JP5609562B2 - 立体画像撮像装置 - Google Patents

立体画像撮像装置 Download PDF

Info

Publication number
JP5609562B2
JP5609562B2 JP2010251750A JP2010251750A JP5609562B2 JP 5609562 B2 JP5609562 B2 JP 5609562B2 JP 2010251750 A JP2010251750 A JP 2010251750A JP 2010251750 A JP2010251750 A JP 2010251750A JP 5609562 B2 JP5609562 B2 JP 5609562B2
Authority
JP
Japan
Prior art keywords
optical system
imaging optical
objective optical
lens
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010251750A
Other languages
English (en)
Other versions
JP2012105058A (ja
Inventor
山田 正裕
正裕 山田
青木 直
青木  直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010251750A priority Critical patent/JP5609562B2/ja
Priority to TW100133775A priority patent/TWI526772B/zh
Priority to EP17174496.4A priority patent/EP3267252A3/en
Priority to EP11185005.3A priority patent/EP2453307B1/en
Priority to US13/287,712 priority patent/US9110367B2/en
Priority to CN201110348448.9A priority patent/CN102566248B/zh
Priority to BRPI1105307-0A2A priority patent/BRPI1105307A2/pt
Priority to RU2011144888/28A priority patent/RU2554299C2/ru
Priority to CN2011204358690U priority patent/CN202362582U/zh
Publication of JP2012105058A publication Critical patent/JP2012105058A/ja
Application granted granted Critical
Publication of JP5609562B2 publication Critical patent/JP5609562B2/ja
Priority to US14/796,176 priority patent/US10234675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2415Stereoscopic endoscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/18Arrangements with more than one light path, e.g. for comparing two specimens
    • G02B21/20Binocular arrangements
    • G02B21/22Stereoscopic arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • G03B35/10Stereoscopic photography by simultaneous recording having single camera with stereoscopic-base-defining system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00193Optical arrangements adapted for stereoscopic vision

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Description

本発明は、立体画像の撮影を行う立体画像撮像装置に関し、特に、立体画像を撮像する複数のレンズのレンズ間距離である基線長を調整する技術に関する。
近年、3D(立体)映像を撮影できるカメラ(立体画像撮像装置)へのニーズが高まっている。立体画像の撮像方法としては、ハーフミラーを使用して撮影を行うビームスプリッタ方式(ハーフミラー方式)や、物理的に並べて設置した2台の撮像装置で撮影を行うサイドバイサイド方式(並立2眼式)等が知られている。これらの撮影方式では、撮像装置をリグ(Rig)と称される架台に搭載して撮影を行うため、撮像装置の装着の自由度が高くなる。例えば、立体映像を撮影する2つのレンズのレンズ間距離(基線長;以下、IAD:InterAxial Distanceと称する)や、輻輳(Convergence)や、画角などを高い自由度で選ぶことができる。
ところが、自由度が高い一方、リグに搭載するために、撮影毎の設定・調整に非常な労力と時間を要するという問題点があった。また、特にビームスプリッタ方式のリグは大変に大掛かりな装置となり、フィールドでの撮影や取材用途には適さないといった問題もある。
こういった問題を解決するために、サイドバイサイド方式で撮影を行う2台の2D映像撮影用カメラを一つの筐体に作りこみ、一体型の2眼3Dカメラを構成することも行われている。このように構成された一体型2眼3Dカメラは、組み立てる必要が無くアライメントの調整も必要がない。さらに、コンパクトであるため、フィールドでの撮影や取材時においても持ち運びが容易であり、また短時間のセットアップで直ぐに撮影に入れるといったメリットがある。
しかしながら、このような一体型2眼3Dカメラは、基本的にはサイドバイサイド方式であるので、IADの調整に限界が生ずる。すなわち、2眼のそれぞれの光学系やイメージャがお互いに物理的に干渉するため、IADを、光学系やイメージの配置位置により定まる一定の距離より短くすることができない。このため、例えば被写体に非常に近接して撮影を行うようなケースにおいては、被写体の後方ほんの数メートル先で3Dディスプレイに表示したときの視差が、人が快適に3D映像を視聴できるときの視差の範囲を超えてしまう。
被写体と撮像装置との距離が非常に近接するケースとしては、例えば人物のインタビュー撮影や、スポーツ中継におけるバックヤードでの撮影時等が考えられる。このような場合、被写体と撮像装置との距離は1〜2m程度となり、輻輳点も1〜2mの距離に合わせることになる。このような場合の、人が快適に3D映像を視聴できる範囲内に視差を収めるのに最も有用なIADは、10mm〜40mmであると言われている。しかし、現状の一体型2眼3Dカメラでは、そのような短いIADを、画質や機能を保ったまま、すなわちレンズの径やイメージャのサイズを小さくすることなく実現することは困難な状況にある。
前述したビームスプリッタ方式で撮影を行う場合は、2台の撮像装置が互いに物理的に干渉しないため、IADを非常に短くすることも可能となる。ところが、上述したように、撮影毎の設定・調整に非常な労力と時間を要するという問題があり、人物のインタビュー撮影や、スポーツ中継におけるバックヤードでの撮影に適さないという問題は依然として残る。
例えば特許文献1には、カメラのフォーカス点が2眼の輻輳点に合致した状態のまま輻輳点を任意の位置に調整可能な立体画像撮影装置が記載されている。このような装置を使用すれば、IADを人の眼幅と同じ広さとして撮影をすることも可能となり、近接での撮影を行う場合にも、自然な立体感を得られる映像を撮影することができる。
特開2003−5313号公報
しかしながら、特許文献1に記載の、特に図3および図5に記載の構成では、輻輳点とフォーカスポイントとを一致させるために、結像光学系のフォーカスを無限遠に合わせる必要があると思われる。この場合、通常の撮影、すなわち動いている被写体に常にフォーカスを合わせたオンフォーカスの状態での撮影等においては、撮影映像がきわめて不自然なものとなってしまうことが想定される。例えば、被写体が前後に動いた場合は、被写体自体が前後に動くのではなく、その周囲の風景の方が前後に動くような映像が撮影されてしまう。つまり、特許文献1に記載の立体画像撮影装置では、オンスクリーン位置を変えずにフォーカスを変えることや、フォーカスを変えずにオンスクリーン位置を変えること等を行えないという問題があった。
本発明はかかる点に鑑みてなされたものであり、画質や機能を保ったままで、短い基線長での立体画像の撮影を行えるようにすることを目的とする。
上記課題を解決するために、本発明の立体画像撮像装置は、被写体を実像または虚像として結像する機能を有する対物光学系と、複数の独立した光学系により、対物光学系の異なる経路から出射された複数の被写体光束を視差画像として改めて結像させる複数の結像光学系とを備える。そして、対物光学系が被写体を実像として結像する場合の焦点距離の値を正とし、対物光学系が被写体を虚像として結像する場合の焦点距離の値を負とした場合に、対物光学系の焦点距離(f)と、対物光学系の後側主点と結像光学系の前側主点までの距離(L)とを、下記式を満たす値に設定する。
|f/(L−f)|≦1
ここで、対物光学系は、その開口面内に複数の結像光学系のすべての光軸を含むようにした。
このように構成することで、被写体と対物光学系の間または、対物光学系と結像光学系との間に実質的な瞳(実効瞳)が形成され、その実効瞳を通して得た画像が撮像されるようになる。そして、対物光学系の焦点距離と、対物光学系の後側主点と結像光学系の前側主点までの距離とを上述した式を満たす値とすることで、実効瞳の間隔を、複数の結像光学系のレンズ間距離により定まる実際の基線長より短くすることができる。したがって、撮像装置のレンズの径やイメージャのサイズを小さくすることなく、画質や機能を保ったままで、短い基線長での立体画像の撮影を行えるようになる。
本発明の一実施の形態による立体画像撮像装置の構成例を示すブロック図である。 本発明の一実施の形態による、被写体から放射される光線のうちの、結像光学系のレンズの主点を通過する光線の辿る経路を示す光路図である。 本発明の一実施の形態による、実効瞳が形成される原理を説明する説明図であり、(a)は被写体のある一点から放射された光線のうちの光軸に平行な光線と、対物光学系のレンズ中心を通過する光線が辿る経路を示す光路図であり、(b)は結像光学系のレンズ中心から放射された光が辿る経路を示す光路図である。 本発明の一実施の形態による、結像光学系のレンズ中心から放射される光線のうちの、光軸に並行な光線と対物光学系のレンズ中心を通過する光線とが辿る経路を示す光路図である。 本発明の一実施の形態による実効IADの算出方法を説明する説明図であり、(a)は実効瞳を通る光線のうちの光軸に平行な光線の経路を示す光路図であり、(b)は、(a)に示した情報のうち、実効IADの算出に必要な箇所のみを抽出して表示したものである。 本発明の一実施の形態による実効瞳位置の算出方法を説明する説明図であり、(a)は結像光学系のレンズ中心から放射される光線のうちの、光軸に平行な光線の経路を示した光路図であり、(b)は、(a)に示した情報のうち、実効瞳位置の算出に必要な箇所のみを抽出して表示したものである。 本発明の一実施の形態による、結像光学系IADの広さを変えた場合の実効IADの変化を示す説明図であり、(a)は結像光学系IADを狭くとった場合の例を示し、(b)は結像光学系IADを(a)に示したものよりも長くとった場合の例を示し、(c)は結像光学系IADを(b)に示したものよりも長くとった場合の例を示す。 本発明の一実施の形態による、対物光学系の後側主点と結像光学系の前側主点までの距離を変えた場合の実効IADの変化を示す説明図であり、(a)は対物光学系の後側主点と結像光学系の前側主点までの距離を広くとった場合の例を示し、(b)は、対物光学系の後側主点と結像光学系の前側主点までの距離を(a)に示したものよりも狭くとった場合の例を示し、(c)は、対物光学系の後側主点と結像光学系の前側主点までの距離を(b)に示したものよりも狭くとった場合の例を示す。 本発明の一実施の形態による、対物光学系の焦点距離を変えた場合の実効IADの変化を示す説明図であり、(a)は焦点距離を狭くとった場合の例を示し、(b)は、焦点距離を(a)に示したものより広くとった場合の例を示し、(c)は、焦点距離を(b)に示したものより広くとった場合の例を示す。 本発明の一実施の形態による、被写体が光軸方向に動いた場合における、被写体から放射されて結像光学系のレンズ中心を通過する光線が通る経路を示す光路図である。 本発明の一実施形態の変形例による立体画像撮像装置の構成例を示すブロック図である。 本発明の一実施形態の変形例による、被写体から放射される光線のうちの、結像光学系のレンズの主点を通過する光線の辿る経路を示す光路図である。 本発明の一実施形態の変形例による、実効瞳が形成される原理を説明する説明図であり、(a)は被写体のある一点から放射された光線のうちの光軸に平行な光線と、対物光学系のレンズ中心を通過する光線が辿る経路を示す光路図であり、(b)は結像光学系のレンズ中心から放射された光が辿る経路を示す光路図である。 本発明の一実施形態の変形例による、結像光学系のレンズ中心から放射される光線のうちの、光軸に並行な光線と対物光学系のレンズ中心を通過する光線とが辿る経路を示す光路図である。 本発明の一実施形態の変形例による実効IADの算出方法を説明する説明図であり、(a)は実効瞳を通る光線のうちの光軸に平行な光線の経路を示す光路図であり、(b)は、(a)に示した情報のうち、実効IADの算出に必要な箇所のみを抽出して表示したものである。
以下、発明を実施するための形態について説明する。なお、説明は以下の順序で行う。
1.立体画像撮像装置の構成例
2.各種変形例
<1.立体画像撮像装置の構成例>
[立体画像撮像装置の全体構成例]
図1に、本発明の第1の実施の形態に係る立体画像撮像装置の構成例を示す。立体画像撮像装置1は、被写体Sを実像として結像する機能を有する対物光学系10と、対物光学系10の異なる経路から出射された複数の被写体光束を視差画像としてそれぞれ改めて結像させる、2つの結像光学系20a,20bとを備える。本実施の形態では、対物光学系10に凸レンズを使用している。なお、図1に示す例では説明をわかり易くするために、対物光学系10が焦点距離fの薄肉レンズであり、結像光学系2は、薄肉レンズ201a,201bとイメージャ202a,202bで構成されているものとしている。実際の対物光学系10は、多数枚・多群のレンズやフィルタ、絞り、レンズ駆動機構などから構成されているものとする。さらに、これらの機構に加えて、ズーム機能や焦点調節機能、その他の機能があってもよい。結像光学系20a,20bも、実際は多数枚・多群のレンズやフィルタや絞り、またレンズ駆動機構などから構成されており、ズーム機能や焦点調節機能やその他の機能があってもよい。図1に示す構成では、対物光学系10の光軸A1と、結像光学系20a,20bのそれぞれの光軸A2a,A2bとが同一平面上に存在するように、対物光学系10と結像光学系20a,20bを配置している。
[立体画像撮像装置における実効IADの形成例]
次に、立体画像撮像装置1において形成される実質的なIAD(以下、実効IADと称する)の例について、図2を参照して説明する。図2は、被写体Sから放射される光線のうち、結像光学系20a,20bのレンズの主点を通過する光線の辿る経路を示す光路図である。被写体Sから放射された光束は、対物光学系10に入射された後、2つの結像光学系20a,20bに導かれてイメージャ202aおよび202b上に結像し、それぞれが視差画像となる。このとき、結像光学系20aのレンズの前側主点fH20aを通過する光線および、結像光学系20bのレンズの前側主点fH20bを通過する光線について考えてみる。すると、例えば結像光学系20aの主点fH20aを通過する光線群は破線で示された上側の光線であり、結像光学系20bの主点fH20bを通過する光線群は、実線で示された下側の光線である。そして、破線で示される光線および実線で示される光線は、それぞれ被写体Sと対物光学系10の間に仮想的に存在する2つの実効的な瞳(以下、実効瞳EPと称する)を通過する。そして、結像光学系20aのイメージャ202aおよび結像光学系20bのイメージャ202bには、実効瞳EPの位置から眺めた被写体Sが結像される。つまり、これらの2つの実効瞳EP間の距離(以下、実効IADedと称する)が、立体画像撮像装置1における実質的なIADとなる。被写体Sと対物光学系10の間に実効瞳EPが形成される原理については、図3および図4を参照して後述する。
実効IADedは、下記の式1で表現される。
ed=f/(L−f)×d …(式1)
上記式1において、“f”は対物光学系10の焦点距離であり、“L”は対物光学系10の後側主点rH10と、結像光学系20aの前側主点fH20aおよび結像光学系20bの前側主点fH20bまでの距離である。なお、図2で示したように薄肉レンズとして理想化した場合は前側主点と後側主点の区別はなく、前側主点と後側主点はに主点と一致する。また、“d”は結像光学系20aと結像光学系20bの配置位置により定まるIADであるが、一般的には結像光学系の前側主点間距離、即ち、結像光学系20aと結像光学系20bのそれぞれの前側主点fH20aとfH20bとの距離である。
例えば、対物光学系10の焦点距離fが70mmであり、距離Lが370mmであるとする。また、結像光学系20aと結像光学系20bとを、対物光学系10の光軸A1を対象軸として距離d=60mmだけ離して配置したものとする(結像光学系IADd=60mm)。この場合、実効IADedは、上記式1により14mmと算出される。つまり、結像光学系20aと20bの配置位置により求まる結像光学系IADd(60mm)に比べて、実質的なIAD(実効IADed)をf/(L−f)倍だけ短く(14mm)することができることを意味する。
したがって、対物光学系10の焦点距離fと距離Lとを、以下の式2を満たす値に設定することで、結像光学系20aと20bの配置位置により求まる結像光学系IADdよりも、実効IADedを短くすることができる。なお、以下の式では、対物光学系10のレンズとして凸レンズを使用しており、その焦点距離fが正(f>0)であることを前提としている。
f/(L−f)≦1 …(式2)
[立体画像撮像装置において実効瞳が形成される原理]
次に、立体画像撮像装置1において、被写体Sと対物光学系10の間に仮想的に実効瞳が形成される原理について、図3および図4を参照して説明する。まず、図3(a)を参照して、対物光学系10により形成される空間像S′について説明し、次に図3(b)を参照して、被写体Sからイメージャ202a(202b)までの光線経路について説明する。そして、図4を参照して実効瞳EPが形成される仕組みについて説明する。
(1)空間像について
図3(a)に示すように、被写体Sから放射された光束が対物光学系10を通過して再び結像することにより、対物光学系10と結像光学系20a,20bとの間に空間像S′が形成される。この空間像S′は、あたかもその位置に物体があるように見えるものであり、結像光学系20a,20bのレンズを視点にして眺めると見ることができる。空間像S′が形成される原理は、例えば、被写体Sのある一点から放射された光線のうちの光軸A1に平行な光線と、対物光学系10のレンズの中心を通過する光線との2本の光線を考えるとわかり易い。被写体Sのある一点から出射された光のうち光軸A1に平行な光線は、対物光学系10のレンズの性質により、レンズを通過後に対物光学系10の焦点Fを通過する光線となる。一方、対物光学系10のレンズの中心を通過した光線は、そのレンズの性質によりそのまま直進する。すると、これら2本の光線は再び他の点で交差する。この交差した点が、発射した被写体Sの点に対応する空間像S′における点となる。
(2)被写体から結像光学系のイメージャまでの光線経路
図3(b)に示すように、被写体Sから放射された光線は、もし結像光学系20a,20bのレンズの中心から光線が放射されるとすると、その光線が辿る経路と同じ経路を辿る。このため、結像光学系20a,20bのレンズの中心から考えるのがわかり易い。図3(b)に示す例では、結像光学系20aのレンズの中心から放射される光が辿る経路を例に挙げて説明する。結像光学系20aのレンズの中心から放射された光線は、空間像S′のある一点を通過した後に対物光学系10のレンズに到達し、そこから「空間像S′のある一点」に対応する被写体Sのある一点に向かって進行する。結像光学系20aのレンズの中心からイメージャ202aまでの光線については、結像光学系20aのレンズ中心を通過する光線を、そのままイメージャ202aの位置まで延長すればよい。
(3)実効瞳について
引き続き図3(b)を参照して、実効瞳EPが形成される原理について説明する。上述したような、被写体Sから結像光学系20aのイメージャ202aまでの光線経路の作成を、空間像S′のその他の点を通る光線においても行ってみる。すると、結像光学系20aのレンズ中心から放射された光線が、対物光学系10を通過後に再びある一点で交わることがわかる。この一点が実効瞳EPである。実効瞳EPは、結像光学系20aのレンズ中心を通過することになる全ての光線が通過する点である。このため、結像光学系20aのイメージャ202aの撮像面に結像される映像は、実効瞳EPを瞳として撮影された画像と等価な映像となる。すなわち、本実施の形態による立体画像撮像装置1を用いて被写体Sを撮像することにより、実効瞳EPの位置にカメラを置いて撮影した映像と同じ映像を取得することが可能となる。
結像光学系20aのレンズ中心から放射される光線のうちの光軸A1に平行な光線と、対物光学系10のレンズのレンズ中心を通過する光線を考えることによっても、実効瞳EPが形成される位置を求めることができる。上述したように、被写体Sから放射された光線は、もし結像光学系20aのレンズの中心から光線が放射されるとすると、その光線が辿る経路と同じ経路を辿る。これは、結像光学系20aのレンズ中心に発光点を置くとすると、そこから放射される光は全て実効瞳EPを通過するということを意味している。つまり、実効瞳EPは、結像光学系20aの「レンズの影」または「空間像」であるといえる。したがって、図4に示すように、結像光学系20aのレンズ中心から放射される光線のうちの光軸A1に平行な光線と、対物光学系10のレンズのレンズ中心を通過する光線とが再び交差する点に、実効瞳EPが形成されることが分かる。
[実効IADの算出方法]
実効瞳EPは、前述のように、被写体Sから結像光学系20a(20b)のレンズ中心に向かう全ての光線が通過する点である。これらの光線の中には、光軸A1に平行な光線も含まれる。実効IADedを求めるには、この光軸A1に平行な光線を考えるとわかり易い。図5(a)には、実効瞳EPを通過する光線のうちの光軸A1に平行な光線の経路を、破線で示した。実効瞳EPを通過した光軸A1に平行な光線は、対物光学系10のレンズを通過すると、レンズの性質により対物光学系10のレンズの焦点Fに向かう。焦点Fを通過した光線は、実効瞳EPの定義により、結像光学系20a,20bの各レンズの中心に向かう。
図5(b)は、図5(a)に示した情報のうち、実効IADedを求めるために必要な特徴的な部分のみを抽出したものである。この図には、互いに相似形な2つの三角形が示されている。一つは、結像光学系20aと20bの各レンズ間の距離である結像光学系IADdを底辺とし、高さが(距離L−対物光学系焦点距離f)である、斜線で示した大きな三角形である。そしてもう一つは、2つの実効瞳EP間の距離である実効IADedを底辺とし、高さが対物光学系10の焦点距離fである、網掛けで示した小さな三角形である。これら2つの三角形は互いに相似形であるため、その性質により以下の式で表現される。
実効IADed:結像光学系IADd=対物光学系焦点距離f:距離L−対物光学系焦点距離f
したがって、
ed×(L−f)=f×d
となり、
ed=f/(L−f)×d …式(1)
が算出される。
実効瞳EPの光軸方向における位置は、対物光学系10のレンズの焦点距離fと、結像光学系IADdと、実効IADedとを用いて算出することができる。図6(a)は、結像光学系20a,20bの各レンズ中心から放射される光線のうちの、光軸A1に平行な光線の経路を示したものである。結像光学系20aのレンズの中心から放射された光線および結像光学系20bのレンズの中心から放射された光線は、対物光学系10のレンズに到達してレンズを通過すると、対物光学系10の焦点Fを通過する光線となる。そして、焦点Fを通過後は、2つの実効瞳EPを通過してそれぞれ図示せぬ被写体Sに向かって進行する。
図6(b)は、図6(a)に示した情報のうち、実効瞳の光軸方向における位置を求めるために必要な特徴的な部分のみを抽出したものである。この図には、互いに相似形な2つの三角形が示されている。一つは、結像光学系IADdを底辺とし、高さが、実効瞳対物光学系焦点距離fである、斜線で示した大きな三角形である。そしてもう一つは、実効IADedを底辺とし、高さが、焦点Fから実効瞳EPまでの距離(以下、実効瞳位置EPdと称する)である、網掛けで示した小さな三角形である。これら2つの三角形は互いに相似形であるため、その性質により以下の式で表現される。
実効IADed:結像光学系IADd=実効瞳位置EPd:対物光学系焦点距離f
したがって、
ed×f=d×EPd
となり、
EPd=(ed×f)/d …式(3)
が算出される。
次に、図7〜図9を参照して、本実施の形態の立体画像撮像装置1による、実効IADedの形成例について説明する。実効IADedは、前述した式1を用いて算出することができる。すなわち、対物光学系焦点距離fや、距離Lや、結像光学系IADdを変化させることにより、実効IADedを変えることができる。すなわち、これらのパラメータを変更することで、任意の長さの実効IADedを実現することができる。
図7は、結像光学系IADd(結像光学系20aと20bの各レンズ間の距離)を変化させることにより、実効IADedの広さ(長さ)を変化させる場合の例を示したものである。図2と対応する箇所には同一の符号を付してあり、詳細な説明は省略する。図7(a)には、結像光学系IADdを狭く(図1〜図6に図示した程度の幅に)設定した場合の例を示し、図7(b)には、図7(a)に示したものより結像光学系IADdを広くした例を示している。図7(c)には、図7(b)に示したものより結像光学系IADdをさらに広くした例を示している。図7(a)〜(c)に示されるように、結像光学系IADdを広くするほど、実効IADedが広くなることが分かる。
図8は、距離L(対物光学系10の後側主点rH10から結像光学系20a(20b)の前側主点fH20a(fH20b)までの距離)を変化させることにより、実効IADedの広さを変化させる場合の例を示したものである。図2と対応する箇所には同一の符号を付してあり、詳細な説明は省略する。図8(a)には、距離Lを広くとった場合の例を示し、図8(b)には、図8(a)に示したものより距離Lを短くした例を示している。さらに図8(c)には、図8(b)に示したものより距離Lを短くした例を示している。図8(a)〜(c)に示されるように、距離Lを短くすればするほど、実効IADedが広くなることが分かる。
なお、図8(c)に示すように、f/(L−f)>1を満たすように距離L(および焦点距離f)を設定することで、実効IADedを、結像光学系IADdよりも広くすることも可能となる。例えば、対物光学系10の焦点距離fが70mmとし、距離Lを105mmとし、結像光学系IADdを60mmとする。このように構成した場合、実効IADedは、前述した式1により120mmと算出される。つまり、結像光学系20aと20bの配置位置により求まる結像光学系IADd(60mm)に比べて、f/(L−f)倍だけ、実効IADを長くすることができる。
図9は、対物光学系10の焦点距離fを変えることによって、実効IADedを変化させられる場合の例を示したものである。焦点距離fは、焦点距離fの異なるレンズを使用したり、ズームレンズを使用することにより変化させることができる。図9においても、図2と対応する箇所には同一の符号を付してあり、詳細な説明は省略する。図9(a)には、焦点距離fを狭くした場合の例を示し、図9(b)には、図9(a)に示したものより焦点距離fを長くした例を示している。さらに図9(c)には、図9(b)に示したものより焦点距離fを長くした例を示している。図9(a)〜(c)に示されるように、対物光学系10のレンズの焦点距離fを長くするほど、実効IADedを広くできることが分かる。
上述したように、本実施の形態の立体画像撮像装置1によれば、対物光学系10の焦点距離fと、結像光学系20a,20bの位置に関するパラメータ(距離L)と、結像光学系IADdを選ぶことによって、立体画像撮像装置1の実質的なIADを選ぶことができる。したがって、立体画像撮像装置1の設計の自由度を向上させることができる。
また、対物光学系10のレンズの焦点距離fと距離Lとを上述した式2を満たす値に設定することで、結像光学系20aと20bの配置位置により定まる実際のIAD(結像光学系IADd)よりも、実質的なIAD(実効IADed)を短くできる。したがって、一つの画面内での視差の範囲を一定の範囲内に制限することができる。これにより、画面からの飛び出し量や奥行き量が大きいコンテンツ、また、シーンが変わるタイミングで視差が大きく変化するようなコンテンツ等の、視聴者に大きな負担を与えるコンテンツが撮影されることがなくなる。よって、コンテンツを視聴する視聴者が感じうる眼精疲労や一般的な疲れなどの不快感を、低減することができる。さらに、近接撮影を行う際に最も使用頻度が高く、従って重要である10mm〜40mmのIADを、容易に実現することができる。
また、結像光学系20aと20bの配置位置を近づけることなく、立体画像撮像装置1の実効IADedを短くすることができるため、イメージャのサイズを小さくしたり、口径の小さいレンズを装着する必要がなくなる。つまり、解像度・感度等のカメラ本体の性能を損なうことなく、立体画像撮像装置1の実効IADedを短くすることができるようになる。したがって、レンズ間の距離を縮めることが難しいサイドバイサイド方式や一体方式の立体画像撮像装置においても、短いIADでの撮影を容易に行えるようになる。
また、対物光学系10のレンズの焦点距離fと距離Lとを、f/(L−f)>1の式を満たす値に設定することで、結像光学系IADdよりも実効IADedを広くすることもできる。このように構成すれば、例えば内視鏡等のように物理的に狭いIADしか構成できない装置においても、より立体感のある映像を撮影できるようになる。
また、立体画像撮像装置1に形成される実効瞳EPは、被写体Sから結像光学系20a,20bのレンズ中心に向かう全ての光線が通過する点である。このため、例えば、図10に示すように、被写体Sが位置Aから位置Bに移動したとしても、位置Bの被写体Sの位置から放射されて結像光学系20a,20bのレンズ中心を通過する光線は、全て実効瞳EPを通過する。これにより、被写体Sが動くようなものであっても、実効瞳位置EPdにカメラを置いたのと同じ動画を撮影することができる。したがって、結像光学系20a,20bのフォーカス(合焦位置)を有限の距離内の所望の位置に合わせ、かつ制御する機能を付加有することも可能である。このため、例えば2台の結像光学系20a,20bの焦点距離を連動して制御し、動いている被写体Sに常にオンフォーカスの状態で撮影することもできる。このような撮影を行うことにより、被写体Sの動きに合わせて表示画面上の被写体Sが前後に動くといった通常の自然な映像を撮影することができる。
また、本実施の形態の立体画像撮像装置1によれば、特許文献1として示した技術のように、輻輳点とフォーカスとを常に一致させる必要が無くなる。したがって、輻輳点は結像光学系20a(20b)または対物光学系10によって調整し、フォーカスは結像光学系20a(20b)または対物光学系10によって調整し、画角は結像光学系20a(20b)または対物光学系10によって調整するといったこともできる。すなわち、対物光学系10と結像光学系20a(20b)とを別々に調整して撮影のパラメータを設定することができる。
<2.各種変形例>
なお、上述した実施の形態では、結像光学系を2つ設けた例を挙げたが、それ以上の個数を設けるようにしてもよい。例えば図11に示すように、結像光学系20a,20b,20cのように3つ設けてもよい。さらに、対物光学系10の光軸A1と、結像光学系20a,20b,20cのそれぞれの光軸A2a,A2b,A2cとが、異なる平面上に存在するように、対物光学系10と結像光学系20a,20bを配置してもよい。このように構成すれば、垂直方向の視差情報も得られるようになるため、例えば立体画像の視聴者が寝ころんだ姿勢等で視聴する場合を想定した撮影を行うことができる。
また、上述した実施の形態では、対物光学系10のレンズに凸レンズを使用した例を挙げて説明したが、凹レンズを使用することもできる。凹レンズを使用した場合の構成例について、図12〜図15を参照して説明する。図12は、対物光学系に凹レンズを使用した場合の立体画像撮像装置の構成例を示したものである。図12において、図2と対応する箇所には同一の符号を付してあり、詳細な説明は省略する。図12に示す例では、対物光学系10αのレンズとして凹レンズを使用しているため、焦点距離fが被写体S側に形成される。このため、実効瞳EPは対物光学系10αと結像光学系20aおよび結像光学系20bとの間に形成される。
図13は、凹レンズを使用した立体画像撮像装置1αにおいて、対物光学系10αと結像光学系20a,20bとの間に実効瞳EPが形成される原理について説明したものである。図13において、図3と対応する箇所には同一の符号を付してあり、詳細な説明は省略する。対物光学系に凹レンズを使用した場合には、被写体Sと対物光学系10αとの間に虚像Vが形成される。虚像Vが形成される位置は、図3を参照して説明した場合と同様に、被写体Sのある一点から放射された光線のうちの光軸A1に平行な光線と、対物光学系10αのレンズの中心を通過する光線との2本の光線を考えるとわかり易い。図13(a)に示すように、虚像Vは、光軸A1に平行な光線が対物光学系10αのレンズとぶつかったところから対物光学系10αの焦点Fに向かって引かれた補助線aLと、対物光学系10αのレンズの中心を通過する光線とが交差する位置に形成される。
図13(b)は、結像光学系20bのレンズの中心から放射される光が辿る経路を示したものである。結像光学系20bのレンズ中心から放射された実際の光線は、実線で示す経路で被写体Sに向かって進む。一方、結像光学系20bのレンズを視点にして眺めた場合の見かけ上の光線は、対物光学系10αを通過後は、破線で示した補助線aLが示す経路を通って虚像Vに向かって進む。そして、その見かけ上の光線は、補助線aLを対物光学系10αの反対方向に向かって延伸させた位置にある実効瞳EPを必ず通る。つまり、結像光学系20bのイメージャ202bに形成される映像は、実効瞳EPを瞳として撮影された映像と等価な映像となる。
また、凹レンズを使用した場合にも、結像光学系20bのレンズ中心から放射される光線のうちの光軸A1に平行な光線と、対物光学系10αのレンズのレンズ中心を通過する光線を考えることによっても、実効瞳EPが形成される位置を求めることができる。図14は、結像光学系20bのレンズの中心から放射される光が辿る経路を示したものである。図14において、図4と対応する箇所には同一の符号を付してあり、詳細な説明は省略する。図14においては、対物光学系10αの焦点Fと、光軸A1に平行な光線が対物光学系10αのレンズとぶつかったところの間を破線で示す補助線aLで示してある。そして、結像光学系20bのレンズの中心から放射される実線で示した光線と、補助線aLとが交差する位置に、実効瞳EPが形成される。これは、もし結像光学系20bのレンズ中心に発光点を置くと、そこから放射される光は全て実効瞳EPを通過するということを意味している。つまり、実効瞳EPは、結像光学系20bの「レンズの影」または「虚像」である。
図15は、対物光学系10αに凹レンズを使用した場合の、実効IADedの算出方法を説明する図である。図15において、図5と対応する箇所には同一の符号を付し、詳細な説明は省略する。図15(a)は、図示せぬ被写体Sから結像光学系20a(20b)のレンズ中心に向かう光線のうちの、光軸A1に平行な光線の経路を示したものである。光線が実際に辿る経路を実線で示し、結像光学系20aおよび20bのレンズを視点にして眺めた場合の見かけ上の光線を破線で示してある。そして、実線で示した光軸A1に平行な光線と、破線で示した見かけ上の光線とは、対物光学系10αにぶつかったあと2つの箇所で交差する。その2つの箇所の間の距離が、実効IADedである。
図15(b)は、図15(a)に示した情報のうち、実効IADedを求めるために必要な特徴的な部分のみを抽出したものである。この図には、互いに相似形な2つの三角形が示されている。一つは、結像光学系20aと20bの各レンズ間の距離である結像光学系IADdを底辺とし、高さが(対物光学系焦点距離f+距離L)である、斜線で示した大きな三角形である。そしてもう一つは、実効IADedを底辺とし、高さが対物光学系10の焦点距離fである、網掛けで示した小さな三角形である。これら2つの三角形は互いに相似形であるため、その性質により以下の式4で表現される。
実効IADed:結像光学系IADd=対物光学系焦点距離f:距離L+対物光学系焦点距離f
そして、凹レンズ使用時の焦点距離fは負(f<0)であるため、
ed×(L+(−f))=f×d
となり、
ed=|f/(L−f)×d| …式(4)
が算出される。
つまり、対物光学系10のレンズとして凸レンズを使用する場合にも凹レンズを使用する場合にも、上記式4を使用することにより、実効IADedを算出することができる。そして、対物光学系10のレンズとして凸レンズと凹レンズのいずれを使用する場合にも、対物光学系10の焦点距離fと距離Lとを下記式5を満たすように設定すれば、実際の結像光学系IADdよりも、実効IADedを短くすることができる。
|f/(L−f)|≦1 …(式5)
このように、対物光学系10のレンズとして凹レンズを使用した場合にも、凸レンズを使用した場合と同様の効果を得ることができる。さらに、凹レンズを使用する場合には、凸レンズを使用した場合と比較して焦点距離fが負であるため、凸レンズ使用時と同じ焦点距離|f|と同じ結合光学系のIADdに対し、同じ実行IADedを実現するのに必要な距離Lを短くとることが可能となる。したがって、立体画像撮像装置1αをより小型に構成することができるようになる。
1…立体画像撮像装置、2…結像光学系、10…対物光学系、20a,20b…結像光学系、201a,201b…薄肉レンズ、202a,202b…イメージャ、A1,A1a…光軸、fH20a,fH20b…前側主点、rH10…後側主点

Claims (6)

  1. 被写体を実像または虚像として結像する機能を有する対物光学系と、
    複数の独立した光学系により、前記対物光学系の異なる経路から出射された複数の被写体光束を視差画像として改めて結像させる複数の結像光学系とを備え、
    前記対物光学系が前記被写体を前記実像として結像する場合の焦点距離の値を正とし、前記対物光学系が前記被写体を前記虚像として結像する場合の焦点距離の値を負とした場合に、前記対物光学系の焦点距離(f)と、前記対物光学系の後側主点と前記結像光学系の前側主点までの距離(L)とが、下記式を満たす値に設定され、
    |f/(L−f)|≦1
    前記対物光学系は、その開口面内に前記複数の結像光学系のすべての光軸を含む
    立体画像撮像装置。
  2. 前記結像光学系の合焦位置は、有限の距離内の所定の位置に設定される
    請求項1記載の立体画像撮像装置。
  3. 前記対物光学系と前記結像光学系は、互いの光軸が同一平面上に位置するように配置される
    請求項2記載の立体画像撮像装置。
  4. 被写体を実像として結像する機能を有する対物光学系と、
    複数の独立した光学系により、前記対物光学系の異なる経路から出射された複数の被写体光束を視差画像として改めて結像させる複数の結像光学系とを備え、
    前記対物光学系は、その開口面内に前記複数の結像光学系のすべての光軸を含む
    立体画像撮像装置。
  5. 前記結像光学系の合焦位置は、有限距離に設定される
    請求項4記載の立体画像撮像装置。
  6. 前記対物光学系と前記結像光学系は、互いの光軸が同一平面上に位置するように配置される
    請求項5記載の立体画像撮像装置。
JP2010251750A 2010-11-10 2010-11-10 立体画像撮像装置 Expired - Fee Related JP5609562B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2010251750A JP5609562B2 (ja) 2010-11-10 2010-11-10 立体画像撮像装置
TW100133775A TWI526772B (zh) 2010-11-10 2011-09-20 立體影像攝像裝置
EP17174496.4A EP3267252A3 (en) 2010-11-10 2011-10-13 Stereoscopic imaging apparatus
EP11185005.3A EP2453307B1 (en) 2010-11-10 2011-10-13 Stereoscopic Imaging Apparatus
US13/287,712 US9110367B2 (en) 2010-11-10 2011-11-02 Stereoscopic imaging apparatus
BRPI1105307-0A2A BRPI1105307A2 (pt) 2010-11-10 2011-11-03 Aparelho de formação de imagem estereoscópica
CN201110348448.9A CN102566248B (zh) 2010-11-10 2011-11-03 立体成像设备
RU2011144888/28A RU2554299C2 (ru) 2010-11-10 2011-11-03 Устройство формирования стереоскопических изображений
CN2011204358690U CN202362582U (zh) 2010-11-10 2011-11-03 立体成像设备
US14/796,176 US10234675B2 (en) 2010-11-10 2015-07-10 Stereoscopic imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010251750A JP5609562B2 (ja) 2010-11-10 2010-11-10 立体画像撮像装置

Publications (2)

Publication Number Publication Date
JP2012105058A JP2012105058A (ja) 2012-05-31
JP5609562B2 true JP5609562B2 (ja) 2014-10-22

Family

ID=44799799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010251750A Expired - Fee Related JP5609562B2 (ja) 2010-11-10 2010-11-10 立体画像撮像装置

Country Status (7)

Country Link
US (2) US9110367B2 (ja)
EP (2) EP3267252A3 (ja)
JP (1) JP5609562B2 (ja)
CN (2) CN102566248B (ja)
BR (1) BRPI1105307A2 (ja)
RU (1) RU2554299C2 (ja)
TW (1) TWI526772B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9124877B1 (en) * 2004-10-21 2015-09-01 Try Tech Llc Methods for acquiring stereoscopic images of a location
FR2946438B1 (fr) * 2009-06-08 2014-11-07 Erwan Devigon Systeme et procede de generation d'image stereoscopique a decalage des lointains parametrable dans un systeme et procede a n appareils de prise de vue (n>1)
JP5609562B2 (ja) 2010-11-10 2014-10-22 ソニー株式会社 立体画像撮像装置
JP2012177747A (ja) * 2011-02-25 2012-09-13 Sony Corp 立体画像撮像装置
JP2012215807A (ja) * 2011-03-29 2012-11-08 Sony Corp 二眼レンズ装置及び二眼レンズ装置付立体撮像装置
US20150172631A1 (en) * 2012-07-23 2015-06-18 Ricoh Company, Ltd. Stereo camera
TWI530747B (zh) 2014-05-13 2016-04-21 宏碁股份有限公司 可攜式電子裝置以及影像擷取方法
JP6153675B2 (ja) * 2015-05-12 2017-06-28 オリンパス株式会社 立体内視鏡装置
JP2019191214A (ja) * 2018-04-18 2019-10-31 三菱電機株式会社 表示装置およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0134870A1 (fr) * 1983-09-22 1985-03-27 Roger Cuvillier Système optique pour la projection de couples stéréoscopiques
JPH0760218B2 (ja) * 1984-07-31 1995-06-28 オリンパス光学工業株式会社 単対物型双眼実体顕微鏡
US5191203A (en) * 1991-04-18 1993-03-02 Mckinley Optics, Inc. Stereo video endoscope objective lens system
JPH05113540A (ja) * 1991-10-22 1993-05-07 Olympus Optical Co Ltd 顕微鏡光学系
JPH0850258A (ja) * 1994-08-08 1996-02-20 Canon Inc ステレオ鑑賞装置
US5861987A (en) * 1994-08-30 1999-01-19 Olympus Optical Co., Ltd. Stereoscopic-vision endoscope offering a large angle of introversion and a necessary and sufficient sense of three-dimensionality
DE19532400B4 (de) * 1994-09-08 2005-08-04 Carl Zeiss Stereoendoskop mit abgewinkelter Blickrichtung
JP3580869B2 (ja) * 1994-09-13 2004-10-27 オリンパス株式会社 立体視内視鏡
CN1176403A (zh) 1996-09-06 1998-03-18 稻叶稔 立体摄影机
JPH1195099A (ja) * 1997-09-22 1999-04-09 Olympus Optical Co Ltd 実体顕微鏡のアフォーカルズームレンズ系
DE19927128A1 (de) 1999-06-11 2000-12-28 Minoru Inaba Stereo Kamera
JP2003005313A (ja) * 2001-06-19 2003-01-08 Olympus Optical Co Ltd 立体画像撮影装置
EP1694195B1 (en) * 2003-10-28 2009-04-08 Welch Allyn, Inc. Digital documenting ophthalmoscope
JP2005241791A (ja) * 2004-02-25 2005-09-08 Olympus Corp ステレオ撮像装置
JP4490756B2 (ja) * 2004-08-12 2010-06-30 日本放送協会 立体画像撮像装置
US7602555B2 (en) * 2005-03-24 2009-10-13 Olympus Corporation Observation or measurement means and observation or measurement system provided with the same, feeble light image pickup optical system and microscope apparatus provided with the same, microscope system provided with the microscope apparatus, and observation apparatus and observation system provided with the same
EP1763258B1 (en) * 2005-09-09 2010-11-03 Olympus Medical Systems Corp. Medical stereo observation system
US8406619B2 (en) 2009-03-23 2013-03-26 Vincent Pace & James Cameron Stereo camera with automatic control of interocular distance
JP2010249941A (ja) * 2009-04-13 2010-11-04 Sony Corp 立体撮像装置
DE102009017621B3 (de) 2009-04-16 2010-08-19 Semikron Elektronik Gmbh & Co. Kg Vorrichtung zur Verringerung der Störabstrahlung in einem leistungselektronischen System
JP5609562B2 (ja) * 2010-11-10 2014-10-22 ソニー株式会社 立体画像撮像装置

Also Published As

Publication number Publication date
BRPI1105307A2 (pt) 2014-01-28
TW201222139A (en) 2012-06-01
JP2012105058A (ja) 2012-05-31
RU2554299C2 (ru) 2015-06-27
EP2453307A1 (en) 2012-05-16
EP3267252A3 (en) 2018-04-18
US20120113509A1 (en) 2012-05-10
EP3267252A2 (en) 2018-01-10
TWI526772B (zh) 2016-03-21
CN102566248A (zh) 2012-07-11
US20150316759A1 (en) 2015-11-05
EP2453307B1 (en) 2017-09-06
CN102566248B (zh) 2016-03-30
US10234675B2 (en) 2019-03-19
US9110367B2 (en) 2015-08-18
CN202362582U (zh) 2012-08-01
RU2011144888A (ru) 2013-05-10

Similar Documents

Publication Publication Date Title
JP5609562B2 (ja) 立体画像撮像装置
JP5641200B2 (ja) 画像処理装置、画像処理方法および画像処理プログラムならびに記録媒体
JP3984907B2 (ja) 画像観察システム
US20120249748A1 (en) Stereoscopic image pickup apparatus and stereoscopic image pickup method
JP2012177747A (ja) 立体画像撮像装置
US8639109B2 (en) Stereoscopic imaging apparatus
JP6031755B2 (ja) 立体画像撮像装置
JP2009168995A (ja) 測距装置および撮像装置
JP2013025298A (ja) 立体画像撮像装置
JP3478687B2 (ja) 複眼撮像装置
JP5484453B2 (ja) 複数の動作モードの光学機器
JP2010249941A (ja) 立体撮像装置
KR101941880B1 (ko) 자유 초점 디스플레이 장치
KR102127764B1 (ko) 파노라마 이미지 생성 시스템 및 방법
WO2011086890A1 (ja) 鏡筒アダプタ、レンズ鏡筒および撮像装置
JP2010231192A (ja) ステレオ撮像装置
KR101082382B1 (ko) 입체영상 촬영렌즈계
KR100709370B1 (ko) 입체영상을 생성하는 광학계
WO2016035891A1 (ja) 光学アダプタおよびこれを用いた立体撮像システム
JP2003005314A (ja) 立体画像撮影用アダプタレンズ、立体画像撮影システム、及び電子カメラ
JP7202449B2 (ja) 仮想現実立体映像を生成するための光学配置
JP2004101665A (ja) 立体像撮影方法及びその装置
JP6036784B2 (ja) 画像処理装置、画像処理方法および画像処理プログラムならびに記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R151 Written notification of patent or utility model registration

Ref document number: 5609562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees