loxy)car bony 1 ] amino }一3_ ( 4-hydr oxypheny 1 )pr Opanam i do ) -3-methy 1 but anam ido]pr opanam i (10]-5 1101~0-4-0 ∞ 3110 6))를 유효성분으로 포함하는 GM1 강글리오시드증 의 예방 및 치료용 약학적 조성물.
[청구항 12】
인터류킨 1-수용체의 길항제 단백질 (Interleukin-1 Receptor Antagonist protein)를 유효성분으로 포함하는 GM1 강글리오시드증의 예방 및 치료용 약학적 조성물.
[청구항 13】
하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 iPSCs 모델의 용도.
i) GLB1 유전자의 C.601OT 변이;
ϋ) β-갈락토시다제 (p-galactosidase, β-gal) 단백질의 R201C 변이; iii) 정상 세포의 iPSCs 형태;
iv) 0CT4, NANOG, TRA-1-81, SSEA3, SSEA4 및 TRA-1-60를 포함하는 다분화능 마커 (pluripotency maker)를 발현; v) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi ) β-gal 활성 감소 ; 및
viii) GMl 강글리오시드 (GMl ganglioside) 및 리소좀 (lysosome)의 축적. 【청구항 14】
하기 i) 내지 viii) 중 어느 하나 이상을 특징으로 하는 GM1 강글리오시드증 신경 전구세포 모델의 용도:
i) NESTIN, NCAM, PAX6 및 0TX2를 포함하는 신경 마커 유전자를 발현; ii) NESTIN, MAP2, TUJ1 및' S100를 포함하는 신경세포 마커 단백질을 발현;
iii) 깨어진 형태의 낭포성 신경구 (cystic neurosphere) 형태;
iv) 신경 로제트 (neural rosettes) 형성의 감소;
V) GLB1 유전자 및 β-gal 단백질의 발현 증가;
vi) β-gal 활성의 감소;
vii) GM1강글리오시드 (GMl ganglioside)및 리소좀 (lysosome)의 축적; 및 viii) 염증관련 유전자의 발현 증가.
【청구항 13】
약학적으로 유효한 양의 Zᅳ YVAD-FMK를 GM1 강글리오시드증 환자에 투여하는 단계를 포함하는 GM1 강글리오시드증의 예방 및 치료 방법.
【청구항 14】 - 약학적으로 유효한 양의 인터류킨 1-수용체의 길항제 단백질을 GM1 강글리오시드증 환자에 투여하는 단계를 포함하는 GM1 강글리오시드증의 예방 및 치료 방법.
【청구항 15】
GM1 강글리오시드증 의 예방 및 치료용 약학적 조성물의 유효성분으로 사용하기 위한 Z-YVAD-FMK의 용도.
【청구항 16]
GM1 강글리오시드증의 예방 및 치료용 약학적 조성물의 유효성분으로 사용하기 위한 인터류킨 1-수용체의 길항제 단백질의 용도.
【청구항 17】
β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 GM1 강글리오시드증의 변이체 세포 모델.
【청구항 19】
i) β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터를 제조하는 단계;
ii) 상기 단계 0에서 제조한 β-gal 변이체 발현 백터를 분리된 세포로 형질전환하는 단계 ;
iii) 상기 단계 Π)에서 형질전환된 변이체 세포를 수득하는 단계를 포함하는, 시험관 내에서 GM1 강글리오시드증의 세포 모델 제조 방법.
【청구항 20】
β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 변이체 세포를 GM1 강글리오시드증 세포 모델로 사용하는 방법 .
【청구항 21】
GM1 강글리오시드증 세포 모델로 사용하기 위한, β-gal 단백질의 아미노산 서열에서 E186A 변이를 포함하는 β-gal 변이체 백터로 형질전환된 변이체 세포의 용도.
PCT/KR2014/011207 2014-09-05 2014-11-20 Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도 WO2016035934A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016546728A JP2016533770A (ja) 2014-09-05 2014-11-20 Gm1ガングリオシドーシスのヒト細胞モデルおよびその使用
EP14880388.5A EP3012321B1 (en) 2014-09-05 2014-11-20 Human cell model of gm1 gangliosidosis and use of same
US14/820,353 US20160069865A1 (en) 2014-09-05 2015-08-06 Gm1 gangliosidosis human cell model and use thereof
US14/820,348 US10035830B2 (en) 2014-09-05 2015-08-06 Method for treatment of GM1 gangliosidosis

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0118659 2014-09-05
KR20140118659 2014-09-05
KR1020140162438A KR101739017B1 (ko) 2014-09-05 2014-11-20 Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도
KR10-2014-0162438 2014-11-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/820,348 Continuation US10035830B2 (en) 2014-09-05 2015-08-06 Method for treatment of GM1 gangliosidosis
US14/820,353 Continuation US20160069865A1 (en) 2014-09-05 2015-08-06 Gm1 gangliosidosis human cell model and use thereof

Publications (1)

Publication Number Publication Date
WO2016035934A1 true WO2016035934A1 (ko) 2016-03-10

Family

ID=55532300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011207 WO2016035934A1 (ko) 2014-09-05 2014-11-20 Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도

Country Status (5)

Country Link
US (2) US10035830B2 (ko)
EP (1) EP3012321B1 (ko)
JP (1) JP2016533770A (ko)
KR (1) KR101739017B1 (ko)
WO (1) WO2016035934A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767164B2 (en) 2017-03-30 2020-09-08 The Research Foundation For The State University Of New York Microenvironments for self-assembly of islet organoids from stem cells differentiation
WO2019132004A1 (ja) * 2017-12-28 2019-07-04 国立大学法人熊本大学 アルツハイマー病予防剤又は治療剤、そのスクリーニング方法、及びアルツハイマー病予防用又は治療用組成物
JP7333608B2 (ja) * 2017-12-28 2023-08-25 国立大学法人 熊本大学 Gm1ガングリオシドーシス予防剤又は治療剤、及びgm1ガングリオシドーシス予防用又は治療用組成物
EP4251140A1 (en) * 2020-11-25 2023-10-04 Lysosomal and Rare Disorders Research and Treatment Center, Inc. Inhibition of caspase pathway as a treatment for lysosomal storage disorders

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080213893A1 (en) * 2001-04-20 2008-09-04 Children's Hospital Of Orange County Isolation of neural stem cells using gangliosides and other surface markers
WO2009049421A1 (en) * 2007-10-18 2009-04-23 The Hospital For Sick Children Compositions and methods for enhancing enzyme activity in gaucher, gm1-gangliosidosis/morquio b disease, and parkinson's disease
KR20120062762A (ko) * 2009-09-01 2012-06-14 엘제트 테라퓨틱스, 인크. 강글리오시드의 추출 및 정제 방법
US20130261067A1 (en) * 2012-01-20 2013-10-03 Garnet Bio Therapeutics, Inc. Methods of Ganglioside Production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022797A1 (fr) * 2001-09-07 2003-03-20 Seikagaku Corporation Derives de carba-sucres amine et traitements du trouble du metabolisme des glycolipides les contenant en tant qu'ingredient actif
WO2003092601A2 (en) * 2002-04-30 2003-11-13 Seikagaku Corporation A method for detecting lysosomal storage diseases
JP2013507974A (ja) 2009-10-29 2013-03-07 マックマスター ユニバーシティー 線維芽細胞からの誘導多能性幹細胞および前駆細胞の作製法
US9393221B2 (en) * 2011-07-20 2016-07-19 The General Hospital Corporation Methods and compounds for reducing intracellular lipid storage
WO2015083736A1 (ja) * 2013-12-05 2015-06-11 国立大学法人熊本大学 コレステロール蓄積疾患治療薬、およびそのスクリーニング方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080213893A1 (en) * 2001-04-20 2008-09-04 Children's Hospital Of Orange County Isolation of neural stem cells using gangliosides and other surface markers
WO2009049421A1 (en) * 2007-10-18 2009-04-23 The Hospital For Sick Children Compositions and methods for enhancing enzyme activity in gaucher, gm1-gangliosidosis/morquio b disease, and parkinson's disease
KR20120062762A (ko) * 2009-09-01 2012-06-14 엘제트 테라퓨틱스, 인크. 강글리오시드의 추출 및 정제 방법
US20130261067A1 (en) * 2012-01-20 2013-10-03 Garnet Bio Therapeutics, Inc. Methods of Ganglioside Production

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
ALLAN SM, NATURE REVIEWS IMMUNOLOGY, vol. 5, 2005, pages 629 - 640
BRUNETTI-PIERRI N; SCAGLIA F, MOLECULAR GENETICS AND METABOLISM, vol. 94, 2008, pages 391 - 396
CHOI AM; NAKAHIRA K, NATURE IMMUNOLOGY, vol. 12, 2011, pages 379 - 380
CODOLO G ET AL., PLOS ONE, vol. 8, 2013, pages E55375
FRANCHI L, NATURE IMMUNOLOGY, vol. 10, 2009, pages 241 - 247
HALLE A ET AL., NATURE IMMUNOLOGY, vol. 9, 2008, pages 857 - 865
HENEKA MT ET AL., NATURE, vol. 493, 2013, pages 674 - 678
JEYAKUMAR M ET AL., BRAIN : A JOURNAL OF NEUROLOGY, vol. 126, 2003, pages 974 - 987
JOHN GR, GLIA, vol. 49, 2005, pages 161 - 176
KUFER TA; SANSONETTI PJ, NATURE IMMUNOLOGY, vol. 12, 2011, pages 121 - 128
LIU L, JOURNAL OF NEUROINFLAMMATION, vol. 8, 2011, pages 175
MANSO Y, JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, vol. 16, pages 1103 - 1113
MARCHETTO, M. C.; B. WINNER ET AL., UM MOL GENET, vol. 19, no. RL, 2010, pages R71 - 76
MATSUDA, JUNICHIRO ET AL.: "beta-Galactosidase-dencient mouse as an animal model for OM1 -gangliosidosis", GLYCOCONJUGATE JOURNAL, vol. 14, no. 6, 1997, pages 729 - 736, XP019206895, DOI: doi:10.1023/A:1018573518127 *
MCILWAIN DR, COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, vol. 5, 2013, pages A008656
MUOTRI, A. R., EPILEPSY BEHAV, vol. 14, no. 1, 2009, pages 81 - 85
PARK, I. H. ET AL., CELL, vol. 134, 2008, pages 877 - 886
RYU, JAE-SUNG ET AL.: "Ganglioside GM1 influences the proliferation rate of mouse induced pluripotent stem cells", BMB REPORTS, vol. 45, no. 12, 2012, pages 713 - 718, XP055287375 *
SANDHOFF K; HARZER K, THE JOURNAL OF NEUROSCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR NEUROSCIENCE, vol. 33, 2013, pages 10195 - 10208
SANO R ET AL., MOLECULAR CELL, vol. 36, 2009, pages 500 - 511
SON MY, STEM CELLS, vol. 31, 2013, pages 2375 - 2387
TAKAMURA A ET AL., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 367, 2008, pages 616 - 622
TAKAMURA A ET AL., JOURNAL OF NEUROCHEMISTRY, vol. 118, 2011, pages 399 - 406
TESSITORE A ET AL., MOLECULAR CELL, vol. 15, 2004, pages 753 - 766
TESSITORE A ET AL., MOLECULAR CELL, vol. L5, 2004, pages 753 - 766
TISCORNIA, G. ET AL., NATURE MEDICINE, vol. 17, 2011, pages 1570 - 1576
VITNER EB, THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 285, 2010, pages 20423 - 20427
WALSH JG, NATURE REVIEWS NEUROSCIENCE, vol. 15, 2014, pages 84 - 97
WALSH JG, NATURE REVIEWS NEUROSCIENCE, vol. L5, 2014, pages 84 - 97
YU RK, NEUROCHEMICAL RESEARCH, vol. 37, 2012, pages 1230 - 1244

Also Published As

Publication number Publication date
US20160069865A1 (en) 2016-03-10
KR20160029615A (ko) 2016-03-15
EP3012321A4 (en) 2016-09-28
EP3012321A1 (en) 2016-04-27
US20160068580A1 (en) 2016-03-10
JP2016533770A (ja) 2016-11-04
KR101739017B1 (ko) 2017-06-08
EP3012321B1 (en) 2019-04-03
US10035830B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
Voronova et al. Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain
Meneghini et al. Generation of human induced pluripotent stem cell-derived bona fide neural stem cells for ex vivo gene therapy of metachromatic leukodystrophy
Marqués-Torrejón et al. Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression
KR101258292B1 (ko) 망막 변성 질환 치료를 위한 개선된 양식
JP2005514926A (ja) 新規ほ乳類多分化能幹細胞および組成物、その調製方法および投与方法
Roessler et al. Detailed analysis of the genetic and epigenetic signatures of iPSC-derived mesodiencephalic dopaminergic neurons
KR102201417B1 (ko) 도파민 신경세포의 분리방법 및 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물
US20160215259A1 (en) Method of Preparing Induced Neural Stem Cells Reprogrammed from Non-Neuronal Cells Using HMGA2
WO2016035934A1 (ko) Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도
Liu et al. Enhancing the efficiency of direct reprogramming of human primary fibroblasts into dopaminergic neuron-like cells through p53 suppression
US20200024574A1 (en) Stem cell-derived astrocytes, methods of making and methods of use
Mazzara et al. Two factor-based reprogramming of rodent and human fibroblasts into Schwann cells
Yang et al. Overexpression of Wnt3a facilitates the proliferation and neural differentiation of neural stem cells in vitro and after transplantation into an injured rat retina
US20190322981A1 (en) Means and methods for the generation of oligodendrocytes
JP2024042096A (ja) 神経幹細胞組成物および神経変性障害を処置するための方法
Novosadova et al. A platform for studying molecular and cellular mechanisms of Parkinson’s disease based on human induced pluripotent stem cells
Lee et al. Role of FOXC1 in regulating APSCs self-renewal via STI-1/PrPC signaling
KR101847975B1 (ko) Gm1 강글리오시드증의 인간 세포 모델 및 이의 용도
KR101785910B1 (ko) 뮤코지질증 인간 세포 모델 및 이의 용도
WO2021201171A1 (ja) 神経炎症の抑制、そのための組成物及び方法
Xu et al. Pcolce2 overexpression promotes supporting cell reprogramming in the neonatal mouse cochlea
Chichagova Investigating retinal pathology in patients carrying m. 3243A> G mutation using human induced pluripotent stem cells
WO2024052931A1 (en) A protocol for generating neural progenitor cells and implementations thereof
Goes Barbosa Buskin Improving our understanding of autosomal dominant Retinitis Pigmentosa using PRPF31 patient-specific induced pluripotent stem cells (iPSCs)
Cheung Deciphering X-chromosome Inactivation and the Role of MECP2e1 in Rett Syndrome Patient Induced Pluripotent Stem Cells

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016546728

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014880388

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE