WO2016035891A1 - 光学アダプタおよびこれを用いた立体撮像システム - Google Patents

光学アダプタおよびこれを用いた立体撮像システム Download PDF

Info

Publication number
WO2016035891A1
WO2016035891A1 PCT/JP2015/075248 JP2015075248W WO2016035891A1 WO 2016035891 A1 WO2016035891 A1 WO 2016035891A1 JP 2015075248 W JP2015075248 W JP 2015075248W WO 2016035891 A1 WO2016035891 A1 WO 2016035891A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
video
optical
reflecting mirror
output
Prior art date
Application number
PCT/JP2015/075248
Other languages
English (en)
French (fr)
Inventor
英二 高沖
Original Assignee
株式会社メタ・コーポレーション・ジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メタ・コーポレーション・ジャパン filed Critical 株式会社メタ・コーポレーション・ジャパン
Priority to JP2016546708A priority Critical patent/JPWO2016035891A1/ja
Publication of WO2016035891A1 publication Critical patent/WO2016035891A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers

Definitions

  • the present invention relates to an optical adapter and a stereoscopic imaging system using the same, and can be suitably used for, for example, an optical adapter connected to a camera and a stereoscopic imaging system using the same.
  • the stereoscopic imaging system according to this conventional technique has a problem that it is difficult to synchronize between the two imaging apparatuses.
  • a general video camera or the like shoots at a frame rate of about 24 to 30 frames per second. Even if you try to synchronize between two video cameras at such a frame rate, it is impossible to achieve it by pressing the two recording buttons at the same time. For example, two video cameras can be modified. Therefore, it is necessary to prepare a circuit for simultaneously transmitting the recording start signal.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-24629 discloses a description related to a pan / tilt head device for a stereoscopic camera.
  • the stereoscopic camera pan / tilt head device described in Patent Document 1 holds two cameras used to shoot a stereoscopic image and moves the two cameras closer to each other in a horizontal plane with respect to the installation surface. The two cameras are moved away from each other, and the two cameras are rotated by a predetermined angle in the horizontal plane.
  • the three-dimensional camera pan / tilt head device includes a first and second camera holder, first and second rotation mechanisms, first and second angle measuring means, a first support portion, a second support portion, and a movement A mechanism, a moving distance measuring means, a synchronizing means, and an output means are provided.
  • the first and second camera holders hold the two cameras detachably.
  • the first and second rotation mechanisms rotate each camera held by each camera holder at a predetermined angle and in the opposite direction.
  • the first and second angle measuring means measure an angle with respect to the optical axis of each camera rotated at a predetermined angle by each rotating mechanism.
  • the first support part supports the first angle measuring means, the first rotation mechanism, and the first camera holder movably along a linear guide.
  • the second support part supports the second angle measurement means, the second rotation mechanism, and the second camera holder so as to be movable along the guide.
  • the moving mechanism moves both support parts so as to approach and separate from each other along the guide.
  • the moving distance measuring means measures the distance between the optical axes of the cameras moved by the moving mechanism.
  • the synchronization means synchronizes at least one of the rotation by both rotation mechanisms or the movement by the movement mechanism of both support portions.
  • the output means outputs the distance measured by the moving distance measuring means and the angle measured by the angle measuring means.
  • the problems related to synchronization and individual differences between the two video cameras are solved.
  • the resolution of the captured stereoscopic video is halved. That is, a so-called 4k2k standard light-receiving element having a resolution of 3,840 pixels in the horizontal direction and 2,160 pixels in the vertical direction has 1,920 pixels in the horizontal direction and 1,080 pixels in the vertical direction.
  • the 2k1k standard two images corresponding to the left and right images can be stored side by side in the horizontal direction.
  • FIG. 1 is a diagram showing a configuration example of a stereoscopic imaging system according to this conventional technique.
  • the stereoscopic imaging system shown in FIG. 1 includes an image sensor 1, a first video area 2, a second video area 3, a first light leakage area 4, and a second light leakage area 5.
  • the resolution of the imaging device 1 satisfies the so-called 4k2k standard, and the resolutions of the first video area 2 and the second video area 3 each satisfy the so-called 2k1k standard.
  • first light leakage area 4 is located around the first video area 2
  • second light leakage area 5 is located around the second video area 3. This positional relationship cannot be changed due to the principle of light leakage.
  • the width of the image sensor 1 is equal to the sum of the width of the first video area 2 and the width of the second video area 3, and therefore no gap can be provided between the two images. . Therefore, the first light leakage area 4 overlaps a part of the second video area 3, and the second light leakage area 5 overlaps a part of the first video area 2.
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-112288 discloses a description relating to a stereoscopic imaging optical unit and a stereoscopic image capturing system.
  • the stereoscopic imaging optical unit described in Patent Document 1 has a left optical system and a right optical system, and allows a single camera to capture an image capable of stereoscopic observation through the left and right optical systems.
  • This stereoscopic imaging optical unit is characterized by having interval changing means for changing the relative interval in the left-right direction of the left and right optical systems.
  • FIG. 2 is a diagram illustrating a configuration example of the stereoscopic imaging system according to the conventional technique.
  • the stereoscopic imaging system in FIG. 2 includes a stereoscopic video imaging device 10 and a camera 20.
  • the stereoscopic image capturing apparatus 10 includes a first reflecting mirror 11, a second reflecting mirror 12, and a prism 13.
  • the shape of the prism 13 is a triangular prism.
  • the camera 20 includes a lens 21 and a film 22.
  • the film 22 includes a plurality of frames 23. Each of the plurality of frames 23 is divided into a first area 24 and a second area 25.
  • the operation of the stereoscopic imaging system shown in FIG. 1 will be described.
  • the first reflecting mirror 11 reflects the left-eye image received from the y-axis direction toward the first side surface of the prism 13.
  • the second reflecting mirror 12 reflects the right-eye image received from the y-axis direction toward the second side surface of the prism 13.
  • the prism 13 reflects the left-eye image received from the first reflecting mirror 11 on the first side surface and reflects it toward the first region 24 of the film 22 through the lens 21.
  • the prism 13 reflects the right-eye image received from the second reflecting mirror 12 on the second side surface and reflects it toward the second region 25 of the film 22 through the lens 21.
  • the left-eye image and the right-eye image rotate 90 degrees in the opposite directions to reach the film 22 arranged on a plane perpendicular to the z-axis direction. Furthermore, an inclination of 90 degrees occurs between the direction in which the stereoscopic image capturing device 10 receives light and the direction in which the film 22 receives light.
  • the stereoscopic photographing system shown in FIG. 1 may be used in the reverse direction. That is, the first region of the photograph is viewed with the left eye via the prism 13 and the first reflecting mirror 11, and the second region of the photograph is simultaneously passed through the prism 13 and the second reflecting mirror 12. Viewing with the right eye enables stereoscopic viewing of photographs.
  • Non-Patent Document 1 Robot Crockett, “Tri-Delta Prism Stereo Camera Adapter”, [Online], [Search August 22, 2014], Internet ⁇ URL: http://ledametrix.com/ prism / index.html>) is published.
  • a stereoscopic imaging system capable of suppressing the influence of light leakage generated between a first video and a second video constituting a stereoscopic video when shooting the stereoscopic video.
  • An optical adapter for connecting a light source and a camera included in the stereoscopic imaging system is also provided.
  • the optical adapter includes a first light incident portion, a second light incident portion, a first light exit portion, a second light exit portion, a first optical system, and a second optical system.
  • the first light incident unit receives the first image incident in the first direction from the external light source.
  • the second light incident unit is arranged side by side in a parallax direction orthogonal to the first direction with respect to the first light incident unit, and inputs a second image incident in the first direction from the external light source.
  • the first light output unit outputs the first video in the second direction.
  • the second light emitting unit is arranged side by side in a third direction orthogonal to both the second direction and the parallax direction of the first video with respect to the first light emitting unit, and the second video is arranged in the second direction.
  • the first optical system guides the first image from the first light incident portion to the first light exit portion.
  • the second optical system guides the second image from the second light entrance to the second light exit.
  • the first video and the second video constituting the stereoscopic video are rearranged in the direction orthogonal to the original parallax direction, thereby taking a picture between the first video and the second video.
  • a wide interval can be provided.
  • the influence of light leakage can be suppressed between the first video and the second video.
  • FIG. 1 is a diagram illustrating a configuration example of a stereoscopic imaging system according to a conventional technique.
  • FIG. 2 is a diagram illustrating a configuration example of a stereoscopic imaging system according to a conventional technique.
  • FIG. 3 is a diagram illustrating a configuration example of the stereoscopic imaging system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration example of a microscope.
  • FIG. 5A is a bottom view of one configuration example of the optical adapter according to the first embodiment of the present invention as viewed from the microscope side.
  • FIG. 5B is a front view of a configuration example of the optical adapter according to the first embodiment of the present invention.
  • FIG. 5A is a bottom view of one configuration example of the optical adapter according to the first embodiment of the present invention as viewed from the microscope side.
  • FIG. 5B is a front view of a configuration example of the optical adapter according to the first embodiment of the present invention.
  • FIG. 5C is a top view of one configuration example of the optical adapter according to the first embodiment of the present invention as viewed from the camera side.
  • FIG. 6A is a diagram illustrating a configuration example of the adjustment mechanism of the optical adapter according to the first embodiment of the present invention.
  • FIG. 6B is a diagram illustrating a configuration example of an adjustment frame according to the first embodiment of the present invention.
  • FIG. 6C is a diagram illustrating an adjustment method according to the first adjustment axis of the optical adapter according to the first embodiment of the present invention.
  • FIG. 6D is a diagram illustrating an adjustment method related to the second adjustment axis of the optical adapter according to the first embodiment of the present invention.
  • FIG. 6A is a diagram illustrating a configuration example of the adjustment mechanism of the optical adapter according to the first embodiment of the present invention.
  • FIG. 6B is a diagram illustrating a configuration example of an adjustment frame according to the first embodiment of the present invention.
  • FIG. 6C is a diagram illustrating an
  • FIG. 6E is a diagram illustrating an adjustment method according to the third adjustment axis of the optical adapter according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration example of the camera.
  • FIG. 8 is an arrangement diagram showing an example of an arrangement of an image captured by the stereoscopic imaging system according to the first embodiment of the present invention as viewed from the optical adapter side.
  • FIG. 9 is a diagram illustrating a configuration example of a system for stereoscopically viewing an image captured by the stereoscopic imaging system according to the first embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a configuration example of a stereoscopic imaging system according to the second embodiment of the present invention.
  • FIG. 11A is a plan view showing a configuration example of an optical adapter according to the second embodiment of the present invention.
  • FIG. 11B is a front view showing a configuration example of the optical adapter according to the second embodiment of the present invention.
  • FIG. 12A is an overhead view showing one configuration example of the first beam splitter in the optical adapter according to the second embodiment of the present invention.
  • FIG. 12B is an overhead view showing a configuration example of the second beam splitter in the optical adapter according to the second embodiment of the present invention.
  • FIG. 12C is a bird's-eye view showing a configuration example of the light exit part reflecting mirror in the optical adapter according to the second embodiment of the present invention.
  • FIG. 12A is a plan view showing a configuration example of an optical adapter according to the second embodiment of the present invention.
  • FIG. 11B is a front view showing a configuration example of the optical adapter according to the second embodiment of the present invention.
  • FIG. 12A is an overhead view showing one configuration example of the first beam split
  • FIG. 13A is an overhead view showing a structural example of the internal structure of the optical adapter according to the second embodiment of the present invention.
  • FIG. 13B is a diagram illustrating a configuration example of a stereoscopic image captured through the optical adapter according to the second embodiment of the present invention.
  • FIG. 14A is a plan view showing a configuration example of an adjustment frame in the optical adapter according to the second embodiment of the present invention.
  • FIG. 14B is a front view showing a configuration example of the adjustment frame in the optical adapter according to the second embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a configuration example of a stereoscopic imaging system according to the third embodiment of the present invention.
  • FIG. 16A is a plan view showing a configuration example of an optical adapter according to the third embodiment of the present invention.
  • FIG. 16B is a front view showing a configuration example of the optical adapter according to the third embodiment of the present invention.
  • FIG. 17A is a plan view showing a configuration example of the internal structure of the optical adapter according to the third embodiment of the present invention.
  • FIG. 17B is a front view showing a structural example of the internal structure of the optical adapter according to the third embodiment of the present invention.
  • FIG. 18A is an overhead view showing a structural example of the internal structure of the optical adapter according to the third embodiment of the present invention.
  • FIG. 18B is a diagram illustrating a configuration example of a stereoscopic image captured through the optical adapter according to the third embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration example of the stereoscopic imaging system 100 according to the first embodiment of the present invention.
  • the stereoscopic imaging system 100 in FIG. 3 includes a microscope 200, an optical adapter 300, and a camera 400.
  • the microscope 200 can be changed to other stereoscopic video sources.
  • the camera 400 can be changed to other general imaging devices.
  • the microscope 200 is connected to one end of the optical adapter 300.
  • the camera 400 is connected to the other end of the optical adapter 300.
  • the microscope 200 and the camera 400 are connected via the optical adapter 300.
  • the microscope 200 is connected to the front stage of the optical adapter 300, and the camera 400 is connected to the rear stage of the optical adapter 300.
  • the microscope 200, the optical adapter 300, and the camera 400 are arranged in the same direction. This direction is set as the z-axis direction.
  • FIG. 4 is a diagram illustrating a configuration example of the microscope 200.
  • the components of the microscope 200 shown in FIG. 4 will be described.
  • the microscope 200 in FIG. 4 includes a light source 201, a sample stage 202, a first objective lens 221, a second objective lens 222, and a mount 204.
  • the light source 201 can be changed to a reflecting mirror that guides external light to the inside. Further, the first objective lens 221 and the second objective lens 222 can be changed to a simple space through which light passes as it is, in other words, can be omitted.
  • the mount 204 is provided for connecting other parts to the microscope 200.
  • an eyepiece or an optical system for adjusting the focal length may be connected to the mount 204.
  • constituent elements included in the microscope 200 are known as constituent elements of a general microscope and are not directly related to the present embodiment, and thus further description is omitted.
  • the connection relationship of each component of the microscope 200 shown in FIG. 4 will be described.
  • the optical axis of the first objective lens 221 is referred to as a first optical axis 211.
  • the optical axis of the second objective lens 222 is referred to as a second optical axis 212.
  • the first optical axis 211 and the second optical axis 212 are preferably separated by a predetermined distance and parallel. This distance is called parallax 210.
  • each of the first optical axis 211 and the second optical axis 212 is arranged in parallel to the z-axis direction.
  • the direction in which the first optical axis 211 and the second optical axis 212 are separated is set as the x-axis direction.
  • the first objective lens 221 and the second objective lens 222 are arranged in the x-axis direction.
  • the y-axis direction is defined as a direction orthogonal to both the x-axis direction and the z-axis direction.
  • the sample stage 202 supports or fixes the sample 203.
  • the light source 201 irradiates the sample 203 supported or fixed on the sample stage 202 with light. Part of the light emitted from the light source 201 is reflected by the sample 203, passes through the first objective lens 221, and travels toward the optical adapter 300 along the first optical axis 211. Another part of the light emitted from the light source 201 is reflected by the sample 203, passes through the second objective lens 222, and travels toward the optical adapter 300 along the second optical axis 212.
  • the mount 204 removably connects the microscope 200 and the optical adapter 300.
  • FIG. 5A to 5C are diagrams showing a configuration example of the optical adapter 300 according to the first embodiment of the present invention.
  • FIG. 5A is a bottom view of one configuration example of the optical adapter 300 according to the present embodiment as viewed from the microscope 200 side.
  • FIG. 5B is a front view of a configuration example of the optical adapter 300 according to the present embodiment.
  • FIG. 5C is a top view of one configuration example of the optical adapter 300 according to the present embodiment as viewed from the camera 400 side.
  • 5A to 5C includes an input side mount 301, an output side mount 302, a first light incident part 311, a second light incident part 312, an input side first reflecting mirror 321, and an input side. It includes a second reflecting mirror 322, an output side first reflecting mirror 331, an output side second reflecting mirror 332, a first light output unit 341, and a second light output unit 342.
  • the first light incident part 311, the second light incident part 312, the first light exit part 341, and the second light exit part 342 are holes provided on the surface of the body of the optical adapter 300 to reach the internal cavity, respectively.
  • an appropriate optical system may be provided on each of the lenses or the like according to the optical axis as necessary.
  • the input side first reflecting mirror 321, the input side second reflecting mirror 322, the output side first reflecting mirror 331, and the output side second reflecting mirror 332, a glass mirror, a metal mirror, a prism, and the like Can be used.
  • the input side mount 301 is provided at a position where it can be detachably connected to the mount 204 of the microscope 200.
  • the output side mount 302 is provided at a position where it can be detachably connected to a mount 401 of the camera 400 described later.
  • a state in which the mount 204 of the microscope 200 and the input side mount 301 of the optical adapter 300 are connected, and the output side mount 302 of the optical adapter 300 and the mount 401 of the camera 400 are connected will be described.
  • the first light incident part 311 and the second light incident part 312 of the optical adapter 300 are arranged at positions corresponding to the first objective lens 221 and the second objective lens 222 of the microscope 200, respectively.
  • the input-side first reflecting mirror 321 and the input-side second reflecting mirror 322 of the optical adapter 300 are disposed at positions corresponding to the first light incident part 311 and the second light incident part 312 of the optical adapter 300, respectively.
  • the optical adapter 300 is configured such that the first optical axis 211 of the microscope 200 reaches the input-side first reflecting mirror 321 and the second optical axis 212 of the microscope 200 reaches the input-side second reflecting mirror 322.
  • the first light incident part 311, the second light incident part 312, the input side first reflecting mirror 321 and the input side second reflecting mirror 322 are arranged.
  • the first light entrance part 311 and the second light entrance part 312 are arranged side by side in the x-axis direction.
  • the first optical axis 211 emitted from the first objective lens 221 of the microscope 200 enters the optical adapter 300 from the first light incident portion 311, is reflected by the input side first reflecting mirror 321, and is further output by the first reflecting mirror 331 on the output side. And exits the optical adapter 300 from the first light exit unit 341.
  • the second optical axis 212 emitted from the second objective lens 222 of the microscope 200 enters the optical adapter 300 from the second light incident unit 312, is reflected by the input-side second reflecting mirror 322, and is further output-side second. The light is reflected by the reflecting mirror 332 and exits the optical adapter 300 from the second light output unit 342.
  • the output-side first reflecting mirror 331, the output-side second reflecting mirror 332, the first light output unit 341, and the first optical axis 211 and the second optical axis 212 can follow the optical paths as described above, respectively.
  • the 2nd light emission part 342 is arrange
  • the input-side first reflecting mirror 321 and the output-side first reflecting mirror 331 are arranged in parallel with each other so that trapezoidal distortion or the like does not occur in each image due to reflection by each reflecting mirror.
  • the input-side second reflecting mirror 322 and the output-side second reflecting mirror 332 are also arranged in parallel to each other.
  • first light emitting part 341 and the second light emitting part 342 are arranged side by side in the y-axis direction. It is important in the optical adapter 300 according to the present embodiment that the arrangement direction of the first light incident part 311 and the second light incident part 312 is orthogonal to the arrangement direction of the first light emission part 341 and the second light emission part 342. It is a special feature.
  • the two lights output from the microscope 200 and input to the optical adapter 300 and the two lights output from the optical adapter 300 and input to the camera 400 both travel straight in the z-axis direction, and the x-axis
  • the direction, the y-axis direction, and the z-axis direction are orthogonal to each other.
  • the operation of each component of the optical adapter 300 shown in FIGS. 5A to 5C will be described.
  • the first light incident part 311, the input side first reflecting mirror 321, the output side first reflecting mirror 331, and the first light exiting part 341 are output from the microscope 200 along the first optical axis 211.
  • the video is guided to the camera 400.
  • the input side first reflecting mirror 321 and the output side first reflecting mirror 331 are collectively referred to as a first optical system of the optical adapter 300.
  • the first optical system may further include a first light incident portion 311 and a first light exit portion 341.
  • the second light incident unit 312, the input side second reflecting mirror 322, the output side second reflecting mirror 332, and the second light emitting unit 342 are output from the microscope 200 along the second optical axis 212.
  • the second image is guided to the camera 400.
  • the input side second reflecting mirror 322 and the output side second reflecting mirror 332 are collectively referred to as a second optical system of the optical adapter 300.
  • the second optical system may further include a second light incident unit 312 and a second light output unit 342.
  • the first optical system performs an operation of inputting the first video generated and output by the microscope 200 as the front optical system and converting it into the first video output toward the camera 400 as the rear optical system.
  • the second optical system inputs a second image generated and output by the microscope 200 as the former optical system, and converts it into a second image outputted toward the camera 400 as the latter optical system.
  • the optical adapter 300 adjusts the positional relationship between the first optical axis 211 and the second optical axis 212 on each of the input side and the output side in addition to the components shown in FIGS. 5A to 5C. It is preferable to further have a mechanism.
  • FIG. 6A is a diagram illustrating a configuration example of the adjustment mechanism of the optical adapter 300 according to the first embodiment of the present invention.
  • the optical adapter 300 shown in FIG. 6A includes a first light incident part 311, a second light incident part 312, an input side first reflecting mirror 321, an input side second reflecting mirror 322, and an output which are also shown in FIGS. 5A to 5C.
  • an adjustment frame 350 is included in addition to the side first reflecting mirror 331 and the output side second reflecting mirror 332, an adjustment frame 350 is included.
  • FIG. 6A shows the positional relationship of the image sensor 403 in addition to the components of the optical adapter 300.
  • the optical adapter 300 of this embodiment further includes another adjustment frame.
  • the adjustment frame 350 illustrated in FIG. 6A is provided between the second light incident unit 312 and the input side second reflecting mirror 322.
  • the input side second reflecting mirror 322 is fixed to the adjustment frame 350.
  • the output-side second reflecting mirror 332 is mounted on the adjustment frame 350 and is movable in a uniaxial straight direction with respect to the adjustment frame 350.
  • the adjustment frame 350 is rotatable in a uniaxial direction with respect to the body of the optical adapter 300. It is desirable that the adjustment frame 350 can be moved in the direction of another axis.
  • FIG. 6B is a diagram illustrating a configuration example of the adjustment frame 350 according to the first embodiment of the present invention.
  • 6B includes a bearing portion 351, a rail portion 352, and an opening 353.
  • the bearing portion 351 includes an outer frame portion, an inner frame portion, and a plurality of bearing balls.
  • Rail portion 352 includes a track portion and a sliding portion.
  • the opening 353 is a space opened inside the inner frame portion of the bearing portion 351.
  • the outer frame portion is disposed outside the inner frame portion, and the plurality of bearing balls are disposed between the outer frame portion and the inner frame portion.
  • the sliding part is supported by the track part.
  • the output side second reflecting mirror 332 is fixed to the sliding portion of the rail portion 352.
  • One end of the track portion of the rail portion 352 is fixed to the outer frame portion of the bearing portion 351.
  • the input-side second reflecting mirror 322 is also fixed to the outer frame portion of the bearing portion 351.
  • the track portion of the rail portion 352 and the input-side second reflecting mirror 322 are respectively fixed to two points as far as possible in the outer frame portion of the bearing portion 351.
  • the inner frame portion of the bearing portion 351 is supported on the optical adapter 300 side.
  • the central portion of the bearing portion 351, that is, the inside of the inner frame portion is hollow, and this portion is referred to as an opening portion 353.
  • the second optical axis 212 passes through the opening 353.
  • the adjustment frame 350 performs three types of operations.
  • the adjustment frame 350 has a degree of freedom to rotate around the first adjustment axis.
  • This first adjustment axis preferably coincides with the second optical axis 212. The direction of this rotation is shown in FIG.
  • FIG. 6C is a diagram illustrating an adjustment method related to the first adjustment axis of the optical adapter 300 according to the first embodiment of the present invention.
  • FIG. 6C shows a state after the adjustment frame 350 of the optical adapter 300 shown in FIG. 6A has rotated.
  • the adjustment frame 350 rotates around the second optical axis 212 in the clockwise direction as compared with the state shown in FIG. 6A. Therefore, the mirror surface direction of the input-side second reflecting mirror 322 fixed to the outer frame portion of the bearing portion 351 of the adjustment frame 350 is changed from the direction in FIG. 6A. Similarly, the mirror surface direction of the output-side second reflecting mirror 332 fixed to the sliding portion of the rail portion 352 of the adjustment frame 350 is changed from the direction in FIG. 6A.
  • the location where the second optical axis 212 reaches the image sensor 403 is also different. This difference is indicated by the position of the letter “R” that appears on the image sensor 403 in FIGS. 6A and 6C.
  • the input-side second reflecting mirror 322 and the output-side second reflecting mirror 332 always face each other in parallel, even if the positional relationship with respect to the image sensor 403 is translated, Distortion does not occur.
  • the adjustment frame 350 has a degree of freedom to adjust the distance from the input-side second reflecting mirror 322 to the output-side second reflecting mirror 332 by parallel movement along the second adjustment axis.
  • This second adjustment axis is parallel to the longitudinal direction of the track portion of the rail portion 352 and is shown as a straight direction 362 in FIG. 6B.
  • FIG. 6D is a diagram illustrating an adjustment method related to the second adjustment axis of the optical adapter 300 according to the first embodiment of the present invention.
  • FIG. 6D shows a state after the optical adapter 300 shown in FIG. 6A has moved in parallel with the output-side second reflecting mirror 332 in the rectilinear direction 362.
  • the sliding portion of the rail portion 352 of the adjustment frame 350 is parallel along the rectilinear direction 362 away from the input-side second reflecting mirror 322. Has moved. Therefore, the output-side second reflecting mirror 332 fixed to the sliding portion of the rail portion 352 of the adjustment frame 350 and the input-side second reflecting mirror 322 fixed to the outer frame portion of the bearing portion 351 of the adjustment frame 350. Is wider than the distance in FIG. 6A.
  • the location where the second optical axis 212 reaches the image sensor 403 is also different. This difference is indicated by the position of the letter “R” that appears on the image sensor 403 in FIGS. 6A and 6C.
  • the input-side second reflecting mirror 322 and the output-side second reflecting mirror 332 always face each other in parallel. Even if the positional relationship is translated, no rotation or distortion occurs.
  • the first operation and the second operation differ in the manner in which the location where the second optical axis 212 reaches the image sensor 403 is changed.
  • the place where the second optical axis 212 reaches the image sensor 403 can be freely adjusted.
  • these adjustments allow the same optical adapter 300 to be used for cameras 400 having different configurations.
  • the optical adapter 300 further includes another adjustment frame that adjusts the positional relationship of the first optical axis 211, similarly to the adjustment frame 350 that adjusts the positional relationship of the second optical axis 212. It is preferable.
  • the adjustment frame 350 performs an adjustment for making the central axis of the rotational motion, which is the first operation, coincide with the second optical axis 212.
  • the adjustment frame 350 has a degree of freedom to adjust the positional relationship with the optical adapter 300, particularly the relative positional relationship with the second light incident portion 312.
  • FIG. 6E is a diagram showing an adjustment method related to the third adjustment axis of the optical adapter 300 according to the first embodiment of the present invention.
  • FIG. 6E shows the adjustment frame 350 shown in FIGS. 6A to 6D and another adjustment frame 370 that adjusts the positional relationship of the first optical axis 211 in the same manner as this adjustment frame.
  • the configuration of the other adjustment frame 370 is exactly the same as the configuration of the adjustment frame 350, and thus further detailed description is omitted.
  • the rotation axis of the adjustment frame 350 coincides with the second optical axis 212
  • the rotation axis of the adjustment frame 370 also coincides with the first optical axis 211.
  • the adjustment frame 350 and the adjustment frame 370 can be translated in the X-axis direction parallel to the direction of the parallax 210 indicating the distance from the first optical axis 211 to the second optical axis 212, respectively.
  • This parallel movement can be achieved, for example, by providing, as a part of the adjustment mechanism, a rail part that enables parallel movement between the inner frame part of each adjustment frame and the optical adapter 300.
  • Aligning the rotation axis and the optical axis by the third operation also enables the parallax 210 to be adjusted. By this adjustment, the same optical adapter 300 can be used for the microscopes 200 having different configurations.
  • the adjustment mechanism of the optical adapter 300 further includes an unillustrated female screw, a spring, and the like in order to finely adjust the state of the adjustment frame 350 incorporated from the outside and hold the result of the fine adjustment.
  • an unillustrated female screw Preferably it is.
  • FIG. 7 is a diagram illustrating a configuration example of the camera 400.
  • a camera 400 in FIG. 7 includes a mount 401, a lens 402, and an image sensor 403.
  • the lens 402 can be changed to, for example, a simple space, in other words, the lens 402 can be omitted.
  • the mount 401 is fixed to a body (not shown) of the camera 400.
  • the lens 402 When the lens 402 is used, the lens 402 is disposed between the mount 401 and a body (not shown) and fixed to both.
  • the lens 402 may be detachable from one or both of a body (not shown) and the mount 401.
  • the optical adapter 300 is directly connected to the camera 400 instead of the lens. Also good. In this case, both the output side mount 302 of the optical adapter 300 and the mount 401 of the camera 400 need to correspond to the lens mount of the camera 400. In this case, the lens 402 shown in FIG. 7 is omitted.
  • the optical adapter 300 is connected to the outside of the lens.
  • the lens that cannot be removed corresponds to the lens 402 shown in FIG.
  • the optical adapter 300 may be connected to the outside of an arbitrary lens. In this case, this arbitrary lens corresponds to the lens 402 shown in FIG.
  • the image sensor 403 is preferably fixed to a body (not shown), but the positional relationship with the body may be appropriately adjusted by a so-called camera shake prevention function or the like.
  • the mount 401 detachably connects the camera 400 and the optical adapter 300.
  • the first optical axis 211 output from the first light output unit 341 of the optical adapter 300 and the second optical axis 212 output from the second light output unit 342 are connected to the imaging element.
  • the image sensor 403 simultaneously captures the first image that has reached the microscope 200 along the first optical axis 211 and the second image that has also reached the second optical axis 212.
  • the camera 400 may record the video including the first video and the second video in the same frame as a single photo, or as a video if the camera 400 has a video shooting function. May be.
  • FIG. 8 is a layout diagram showing an example of the layout viewed from the optical adapter 300 side of the image captured by the stereoscopic imaging system 100 according to the first embodiment of the present invention.
  • the layout diagram of FIG. 8 includes an image sensor 403, a first video region 411, a second video region 412, a first light leakage region 421, and a second light leakage region 422.
  • the image sensor 403 is rectangular and corresponds to the so-called 4k2k standard, and the long side has a resolution of 3,840 pixels and the short side has a resolution of 2,160 pixels. Note that these are the number of effective pixels of the image sensor 403 or the number of pixels related to the effective resolution, and the present invention does not limit that the image sensor 403 has a further number of pixels.
  • Each of the first video area 411 and the second video area 412 corresponds to the so-called 2k1k standard, and the long side has a resolution of 1,920 pixels and the short side has a resolution of 1,080 pixels. Yes.
  • the combination of the number of pixels is merely an example, and is not a feature limiting the present invention.
  • the present invention can be applied to the so-called 8k4k standard (7,680 pixels ⁇ 4,320 pixels), which is expected to become popular in the future.
  • the first video area 411 is an area where the image sensor 403 receives a desired necessary part of the first video that has reached the first optical axis 211 from the microscope 200.
  • the first light leakage area 421 is an area in which an unnecessary portion of the first video leaks around the first video area 411.
  • the second image area 412 is an area where the imaging element 403 receives a desired necessary portion of the second image that has reached from the microscope 200 along the second optical axis 212.
  • the second light leakage area 422 is an area where an unnecessary portion of the second video leaks around the second video area 412.
  • the image sensor 403 is arranged with the long side in the y-axis direction and the short side in the x-axis direction. However, at the stage where the first video and the second video are output from the microscope 200, the long side direction of each video is arranged in the x-axis direction and the short side direction is arranged in the y-axis direction. That is, the arrangement of the image sensor 403 is rotated 90 degrees on the z-axis as compared with the image of the microscope 200.
  • the first light incident part 311 and the second light incident part 312 are disposed in the x-axis direction, while the first light exit part 341 and the second light exit part 342 are disposed in the y-axis direction. It comes from being.
  • the first video area 411 is arranged with the long side in the x-axis direction and the short side in the y-axis direction. That is, unlike the case of the image sensor 403, there is no rotation of the arrangement as compared with the image of the microscope 200.
  • This is the sum of the first image output from the microscope 200 by the input-side first reflecting mirror 321 and the output-side first reflecting mirror 331 that are included in the first optical system of the optical adapter 300 and arranged in parallel. This is because only two reflections are applied.
  • the second video region 412 has a long side arranged in the x-axis direction and a short side arranged in the y-axis direction. That is, unlike the case of the image sensor 403, there is no rotation of the arrangement as compared with the image of the microscope 200. This is the sum of the second image output from the microscope 200 by the input-side second reflecting mirror 322 and the output-side second reflecting mirror 332 that are included in the second optical system of the optical adapter 300 and arranged in parallel. This is because only two reflections are applied.
  • the first video and the second video that are apparently arranged in the longitudinal direction of the image sensor 403 are on the z-axis and in the same direction for both videos. , An image rotated by 90 degrees is obtained.
  • the first video and the second video for viewing with the left and right eyes are usually arranged side by side in the horizontal direction. In the form, they are arranged in the vertical direction.
  • the width between the first video area 411 and the second video area 412 is longer than the width of the first light leakage area 421 and sufficiently longer than the width of the second light leakage area 422. Secure distance. That is, according to the present embodiment, the first light leakage area 421 does not overlap the second video area 412, and the second light leakage area 422 does not overlap the first video area 411. Solved.
  • the captured image may be subjected to digital processing such as blackening the first light leakage area 421 and the second light leakage area 422.
  • digital processing such as blackening the first light leakage area 421 and the second light leakage area 422.
  • FIG. 9 is a diagram illustrating a configuration example of a display system for stereoscopically viewing an image captured by the stereoscopic imaging system 100 according to the first embodiment of the present invention.
  • the display system in FIG. 9 includes a display device 500 and a stereoscopic goggles 600.
  • the display device 500 displays two images taken stereoscopically on its surface.
  • the display device 500 may be a general monitor, a television receiver, a projector projection screen, or the like. If the stereoscopically captured video is a still image, the display device 500 may be a sheet of paper on which two still images are printed.
  • the display device 500 includes a first display area 501 and a second display area 502.
  • the surface of the display device 500 is preferably a flat surface.
  • Stereoscopic goggles 600 include a first light incident portion 611, a second light incident portion 612, a first light exit portion 621, and a second light exit portion 622. Stereoscopic goggles 600 further include a first optical system and a second optical system (not shown).
  • the configuration of the stereoscopic goggles 600 is the same as that of the optical adapter 300 shown in FIGS. 5A to 5D, and thus further detailed illustration is omitted.
  • the surface of the display device 500 is included in the xy plane.
  • the y-axis direction is the top-and-bottom direction and the x-axis direction is the left-right direction as viewed from the stereoscopic viewer, and the stereoscopic viewer and the display device 500 are arranged side by side in the z-axis direction.
  • the first display area 501 is arranged on the upper part of the display device 500.
  • a second display area 502 is disposed below the display device 500. It is desirable that an appropriate distance is provided between the first display area 501 and the second display area 502.
  • Stereoscopic goggles 600 are equivalent to those using the optical adapter 300 shown in FIGS. 5A to 5D in the reverse direction. That is, the first light entrance 611 and the first light exit 621 shown in FIG. 9 correspond to the first light exit 341 and the first light entrance 311 shown in FIGS. 5A to 5D, respectively.
  • an optical system corresponding to the first optical system shown in FIGS. 5A to 5D that is, the output-side first reflecting mirror 331, is provided between the first light entrance 611 and the first light exit 621 shown in FIG.
  • the input-side first reflecting mirror 321 includes a corresponding optical system.
  • FIGS. 9 correspond to the second light output unit 342 and the second light input unit 312 shown in FIGS. 5A to 5C, respectively. Further, an optical system corresponding to the second optical system shown in FIGS. 5A to 5C, that is, the output-side second reflecting mirror 332 is provided between the second light input unit 612 and the second light output unit 622 shown in FIG.
  • the input-side second reflecting mirror 322 includes a corresponding optical system.
  • the distance from the first light incident part 611 to the second light incident part 612 may be smaller than the distance from the first display area 501 to the second display area 502 at a non-negligible ratio. Therefore, it is preferable that the angle between the first optical axis 601 and the second optical axis 602 can be adjusted as necessary according to this ratio.
  • the display device 500 displays one of the pre-captured stereoscopic images in the first display area 501 and the other image in the second display area 502.
  • the left-eye video is displayed in the first display area 501 and the right-eye video is displayed in the second display area 502, but this relationship can be exchanged as necessary.
  • the left-eye image displayed in the first display area 501 enters from the first light entrance 611 along the first optical axis 601 and exits from the first light exit 621 via an optical system (not shown). It is reflected in the left eye of a person who views stereoscopically.
  • the image for the right eye displayed in the second display area 502 is incident from the second light incident unit 612 along the second optical axis 602, and the second light output unit 622 via an optical system (not shown). And is reflected in the right eye of the person viewing stereoscopically.
  • a person who views stereoscopically experiences stereoscopic vision by viewing the first video and the second video with the left eye and the right eye, respectively.
  • a general existing microscope and a general existing camera having a moving image shooting function corresponding to the so-called 4k2k standard are combined with the microscope and two mounts corresponding to the camera.
  • the optical adapter 300 having 301 and 302 it is possible to easily and inexpensively capture a clear 3D image corresponding to the so-called 2k1k standard.
  • the image sensor 403 By providing a necessary and sufficient distance between two images constituting a stereoscopic image on the image sensor 403, it is possible to relatively easily remove the adverse effects caused by unwanted light leakage that occurs during imaging. is there.
  • FIG. 10 is a diagram illustrating a configuration example of a stereoscopic imaging system 1600 according to the second embodiment of the present invention.
  • a stereoscopic imaging system 1600 illustrated in FIG. 10 includes an optical adapter 1010, a camera 1300, a microscope 1400, and an eyepiece tube 1500.
  • the connection relationship of each component shown in FIG. 10 will be described.
  • the camera 1300, the microscope 1400, and the eyepiece tube 1500 are each connected to the optical adapter 1010.
  • the microscope 1400 is a light source that supplies left and right images constituting a stereoscopic image. These left and right images are hereinafter referred to as a first image and a second image.
  • the optical adapter 1010 bisects each of the first video and the second video supplied from the microscope 1400 and supplies them to the camera 1300 and the eyepiece tube 1500 simultaneously.
  • the camera 1300 is an imaging device that captures the first video and the second video supplied from the optical adapter 1010.
  • the eyepiece tube 1500 outputs the first video and the second video supplied from the optical adapter 1010 to both eyes of the user.
  • the optical adapter 1010 is a so-called transmission-type optical adapter that enables photographing and observation with a microscope at the same time.
  • the microscope 1400 as a light source can be changed to another stereoscopic video source.
  • the camera 1300 as the imaging device can be changed to another imaging device.
  • the eyepiece tube 1500 is an element included in the system of the microscope 1400.
  • FIG. 11A is a plan view showing a configuration example of the optical adapter 1010 according to the second embodiment of the present invention.
  • FIG. 11B is a front view showing a configuration example of the optical adapter 1010 according to the second embodiment of the present invention.
  • the optical adapter 1010 includes a body 1100, a first connection part 1110, a second connection part 1120, a third connection part 1130, a first optical system, and a second optical system.
  • the first connection unit 1110 includes a first light incident unit 1111 and a second light incident unit 1112.
  • the second connection unit 1120 includes a first light output unit 1121 and a second light output unit 1122.
  • the third connection unit 1130 includes a third light output unit 1131 and a fourth light output unit 1132.
  • the first optical system includes a first beam splitter 1140, a first optical path first reflecting mirror 1151, a first optical path imaging lens 1153, a first optical path second reflecting mirror 1152, and a light output part reflecting mirror 1180.
  • the light exiting part reflecting mirror 1180 the light exiting part reflecting mirror first reflecting surface 1181 operates as the first optical system.
  • the second optical system includes a second beam splitter 1160, a second optical path first reflecting mirror 1171, a second optical path imaging lens 1173, a second optical path second reflecting mirror 1172, and a light output part reflecting mirror 1180.
  • the light exiting part reflecting mirror 1180 the light exiting part reflecting mirror second reflecting surface 1182 operates as the second optical system.
  • the first light incident part 1111 and the second light incident part 1112 are arranged in the X direction orthogonal to the + Z direction. More precisely, when viewed from the first light incident part 1111, the second light incident part 1112 is arranged in the + X direction. This is because the parallax direction in the microscope 1400 is set to the X direction.
  • the first beam splitter 1140 is arranged in the + Z direction when viewed from the first light incident portion 1111.
  • the second beam splitter 1160 is disposed in the + Z direction when viewed from the second light incident portion 1112.
  • the configuration of the first beam splitter 1140 and the second beam splitter 1160 will be described.
  • FIG. 12A is an overhead view showing one configuration example of the first beam splitter 1140 in the optical adapter 1010 according to the second embodiment of the present invention.
  • the overall shape of the first beam splitter 1140 shown in FIGS. 11A, 11B, and 12A is a cube. This cube is defined by vertices 1011A to 1011H.
  • the square defined by the vertices 1011A to 1011D is one surface of the cube of the first beam splitter 1140.
  • the surfaces 1011A to 1011D are incident surfaces on which the first video input from the first light incident unit 1111 is incident in the + Z direction as incident light 1021A.
  • the rectangle defined by the vertices 1011A, 1011B, 1011G, and 1011H is included inside the cube of the first beam splitter 1140, and is in contact with the incident surfaces 1011A to 1011D through the shared sides 1011A and 1011B.
  • the surfaces 1011A, 1011B, 1011G, and 1011H are reflective surfaces that reflect a portion of the incident light 1021A incident in the + Z direction as a reflected light 1021B and reflect in the + Y direction, and the rest are transmitted light. Transmits in the + Z direction as 1021C.
  • the + Y direction is a direction orthogonal to both the + X direction and the + Z direction, and the + X direction, the + Y direction, and the + Z direction constitute a right-handed system in this order.
  • the square defined by the vertices 1011C, 1011D, 1011H, and 1011G is one surface of the cube of the first beam splitter 1140, and is in contact with the incident surfaces 1011A to 1011D through the shared sides 1011C and 1011D.
  • surfaces 1011C, 1011D, 1011H, and 1011G are first emission surfaces from which the reflected light 1021B is emitted in the + Y direction.
  • a square defined by the vertices 1011E to 1011H is one surface of a cube of the first beam splitter 1140, and the reflecting surfaces 1011A, 1011B, 1011G, 1011H and the first exit surfaces 1011C, 1011D, and 1011H are shared via the shared sides 1011G, 1011H. 1011H and 1011G are in contact with each other and face parallel to the incident surfaces 1011A to 1011D.
  • the surfaces 1011E to 1011H are second emission surfaces from which the transmitted light 1021C is emitted in the + Z direction.
  • the first beam splitter 1140 is preferably a non-polarization type beam splitter that divides the incident light 1021A into the reflected light 1021B and the transmitted light 1021C at a ratio of 1: 1.
  • FIG. 12B is an overhead view showing a configuration example of the second beam splitter 1160 in the optical adapter 1010 according to the second embodiment of the present invention.
  • the overall shape of the second beam splitter 1160 shown in FIGS. 11A and 12B is a cube. This cube is defined by vertices 1012A to 1012H.
  • the square defined by the vertices 1012A to 1012D is one surface of the cube of the second beam splitter 1160.
  • the surfaces 1012A to 1012D are incident surfaces on which the second image input from the second light incident unit 1112 is incident in the + Z direction as incident light 1022A.
  • the rectangles defined by the vertices 1012C to 1012F are included in the cube of the second beam splitter 1160, and are in contact with the incident surfaces 1011A to 1011D through the shared sides 1012C and 1012D.
  • the surfaces 1012C to 1012F reflect a part of the incident light 1022A incident in the + Z direction as the reflected light 1022B in the ⁇ Y direction, and the rest as the transmitted light 1022C and transmit in the + Z direction. It is a reflective surface.
  • the square defined by the vertices 1012A, 1012B, 1012F, and 1012E is one surface of the cube of the second beam splitter 1160, and is in contact with the incident surfaces 1012A to 1012D through the shared sides 1012A and 1012B.
  • surfaces 1012A, 1012B, 1012F, and 1012E are first emission surfaces from which the reflected light 1022B is emitted in the ⁇ Y direction.
  • the squares defined by the vertices 1012E to 1012H are one side of the cube of the second beam splitter 1160, and the reflection surfaces 1012C to 1012F and the first emission surfaces 1012A, 1012B, 1012F, and 1012E are shared via the shared sides 1012E and 1012F. It is in contact with both and faces parallel to the incident surfaces 1012A to 1012D.
  • surfaces 1012E to 1012H are second emission surfaces from which the transmitted light 1022C is emitted in the + Z direction.
  • the second beam splitter 1160 is also preferably a non-polarization type beam splitter that divides incident light 1022A into reflected light 1022B and transmitted light 1022C at a ratio of 1: 1.
  • the first optical path first reflecting mirror 1151 is arranged in the + Y direction when viewed from the first beam splitter 1140.
  • the first optical path second reflecting mirror 1152 is disposed in the + X direction when viewed from the first optical path first reflecting mirror 1151.
  • a first optical path imaging lens 1153 is disposed between the first optical path first reflecting mirror 1151 and the first optical path second reflecting mirror 1152.
  • the second optical path first reflecting mirror 1171 is arranged in the ⁇ Y direction when viewed from the second beam splitter 1160.
  • the second optical path second reflecting mirror 1172 is arranged in the + X direction when viewed from the second optical path first reflecting mirror 1171.
  • a second optical path imaging lens 1173 is arranged between the second optical path first reflecting mirror 1171 and the second optical path second reflecting mirror 1172.
  • the second optical path second reflecting mirror 1172 is arranged in the ⁇ Y direction when viewed from the first optical path second reflecting mirror 1152. Between the first optical path second reflecting mirror 1152 and the second optical path second reflecting mirror 1172, a light output part reflecting mirror 1180 is disposed.
  • FIG. 12C is an overhead view showing one configuration example of the light exit part reflecting mirror 1180 in the optical adapter according to the second embodiment of the present invention.
  • FIG. 11A, FIG. 11B, and FIG. 12C have a shape of a light emitting part reflecting mirror 1180 that is a triangular prism having a bottom surface of a right isosceles triangle. Moreover, it can be said that the shape of the light emission part reflective mirror 1180 is a half of a cube. This triangular prism is defined by vertices 1013A to 1013F.
  • the square defined by the vertices 1013C to 1013F is the first side surface of the triangular prism of the light emitting part reflecting mirror 1180.
  • the surfaces 1013C to 1013F are the light emitting part reflecting mirror first reflecting surfaces 1181 that reflect the first incident light 1023A incident in the ⁇ Y direction as the first reflected light 1023B in the + Z direction.
  • the square defined by the vertices 1013A, 1013B, 1013F, and 1013E is the second side surface of the triangular prism of the light output part reflecting mirror 1180.
  • the surfaces 1013A, 1013B, 1013F, and 1013E reflect the second incident light 1024A incident in the + Y direction as the second reflected light 1024B in the + Z direction, and the light emitting part reflecting mirror second reflecting surface 1182. It is.
  • the first light emitting part 1121 is arranged in the + Z direction when viewed from the light reflecting part first reflecting surface 1181.
  • the second light output part 1122 is arranged in the + Z direction when viewed from the light output part reflecting mirror second reflection surface 1182.
  • the second light emitting unit 1122 is arranged in the ⁇ Y direction when viewed from the first light emitting unit 1121.
  • the third light output unit 1131 is arranged in the + Z direction when viewed from the first beam splitter 1140.
  • the fourth light output unit 1132 is arranged in the + Z direction when viewed from the second beam splitter 1160.
  • the fourth light output unit 1132 is arranged in the + X direction when viewed from the third light output unit 1131.
  • the first connection part 1110 is arranged around the first light incident part 1111 and the second light incident part 1112 so as to face the ⁇ Z direction.
  • the second connection unit 1120 is disposed around the first light output unit 1121 and the second light output unit 1122 so as to face the + Z direction.
  • the third connection portion 1130 is disposed around the third light output portion 1131 and the fourth light output portion 1132 so as to face the + Z direction.
  • FIGS. 11A, 11B, and 12A to 12C The operation of each component shown in FIGS. 11A, 11B, and 12A to 12C will be described.
  • the first connection unit 1110 connects the optical adapter 1010 to the microscope 1400 in a detachable manner.
  • the first connection portion 1110 may be provided with a fixing screw or the like.
  • the second connection unit 1120 removably connects the optical adapter 1010 to the connection unit 1310 of the camera 1300.
  • the second connection unit 1120 may be a camera mount that satisfies the camera 1300 standard.
  • the third connection unit 1130 removably connects the optical adapter 1010 to the connection unit 1510 of the eyepiece tube 1500.
  • the third connection portion 1130 may be provided with a fixing screw or the like.
  • FIG. 13A is an overhead view showing a configuration example of the internal structure of the optical adapter according to the second embodiment of the present invention.
  • the following description will be divided into a first optical path and a second optical path with reference to FIG. 13A.
  • the first optical path is an optical path in which the first optical system guides the first image from the first light entrance 1111 to the first light exit 1121.
  • the second optical path is an optical path in which the second optical system guides the second image from the second light incident part 1112 to the second light output part 1122.
  • the first light incident unit 1111 inputs the first video that the microscope 1400 supplies in the + Z direction.
  • the first beam splitter 1140 inputs the first image input from the first light incident unit 1111 in the + Z direction from the incident surfaces 1011A to 1011D.
  • the first beam splitter 1140 bisects the incident first image by the reflecting surfaces 1011A, 1011B, 1011G, and 1011H.
  • the first beam splitter 1140 outputs one of the divided first images as reflected light 1021B to the first optical path 1001 in the + Y direction, and outputs the other as transmitted light 1021C to the third optical path 1003 in the + Z direction.
  • the first optical path first reflecting mirror 1151 reflects the reflected light 1021B of the first beam splitter 1140 directed in the + Y direction in the + X direction.
  • the first optical path imaging lens 1153 may adjust the focus of the first video.
  • the first optical path second reflecting mirror 1152 reflects the first image that is reflected by the first optical path first reflecting mirror 1151 in the + X direction in the ⁇ Y direction.
  • the first reflecting surface 1181 of the light emitting part reflecting mirrors 1013C to 1013F of the light emitting part reflecting mirror 1180 reflects the first image that is reflected by the first optical path second reflecting mirror 1152 in the -Y direction and the + Z direction. Reflect on.
  • the first light output unit 1121 outputs the first image reflected in the light output unit reflecting mirror 1180 and directed in the + Z direction toward the image sensor 1320 of the camera 1300 along the first optical path 1001.
  • the third light output unit 1131 outputs the first image transmitted through the first beam splitter 1140 and traveling in the + Z direction toward the eyepiece tube 1500 along the third optical path 1003.
  • the second light incident unit 1112 inputs the second image that the microscope 1400 supplies in the + Z direction.
  • the second beam splitter 1160 inputs the second image input in the + Z direction from the second light incident unit 1112 from the second optical path incident surfaces 1012A to 1012D.
  • the second beam splitter 1160 bisects the incident second image by the reflecting surfaces 1012C to 1012F.
  • the second beam splitter 1160 outputs one of the divided second images as reflected light 1022B to the second optical path 1002 in the -Y direction and the other as transmitted light 1022C to the fourth optical path 1004 in the + Z direction.
  • the second optical path first reflecting mirror 1171 reflects the reflected light 1022B of the second beam splitter 1160 directed in the ⁇ Y direction in the + X direction.
  • the second optical path imaging lens 1173 may adjust the focus of the second image.
  • the second optical path second reflecting mirror 1172 reflects the second image reflected by the second optical path first reflecting mirror 1171 in the + X direction in the + Y direction.
  • the second reflecting surface 1182 that is the second reflecting surfaces 1013A, 1013B, 1013F, and 1013E of the light emitting unit reflecting mirror 1180 reflects the second image that is reflected by the second optical path second reflecting mirror 1172 in the + Y direction. , Reflected in the + Z direction.
  • the second light emitting unit 1122 outputs the second image reflected by the light emitting unit reflecting mirror 1180 toward the + Z direction toward the image sensor 1320 of the camera 1300.
  • the fourth light output unit 1132 outputs a second image transmitted through the second beam splitter 1160 and directed in the + Z direction toward the eyepiece tube 1500.
  • optical adapter 1010 The effect obtained by the optical adapter 1010 according to the present embodiment will be described.
  • FIG. 13B is a diagram illustrating a configuration example of a stereoscopic video imaged through the optical adapter 1010 according to the second embodiment of the present invention.
  • the image sensor 1320 is viewed from a viewpoint from the + Z direction to the ⁇ Z direction.
  • the image sensor 1320 includes a plurality of pixels arranged vertically and horizontally.
  • the longitudinal direction of the image sensor 1320 is arranged in the Y direction.
  • the image sensor 1320 illustrated in FIG. 13B satisfies a so-called 4k2k standard, and the number of pixels in the Y direction is 3840 and the number of pixels in the X direction is 1920.
  • the area of the first video imaged by the image sensor 1320 is denoted as “L”.
  • the area of the second video is denoted as “R”.
  • the areas of the first video and the second video each satisfy the so-called 2k1k standard, and the resolution thereof is 1920 pixels ⁇ 1080 pixels.
  • the longitudinal directions of the first video and the second video are orthogonal to the longitudinal direction of the image sensor 1320.
  • two 2k1k standard images are arranged on one 4k2k standard image sensor so that the longitudinal direction of each image and the longitudinal direction of the image sensor are orthogonal to each other. It is possible to provide a maximum gap of 1680 pixels between the images. The width of the gap is sufficient to neglect the mutual adverse effects of both images even if light leakage by a common-sense optical system is estimated to the maximum.
  • a vector from the first light entrance 1111 to the first light exit 1121 This vector is referred to as a first optical path vector.
  • the first optical path vector is divided into an X-direction component vector, a Y-direction component vector, and a Z-direction component vector according to the illustrated orthogonal coordinate system.
  • the second optical path vector from the second light incident part 1112 to the second light output part 1122 is considered by dividing it into an X direction component vector, a Y direction component vector, and a Z direction component vector.
  • the X direction component vector of the first optical path vector and the X direction component vector of the second optical path vector have the same direction but different norms.
  • the difference between the X direction component vector of the first optical path vector and the X direction component vector of the second optical path vector is equal to the vector from the first light incident section 1111 to the second light incident section 1112.
  • the Y direction component vector of the first optical path vector and the Y direction component vector of the second optical path vector have the same norm but opposite directions.
  • the difference between the Y-direction component vector of the first optical path vector and the Y-direction component vector of the second optical path vector is equal to the vector from the first light output section 1121 to the second light output section 1122.
  • the first image and the second image arranged in the parallax direction, and the first light incident unit 1111 and the second light incident unit 1112 in which the optical adapter 1010 is arranged in the X direction.
  • the first video and the second video are arranged in a direction orthogonal to the parallax direction when output from the first light output unit 1121 and the second light output unit 1122 arranged in the Y direction.
  • the image sensor 1320 is irradiated.
  • a method for adjusting the gap between the first image and the second image irradiated on the image sensor 1320 will be described.
  • a method of adjusting the position of the light output part reflecting mirror 1180 in the Z direction will be described.
  • FIG. 14A is a plan view showing a configuration example of the adjustment frame 1190 in the optical adapter 1010 according to the second embodiment of the present invention.
  • FIG. 14B is a front view showing a configuration example of the adjustment frame 1190 in the optical adapter 1010 according to the second embodiment of the present invention.
  • the adjustment frame 1190 includes a reflecting mirror support portion 1191, an adjustment screw 1192, guide shafts 1193 and 1194, and an adjustment knob 1195.
  • the guide shafts 1193 and 1194 are fixed to the body 1100 of the optical adapter 1010. 14A and 14B, the shape of the guide shafts 1193 and 1194 is a cylinder having a height in the Z direction.
  • the reflecting mirror support 1191 includes holes through which the guide shafts 1193 and 1194 pass.
  • the reflector support portion 1191 further includes a screw hole into which the adjustment screw 1192 is fitted.
  • An adjustment knob 1195 is provided at one end of the adjustment screw 1192.
  • the adjustment screw 1192 is preferably supported so that there is no degree of freedom other than rotation about the Z axis with respect to the body 1100.
  • the light exit part reflecting mirror 1180 is fixed to the reflecting mirror support part 1191.
  • the guide shafts 1193 and 1194 support the reflecting mirror support 1191 so as to be slidable in the Z direction with respect to the body 1100.
  • the rotational movement is converted into a linear movement in the Z direction by the adjustment screw 1192 and the screw hole of the reflection mirror support portion 1191, and the reflection mirror support.
  • the part 1191 moves in the Z direction along the guide shafts 1193 and 1194.
  • the light output part reflecting mirror 1180 fixed to the reflecting mirror support part 1191 also moves in the Z direction.
  • the first light emitting region 196 viewed from the first light emitting part 1121 in the first image range reflected by the light emitting part reflecting mirror 1180 moves in the Y direction.
  • the second light output region 197 when the second light output part 1122 sees the range of the second image reflected by the light output part reflecting mirror 1180 also moves in the Y direction.
  • the first light emitting region 196 moves in the ⁇ Y direction
  • the second light emitting region 197 moves in the + Y direction.
  • the first light emission area 196 and the second light emission area 197 in this state are indicated by solid lines in FIG. 14A.
  • the first light emitting area 196 moves in the + Y direction
  • the second light emitting area 197 moves in the ⁇ Y direction.
  • the first light emission area 196 and the second light emission area 197 in this state are indicated by broken lines in FIG. 14A.
  • FIG. 15 is a diagram illustrating a configuration example of a stereoscopic imaging system 1610 according to the third embodiment of the present invention.
  • a stereoscopic imaging system 1610 illustrated in FIG. 15 includes an optical adapter 1020, a camera 1300, and a microscope 1400.
  • the connection relationship of each component shown in FIG. 15 will be described.
  • the camera 1300 and the microscope 1400 are each connected to an optical adapter 1020.
  • the microscope 1400 is a light source that supplies a first video and a second video that form a stereoscopic video.
  • the optical adapter 1010 supplies the first video and the second video supplied from the microscope 1400 to the camera 1300.
  • the camera 1300 is an imaging device that captures the first video and the second video supplied from the optical adapter 1010.
  • the optical adapter 1020 is a so-called angle-type optical adapter, and is suitable for photographing with a camera 1300 equipped with a relatively large image sensor.
  • the microscope 1400 as a light source can be changed to another stereoscopic video source.
  • the camera 1300 as the imaging device can be changed to another imaging device.
  • FIG. 16A is a plan view showing a configuration example of an optical adapter 1020 according to the third embodiment of the present invention.
  • FIG. 16B is a front view showing a configuration example of the optical adapter 1020 according to the third embodiment of the present invention.
  • FIG. 17A is a plan view showing a configuration example of the internal structure of the optical adapter 1020 according to the third embodiment of the present invention.
  • FIG. 17B is a front view showing a structural example of the internal structure of the optical adapter 1020 according to the third embodiment of the present invention.
  • the optical adapter 1020 includes a body 1200, a first connection unit 1210, a second connection unit 1220, a first optical system, and a second optical system.
  • the first connection unit 1210 includes a first light incident unit 1211 and a second light incident unit 1212.
  • the second connection unit 1220 includes a first light output unit 1221 and a second light output unit 1222.
  • the first optical system includes a first optical path first reflecting mirror 1231, a first optical path second reflecting mirror 1232, a first optical path third reflecting mirror 1233, and a light output part reflecting mirror first reflecting surface 1251.
  • the light emission part reflective mirror 1st reflective surface 1251 is a reflective surface with which the light output part reflective mirror 1250 mentioned later is provided.
  • the second optical system includes a second optical path first reflecting mirror 1241, a second optical path second reflecting mirror 1242, a second optical path third reflecting mirror 1243, and a light output part reflecting mirror second reflecting surface 1252.
  • the light emission part reflective mirror 2nd reflective surface 1252 is another reflective surface with which the light output part reflective mirror 1250 mentioned later is provided.
  • the connection relationship of the components of the optical adapter 1020 shown in FIGS. 16A, 16B, 17A, and 17B will be described.
  • the direction in which the first image and the second image supplied from the microscope 1400 are incident on the first light incident unit 1211 and the second light incident unit 1212 is defined as the + Z direction. Is written.
  • the first light incident part 1111 and the second light incident part 1112 are arranged in the X direction orthogonal to the + Z direction. More precisely, when viewed from the first light incident part 1111, the second light incident part 1112 is arranged in the + X direction. This is because the parallax direction in the microscope 1400 is set to the X direction.
  • the first optical path first reflecting mirror 1231 is arranged in the + Z direction when viewed from the first light incident part 1211.
  • the first optical path second reflecting mirror 1232 is arranged in the ⁇ X direction when viewed from the first optical path first reflecting mirror 1231.
  • the first optical path third reflecting mirror 1233 is arranged in the + Y direction when viewed from the first optical path second reflecting mirror 1232.
  • the light output part reflecting mirror first reflecting surface 1251 is arranged in the + X direction when viewed from the first optical path third reflecting mirror 1233.
  • the first light output part 1221 is arranged in the + Y direction when viewed from the light output part reflector first reflection surface 1251.
  • the second optical path first reflecting mirror 1241 is arranged in the + Z direction when viewed from the second light incident part 1212.
  • the second optical path second reflecting mirror 1242 is arranged in the + X direction when viewed from the second optical path first reflecting mirror 1241.
  • the second optical path third reflecting mirror 1243 is arranged in the + Y direction when viewed from the second optical path second reflecting mirror 1242.
  • the light output part reflecting mirror second reflecting surface 1252 is arranged in the ⁇ X direction when viewed from the second optical path third reflecting mirror 1243.
  • the second light output part 1222 is arranged in the + Y direction when viewed from the light output part reflecting mirror second reflection surface 1252.
  • FIGS. 16A, 16B, 17A, and 17B The operation of each component shown in FIGS. 16A, 16B, 17A, and 17B will be described.
  • the first connection unit 1210 detachably connects the optical adapter 1020 to the microscope 1400.
  • the first connecting portion 1210 may be provided with a fixing screw or the like.
  • the second connection unit 1220 removably connects the optical adapter 1020 to the connection unit 1310 of the camera 1300.
  • the second connection unit 1220 may be a camera mount that satisfies the camera 1300 standard.
  • FIG. 18A is an overhead view showing an example of the internal structure of the optical adapter 1020 according to the third embodiment of the present invention.
  • the first optical path and the second optical path are divided.
  • the first optical path is an optical path through which the first optical system guides the first image from the first light input part 1211 to the first light output part 1221.
  • the second optical path is an optical path in which the second optical system guides the second image from the second light input unit 1212 to the second light output unit 1222.
  • the first light incident unit 1211 inputs the first video that the microscope 1400 supplies in the + Z direction.
  • the first optical path first reflecting mirror 1231 reflects the first image input in the + Z direction from the first light incident unit 1211 in the ⁇ X direction.
  • the first optical path second reflecting mirror 1232 reflects the first image that is reflected by the first optical path first reflecting mirror 1231 in the ⁇ X direction in the + Y direction.
  • the first optical path third reflecting mirror 1233 reflects the first image that is reflected by the first optical path second reflecting mirror 1232 in the + Y direction in the + X direction.
  • the first reflecting surface 1251 of the light exit part reflecting mirror 1250 reflects the first image reflected by the first optical path third reflecting mirror 1233 in the + X direction in the + Y direction.
  • the first light output unit 1221 outputs a first image reflected by the first reflection surface 1251 of the light output unit reflecting mirror 1250 toward the + Y direction toward the image sensor 1320 of the camera 1300.
  • the second light incident unit 1212 inputs the second image that the microscope 1400 supplies in the + Z direction.
  • the second optical path first reflecting mirror 1241 reflects the second image input from the second light incident part 1212 in the + Z direction in the + X direction.
  • the second optical path second reflecting mirror 1242 reflects the second image reflected by the second optical path first reflecting mirror 1241 in the + X direction in the + Y direction.
  • the second optical path third reflecting mirror 1243 reflects the second image reflected by the second optical path second reflecting mirror 1242 in the + Y direction in the ⁇ X direction.
  • the second reflecting surface 1252 of the light exit part reflecting mirror 1250 reflects the second image reflected by the second optical path third reflecting mirror 1243 in the ⁇ X direction in the + Y direction.
  • the second light output unit 1222 outputs the second image reflected by the second reflection surface 1252 of the light output part reflecting mirror 1250 toward the + Y direction toward the image sensor 1320 of the camera 1300.
  • optical adapter 1020 The effect obtained by the optical adapter 1020 according to the present embodiment will be described.
  • FIG. 18B is a diagram illustrating a configuration example of a stereoscopic image captured through the optical adapter 1020 according to the third embodiment of the present invention.
  • the image sensor 1320 is viewed from a viewpoint from the + Y direction to the ⁇ Y direction.
  • the image sensor 1320 includes a plurality of pixels arranged vertically and horizontally.
  • the longitudinal direction of the image sensor 1320 is arranged in the Y direction.
  • the image sensor 1320 illustrated in FIG. 18B satisfies a so-called 4k2k standard, and the number of pixels in the Y direction is 3840 and the number of pixels in the X direction is 1920.
  • the area of the first video imaged by the image sensor 1320 is denoted as “L”.
  • the area of the second video is denoted as “R”.
  • the areas of the first video and the second video each satisfy the so-called 2k1k standard, and the resolution thereof is 1920 pixels ⁇ 1080 pixels.
  • the longitudinal directions of the first video and the second video are orthogonal to the longitudinal direction of the image sensor 1320.
  • two 2k1k standard images are arranged on one 4k2k standard image sensor so that the longitudinal direction of each image and the longitudinal direction of the image sensor are orthogonal to each other. It is possible to provide a maximum gap of 1680 pixels between the images. The width of the gap is sufficient to neglect the mutual adverse effects of both images even if light leakage by a common-sense optical system is estimated to the maximum.
  • the following describes how the direction in which the first video and the second video are arranged is changed via the optical adapter 1020.
  • the first image after reflection viewed from the Y direction is reflected by the first optical path first reflecting mirror 1231 and the first optical path second reflecting mirror 1232 before reflection from the Z direction.
  • a rotation of 90 degrees is given to the rotation axis in the + Y direction. This rotation is an effect obtained because the Y direction for outputting the first video is orthogonal to the Z direction for inputting the first video. Since the first optical path third reflecting mirror 1233 that reflects the first image and the first reflecting surface 1251 of the light output part reflecting mirror 1250 are arranged facing each other in parallel thereafter, the first image is not rotated.
  • the first image after reflection viewed from the Y direction by the reflection of the second optical path first reflecting mirror 1241 and the second optical path second reflecting mirror 1242 is viewed from the Z direction.
  • a rotation of ⁇ 90 degrees is given to the rotation axis in the + Y direction. This rotation is an effect obtained because the Y direction for outputting the second video is orthogonal to the Z direction for inputting the second video. Since the second optical path third reflecting mirror 1243 that reflects the first image and the second reflecting surface 1252 of the light exiting portion reflecting mirror 1250 are arranged facing each other in parallel thereafter, the first image is not rotated.
  • the first video image and the second video image arranged in the parallax direction, and the first light input unit 1211 and the second light input unit 1212 in which the optical adapter 1020 is arranged in the X direction.
  • the first light output unit 1221 and the second light output unit 1222 that are arranged in the X direction are output from the first video image, the first video image and the second video image are arranged in a direction orthogonal to the parallax direction. Then, the image sensor 1320 is irradiated.
  • the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
  • the description mainly focuses on the problem related to light leakage.
  • the description mainly focuses on the connection relationship with the light source.
  • Each feature described in the embodiments can be freely combined within a technically consistent range.
  • the optical adapter 1020 according to the third embodiment is combined with the adjustment frame 1190 according to the second embodiment to adjust the position of the light exit part reflecting mirror 1250 with respect to the body 1200 in the Y direction.
  • the width of the gap between the two images may be adjusted.
  • first optical path first reflecting mirror 1231 and the second optical path first reflecting mirror 1241 according to the third embodiment are replaced with the first beam splitter 140 and the second beam splitter 1160 according to the second embodiment, respectively. It is also possible to add a transmission function similar to that of the second embodiment to the angle type optical adapter 1020 according to the third embodiment, and to add a configuration for connecting the eyepiece tube 1500.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)
  • Accessories Of Cameras (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 立体映像を撮影するにあたって、立体映像を構成する第1映像および第2映像の間に発生する漏光の影響を抑制出来る立体撮像システムを提供する。また、この立体撮像システムに含まれる光源およびカメラを接続する光学アダプタを提供する。立体映像を構成する第1映像および第2映像を、本来の視差方向に直交する方向に並べ替えて撮影することによって、第1映像および第2映像の間により広い間隔を設けることが出来る。その結果、第1映像および第2映像の間で漏光の影響を抑制出来る。

Description

光学アダプタおよびこれを用いた立体撮像システム
 本発明は光学アダプタおよびこれを用いた立体撮像システムに関し、例えば、カメラに接続する光学アダプタおよびこれを用いた立体撮像システムに好適に利用できるものである。
 立体的な視覚情報を、教育に用いる場合など、時間や場所を限定せずに複数の人間で共有する方法として、実際の映像を立体的に撮影する手法が知られている。
 従来技術による立体視撮影システムとして、独立した2つの撮影装置を用意し、同一の撮影対象をこれら2つの撮影装置で同時に撮影する技術が知られている。このとき、2つの撮影装置の位置と方向を、人間の両目の視差などに合わせて適切に調節することで、立体視映像を撮影することが可能となる。
 しかしながら、この従来技術による立体視撮影システムでは、2つの撮影装置の間で同期を取ることは困難である、という課題がある。
 例えば、一般的なビデオカメラなどでは、毎秒24乃至30枚程度のフレームレートで撮影を行う。このようなフレームレートで2台のビデオカメラの間で同期を取ろうとしても、2つの録画ボタンを同時に押すような方法では到底実現し得えず、一例として、2台のビデオカメラを改造して、録画開始信号を同時に伝達する回路を用意する必要がある。
 また、一般的なビデオカメラには個体差がある。このような個体差は、たとえ単独撮影時に求められる基準は満足していても、大量生産された同機種のうちの2台で同じ設定および条件で立体視撮影を行う際に求められる基準を満足する保証は無い。特に、光を電気信号に変換する受光素子の製造ロットが2台のビデオカメラの間で異なった場合などは、繊細な立体視映像の撮影が困難になると言わざるを得ない。
 上記に関連して、特許文献1(特開2005-24629号公報)では、立体カメラ用雲台装置に係る記載が開示されている。特許文献1に記載の立体カメラ用雲台装置は、立体映像を撮影するために用いられる2台のカメラを保持すると共に、設置面に対して水平な水平面内において2台のカメラを互いに接近・離反させるように移動させ、かつ、水平面内において2台のカメラを所定角度に回転させる。この立体カメラ用雲台装置は、第1,第2カメラホルダと、第1,第2回転機構と、第1,第2角度測定手段と、第1支持部と、第2支持部と、移動機構と、移動距離測定手段と、同期手段と、出力手段とを備えることを特徴とする。ここで、第1,第2カメラホルダは、2台のカメラをそれぞれ着脱自在に保持する。第1,第2回転機構は、各カメラホルダに保持された各カメラを所定角度にかつ逆方向に回転させる。第1,第2角度測定手段は、各回転機構で所定角度に回転させた各カメラの光軸に対する角度を測定する。第1支持部は、第1角度測定手段、第1回転機構及び第1カメラホルダを直線状のガイドに沿って移動自在に支持する。第2支持部は、第2角度測定手段、第2回転機構及び第2カメラホルダをガイドに沿って移動自在に支持する。移動機構は、両支持部をガイドに沿って互いに接近・離反するように移動させる。移動距離測定手段は、移動機構によって移動させた各カメラの光軸間の距離を測定する。同期手段は、両回転機構による回転あるいは両支持部の移動機構による移動の少なくとも一方を同期させる。出力手段は、この移動距離測定手段で測定した距離及び角度測定手段で測定した角度を出力する。
 別の従来技術による立体撮影システムとして、上述した従来技術が抱える課題を解決するために、立体視映像のうち、左目用映像および右目用映像の両方を、1台のビデオカメラで同時に撮影する技術が知られている。
 こうすることによって、2台のビデオカメラの間の同期および個体差に係る課題は解決される。ただし、撮影された立体視映像の解像度が半分になる。すなわち、横方向に3,840ピクセル、縦方向に2,160ピクセルの解像度を有する、いわゆる4k2k規格の受光素子には、横方向に1,920ピクセル、縦方向に1,080ピクセルを有する、いわゆる2k1k規格なら、左右の映像にそれぞれ対応する2枚の映像を、横方向に並べて納めることが可能である。
 ただし、いわゆる4k2k規格の受光素子で、いわゆる2k1k規格の映像を2枚左右に並べて撮像すると、2枚の映像の間に隙間を設けることが出来ないので、漏光の問題が発生する。
 図1は、この従来技術による立体視撮影システムの構成例を示す図である。図1に示した立体視撮影システムは、撮像素子1と、第1映像領域2と、第2映像領域3と、第1漏光領域4と、第2漏光領域5とを含んでいる。
 ここで、撮像素子1の解像度はいわゆる4k2k規格を満たしており、第1映像領域2および第2映像領域3の解像度はそれぞれいわゆる2k1k規格を満たしている。
 また、第1漏光領域4は、第1映像領域2の周囲に位置しており、第2漏光領域5は、第2映像領域3の周囲に位置している。なお、この位置関係は、漏光の原理上、変更不可能である。
 図1に示したように、撮像素子1の幅は、第1映像領域2の幅および第2映像領域3の幅の和に等しく、したがって2枚の映像の間に隙間を設けることが出来ない。そのため、第1漏光領域4は第2映像領域3の一部に重なっており、第2漏光領域5は第1映像領域2の一部に重なっている。
 通常の撮影では、レンズなどの光学系を通った光のうち、中心部分の一部は四角い撮像領域に照射される。このとき、残りの光は撮像領域の周辺に照射される。このような光を漏光と呼ぶ。なお、撮像領域周辺の漏光は、光学系にマスクを設けてある程度までは除去出来たとしても、今度はこのマスクで回折現象が発生するため、やはり完全な除去は非常に困難である。
 上述した特許文献1の場合は、第1映像の周囲に発生する漏光は第2映像に重なって撮像され、反対に、第2映像の周囲に発生する漏光は第1映像に重なって撮像されることになる。立体映像に重なったこのような漏光は、映像が有する本来の鮮明さを損なうのみならず、左右の映像に違和感を与えるため、立体視の効果が薄まる。
 上記に関連して、特許文献2(特開2002-112288号公報)には立体撮影光学ユニットおよび立体画像撮影システムに係る記載が開示されている。特許文献1に記載の立体撮影光学ユニットは、左側光学系および右側光学系を有しており、これら左側および右側光学系を通して単一のカメラに立体観察が可能な画像の撮影を行わせている。この立体撮影光学ユニットは、左側および右側光学系の左右方向における相対間隔を変更する間隔変更手段を有することを特徴としている。
 さらに別の従来技術による立体視撮影システムが知られている。図2は、この従来技術による立体視撮影システムの構成例を示す図である。
 図2に示した立体視撮影システムの構成要素について説明する。図2の立体視撮影システムは、立体映像撮影装置10と、カメラ20とを含んでいる。
 立体映像撮影装置10は、第1反射鏡11と、第2反射鏡12と、プリズム13とを含んでいる。プリズム13の形状は、三角柱である。
 カメラ20は、レンズ21と、フィルム22とを含んでいる。フィルム22は、複数のコマ23を含んでいる。複数のコマ23のそれぞれは、第1領域24と、第2領域25とに分割されている。
 図1に示した立体視撮影システムの動作について説明する。第1反射鏡11は、y軸方向から受光する左目用映像を、プリズム13の第1側面に向けて反射する。第2反射鏡12は、同じくy軸方向からから受光する右目用映像を、プリズム13の第2側面に向けて反射する。プリズム13は、第1反射鏡11から受光する左目用映像を第1側面で反射して、レンズ21を介してフィルム22の第1領域24に向けて反射する。また、プリズム13は、第2反射鏡12から受光する右目用映像を第2側面で反射して、レンズ21を介してフィルム22の第2領域25に向けて反射する。
 その結果、左目用映像と、右目用映像とは、互いに逆方向に90度回転して、z軸方向に対して垂直な平面上に配置されたフィルム22に届く。さらに、立体映像撮影装置10が受光する方向と、フィルム22が受光する方向との間には、90度の傾きが発生する。
 撮影したフィルムを現像した写真を立体視するには、図1に示した立体視撮影システムを逆向きに用いれば良い。すなわち、写真の第1領域を、プリズム13と、第1反射鏡11とを経由して左目で見て、同時に写真の第2領域を、プリズム13と、第2反射鏡12とを経由して右目で見ることで、写真の立体視が可能となる。
 したがって、立体映像の撮影時と、撮影した立体映像の閲覧時と、その両方において、撮影または閲覧する方向とは90度傾いた方向に、フィルムまたは写真があることになり、直観的な操作や調整が困難である。
 上記に関連して、非特許文献1(Rob Crockett、“Tri-Delta Prism Stereo Camera Adapter”、[Online]、[2014年8月22日検索]、インターネット<URL:http://ledametrix.com/prism/index.html>)が公開されている。
特開2005-24629号公報 特開2002-112288号公報
Rob Crockett、"Tri-Delta Prism Stereo Camera Adapter"、[Online]、[2014年8月22日検索]、インターネット<URL:http://ledametrix.com/prism/index.html>
 立体映像を撮影するにあたって、立体映像を構成する第1映像および第2映像の間に発生する漏光の影響を抑制出来る立体撮像システムを提供する。また、この立体撮像システムに含まれる光源およびカメラを接続する光学アダプタを提供する。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 一実施の形態によれば、光学アダプタは、第1入光部と、第2入光部と、第1出光部と、第2出光部と、第1光学系と、第2光学系とを備える。ここで、第1入光部は、外部光源から第1方向に入射する第1映像を入力する。第2入光部は、前記第1入光部に対して、前記第1方向に直交する視差方向に並んで配置され、前記外部光源から前記第1方向に入射する第2映像を入力する。第1出光部は、第1映像を第2方向に出力する。第2出光部は、第1出光部に対して、前記第2方向および前記第1映像の視差方向の双方に直交する第3方向に並んで配置され、前記第2映像を前記第2方向に出力する。第1光学系は、第1映像を前記第1入光部から前記第1出光部に導く。第2光学系は、第2映像を前記第2入光部から前記第2出光部に導く。
 前記一実施の形態によれば、立体映像を構成する第1映像および第2映像を、本来の視差方向に直交する方向に並べ替えて撮影することによって、第1映像および第2映像の間により広い間隔を設けることが出来る。その結果、第1映像および第2映像の間で漏光の影響を抑制出来る。
図1は、従来技術による立体視撮影システムの構成例を示す図である。 図2は、従来技術による立体視撮影システムの構成例を示す図である。 図3は、本発明の第1実施形態による立体視撮影システムの一構成例を示す図である。 図4は、顕微鏡の一構成例を示す図である。 図5Aは、本発明の第1実施形態による光学アダプタの一構成例を、顕微鏡側から見た下面図である。 図5Bは、本発明の第1実施形態による光学アダプタの一構成例の正面図である。 図5Cは、本発明の第1実施形態による光学アダプタの一構成例を、カメラ側から見た上面図である。 図6Aは、本発明の第1実施形態による光学アダプタの調整機構の一構成例を示す図である。 図6Bは、本発明の第1実施形態による調整フレームの一構成例を示す図である。 図6Cは、本発明の第1実施形態による光学アダプタの、第1調整軸に係る調整方法を示す図である。 図6Dは、本発明の第1実施形態による光学アダプタの、第2調整軸に係る調整方法を示す図である。 図6Eは、本発明の第1実施形態による光学アダプタの、第3調整軸に係る調整方法を示す図である。 図7は、カメラの一構成例を示す図である。 図8は、本発明の第1実施形態による立体視撮影システムで撮像する映像の、光学アダプタ側から見た配置の一例を示す配置図である。 図9は、本発明の第1実施形態による立体視撮影システムで撮像した映像を立体視するシステムの一構成例を示す図である。 図10は、本発明の第2実施形態による立体撮像システムの一構成例を示す図である。 図11Aは、本発明の第2実施形態による光学アダプタの一構成例を示す平面図である。 図11Bは、本発明の第2実施形態による光学アダプタの一構成例を示す正面図である。 図12Aは、本発明の第2実施形態による光学アダプタのうち、第1ビームスプリッタの一構成例を示す俯瞰図である。 図12Bは、本発明の第2実施形態による光学アダプタのうち、第2ビームスプリッタの一構成例を示す俯瞰図である。 図12Cは、本発明の第2実施形態による光学アダプタのうち、出光部反射鏡の一構成例を示す俯瞰図である。 図13Aは、本発明の第2実施形態による光学アダプタの内部構造の一構成例を示す俯瞰図である。 図13Bは、本発明の第2実施形態による光学アダプタを介して撮像される立体映像の一構成例を示す図である。 図14Aは、本発明の第2実施形態による光学アダプタのうち、調整フレームの一構成例を示す平面図である。 図14Bは、本発明の第2実施形態による光学アダプタのうち、調整フレームの一構成例を示す正面図である。 図15は、本発明の第3実施形態による立体撮像システムの一構成例を示す図である。 図16Aは、本発明の第3実施形態による光学アダプタの一構成例を示す平面図である。 図16Bは、本発明の第3実施形態による光学アダプタの一構成例を示す正面図である。 図17Aは、本発明の第3実施形態による光学アダプタの内部構造の一構成例を示す平面図である。 図17Bは、本発明の第3実施形態による光学アダプタの内部構造の一構成例を示す正面図である。 図18Aは、本発明の第3実施形態による光学アダプタの内部構造の一構成例を示す俯瞰図である。 図18Bは、本発明の第3実施形態による光学アダプタを介して撮像される立体映像の一構成例を示す図である。
 添付図面を参照して、本発明による光学アダプタおよび立体撮像システムを実施するための形態を以下に説明する。第1実施形態では、主に漏光に係る課題に注目して説明し、第2実施形態および第3実施形態では、主に光源との接続関係に注目して説明するが、これらの実施形態で説明するそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能であることに注目されたい。
 (第1実施形態)
 図3は、本発明の第1実施形態による立体視撮影システム100の一構成例を示す図である。
 図3に示した立体視撮影システム100の構成要素について説明する。図3の立体視撮影システム100は、顕微鏡200と、光学アダプタ300と、カメラ400とを含んでいる。ここで、顕微鏡200は、他の立体視映像源にも変更可能である。また、カメラ400は、他の一般的な撮像装置にも変更可能である。
 図3に示した立体視撮影システム100の構成要素の接続関係について説明する。顕微鏡200は、光学アダプタ300の一方の端部に接続されている。カメラ400は、光学アダプタ300の他方の端部に接続されている。言い換えれば、顕微鏡200と、カメラ400とは、光学アダプタ300を介して接続されている。さらに言い換えれば、顕微鏡200は光学アダプタ300の前段に接続されており、カメラ400は光学アダプタ300の後段に接続されている。
 図3に示した構成例では、顕微鏡200と、光学アダプタ300と、カメラ400とが同一の方向に配置されている。この方向をz軸方向と置く。
 図4は、顕微鏡200の一構成例を示す図である。
 図4に示した顕微鏡200の構成要素について説明する。図4の顕微鏡200は、光源201と、試料台202と、第1対物レンズ221と、第2対物レンズ222と、マウント204とを含んでいる。
 光源201は、外部の光を内部に導く反射鏡などにも変更可能である。また、第1対物レンズ221および第2対物レンズ222は、それぞれ、光をそのまま通す単なる空間などにも変更可能であり、言い換えれば省略可能である。
 マウント204は、顕微鏡200に他の部品を接続するために設けられている。マウント204には、例えば、接眼レンズや、焦点距離を調整する光学系などが接続出来ても良い。
 顕微鏡200に含まれる他の構成要素については、一般的な顕微鏡の構成要素として公知であり、かつ、本実施形態には直接的に関係しないので、さらなる説明を省略する。
 図4に示した顕微鏡200の各構成要素の接続関係について説明する。第1対物レンズ221の光軸を、第1光軸211と呼ぶ。第2対物レンズ222の光軸を、第2光軸212と呼ぶ。このとき、第1光軸211と、第2光軸212とは、所定の距離だけ離れて、平行であることが望ましい。この距離を、視差210と呼ぶ。
 ここでは、第1光軸211および第2光軸212のそれぞれはz軸方向に対して平行に配置されているものとして、説明を続ける。また、第1光軸211および第2光軸212が離れている方向を、x軸方向と置く。言い換えれば、第1対物レンズ221と、第2対物レンズ222とは、x軸方向に配置されている。x軸方向と、z軸方向との両方に直交する方向として、y軸方向が定義される。
 図4に示した顕微鏡200の各構成要素の動作について説明する。試料台202は、試料203を支持または固定する。光源201は、試料台202に支持または固定された試料203に光を照射する。光源201から照射された光の一部は、試料203で反射し、第1対物レンズ221を通り、第1光軸211に沿って光学アダプタ300に向かう。光源201から照射された光の他の一部は、試料203で反射し、第2対物レンズ222を通り、第2光軸212に沿って光学アダプタ300に向かう。マウント204は、顕微鏡200と、光学アダプタ300とを、着脱可能に接続する。
 図5A~図5Cは、本発明の第1実施形態による光学アダプタ300の一構成例を示す図である。図5Aは、本実施形態による光学アダプタ300の一構成例を、顕微鏡200側から見た下面図である。図5Bは、本実施形態による光学アダプタ300の一構成例の正面図である。図5Cは、本実施形態による光学アダプタ300の一構成例を、カメラ400側から見た上面図である。
 図5A~図5Cに示した光学アダプタ300の構成要素について説明する。図5A~図5Cの光学アダプタ300は、入力側マウント301と、出力側マウント302と、第1入光部311と、第2入光部312と、入力側第1反射鏡321と、入力側第2反射鏡322と、出力側第1反射鏡331と、出力側第2反射鏡332と、第1出光部341と、第2出光部342とを含んでいる。
 第1入光部311と、第2入光部312と、第1出光部341と、第2出光部342とは、それぞれ、光学アダプタ300のボディの表面に設けられて内部の空洞に至る穴であるが、必要に応じてレンズなどのそれぞれに適宜な光学系を、光軸に合わせて設けても良い。
 入力側第1反射鏡321と、入力側第2反射鏡322と、出力側第1反射鏡331と、出力側第2反射鏡332とについては、ガラス製の鏡、金属製の鏡、プリズムなどの利用が考えられる。
 図5A~図5Cに示した光学アダプタ300の各構成要素の接続関係について説明する。まず、入力側マウント301は、顕微鏡200のマウント204と着脱可能に接続出来る位置に設けられている。同様に、出力側マウント302は、後述するカメラ400のマウント401と着脱可能に接続出来る位置に設けられている。以降、顕微鏡200のマウント204と、光学アダプタ300の入力側マウント301とが接続され、かつ、光学アダプタ300の出力側マウント302と、カメラ400のマウント401とが接続されている状態について説明する。
 光学アダプタ300の第1入光部311および第2入光部312は、顕微鏡200の第1対物レンズ221および第2対物レンズ222にそれぞれ対応する位置に配置されている。また、光学アダプタ300の入力側第1反射鏡321および入力側第2反射鏡322は、光学アダプタ300の第1入光部311および第2入光部312にそれぞれ対応する位置に配置されている。言い換えれば、顕微鏡200の第1光軸211が入力側第1反射鏡321に到達し、かつ、顕微鏡200の第2光軸212が入力側第2反射鏡322に到達するように、光学アダプタ300の第1入光部311、第2入光部312、入力側第1反射鏡321および入力側第2反射鏡322は配置されている。
 ここで、第1入光部311および第2入光部312は、顕微鏡200の第1対物レンズ221および第2対物レンズ222と同様に、x軸方向に並んで配置されている。
 顕微鏡200の第1対物レンズ221から出た第1光軸211は、第1入光部311から光学アダプタ300に入り、入力側第1反射鏡321で反射し、さらに出力側第1反射鏡331で反射して、第1出光部341から光学アダプタ300を出る。同様に、顕微鏡200の第2対物レンズ222から出た第2光軸212は、第2入光部312から光学アダプタ300に入り、入力側第2反射鏡322で反射し、さらに出力側第2反射鏡332で反射して、第2出光部342から光学アダプタ300を出る。言い換えれば、第1光軸211および第2光軸212が、それぞれ、上記のような光路を辿れるように、出力側第1反射鏡331、出力側第2反射鏡332、第1出光部341および第2出光部342は配置されている。
 なお、各反射鏡による反射によって各映像に台形歪などが発生しないように、入力側第1反射鏡321および出力側第1反射鏡331は、互いに平行に配置されていることが好ましい。同様に、入力側第2反射鏡322および出力側第2反射鏡332も、互いに平行に配置されていることが好ましい。
 ここで、第1出光部341および第2出光部342が、y軸方向に並んで配置されていることに注目されたい。第1入光部311および第2入光部312の配置方向と、第1出光部341および第2出光部342の配置方向とが直交していることは、本実施形態による光学アダプタ300における重要な特徴である。
 なお、顕微鏡200から出力されて光学アダプタ300に入力する2つの光と、光学アダプタ300から出力されてカメラ400に入力する2つの光とは、いずれもz軸方向に直進しており、x軸方向と、y軸方向と、z軸方向とは、互いに直交している。
 図5A~図5Cに示した光学アダプタ300の各構成要素の動作について説明する。第1入光部311と、入力側第1反射鏡321と、出力側第1反射鏡331と、第1出光部341とは、顕微鏡200から第1光軸211に沿って出力された第1映像を、カメラ400まで導く。以降、入力側第1反射鏡321と、出力側第1反射鏡331とを合わせて、光学アダプタ300の第1光学系と呼ぶ。なお、この第1光学系には、第1入光部311と、第1出光部341とがさらに含まれていても良い。
 同様に、第2入光部312と、入力側第2反射鏡322と、出力側第2反射鏡332と、第2出光部342とは、顕微鏡200から第2光軸212に沿って出力された第2映像を、カメラ400まで導く。以降、入力側第2反射鏡322と、出力側第2反射鏡332とを合わせて、光学アダプタ300の第2光学系と呼ぶ。なお、この第2光学系には、第2入光部312と、第2出光部342とがさらに含まれていても良い。
 言い換えると、第1光学系は、前段光学系としての顕微鏡200が生成出力する第1映像を入力し、後段光学系としてのカメラ400に向けて出力する第1映像に変換する動作を行う。同様に、第2光学系は、前段光学系としての顕微鏡200が生成出力する第2映像を入力し、後段光学系としてのカメラ400に向けて出力する第2映像に変換する動作を行う。
 本実施形態による光学アダプタ300は、図5A~図5Cに示した構成要素に加えて、入力側および出力側のそれぞれにおいて、第1光軸211および第2光軸212の位置関係を調整する調整機構をさらに有していることが好ましい。
 図6Aは、本発明の第1実施形態による光学アダプタ300の調整機構の一構成例を示す図である。
 図6Aに示した光学アダプタ300の構成要素について説明する。図6Aに示した光学アダプタ300は、図5A~図5Cにも示した第1入光部311、第2入光部312、入力側第1反射鏡321、入力側第2反射鏡322、出力側第1反射鏡331および出力側第2反射鏡332の他に、調整フレーム350を含んでいる。図6Aには、光学アダプタ300の構成要素に加えて、撮像素子403の位置関係も示している。
 なお、図5A~図5Cに示したその他の構成要素については、説明の簡単のためにここでは省略している。また、図6Aでは図示を省略したが、本実施形態の光学アダプタ300は、別の調整フレームをさらに有していることが好ましい。
 図6Aに示した調整フレーム350の接続関係について説明する。図6Aに示した調整フレーム350は、第2入光部312および入力側第2反射鏡322の間に設けられている。入力側第2反射鏡322は、調整フレーム350に対して固定されている。出力側第2反射鏡332は、調整フレーム350に搭載されており、かつ、調整フレーム350に対して一軸の直進方向に移動可能である。調整フレーム350は、光学アダプタ300のボディに対して一軸の方向に回転可能である。調整フレーム350は、さらに別の一軸の方向にも移動可能であることが望ましい。
 図6Bは、本発明の第1実施形態による調整フレーム350の一構成例を示す図である。
 図6Bに示した調整フレーム350の構成要素について説明する。図6Bの調整フレーム350は、ベアリング部351と、レール部352と、開口部353とを含んでいる。ベアリング部351は、外側枠部と、内側枠部と、複数のベアリングボールとを含む。レール部352は、軌道部と、摺動部とを含む。開口部353は、ベアリング部351の内側枠部の内側に開いた空間である。
 図6Aおよび図6Bに示した調整フレーム350の各構成要素の接続関係について説明する。ベアリング部351において、外側枠部は内側枠部の外側に配置されており、複数のベアリングボールは外側枠部および内側枠部の間に配置されている。レール部352において、摺動部は軌道部によって支持されている。
 出力側第2反射鏡332は、レール部352の摺動部に固定されている。レール部352の軌道部は、その一方の端部がベアリング部351の外側枠部に固定されている。また、入力側第2反射鏡322も、ベアリング部351の外側枠部に固定されている。ここで、レール部352の軌道部と、入力側第2反射鏡322とは、ベアリング部351の外側枠部のうち、なるべく離れた2点にそれぞれ固定されていることが好ましい。
 ベアリング部351の内側枠部は、光学アダプタ300側で支持されている。ベアリング部351の中央部分、すなわち内側枠部の内側は中空であり、この部分を開口部353と呼ぶ。第2光軸212は、開口部353を通る。
 図6Aおよび図6Bに示した調整フレーム350の動作について説明する。調整フレーム350は、大きく分けて3種類の動作を行う。
 第1の動作として、調整フレーム350は、第1調整軸を中心に回転する自由度を有する。この第1調整軸は、第2光軸212と一致していることが好ましい。この回転の方向を、回転方向361として図6Bに示す。
 図6Cは、本発明の第1実施形態による光学アダプタ300の、第1調整軸に係る調整方法を示す図である。図6Cは、図6Aに示した光学アダプタ300が、調整フレーム350が回転した後の状態を示している。
 図6Cに示した光学アダプタ300では、図6Aに示した状態と比較して、調整フレーム350が第2光軸212を中心に時計回りに回転している。したがって、調整フレーム350のベアリング部351の外側枠部に固定されている入力側第2反射鏡322は、その鏡面方向が図6Aでの方向から変わっている。同様に、調整フレーム350のレール部352の摺動部に固定されている出力側第2反射鏡332も、その鏡面方向が図6Aでの方向から変わっている。
 その結果、第2光軸212が撮像素子403に届く場所も異なる。この違いを、図6Aおよび図6Cでは、撮像素子403に写る文字「R」の位置で示している。このとき、入力側第2反射鏡322と、出力側第2反射鏡332とは常に平行に向き合っているため、文字「R」において、撮像素子403に対する位置関係は平行移動しても、回転や歪みは発生しない。
 第2の動作として、調整フレーム350は、入力側第2反射鏡322から出力側第2反射鏡332までの距離を、第2調整軸に沿った平行移動によって調整する自由度を有する。この第2調整軸は、レール部352の軌道部の長手方向に平行であり、図6Bに直進方向362として示す。
 図6Dは、本発明の第1実施形態による光学アダプタ300の、第2調整軸に係る調整方法を示す図である。図6Dは、図6Aに示した光学アダプタ300が、出力側第2反射鏡332が直進方向362で平行移動した後の状態を示している。
 図6Dに示した光学アダプタ300では、図6Aに示した状態と比較して、調整フレーム350のレール部352の摺動部が、入力側第2反射鏡322から離れる直進方向362に沿って平行移動している。したがって、調整フレーム350のレール部352の摺動部に固定されている出力側第2反射鏡332と、調整フレーム350のベアリング部351の外側枠部に固定されている入力側第2反射鏡322との距離は、図6Aでの距離よりも広がっている。
 その結果、第2光軸212が撮像素子403に届く場所も異なる。この違いを、図6Aおよび図6Cでは、撮像素子403に写る文字「R」の位置で示している。このときも、第1の動作の場合と同様に、入力側第2反射鏡322と、出力側第2反射鏡332とは常に平行に向き合っているため、文字「R」において、撮像素子403に対する位置関係は平行移動しても、回転や歪みは発生しない。
 さらに、第1の動作と、第2の動作とでは、第2光軸212が撮像素子403に届く場所の変化の仕方が異なる。これら2つの動作を適宜に組み合わせることによって、本実施形態による光学アダプタ300では、第2光軸212が撮像素子403に届く場所を自由に調整できる。また、これらの調整によって、同じ光学アダプタ300を構成の異なるカメラ400に用いることも可能となる。
 上述したように、本実施形態による光学アダプタ300は、第2光軸212の位置関係を調整する調整フレーム350と同様に、第1光軸211の位置関係を調整する別の調整フレームをさらに有することが好ましい。
 第3の動作として、調整フレーム350は、第1の動作である回転運動の中心軸を、第2光軸212に一致させるための調整を行う。言い換えれば、調整フレーム350は、光学アダプタ300との位置関係、特に第2入光部312との相対的な位置関係を調整する自由度を有する。
 図6Eは、本発明の第1実施形態による光学アダプタ300の、第3調整軸に係る調整方法を示す図である。図6Eには、図6A~図6Dに示した調整フレーム350と、この調整フレームと同様に第1光軸211の位置関係を調整する別の調整フレーム370とを示している。ここで、別の調整フレーム370の構成は、調整フレーム350の構成と全く同じであるので、さらなる詳細な説明を省略する。
 図6Eでは、調整フレーム350の回転軸が第2光軸212に一致しており、かつ、調整フレーム370の回転軸も第1光軸211に一致している。調整フレーム350および調整フレーム370は、それぞれ、第1光軸211から第2光軸212までの距離を示す視差210の方向に平行なX軸方向に平行移動が可能である。この平行移動は、例えば、各調整フレームの内側枠部と、光学アダプタ300との間に、平行移動を可能とするレール部を調整機構の一部として設けることで可能となる。
 第3の動作によって回転軸と光軸を一致させることは、言い換えれば、視差210を調整することをも可能とする。この調整によって、同じ光学アダプタ300を構成の異なる顕微鏡200に用いることも可能となる。
 なお、本実施形態による光学アダプタ300の調整機構は、内蔵される調整フレーム350の状態を外部から微調整し、微調整の結果を保持するために、図示しないイモネジや、バネなどをさらに含んでいることが好ましい。
 図7は、カメラ400の一構成例を示す図である。
 図7に示したカメラ400の構成要素について説明する。図7のカメラ400は、マウント401と、レンズ402と、撮像素子403とを含んでいる。ここで、レンズ402は、例えば単なる空間などにも変更可能であり、言い換えればレンズ402は省略可能である。
 カメラ400に含まれる他の構成要素については、一般的なカメラの構成要素として公知であり、かつ、本実施形態には直接的に関係しないので、さらなる説明を省略する。
 図7に示したカメラ400の各構成要素の接続関係について説明する。マウント401は、カメラ400の図示しないボディに固定されている。
 レンズ402は、これを用いる場合は、マウント401および図示しないボディの間に配置されて、両者に対して固定されている。なお、レンズ402は、図示しないボディおよびマウント401の、片方または両方と着脱可能であっても良い。
 具体例として、カメラ400が、いわゆる一眼レフカメラや、いわゆるミラーレス一眼カメラなどのように、レンズの交換が可能な機種であれば、レンズの代わりに光学アダプタ300をカメラ400に直接接続しても良い。この場合は、光学アダプタ300の出力側マウント302と、カメラ400のマウント401とは、両方とも、カメラ400のレンズマウントに対応している必要がある。また、この場合は、図7に示したレンズ402が省略される。
 別の具体例として、カメラ400が、いわゆるコンパクトデジタルカメラなどのように、レンズを取り外せない機種であれば、レンズの外側に光学アダプタ300を接続する。この場合は、取り外せないレンズが図7に示したレンズ402に対応する。また、カメラ400がレンズ交換可能な機種であっても、任意のレンズの外側に光学アダプタ300を接続しても良い。この場合は、この任意のレンズが図7に示したレンズ402に対応する。
 撮像素子403は、図示しないボディに固定されていることが望ましいが、いわゆる手振れ防止機能などによってボディとの位置関係が適宜に調整されても構わない。
 図7に示したカメラ400の各構成要素の動作について説明する。マウント401は、上述したとおり、カメラ400と、光学アダプタ300とを、着脱可能に接続する。レンズ402は、これが用いられる場合は、光学アダプタ300の第1出光部341から出力される第1光軸211と、同じく第2出光部342から出力される第2光軸212とを、撮像素子403に導く。撮像素子403は、顕微鏡200から第1光軸211に沿って届いた第1映像と、同じく第2光軸212に沿って届いた第2映像とを、同時に撮像する。このとき、カメラ400は、同一フレームに第1映像および第2映像を含む映像を、一枚の写真として記録しても良いし、カメラ400が動画撮影機能を有していれば動画として記録しても良い。
 図8は、本発明の第1実施形態による立体視撮影システム100で撮像する映像の、光学アダプタ300側から見た配置の一例を示す配置図である。
 図8に示した配置図の構成要素について説明する。図8の配置図は、撮像素子403と、第1映像領域411と、第2映像領域412と、第1漏光領域421と、第2漏光領域422とを含んでいる。
 撮像素子403は、長方形であり、いわゆる4k2k規格に対応しており、長辺が3,840ピクセルの解像度を有し、短辺が2,160ピクセルの解像度を有している。なお、これらは撮像素子403の有効画素数または有効解像度に係るピクセル数であって、本発明は撮像素子403がさらなるピクセル数の画素を有することを制限しない。
 第1映像領域411および第2映像領域412のそれぞれは、いわゆる2k1k規格に対応しており、長辺が1,920ピクセルの解像度を有し、短辺が1,080ピクセルの解像度を有している。
 なお、これらの画素数の組み合わせはあくまでも一例であり、本発明を限定する特徴ではない。特に、今後の普及が予想される、いわゆる8k4k規格(7,680ピクセル×4,320ピクセル)などにも本発明は対応可能である。
 第1映像領域411は、顕微鏡200から第1光軸211に沿って届いた第1映像のうち、所望する必要部分を撮像素子403が受光する領域である。第1漏光領域421は、第1映像のうち、所望しない不要部分が第1映像領域411の周囲に漏れる領域である。
 同様に、第2映像領域412は、顕微鏡200から第2光軸212に沿って届いた第2映像のうち、所望する必要部分を撮像素子403が受光する領域である。第2漏光領域422は、第2映像のうち、所望しない不要部分が第2映像領域412の周囲に漏れる領域である。
 図8に示した配置図の各構成要素の接続関係について説明する。まず、撮像素子403は、長辺がy軸方向に、短辺がx軸方向に、それぞれ配置されている。しかし、顕微鏡200から第1映像および第2映像が出力される段階では、各映像の長辺方向がx軸方向に、短辺方向がy軸方向に配置されている。つまり、撮像素子403の配置は、顕微鏡200の映像と比較して、z軸上に90度回転している。これは、光学アダプタ300において、第1入光部311および第2入光部312がx軸方向に配置されている一方で、第1出光部341および第2出光部342がy軸方向に配置されていることに由来する。
 次に、第1映像領域411は、長辺がx軸方向に、短辺がy軸方向に、それぞれ配置されている。つまり、撮像素子403の場合とは異なり、顕微鏡200の映像と比較して、配置の回転が無い。これは、顕微鏡200から出力される第1映像に対して、光学アダプタ300の第1光学系に含まれて平行に配置された入力側第1反射鏡321および出力側第1反射鏡331による合計2回の反射だけが施されるからである。
 同様に、第2映像領域412は、長辺がx軸方向に、短辺がy軸方向に、それぞれ配置されている。つまり、撮像素子403の場合とは異なり、顕微鏡200の映像と比較して、配置の回転が無い。これは、顕微鏡200から出力される第2映像に対して、光学アダプタ300の第2光学系に含まれて平行に配置された入力側第2反射鏡322および出力側第2反射鏡332による合計2回の反射だけが施されるからである。
 したがって、図1に示した従来技術の場合と比較すると、見かけ上、撮像素子403の長手方向に並んでいる第1映像および第2映像が、z軸上に、かつ両映像とも同一の方向に、90度回転した映像が得られる。
 言い換えれば、第1映像および第2映像の天地方向を基準に考えると、左右の目でそれぞれ見るための第1映像および第2映像が、通常なら左右方向に並べて配置される筈が、本実施形態では上下方向に配置される。
 その結果、撮像素子403の上では、第1映像領域411と、第2映像領域412との間に、第1漏光領域421の幅よりも長く、第2漏光領域422の幅よりも長い、十分な距離が確保される。すなわち、本実施形態によれば、第1漏光領域421が第2映像領域412に重なることもなければ、第2漏光領域422が第1映像領域411に重なることもないので、本発明の課題が解決される。
 撮像した映像は、第1漏光領域421および第2漏光領域422を黒く塗りつぶすなどのデジタル処理などを行っても良い。このような処理を行うことで、立体視の体験はより鮮明となる。このような処理は、撮像と同時に、リアルタイムに行っても良い。このような処理は、公知の技術で実現可能であるので、さらなる詳細な説明を省略する。
 図9は、本発明の第1実施形態による立体視撮影システム100で撮像した映像を立体視する表示システムの一構成例を示す図である。
 図9に示した表示システムの構成要素について説明する。図9の表示システムは、表示装置500と、立体視ゴーグル600とを含む。
 表示装置500は、その表面に、立体視撮影した2枚の映像を表示する。表示装置500としては、一般的なモニタや、テレビ受像機や、プロジェクター投影スクリーンなどの利用が考えられる。また、立体視撮影した映像が静止画像であれば、表示装置500は2枚の静止画像を印刷した紙などであっても良い。表示装置500は、第1表示領域501と、第2表示領域502とを含む。表示装置500の表面は、平面であることが好ましい。
 立体視ゴーグル600は、第1入光部611と、第2入光部612と、第1出光部621と、第2出光部622とを含む。立体視ゴーグル600は、図示しない第1光学系および第2光学系をさらに含む。
 立体視ゴーグル600の構成は、図5A~図5Dに示した光学アダプタ300と同様であるので、さらなる詳細な図示を省略する。
 図9に示した標示システムの各構成要素の接続関係について説明する。まず、表示装置500の表面がx-y平面に含まれている。ここで、立体視する者から見てy軸方向が天地方向で、x軸方向が左右方向であり、表示装置500と立体視する者はz軸方向に並んで配置されている。
 表示装置500の上部には、第1表示領域501が配置されている。表示装置500の下部には、第2表示領域502が配置されている。第1表示領域501と、第2表示領域502との間には、適宜な距離が設けられていることが望ましい。
 立体視ゴーグル600は、図5A~図5Dに示した光学アダプタ300を逆向きに用いたものに等しい。すなわち、図9に示した第1入光部611および第1出光部621は、図5A~図5Dに示した第1出光部341および第1入光部311にそれぞれ対応する。また、図9に示した第1入光部611および第1出光部621の間には、図5A~図5Dに示した第1光学系に対応する光学系、すなわち出力側第1反射鏡331および入力側第1反射鏡321にそれぞれ対応する光学系が内蔵されている。同様に、図9に示した第2入光部612および第2出光部622は、図5A~図5Cに示した第2出光部342および第2入光部312にそれぞれ対応する。また、図9に示した第2入光部612および第2出光部622の間には、図5A~図5Cに示した第2光学系に対応する光学系、すなわち出力側第2反射鏡332および入力側第2反射鏡322にそれぞれ対応する光学系が内蔵されている。
 ただし、実際には、第1入光部611から第2入光部612までの距離は、第1表示領域501から第2表示領域502までの距離よりも無視出来ない比率で小さい場合が考えられるので、この比率に応じて第1光軸601および第2光軸602の間の角度を、必要に応じて適宜に調整可能であることが好ましい。
 図9に示した標示システムの各構成要素の動作について説明する。表示装置500は、予め撮像された立体映像のうち、一方の映像を第1表示領域501に表示し、他方の映像を第2表示領域502に表示する。図9に示した例では、左目用映像が第1表示領域501に表示され、右目用映像が第2表示領域502に表示されているが、この関係は必要に応じて交換可能である。
 第1表示領域501に表示された左目用映像は、第1光軸601に沿って第1入光部611から入光し、図示を省略した光学系を介して第1出光部621から出光し、立体視する者の左目に映る。同様に、第2表示領域502に表示された右目用映像は、第2光軸602に沿って第2入光部612から入光し、図示を省略した光学系を介して第2出光部622から出光し、立体視する者の右目に映る。立体視する者は、第1映像および第2映像をそれぞれ左目および右目で見ることで、立体視を体験する。
 本発明の第1実施形態によれば、一般的で既存の顕微鏡と、いわゆる4k2k規格に対応する動画撮影機能を有する一般的で既存のカメラとを、この顕微鏡およびこのカメラに対応する2つのマウント301、302を有する光学アダプタ300によって接続することによって、いわゆる2k1k規格に対応する鮮明な立体映像の撮影を、容易かつ安価に実現する。さらに、撮像素子403の上で立体映像を構成する2枚の映像の間に必要十分な距離を設けることで、撮像時に発生する所望しない漏光による悪影響を、比較的容易に除去することが可能である。
 (第2実施形態)
 図10は、本発明の第2実施形態による立体撮像システム1600の一構成例を示す図である。
 図10に示した立体撮像システム1600の構成要素について説明する。図10に示した立体撮像システム1600は、光学アダプタ1010と、カメラ1300と、顕微鏡1400と、接眼鏡筒1500とを備えている。
 図10に示した各構成要素の接続関係について説明する。カメラ1300と、顕微鏡1400と、接眼鏡筒1500とは、それぞれ、光学アダプタ1010に接続されている。
 図10に示した各構成要素の動作について説明する。顕微鏡1400は、立体映像を構成する左右の映像を供給する光源である。これら左右の映像を、以降、第1映像および第2映像と表記する。光学アダプタ1010は、顕微鏡1400から供給された第1映像および第2映像のそれぞれを二分して、カメラ1300および接眼鏡筒1500に同時に供給する。カメラ1300は、光学アダプタ1010から供給される第1映像および第2映像を撮影する撮像装置である。接眼鏡筒1500は、光学アダプタ1010から供給される第1映像および第2映像を、利用者の両目にそれぞれ出力する。
 光学アダプタ1010は、いわゆる透過式の光学アダプタであって、撮影と、顕微鏡での観察とを、同時に可能にする。
 光源としての顕微鏡1400は、他の立体視映像源に変更可能である。
 撮像装置としてのカメラ1300は、他の撮像装置に変更可能である。
 接眼鏡筒1500は、顕微鏡1400のシステムに含まれる一要素であることが望ましい。
 図11Aは、本発明の第2実施形態による光学アダプタ1010の一構成例を示す平面図である。図11Bは、本発明の第2実施形態による光学アダプタ1010の一構成例を示す正面図である。
 図11Aおよび図11Bに示した光学アダプタ1010の構成要素について説明する。光学アダプタ1010は、ボディ1100と、第1接続部1110と、第2接続部1120と、第3接続部1130と、第1光学系と、第2光学系とを備える。
 第1接続部1110は、第1入光部1111と、第2入光部1112とを備える。第2接続部1120は、第1出光部1121と、第2出光部1122とを備える。第3接続部1130は、第3出光部1131と、第4出光部1132とを備える。
 第1光学系は、第1ビームスプリッタ1140と、第1光路第1反射鏡1151と、第1光路結像レンズ1153と、第1光路第2反射鏡1152と、出光部反射鏡1180とを備える。ただし、出光部反射鏡1180のうち、第1光学系として動作するのは、出光部反射鏡第1反射面1181である。
 第2光学系は、第2ビームスプリッタ1160と、第2光路第1反射鏡1171と、第2光路結像レンズ1173と、第2光路第2反射鏡1172と、出光部反射鏡1180とを備える。ただし、出光部反射鏡1180のうち、第2光学系として動作するのは、出光部反射鏡第2反射面1182である。
 図11Aおよび図11Bに示した各構成要素の接続関係について説明する。まず、顕微鏡1400から供給される第1映像および第2映像が、それぞれ、第1入光部1111および第2入光部1112に入射する方向を、+Z方向と表記する。
 第1入光部1111と、第2入光部1112とは、+Z方向に直交するX方向に並んでいる。より正確には、第1入光部1111から見て、第2入光部1112は、+X方向に配置されている。これは、顕微鏡1400における視差方向がX方向に設定されているからである。
 第1ビームスプリッタ1140は、第1入光部1111から見て+Z方向に配置されている。第2ビームスプリッタ1160は、第2入光部1112から見て+Z方向に配置されている。ここで、第1ビームスプリッタ1140および第2ビームスプリッタ1160の構成について説明する。
 図12Aは、本発明の第2実施形態による光学アダプタ1010のうち、第1ビームスプリッタ1140の一構成例を示す俯瞰図である。
 図11A、図11Bおよび図12Aに示した第1ビームスプリッタ1140の全体的な形状は、立方体である。この立方体を、頂点1011A~1011Hで定義する。
 頂点1011A~1011Dで定義される正方形は、第1ビームスプリッタ1140の立方体の一面である。第1ビームスプリッタ1140において、面1011A~1011Dは、第1入光部1111から入力する第1映像が入射光1021Aとして+Z方向に入射する入射面である。
 頂点1011A、1011B、1011G、1011Hで定義される長方形は、第1ビームスプリッタ1140の立方体の内部に含まれており、共有する辺1011A、1011Bを介して入射面1011A~1011Dに接している。第1ビームスプリッタ1140において、面1011A、1011B、1011G、1011Hは、+Z方向に入射する入射光1021Aのうち、一部を反射光1021Bとして+Y方向に反射する反射面であって、残りを透過光1021Cとして+Z方向に透過する。ここで、+Y方向は、+X方向および+Z方向の両方に直交する方向であり、+X方向、+Y方向および+Z方向は、この順番で右手系を構成する。
 頂点1011C、1011D、1011H、1011Gで定義される正方形は、第1ビームスプリッタ1140の立方体の一面であり、共有する辺1011C、1011Dを介して入射面1011A~1011Dに接している。第1ビームスプリッタ1140において、面1011C、1011D、1011H、1011Gは、反射光1021Bが+Y方向に出射する第1出射面である。
 頂点1011E~1011Hで定義される正方形は、第1ビームスプリッタ1140の立方体の一面であり、共有する辺1011G、1011Hを介して反射面1011A、1011B、1011G、1011Hおよび第1出射面1011C、1011D、1011H、1011Gの両方に接しており、入射面1011A~1011Dに対して平行に対面している。第1ビームスプリッタ1140において、面1011E~1011Hは、透過光1021Cが+Z方向に出射する第2出射面である。
 なお、第1ビームスプリッタ1140は、入射光1021Aを、反射光1021Bおよび透過光1021Cに、1:1の比率で分割する無偏光型のビームスプリッタであることが望ましい。
 図12Bは、本発明の第2実施形態による光学アダプタ1010のうち、第2ビームスプリッタ1160の一構成例を示す俯瞰図である。
 図11Aおよび図12Bに示した第2ビームスプリッタ1160の全体的な形状は、立方体である。この立方体を、頂点1012A~1012Hで定義する。
 頂点1012A~1012Dで定義される正方形は、第2ビームスプリッタ1160の立方体の一面である。第2ビームスプリッタ1160において、面1012A~1012Dは、第2入光部1112から入力する第2映像が入射光1022Aとして+Z方向に入射する入射面である。
 頂点1012C~1012Fで定義される長方形は、第2ビームスプリッタ1160の立方体の内部に含まれており、共有する辺1012C、1012Dを介して入射面1011A~1011Dに接している。第2ビームスプリッタ1160において、面1012C~1012Fは、+Z方向に入射する入射光1022Aのうち、一部を反射光1022Bとして-Y方向に反射し、残りを透過光1022Cとして+Z方向に透過する、反射面である。
 頂点1012A、1012B、1012F、1012Eで定義される正方形は、第2ビームスプリッタ1160の立方体の一面であり、共有する辺1012A、1012Bを介して入射面1012A~1012Dに接している。第2ビームスプリッタ1160において、面1012A、1012B、1012F、1012Eは、反射光1022Bが-Y方向に出射する第1出射面である。
 頂点1012E~1012Hで定義される正方形は、第2ビームスプリッタ1160の立方体の一面であり、共有する辺1012E、1012Fを介して反射面1012C~1012Fおよび第1出射面1012A、1012B、1012F、1012Eの両方に接しており、入射面1012A~1012Dに対して平行に対面している。第2ビームスプリッタ1160において、面1012E~1012Hは、透過光1022Cが+Z方向に出射する第2出射面である。
 なお、第2ビームスプリッタ1160も、入射光1022Aを、反射光1022Bおよび透過光1022Cに、1:1の比率で分割する無偏光型のビームスプリッタであることが望ましい。
 第1光路第1反射鏡1151は、第1ビームスプリッタ1140から見て、+Y方向に配置されている。第1光路第2反射鏡1152は、第1光路第1反射鏡1151から見て、+X方向に配置されている。第1光路第1反射鏡1151と、第1光路第2反射鏡1152との間には、第1光路結像レンズ1153が配置されている。
 第2光路第1反射鏡1171は、第2ビームスプリッタ1160から見て、-Y方向に配置されている。第2光路第2反射鏡1172は、第2光路第1反射鏡1171から見て、+X方向に配置されている。第2光路第1反射鏡1171と、第2光路第2反射鏡1172との間には、第2光路結像レンズ1173が配置されている。
 第2光路第2反射鏡1172は、第1光路第2反射鏡1152から見て、-Y方向に配置されている。第1光路第2反射鏡1152と、第2光路第2反射鏡1172との間には、出光部反射鏡1180が配置されている。
 図12Cは、本発明の第2実施形態による光学アダプタのうち、出光部反射鏡1180の一構成例を示す俯瞰図である。
 図11A、図11Bおよび図12Cに示した出光部反射鏡1180の形状は、直角二等辺三角形の底面を有する三角柱である。また、出光部反射鏡1180の形状は、立方体の半分であるとも言える。この三角柱を、頂点1013A~1013Fで定義する。
 頂点1013C~1013Fで定義される正方形は、出光部反射鏡1180の三角柱の第1の側面である。出光部反射鏡1180において、面1013C~1013Fは、-Y方向に入射する第1入射光1023Aを、第1反射光1023Bとして+Z方向に反射する、出光部反射鏡第1反射面1181である。
 頂点1013A、1013B、1013F、1013Eで定義される正方形は、出光部反射鏡1180の三角柱の第2の側面である。出光部反射鏡1180において、面1013A、1013B、1013F、1013Eは、+Y方向に入射する第2入射光1024Aを、第2反射光1024Bとして+Z方向に反射する、出光部反射鏡第2反射面1182である。
 第1出光部1121は、出光部反射鏡第1反射面1181から見て+Z方向に配置されている。第2出光部1122は、出光部反射鏡第2反射面1182から見て+Z方向に配置されている。第2出光部1122は、第1出光部1121から見て-Y方向に配置されている。
 第3出光部1131は、第1ビームスプリッタ1140から見て+Z方向に配置されている。第4出光部1132は、第2ビームスプリッタ1160から見て+Z方向に配置されている。第4出光部1132は、第3出光部1131から見て+X方向に配置されている。
 第1接続部1110は、第1入光部1111および第2入光部1112の周囲に、-Z方向を向いて配置されている。第2接続部1120は、第1出光部1121および第2出光部1122の周囲に、+Z方向を向いて配置されている。第3接続部1130は、第3出光部1131および第4出光部1132の周囲に、+Z方向を向いて配置されている。
 図11A、図11Bおよび図12A~図12Cに示した各構成要素の動作について説明する。
 まず、第1接続部1110は、光学アダプタ1010を顕微鏡1400に着脱可能に接続する。なお、この接続を確実にするために、第1接続部1110には固定用のネジなどが設けられていても良い。
 次に、第2接続部1120は、光学アダプタ1010をカメラ1300の接続部1310に着脱可能に接続する。なお、第2接続部1120は、カメラ1300の規格を満たすカメラ用マウントであっても良い。
 次に、第3接続部1130は、光学アダプタ1010を接眼鏡筒1500の接続部1510に着脱可能に接続する。なお、この接続を確実にするために、第3接続部1130には固定用のネジなどが設けられていても良い。
 図13Aは、本発明の第2実施形態による光学アダプタの内部構造の一構成例を示す俯瞰図である。以降の説明は、図13Aを参照して、第1光路および第2光路に分けて行う。ここで、第1光路とは、第1光学系が第1映像を第1入光部1111から第1出光部1121まで導く光路である。また、第2光路とは、第2光学系が第2映像を第2入光部1112から第2出光部1122まで導く光路である。
 第1光路において、第1入光部1111が、顕微鏡1400が+Z方向に供給する第1映像を入力する。
 第1ビームスプリッタ1140は、第1入光部1111から+Z方向に入力した第1映像を、入射面1011A~1011Dから入力する。第1ビームスプリッタ1140は、入射した第1映像を反射面1011A、1011B、1011G、1011Hで二分する。第1ビームスプリッタ1140は、二分した第1映像のうち、一方を反射光1021Bとして+Y方向の第1光路1001に出力し、他方を透過光1021Cとして+Z方向の第3光路1003に出力する。
 第1光路第1反射鏡1151は、+Y方向に向かう第1ビームスプリッタ1140の反射光1021Bを、+X方向に反射する。このとき、第1光路結像レンズ1153が、第1映像の焦点を調整しても良い。
 第1光路第2反射鏡1152は、第1光路第1反射鏡1151が反射して+X方向に向かう第1映像を、-Y方向に反射する。
 出光部反射鏡1180の第1反射面1013C~1013Fである出光部反射鏡第1反射面1181は、第1光路第2反射鏡1152が反射して-Y方向に向かう第1映像を、+Z方向に反射する。
 第1出光部1121は、出光部反射鏡1180に反射されて+Z方向に向かう第1映像を、第1光路1001に沿って、カメラ1300の撮像素子1320に向けて出力する。
 第3出光部1131は、第1ビームスプリッタ1140が透過して+Z方向に向かう第1映像を、第3光路1003に沿って、接眼鏡筒1500に向けて出力する。
 第2光路において、第2入光部1112が、顕微鏡1400が+Z方向に供給する第2映像を入力する。
 第2ビームスプリッタ1160は、第2入光部1112から+Z方向に入力した第2映像を、第2光路入射面1012A~1012Dから入力する。第2ビームスプリッタ1160は、入射した第2映像を反射面1012C~1012Fで二分する。第2ビームスプリッタ1160は、二分した第2映像のうち、一方を反射光1022Bとして-Y方向の第2光路1002に出力し、他方を透過光1022Cとして+Z方向の第4光路1004に出力する。
 第2光路第1反射鏡1171は、-Y方向に向かう第2ビームスプリッタ1160の反射光1022Bを、+X方向に反射する。このとき、第2光路結像レンズ1173が、第2映像のかたこ焦点を調整しても良い。
 第2光路第2反射鏡1172は、第2光路第1反射鏡1171が反射して+X方向に向かう第2映像を、+Y方向に反射する。
 出光部反射鏡1180の第2反射面1013A、1013B、1013F、1013Eである出光部反射鏡第2反射面1182は、第2光路第2反射鏡1172が反射して+Y方向に向かう第2映像を、+Z方向に反射する。
 第2出光部1122は、出光部反射鏡1180に反射されて+Z方向に向かう第2映像を、カメラ1300の撮像素子1320に向けて出力する。
 第4出光部1132は、第2ビームスプリッタ1160が透過して+Z方向に向かう第2映像を、接眼鏡筒1500に向けて出力する。
 本実施形態による光学アダプタ1010によって得られる作用効果について説明する。
 図13Bは、本発明の第2実施形態による光学アダプタ1010を介して撮像される立体映像の一構成例を示す図である。図13Bでは、撮像素子1320を、+Z方向から-Z方向に向かう視点で見ている。撮像素子1320は、縦横に配置された複数の画素を備えている。撮像素子1320は、その長手方向がY方向に配置されている。図13Bに示した撮像素子1320は、いわゆる4k2kの規格を満たしており、そのY方向の画素数は3840であり、そのX方向の画素数は1920である。
 図13Bに示した例では、撮像素子1320で撮影される第1映像の領域を「L」と表記している。同様に、第2映像の領域を「R」と表記している。第1映像および第2映像の領域は、それぞれ、いわゆる2k1kの規格を満たしており、その解像度は1920ピクセル×1080ピクセルである。ただし、第1映像および第2映像の長手方向が、撮像素子1320の長手方向に対して直交していることに注目されたい。
 図13Bに示したように、2枚の2k1k規格映像を、1枚の4k2k規格の撮像素子に、各映像の長手方向および撮像素子の長手方向を直交させるように配置することによって、2枚の映像の間に最大で1680ピクセルの隙間を設けることが可能となっている。この隙間の広さは、常識的な光学系による漏光を最大限に見積っても、両映像の相互の悪影響を無視出来る程には十分である。
 光学アダプタ1010を介することで、第1映像および第2映像が並ぶ方向が変換されることについて説明する。第1入光部1111から第1出光部1121までのベクトルを考える。このベクトルを、第1光路ベクトルと表記する。第1光路ベクトルを、図示した直交座標系にしたがって、X方向成分ベクトルと、Y方向成分ベクトルと、Z方向成分ベクトルに分けて考える。同様に、第2入光部1112から第2出光部1122までの第2光路ベクトルについても、X方向成分ベクトルと、Y方向成分ベクトルと、Z方向成分ベクトルに分けて考える。
 このとき、第1光路ベクトルのX方向成分ベクトルと、第2光路ベクトルのX方向成分ベクトルとでは、方向は同じでも、ノルムが異なる。そして、第1光路ベクトルのX方向成分ベクトルと、第2光路ベクトルのX方向成分ベクトルとの差は、第1入光部1111から第2入光部1112までのベクトルに等しい。
 また、第1光路ベクトルのY方向成分ベクトルと、第2光路ベクトルのY方向成分ベクトルとでは、ノルムは同じでも、方向が反対である。そして、第1光路ベクトルのY方向成分ベクトルと、第2光路ベクトルのY方向成分ベクトルとの差は、第1出光部1121から第2出光部1122までのベクトルに等しい。
 その結果として、顕微鏡1400から入力する際には視差方向に並んでいる第1映像および第2映像を、光学アダプタ1010がX方向に並んでいる第1入光部1111および第2入光部1112から入力しても、Y方向に並んでいる第1出光部1121および第2出光部1122から出力する際には、第1映像および第2映像は、視差方向とは直交する方向に並んだ状態で撮像素子1320に照射される。
 撮像素子1320に照射される第1映像および第2映像の間の隙間を調整する方法について説明する。ここでは、1つの方法として、出光部反射鏡1180の位置をZ方向に調整する手法について説明する。そのためには、出光部反射鏡1180の、ボディ1100に対する位置を調整する調整フレームを設けることが望ましい。
 図14Aは、本発明の第2実施形態による光学アダプタ1010のうち、調整フレーム1190の一構成例を示す平面図である。図14Bは、本発明の第2実施形態による光学アダプタ1010のうち、調整フレーム1190の一構成例を示す正面図である。
 図14Aおよび図14Bに示した調整フレーム1190の構成要素について説明する。調整フレーム1190は、反射鏡支持部1191と、調整用ねじ1192と、ガイドシャフト1193、1194と、調整用つまみ1195とを備える。
 調整フレーム1190の各構成要素の接続関係について説明する。ガイドシャフト1193、1194は、光学アダプタ1010のボディ1100に対して固定されている。図14Aおよび図14Bにおいて、ガイドシャフト1193、1194の形状は、Z方向の高さを有する円柱である。反射鏡支持部1191は、ガイドシャフト1193、1194が貫通する穴を備えている。反射鏡支持部1191は、調整用ねじ1192が嵌合するねじ穴をさらに備えている。調整用ねじ1192の一端には、調整用つまみ1195が設けられている。調整用ねじ1192は、ボディ1100に対してZ軸を中心とする回転以外の自由度が無いように支持されていることが望ましい。出光部反射鏡1180は、反射鏡支持部1191に固定されている。
 調整フレーム1190の各構成要素の動作について説明する。ガイドシャフト1193、1194は、反射鏡支持部1191を、ボディ1100に対してZ方向に摺動可能に支持する。使用者が調整用つまみ1195を、Z軸を中心に回転させると、調整用ねじ1192と、反射鏡支持部1191のねじ穴とによって回転運動がZ方向の直進運動に変換されて、反射鏡支持部1191がガイドシャフト1193、1194に沿ってZ方向に移動する。その結果、反射鏡支持部1191に固定された出光部反射鏡1180もZ方向に移動する。
 調整フレーム1190の操作によって出光部反射鏡1180がZ方向に移動すると、出光部反射鏡1180が反射する第1映像の範囲を第1出光部1121から見た第1出光領域196がY方向に移動する。同様に、出光部反射鏡1180が反射する第2映像の範囲を第2出光部1122から見た第2出光領域197もY方向に移動する。
 ここで、出光部反射鏡1180が-Z方向に移動すれば、第1出光領域196は-Y方向に移動し、第2出光領域197は+Y方向に移動する。この状態における第1出光領域196および第2出光領域197を、図14Aでは実線で示している。
 反対に、出光部反射鏡1180が+Z方向に移動すれば、第1出光領域196は+Y方向に移動し、第2出光領域197は-Y方向に移動する。この状態における第1出光領域196および第2出光領域197を、図14Aでは破線で示している。
 したがって、調整フレーム1190を操作して出光部反射鏡1180のZ方向の位置を調整することで、撮像素子1320における第1映像および第2映像の間の隙間の広さを調整することが可能となる。
 (第3実施形態)
 図15は、本発明の第3実施形態による立体撮像システム1610の一構成例を示す図である。
 図15に示した立体撮像システム1610の構成要素について説明する。図15に示した立体撮像システム1610は、光学アダプタ1020と、カメラ1300と、顕微鏡1400とを備えている。
 図15に示した各構成要素の接続関係について説明する。カメラ1300と、顕微鏡1400とは、それぞれ、光学アダプタ1020に接続されている。
 図15に示した各構成要素の動作について説明する。図10に示した第2実施形態の場合と同様に、顕微鏡1400は、立体映像を構成する第1映像および第2映像を供給する光源である。光学アダプタ1010は、顕微鏡1400から供給された第1映像および第2映像をカメラ1300に供給する。カメラ1300は、光学アダプタ1010から供給される第1映像および第2映像を撮影する撮像装置である。
 光学アダプタ1020は、いわゆるアングル式の光学アダプタであって、比較的大型の撮像素子を搭載したカメラ1300で撮影を行う場合に適している。
 光源としての顕微鏡1400は、他の立体視映像源に変更可能である。
 撮像装置としてのカメラ1300は、他の撮像装置に変更可能である。
 図16Aは、本発明の第3実施形態による光学アダプタの1020一構成例を示す平面図である。図16Bは、本発明の第3実施形態による光学アダプタ1020の一構成例を示す正面図である。図17Aは、本発明の第3実施形態による光学アダプタ1020の内部構造の一構成例を示す平面図である。図17Bは、本発明の第3実施形態による光学アダプタ1020の内部構造の一構成例を示す正面図である。
 図16A、図16B、図17Aおよび図17Bに示した光学アダプタ1020の構成要素について説明する。光学アダプタ1020は、ボディ1200と、第1接続部1210と、第2接続部1220と、第1光学系と、第2光学系とを備える。
 第1接続部1210は、第1入光部1211と、第2入光部1212とを備える。第2接続部1220は、第1出光部1221と、第2出光部1222とを備える。
 第1光学系は、第1光路第1反射鏡1231と、第1光路第2反射鏡1232と、第1光路第3反射鏡1233と、出光部反射鏡第1反射面1251とを備える。なお、出光部反射鏡第1反射面1251は、後述する出光部反射鏡1250が備える反射面である。
 第2光学系は、第2光路第1反射鏡1241と、第2光路第2反射鏡1242と、第2光路第3反射鏡1243と、出光部反射鏡第2反射面1252とを備える。なお、出光部反射鏡第2反射面1252は、後述する出光部反射鏡1250が備える別の反射面である。
 図16A、図16B、図17Aおよび図17Bに示した光学アダプタ1020の構成要素の接続関係について説明する。第2実施形態の場合と同様に、まず、顕微鏡1400から供給される第1映像および第2映像が、それぞれ、第1入光部1211および第2入光部1212に入射する方向を、+Z方向と表記する。
 第1入光部1111と、第2入光部1112とは、+Z方向に直交するX方向に並んでいる。より正確には、第1入光部1111から見て、第2入光部1112は、+X方向に配置されている。これは、顕微鏡1400における視差方向がX方向に設定されているからである。
 第1光路1001において、第1光路第1反射鏡1231は、第1入光部1211から見て+Z方向に配置されている。第1光路第2反射鏡1232は、第1光路第1反射鏡1231から見て-X方向に配置されている。第1光路第3反射鏡1233は、第1光路第2反射鏡1232から見て+Y方向に配置されている。出光部反射鏡第1反射面1251は、第1光路第3反射鏡1233から見て+X方向に配置されている。第1出光部1221は、出光部反射鏡第1反射面1251から見て+Y方向に配置されている。
 同様に、第2光路1002において、第2光路第1反射鏡1241は、第2入光部1212から見て+Z方向に配置されている。第2光路第2反射鏡1242は、第2光路第1反射鏡1241から見て+X方向に配置されている。第2光路第3反射鏡1243は、第2光路第2反射鏡1242から見て+Y方向に配置されている。出光部反射鏡第2反射面1252は、第2光路第3反射鏡1243から見て-X方向に配置されている。第2出光部1222は、出光部反射鏡第2反射面1252から見て+Y方向に配置されている。
 図16A、図16B、図17Aおよび図17Bに示した各構成要素の動作について説明する。
 第2実施形態の場合と同様に、まず、第1接続部1210は、光学アダプタ1020を顕微鏡1400に着脱可能に接続する。なお、この接続を確実にするために、第1接続部1210には固定用のネジなどが設けられていても良い。
 次に、第2接続部1220は、光学アダプタ1020をカメラ1300の接続部1310に着脱可能に接続する。なお、第2接続部1220は、カメラ1300の規格を満たすカメラ用マウントであっても良い。
 図18Aは、本発明の第3実施形態による光学アダプタ1020の内部構造の一構成例を示す俯瞰図である。以降の説明では、図18Aを参照して、第1光路および第2光路に分けて行う。ここで、第1光路とは、第1光学系が第1映像を第1入光部1211から第1出光部1221まで導く光路である。また、第2光路とは、第2光学系が第2映像を第2入光部1212から第2出光部1222まで導く光路である。
 第1光路において、第1入光部1211が、顕微鏡1400が+Z方向に供給する第1映像を入力する。
 第1光路第1反射鏡1231は、第1入光部1211から+Z方向に入力した第1映像を、-X方向に反射する。第1光路第2反射鏡1232は、第1光路第1反射鏡1231が反射して-X方向に向かう第1映像を、+Y方向に反射する。第1光路第3反射鏡1233は、第1光路第2反射鏡1232が反射して+Y方向に向かう第1映像を、+X方向に反射する。出光部反射鏡1250の第1反射面1251は、第1光路第3反射鏡1233が反射して+X方向に向かう第1映像を、+Y方向に反射する。
 第1出光部1221は、出光部反射鏡1250の第1反射面1251が反射して+Y方向に向かう第1映像を、カメラ1300の撮像素子1320に向けて出力する。
 第2光路において、第2入光部1212が、顕微鏡1400が+Z方向に供給する第2映像を入力する。
 第2光路第1反射鏡1241は、第2入光部1212から+Z方向に入力した第2映像を、+X方向に反射する。第2光路第2反射鏡1242は、第2光路第1反射鏡1241が反射して+X方向に向かう第2映像を、+Y方向に反射する。第2光路第3反射鏡1243は、第2光路第2反射鏡1242が反射して+Y方向に向かう第2映像を、-X方向に反射する。出光部反射鏡1250の第2反射面1252は、第2光路第3反射鏡1243が反射して-X方向に向かう第2映像を、+Y方向に反射する。
 第2出光部1222は、出光部反射鏡1250の第2反射面1252が反射して+Y方向に向かう第2映像を、カメラ1300の撮像素子1320に向けて出力する。
 本実施形態による光学アダプタ1020によって得られる作用効果について説明する。
 図18Bは、本発明の第3実施形態による光学アダプタ1020を介して撮像される立体映像の一構成例を示す図である。図18Bでは、撮像素子1320を、+Y方向から-Y方向に向かう視点で見ている。第2実施形態の場合と同様に、撮像素子1320は、縦横に配置された複数の画素を備えている。撮像素子1320は、その長手方向がY方向に配置されている。図18Bに示した撮像素子1320は、いわゆる4k2kの規格を満たしており、そのY方向の画素数は3840であり、そのX方向の画素数は1920である。
 図18Bに示した例では、撮像素子1320で撮影される第1映像の領域を「L」と表記している。同様に、第2映像の領域を「R」と表記している。第1映像および第2映像の領域は、それぞれ、いわゆる2k1kの規格を満たしており、その解像度は1920ピクセル×1080ピクセルである。ただし、第1映像および第2映像の長手方向が、撮像素子1320の長手方向に対して直交していることに注目されたい。
 図18Bに示したように、2枚の2k1k規格映像を、1枚の4k2k規格の撮像素子に、各映像の長手方向および撮像素子の長手方向を直交させるように配置することによって、2枚の映像の間に最大で1680ピクセルの隙間を設けることが可能となっている。この隙間の広さは、常識的な光学系による漏光を最大限に見積っても、両映像の相互の悪影響を無視出来る程には十分である。
 光学アダプタ1020を介することで、第1映像および第2映像が並ぶ方向が変換されることについて説明する。
 第1光路に注目すると、第1光路第1反射鏡1231および第1光路第2反射鏡1232の反射によって、Y方向から見た反射後の第1映像は、Z方向から見た反射前の第1映像と比較して、+Y方向の回転軸に対して90度の回転を与えられている。この回転は、第1映像を出力するY方向が、第1映像を入力するZ方向に直交しているからこそ得られる効果である。なお、その後に第1映像を反射する第1光路第3反射鏡1233および出光部反射鏡1250の第1反射面1251は、平行に対面して配置されているので、第1映像を回転しない。
 その一方で、第2光路に注目すると、第2光路第1反射鏡1241および第2光路第2反射鏡1242の反射によって、Y方向から見た反射後の第1映像は、Z方向から見た反射前の第1映像と比較して、+Y方向の回転軸に対して-90度の回転を与えられている。この回転は、第2映像を出力するY方向が、第2映像を入力するZ方向に直交しているからこそ得られる効果である。なお、その後に第1映像を反射する第2光路第3反射鏡1243および出光部反射鏡1250の第2反射面1252は、平行に対面して配置されているので、第1映像を回転しない。
 その結果として、顕微鏡1400から入力する際には視差方向に並んでいる第1映像および第2映像を、光学アダプタ1020がX方向に並んでいる第1入光部1211および第2入光部1212から入力しても、X方向に並んでいる第1出光部1221および第2出光部1222から出力する際には、第1映像および第2映像は、視差方向とは直交する方向に並んだ状態で撮像素子1320に照射される。
 以上、発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、第1実施形態では、主に漏光に係る課題に注目して説明し、第2実施形態および第3実施形態では、主に光源との接続関係に注目して説明したが、前記実施の形態に説明したそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能である。
 特に、第3実施形態による光学アダプタ1020に、第2実施形態による調整フレーム1190を組み合わせて、ボディ1200に対する出光部反射鏡1250の位置をY方向に調整し、撮像素子1320における第1映像および第2映像の間の隙間の広さを調整しても良い。
 また、第3実施形態による第1光路第1反射鏡1231および第2光路第1反射鏡1241を、それぞれ、第2実施形態による第1ビームスプリッタ140および第2ビームスプリッタ1160に置き換えることで、第3実施形態によるアングル式の光学アダプタ1020に、第2実施形態と同様の透過機能を追加し、接眼鏡筒1500を接続する構成を追加することも可能となる。
 なお、この出願は、2014年9月5日に出願された日本特許出願2014-181759号と、2015年4月17日に出願された日本特許出願2015-085375号とを基礎とする優先権を主張し、その開示の全てを引用によりここに組み込む。
 

Claims (16)

  1.  外部光源から第1入力光として第1方向に入射する第1映像を入力する第1入光部と、
     前記第1入光部に対して、前記第1方向に直交する視差方向に並んで配置され、前記外部光源から第2入力光として前記第1方向に入射する第2映像を入力する第2入光部と、
     前記第1映像を第1出力光として第2方向に出力する第1出光部と、
     前記第1出光部に対して、前記第2方向および前記第1映像の視差方向の双方に直交する第3方向に並んで配置され、前記第2映像を第2出力光として前記第2方向に出力する第2出光部と、
     前記第1映像を前記第1入光部から前記第1出光部に導く第1光学系と、
     前記第2映像を前記第2入光部から前記第2出光部に導く第2光学系と
    を具備する
     光学アダプタ。
  2.  請求項1に記載の光学アダプタにおいて、
     前記第1出光部および前記第2出光部は、所定の距離を空けて配置されており、
     前記所定の距離は、
     前記第1出力光の周囲に発生する第1漏光の幅および前記第2出力光の周囲に発生する第2漏光の幅の双方より長い
     光学アダプタ。
  3.  請求項1または2に記載の光学アダプタにおいて、
     前記第1方向および前記第2方向は平行であり、
     前記第1入光部から前記第1出光部までのベクトルは、
     前記第1入光部および前記第2入光部が並ぶ方向の第1成分ベクトルと、
     前記第1出光部および前記第2出光部が並ぶ方向の第2成分ベクトルと
    を含み、
     前記第2入光部から前記第2出光部までのベクトルは、
     前記第1入光部および前記第2入光部が並ぶ方向の第3成分ベクトルと、
     前記第1出光部および前記第2出光部が並ぶ方向の第4成分ベクトルと
    を含み、
     前記第1成分ベクトルおよび前記第3成分ベクトルの差は、前記第1入光部から前記第2入光部までのベクトルに等しく、かつ、前記第2成分ベクトルおよび前記第4成分ベクトルの差は、前記第1出光部から前記第2出光部までのベクトルに等しい
     光学アダプタ。
  4.  請求項1または2に記載の光学アダプタにおいて、
     前記第1方向および前記第2方向は直交しており、
     前記第1光学系は、
     前記第1入光部から入力する前記第1映像に、前記第1出光部から出力するまでに、光軸の周囲の回転方向に+90度の回転を与え、
     前記第2光学系は、
     前記第2入光部から入力する前記第2映像に、前記第2出光部から出力するまでに、光軸の周囲の前記回転方向に-90度の回転を与える
     光学アダプタ。
  5.  請求項3に記載の光学アダプタにおいて、
     前記第1光学系は、
     前記第1入力光を反射して第1反射光として出力する入力側第1反射鏡と、
     前記入力側第1反射鏡に対して平行に配置されて、前記第1反射光を反射して前記第1出力光として出力する出力側第1反射鏡と
    を具備し、
     前記第2光学系は、
     前記第2入力光を反射して第2反射光として出力する入力側第2反射鏡と、
     前記入力側第2反射鏡に対して平行に配置されて、前記第2反射光を反射して前記第2出力光として出力する出力側第2反射鏡と
    を具備する
     光学アダプタ。
  6.  請求項1~3のいずれか一項に記載の光学アダプタにおいて、
     前記第1光学系は、
     前記第1映像として入射する入射光の一部を反射光として反射し、前記入射光の他の一部を透過光として透過する第1ビームスプリッタ
    を具備し、
     前記第2光学系は、
     前記第2映像として入射する他の入射光の一部を別の反射光として反射し、前記他の入射光の別の一部を他の透過光として透過する第2ビームスプリッタ
    を具備し、
     前記透過光を出力する第3出光部と、
     前記他の透過光を出力する第4出光部と
    をさらに具備する
     光学アダプタ。
  7.  請求項4または5に記載の光学アダプタにおいて、
     前記第1入光部および前記第2入光部の周囲に配置され、前記第1映像および前記第2映像を供給する外部の光源を接続する第1接続部と、
     前記第1出光部および前記第2出光部の周囲に配置され、前記第1映像および前記第2映像を撮像する外部のカメラを接続する第2接続部と
    をさらに具備する
     光学アダプタ。
  8.  請求項6に記載の光学アダプタにおいて、
     前記第1入光部および前記第2入光部の周囲に配置され、前記第1映像および前記第2映像を供給する外部の光源を接続する第1接続部と、
     前記第1出光部および前記第2出光部の周囲に配置され、前記第1映像および前記第2映像を撮像する外部のカメラを接続する第2接続部と、
     前記第3出光部および前記第4出光部の周囲に配置され、外部の接眼鏡筒を接続する第3接続部と
    をさらに具備する
     光学アダプタ。
  9.  請求項1~8のいずれか一項に記載の光学アダプタにおいて、
     前記第1光学系および前記第2光学系の光学特性を調整する調整機構
    をさらに具備し、
     前記調整機構が調整する光学特性は、
     前記第1入力光の光軸および前記第1出力光の光軸の位置関係と、
     前記第2入力光の光軸および前記第2出力光の光軸の位置関係と、
     前記第1入力光の光軸および前記第2入力光の光軸の位置関係と
    のうち、少なくとも1つを含む
     光学アダプタ。
  10.  請求項5に記載の光学アダプタにおいて、
     前記第1光学系の光学特性を調整する調整機構
    をさらに具備し、
     前記調整機構は、
     前記第1光学系の光学特性を調整する第1調整フレーム
    を具備し、
     前記第1調整フレームは、
     前記入力側第1反射鏡および前記出力側第1反射鏡が平行に向かい合ったまま、前記第1入力光の光軸に平行な回転軸を中心に、前記入力側第1反射鏡および前記出力側第1反射鏡の集合を回転するベアリング部と、
     前記入力側第1反射鏡および前記出力側第1反射鏡が平行に向かい合ったまま、前記入力側第1反射鏡から前記出力側第1反射鏡までの距離を調整するレール部と
    を具備する
     光学アダプタ。
  11.  請求項10に記載の光学アダプタにおいて、
     前記調整機構は、
     前記第2光学系の光学特性を調整する第2調整フレーム
    をさらに具備し、
     前記第2調整フレームは、
     前記入力側第2反射鏡および前記出力側第2反射鏡が平行に向かい合ったまま、前記第2入力光の光軸に平行な回転軸を中心に、前記入力側第2反射鏡および前記出力側第2反射鏡の集合を回転するベアリング部と、
     前記入力側第2反射鏡および前記出力側第2反射鏡が平行に向かい合ったまま、前記入力側第2反射鏡から前記出力側第2反射鏡までの距離を調整するレール部と
    を具備する
     光学アダプタ。
  12.  請求項7に記載の光学アダプタと、
     前記第1接続部に接続されて、前記第1映像および前記第2映像を供給する光源と、
     前記第2接続部に接続されて、前記第1映像および前記第2映像を同一の撮像素子で同時に撮影するカメラと
    を具備する
     立体撮像システム。
  13.  請求項8に記載の光学アダプタと、
     前記第1接続部に接続されて、前記第1映像および前記第2映像を供給する光源と、
     前記第2接続部に接続されて、前記第1映像および前記第2映像を同一の撮像素子で同時に撮影するカメラと、
     前記第3接続部に接続されて、前記第1映像および前記第2映像を出力する接眼鏡筒と
    を具備する
     立体撮像システム。
  14.  請求項1~13のいずれかに記載の光学アダプタと、
     前記光学アダプタの前段に接続されて、前記第1入力光として左目用映像を前記第1入光部に向けて出力し、前記第2入力光を右目用映像として前記第2入光部に向けて出力する立体顕微鏡と、
     前記光学アダプタの後段に接続されて、前記第1出力光としての前記左目用映像および前記第2出力光としての前記右目用映像を、同一の撮像素子の異なる領域に同時に撮像するカメラと
    を具備する
     立体視撮影システム。
  15.  請求項14に記載の立体視撮影システムにおいて、
     前記カメラは、
     長辺方向に3,840ピクセルの解像度および短辺方向に2,160ピクセルの解像度を有する撮像素子
    を具備し、
     前記撮像素子は、前記左目用映像および前記右目用映像のそれぞれを、長辺方向に1,920ピクセルの解像度および短辺方向に1,080ピクセルの解像度で撮像する
     立体視撮影システム。
  16.  請求項14または15に記載の立体視撮影システムにおいて、
     前記左目用映像および前記右目用映像を表示する表示装置と、
     前記左目用映像および前記右目用映像を立体視する立体視ゴーグルと
    を具備し、
     前記表示装置は、
     天地方向に並んで、かつ所定の距離を設けて配置されて、前記左目用映像および前記右目用映像を表示する第1表示領域および第2表示領域
    を具備し、
     前記立体視ゴーグルは、
     前記第1表示領域から前記左目用映像または前記右目用映像の一方を入力するゴーグル側第1入光部と、
     前記ゴーグル側第1入光部と天地方向に並んで配置されて、前記第2表示領域から前記左目用映像または前記右目用映像の他方を入力するゴーグル側第2入光部と、
     前記左目用映像または前記右目用映像の前記一方を出力するゴーグル側第1出光部と、
     前記ゴーグル側第1出光部と左右方向に並んで配置されて、前記左目用映像または前記右目用映像の前記他方を出力するゴーグル側第2出光部と、
     前記左目用映像または前記右目用映像の前記一方を、前記ゴーグル側第1入光部から前記ゴーグル側第1出光部へ導くゴーグル側第1光学系と、
     前記左目用映像または前記右目用映像の前記他方を、前記ゴーグル側第2入光部から前記ゴーグル側第2出光部へ導くゴーグル側第2光学系と
    を具備する
     立体視撮影システム。
     
PCT/JP2015/075248 2014-09-05 2015-09-04 光学アダプタおよびこれを用いた立体撮像システム WO2016035891A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546708A JPWO2016035891A1 (ja) 2014-09-05 2015-09-04 光学アダプタおよびこれを用いた立体撮像システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-181759 2014-09-05
JP2014181759 2014-09-05
JP2015-085375 2015-04-17
JP2015085375 2015-04-17

Publications (1)

Publication Number Publication Date
WO2016035891A1 true WO2016035891A1 (ja) 2016-03-10

Family

ID=55439944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075248 WO2016035891A1 (ja) 2014-09-05 2015-09-04 光学アダプタおよびこれを用いた立体撮像システム

Country Status (2)

Country Link
JP (1) JPWO2016035891A1 (ja)
WO (1) WO2016035891A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228670A1 (ja) * 2022-05-23 2023-11-30 日立Astemo株式会社 ステレオカメラ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119659A (ja) * 1974-02-19 1975-09-19
JP2005241791A (ja) * 2004-02-25 2005-09-08 Olympus Corp ステレオ撮像装置
JP2010164857A (ja) * 2009-01-16 2010-07-29 Meta Corporation Japan 立体画像撮影装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3107959B2 (ja) * 1993-11-30 2000-11-13 キヤノン株式会社 複眼撮像系
JP2013097079A (ja) * 2011-10-31 2013-05-20 Sharp Corp 立体像撮影装置および電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50119659A (ja) * 1974-02-19 1975-09-19
JP2005241791A (ja) * 2004-02-25 2005-09-08 Olympus Corp ステレオ撮像装置
JP2010164857A (ja) * 2009-01-16 2010-07-29 Meta Corporation Japan 立体画像撮影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228670A1 (ja) * 2022-05-23 2023-11-30 日立Astemo株式会社 ステレオカメラ装置

Also Published As

Publication number Publication date
JPWO2016035891A1 (ja) 2017-05-25

Similar Documents

Publication Publication Date Title
JP4863527B2 (ja) 立体映像撮像装置
US9948923B2 (en) Stereoscopic video imaging display system and a stereo slide or stereo slide print
US9872009B2 (en) Stereoscopic camera apparatus
US8390675B1 (en) Stereoscopic camera and system
KR20130094294A (ko) 스틸 사진용의 가변 3차원 카메라 어셈블리
KR100972572B1 (ko) 양안식 입체영상 카메라 장치 및 그 카메라 장착 장치
DK3123234T3 (en) STEREOSCOPIC VIEWING DEVICE
JP5609562B2 (ja) 立体画像撮像装置
JP2010081580A (ja) 撮像装置および映像記録再生システム
JP2006033228A (ja) 画像撮像装置
JP2000341718A (ja) ビデオスコープとその表示装置
US8228373B2 (en) 3-D camera rig with no-loss beamsplitter alternative
WO2016035891A1 (ja) 光学アダプタおよびこれを用いた立体撮像システム
JP6670036B2 (ja) コンパクトな立体画の撮影方法
JPH0850258A (ja) ステレオ鑑賞装置
JP2012145921A (ja) ステレオ画像撮像装置
JP2004101665A (ja) 立体像撮影方法及びその装置
RU103940U1 (ru) Цифровой стереокиносъемочный аппарат
JP2010271733A (ja) 立体像撮影方法及びその装置
JP2005181880A (ja) アダプター保持装置およびアダプターセット
JP2002341253A (ja) 立体観察用双眼鏡システム及び立体観察用アダプタ装置
JP2004101664A (ja) 立体像撮影用のアダプタ、及び立体像取り込み装置の装着機構
JP2007187745A (ja) 画像表示装置
JP2004126290A (ja) 立体撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838815

Country of ref document: EP

Kind code of ref document: A1