WO2016035789A1 - 半導体素子用放熱部品 - Google Patents

半導体素子用放熱部品 Download PDF

Info

Publication number
WO2016035789A1
WO2016035789A1 PCT/JP2015/074843 JP2015074843W WO2016035789A1 WO 2016035789 A1 WO2016035789 A1 WO 2016035789A1 JP 2015074843 W JP2015074843 W JP 2015074843W WO 2016035789 A1 WO2016035789 A1 WO 2016035789A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
diamond
layer
composite
plating
Prior art date
Application number
PCT/JP2015/074843
Other languages
English (en)
French (fr)
Inventor
庸介 石原
宮川 健志
和則 小柳
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to US15/508,187 priority Critical patent/US10539379B2/en
Priority to JP2016546655A priority patent/JP7010592B2/ja
Publication of WO2016035789A1 publication Critical patent/WO2016035789A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • C22C47/12Infiltration or casting under mechanical pressure
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/06Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes composite, e.g. polymers with fillers or fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12049Nonmetal component
    • Y10T428/12056Entirely inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12069Plural nonparticulate metal components

Definitions

  • the present invention relates to a heat dissipation component for a semiconductor element.
  • the thermal conductivity is 300 W / mK or less regardless of how the conditions are optimized, and the development of a heat sink material having a higher thermal conductivity than that of copper has been developed. It has been demanded.
  • a metal-diamond composite having a high thermal conductivity and a thermal expansion coefficient close to that of a semiconductor element material has been proposed by combining the high thermal conductivity of diamond and the large thermal expansion coefficient of metal. (Patent Document 2).
  • Patent Document 3 by forming a ⁇ -type SiC layer on the surface of diamond particles, the formation of low-conductivity metal carbide formed at the time of compounding is suppressed, and wettability with molten metal is improved. Thus, the thermal conductivity of the obtained metal-diamond composite is improved.
  • metal-diamond composites can hardly be processed with ordinary diamond tools, and how low the cost is to use metal-diamond composites as heat sinks that are small and have various shapes.
  • the problem is whether to perform shape processing. In response to such problems, laser processing, water jet processing, and metal-ceramic composites can be energized, and processing methods using electric discharge processing have been studied.
  • a metal layer by plating or the like on the surface of the heat dissipation component for joining with the element.
  • the joining is mainly performed by soldering, and the joining temperature is 300 ° C. or lower. Therefore, a metal layer by plating treatment of Ni—P alloy or the like is provided on the surface.
  • the heat sink material in order to efficiently dissipate the heat generated from the semiconductor element, the heat sink is usually placed in contact with the semiconductor element in a form joined by a brazing material or the like. Yes. For this reason, multilayer plating with gold plating added to the joint surface is used.
  • the surface accuracy of the bonding interface is important for heat dissipation.
  • the surface roughness of the bonding surface is rough, and as a result, the thermal resistance of the contact interface increases, which is not preferable. For this reason, as a characteristic required for the heat sink material, there is a problem of how to reduce the surface roughness.
  • the object of the present invention is to improve the surface roughness flatness so that it has high thermal conductivity and thermal expansion coefficient close to that of semiconductor elements, and is suitable for use as a heat sink for semiconductor elements.
  • it is to provide an aluminum-diamond based composite that does not swell in the surface metal layer portion and generate cracks even in actual use under a high load.
  • the first peak of the volume distribution of the particle diameter is from 5 to 25 ⁇ m
  • the second peak is from 55 to 195 ⁇ m
  • the volume distribution area and the particle diameter is from 45 to 195 ⁇ m.
  • a composite part composed of a metal containing 50 vol% to 80 vol% of diamond powder having a ratio of 205 ⁇ m to the volume distribution area of 1 to 9 to 4 to 6 and the balance being made of a metal containing aluminum
  • Both main surfaces of the composite part are provided with a surface layer having a film thickness of 0.03 to 0.2 mm containing 80% by volume or more of a metal containing aluminum, and (1) a film on at least one of the surface layers
  • a heat dissipating part for a semiconductor element further comprising a crystalline Ni layer having a thickness of 0.5 to 6.5 ⁇ m and (2) an Au layer having a thickness of 0.05 ⁇ m or more.
  • the Ni layer and the Au layer are plating films formed by plating, and the peel strength of the plating film is 50 N / cm or more. To do.
  • the mounted semiconductor element is a semiconductor laser element or a high-frequency element made of GaN, GaAs, or SiC.
  • the composite part is an aluminum-diamond composite produced by a melt forging method, and the thermal conductivity at a temperature of 25 ° C. is 400 W / Aluminum having a linear thermal expansion coefficient of 5.0 ⁇ 10 ⁇ 6 to 10.0 ⁇ 10 ⁇ 6 / K at a temperature of 25 ° C. to 150 ° C. and a surface roughness (Ra) of both main surfaces of 1 ⁇ m or less.
  • Ra surface roughness
  • an aluminum-diamond based composite characterized in that the diamond powder particles are characterized by the presence of a ⁇ -type silicon carbide layer chemically bonded to the surface of the heat dissipation component for a semiconductor element. It is characterized by being.
  • the aluminum-diamond composite according to the present invention has a high thermal conductivity and a thermal expansion coefficient close to that of a semiconductor element. Further, even in actual use under a high load, the surface metal layer portion is free from swelling and cracks. Since it can suppress, it is preferably used as a heat sink for heat dissipation of a semiconductor element.
  • FIG. 1 is a conceptual structural diagram of a heat dissipation component for a semiconductor element according to an embodiment of the present invention. It is a conceptual sectional view of a structure before compounding of a compounding part of a heat dissipation component for semiconductor elements concerning an embodiment of the present invention.
  • both sides means both the front and back surfaces of a flat plate-like member.
  • side surface portion means a portion of the flat plate-like member that is substantially perpendicular to both surfaces of the both surfaces.
  • the “main surface” means any one of the front surface and the back surface of the flat plate-like member.
  • the heat dissipating part for a semiconductor element is composed of an aluminum-diamond composite (1 in FIG. 1) and a surface metal layer (2 in FIG. 1).
  • the aluminum-diamond composite used in the heat dissipation component is a flat aluminum-diamond composite containing diamond particles and a metal containing aluminum, and the aluminum-diamond composite 1 is composited.
  • Part (3 in FIG. 1) and a surface layer (4 in FIG. 1) provided on both surfaces of the composite part 3, and the surface layer 4 is made of a material containing a metal containing aluminum, The content is 50% by volume to 80% by volume of the entire aluminum-diamond composite 1 described above.
  • the heat dissipating part for a semiconductor element having the above configuration has high thermal conductivity and a thermal expansion coefficient close to that of the semiconductor element, and can suppress the occurrence of swelling of the surface metal layer portion even in actual use under a high load.
  • the aluminum-diamond based composite according to the present embodiment is preferably used as a heat dissipation component such as a heat sink for heat dissipation of a semiconductor element.
  • the heat dissipating part for a semiconductor element may have a surface metal layer 2 composed of a crystalline Ni layer (5 in FIG. 1) and an Au layer (6 in FIG. 1).
  • the manufacturing method of the aluminum-diamond composite can be broadly divided into two types: an impregnation method and a powder metallurgy method. Of these, many are actually commercialized by impregnation methods from the viewpoint of characteristics such as thermal conductivity.
  • There are various impregnation methods and there are a method performed at normal pressure and a high-pressure forging method performed under high pressure.
  • High pressure forging methods include a molten metal forging method and a die casting method.
  • a method suitable for the present embodiment is a high-pressure forging method in which impregnation is performed under high pressure, and a molten forging method is preferable for obtaining a dense composite having excellent characteristics such as thermal conductivity.
  • the molten metal forging method is generally a method in which a high pressure vessel is filled with a powder or compact such as diamond and impregnated with a molten metal such as an aluminum alloy at high temperature and high pressure to obtain a composite material.
  • Diamond powder As the diamond powder that is the raw material of the aluminum-diamond composite, either natural diamond powder or artificial diamond powder can be used. Moreover, you may add binders, such as a silica, to this diamond powder as needed. By adding the binder, an effect that a molded body can be formed can be obtained.
  • the particle size of the first peak of the volume distribution of the particle size is 5 ⁇ m to 25 ⁇ m, and the particle size of the second peak is 55 ⁇ m to 195 ⁇ m.
  • the ratio of the area of the volume distribution of 1 ⁇ m to 35 ⁇ m including the area of the volume distribution of 45 ⁇ m to 205 ⁇ m including the second peak is preferably 1 to 9 to 4 to 6.
  • the particle size of the first peak is 10 ⁇ m to 20 ⁇ m
  • the particle size of the second peak is 100 ⁇ m to 180 ⁇ m.
  • the above ratio is preferable, but 2 to 8 to 3 to 7 is more preferable.
  • the particle size distribution is measured using the Coulter method.
  • the content of diamond particles in the aluminum-diamond composite is preferably 50% by volume to 80% by volume.
  • the content of diamond particles is 50% by volume or more, the thermal conductivity of the obtained aluminum-diamond composite can be sufficiently ensured.
  • content of a diamond particle is 80 volume% or less from the surface of a filling property. If it is 80 volume% or less, it is not necessary to process the shape of the diamond particles into a spherical shape or the like, and an aluminum-diamond composite can be obtained at a stable cost.
  • the ratio of the volume of the powder to the filling volume is the volume of the powder material relative to the total volume of the obtained composite ( Particle content).
  • the use of diamond powder having a ⁇ -type silicon carbide layer formed on the surface of the diamond particles can suppress the formation of low thermal conductivity metal carbide (Al 4 C 3 ) formed at the time of compounding. And wettability with molten aluminum can be improved. As a result, an effect of improving the thermal conductivity of the obtained aluminum-diamond composite can be obtained.
  • a mold material (7 in FIG. 2) made of a porous material that can be impregnated with an aluminum alloy, a dense release plate (8 in FIG. 2) coated with a release agent, and the diamond powder (in FIG. 2)
  • a structure for molten metal forging composed of the mold material 7, the release plate 8 and the filled diamond powder 9 is obtained.
  • FIG. 2 is a cross-sectional view of a structure for molten metal forging, and is a cross-sectional view of a portion filled with the diamond powder.
  • the material of the mold member 7 made of a porous body that can be impregnated with the aluminum alloy by the molten metal forging method is not particularly limited as long as it is a porous material that can be impregnated with the aluminum alloy by the molten metal forging method.
  • the porous body porous bodies such as graphite, boron nitride, and alumina fiber that are excellent in heat resistance and can supply a stable molten metal are preferably used.
  • the dense release plate 8 a stainless plate or a ceramic plate can be used, and there is no particular limitation as long as it is a dense body that is not impregnated with an aluminum alloy by a molten metal forging method.
  • mold release agents such as graphite, boron nitride, and alumina which are excellent in heat resistance, can be used preferably.
  • a release plate capable of more stable release can be obtained by applying the release agent.
  • the aluminum alloy (aluminum-containing metal) in the aluminum-diamond composite according to this embodiment has a melting point as low as possible in order to sufficiently penetrate into the voids of the diamond powder (between the diamond particles) during impregnation.
  • An example of such an aluminum alloy is an aluminum alloy containing 5 to 25% by mass of silicon. By using an aluminum alloy containing 5 to 25% by mass of silicon, an effect of promoting densification of the aluminum-diamond composite can be obtained.
  • magnesium is preferable to add to the aluminum alloy because the bond between the diamond particles and ceramic particles and the metal portion becomes stronger.
  • the metal components other than aluminum, silicon, and magnesium in the aluminum alloy are not particularly limited as long as the characteristics of the aluminum alloy do not change extremely. For example, copper or the like may be included.
  • the thickness of the aluminum-diamond composite according to this embodiment can be adjusted by the filling amount of diamond powder at the time of compounding, and the thickness is preferably 0.4 to 6 mm.
  • the thickness is less than 0.4 mm, it is not preferable because sufficient strength for use as a heat sink or the like cannot be obtained.
  • the thickness exceeds 6 mm, the material itself is expensive, and the effect of high heat conduction cannot be obtained sufficiently, which is not preferable.
  • This embodiment is characterized in that the release plates 8 arranged on both sides are peeled off after the combination. With such a unique configuration, an aluminum-diamond composite having a very smooth surface can be obtained.
  • metal plates (10 in FIG. 2) may be disposed on both sides of the structure.
  • the blocks may be stacked via the metal plate 10 between the structures.
  • the molten metal can be uniformly impregnated, and operations such as taking out the aluminum-diamond composite after the impregnation treatment can be easily performed.
  • the obtained structure is further laminated to form a block, and this block is heated at about 600 to 750 ° C. Then, one or two or more blocks are arranged in the high-pressure vessel, and a molten aluminum alloy heated to the melting point or higher is supplied as quickly as possible in order to prevent a temperature drop of the block, and the pressure is increased to 20 MPa or higher. .
  • the heating temperature of the block is 600 ° C. or higher, the composite of the aluminum alloy is stable, and an aluminum-diamond composite having a sufficient thermal conductivity can be obtained. Further, when the heating temperature is 750 ° C. or less, the formation of aluminum carbide (Al 4 C 3 ) on the surface of the diamond powder can be suppressed during the formation with the aluminum alloy, and the aluminum-diamond composite having a sufficient thermal conductivity. You can get a body.
  • the pressure during impregnation is 20 MPa or more, the composite of the aluminum alloy is stable, and an aluminum-diamond composite having a sufficient thermal conductivity can be obtained. More preferably, the impregnation pressure is 50 MPa or more. If it is 50 MPa or more, an aluminum-diamond composite having more stable thermal conductivity characteristics can be obtained.
  • the aluminum-diamond molded body obtained by the above operation may be annealed.
  • strain in the aluminum-diamond-based molded body is removed, and an aluminum-diamond-based composite having more stable thermal conductivity characteristics can be obtained.
  • the annealing treatment is performed at a temperature of 400 ° C. to 550 ° C. for 10 minutes or more. preferable.
  • the aluminum-diamond composite is a very hard and difficult-to-process material. For this reason, normal machining and grinding using a diamond tool are difficult, and processing is performed by water jet machining, laser machining, and electric discharge machining.
  • the aluminum-diamond-based molded body according to the present embodiment can be processed using a normal diamond tool or the like, it is a very hard and difficult-to-process material, so that the durability and processing cost of the tool are reduced. Therefore, processing by water jet processing, laser processing or electric discharge processing is preferable.
  • both surfaces of the composite part (3 in FIG. 1) are covered with a surface layer (4 in FIG. 1) made of a material containing a metal containing aluminum (aluminum alloy). It is characterized by.
  • the surface layer 4 is mainly made of a material containing a metal containing aluminum, but may contain a substance other than a metal containing aluminum. That is, the above diamond particles and other impurities may be included.
  • diamond particles do not exist in a portion 0.01 mm from the surface of the surface layer 4.
  • a processing method employed in normal metal processing can be employed, and the surface layer 4 can be smoothed without causing polishing scratches.
  • the surface layer 4 contains 80% by volume or more of a metal containing aluminum. If the content of the metal containing aluminum is 80% by volume or more, a processing method employed in normal metal processing can be employed, and the surface layer 4 can be polished. Furthermore, it is preferable that content of the metal containing aluminum is 90 volume% or more. When the content of the metal containing aluminum is 90% by volume or more, internal impurities and the like are not detached during polishing of the surface, and polishing scratches are not caused.
  • the thickness of the surface layer 4 is preferably 0.03 mm or more and 0.2 mm or less in average thickness. If the average thickness of the surface layer 4 is 0.03 mm or more, diamond particles are not exposed in the subsequent processing, and it becomes easy to obtain the target surface accuracy and plating properties. Further, if the average thickness of the surface layer 4 is 0.2 mm or less, a sufficient thickness of the composite portion 3 in the obtained aluminum-diamond composite 1 can be obtained, and sufficient thermal conductivity can be ensured. it can.
  • the total average thickness of the surface layers 4 on both sides is preferably 20% or less of the thickness of the aluminum-diamond composite 1 and more preferably 10% or less. If the sum of the average thicknesses of the surface layers 4 on both sides is 20% or less of the thickness of the aluminum-diamond composite 1, sufficient thermal conductivity can be obtained in addition to surface accuracy and plating properties.
  • a ceramic fiber such as an alumina fiber is placed between the diamond powder and a dense release plate coated with a release agent to form a composite of an aluminum alloy. You may adjust by. Moreover, it can adjust also by using aluminum foil instead of ceramic fiber.
  • the surface layer 4 is processed (polished).
  • the surface accuracy surface roughness: Ra
  • the surface layer 4 can be processed by a processing method employed in normal metal processing, for example, by polishing using a buffing machine or the like, and the surface roughness (Ra) can be 1 ⁇ m or less.
  • the average thickness of the surface layer can be adjusted by processing the surface layer 4.
  • the surface roughness is preferably a smooth surface having a small surface roughness in consideration of the thermal resistance of the bonding surface.
  • Ra is preferably 1 ⁇ m or less, and more preferably 0.5 ⁇ m or less.
  • the thickness of the bonding layer can be made uniform, and higher heat dissipation can be obtained.
  • the flatness of the surface layer 4 is preferably 30 ⁇ m or less, more preferably 10 ⁇ m or less, in terms of a size of 50 mm ⁇ 50 mm.
  • the flatness is 30 ⁇ m or less, the thickness of the bonding layer can be made uniform, and higher heat dissipation can be obtained.
  • the aluminum-diamond composite according to this embodiment has a composite part (3 in FIG. 1) of the diamond particles and the aluminum alloy.
  • stress is hardly generated between the surface layer 4 and the composite portion 3, and the surface layer 4 is not damaged when a force is applied by polishing or the like.
  • the aluminum-diamond composite according to the present embodiment is often used by bonding to the semiconductor element by brazing. Therefore, it is necessary to provide a surface metal layer on the bonding surface of the aluminum-diamond composite.
  • a method for forming the surface metal layer a plating method, a vapor deposition method, a sputtering method, or the like can be employed. Plating treatment is preferable from the viewpoint of treatment cost. Hereinafter, the plating process will be described.
  • crystalline Ni plating with a film thickness of 0.5 to 6.5 ⁇ m is applied to the aluminum-containing metal on the surface of the aluminum-diamond composite.
  • the plating method is preferably an electroplating method, but an electroless plating method can also be applied as long as a crystalline Ni plating film can be obtained. If the Ni plating film thickness is less than 1 ⁇ m, pinholes (unplated portions) of the plating film are generated, which is not preferable. If it exceeds 6.5 ⁇ m, the residual stress generated in the plating film increases, and in applications such as this embodiment, there is a problem of swelling, peeling and cracking of the plating film due to the temperature load during actual use. Absent.
  • the peel strength is preferably 50 N / cm or more, and more preferably 78 N / cm or more.
  • the peel strength is less than 50 N / cm, when used as a heat dissipation component for a semiconductor element, there is a problem that a plating layer may be peeled off due to a temperature load during actual use.
  • the aluminum-diamond composite of the present invention has a structure in which diamond is exposed on the side surface for processing by water jet processing, laser processing, or electric discharge processing, and in forming the Ni plating layer by electroplating processing, Since the plating film is not formed on the diamond particles and pinholes are generated, it is necessary to form an amorphous Ni alloy layer on the Ni plating surface by electroless plating. However, when an amorphous Ni alloy layer is present, it crystallizes as the bonding temperature rises and the temperature load during actual use increases, and microcracks are generated due to volume changes at that time, and cracks occur at the subsequent temperature load.
  • the Ni alloy layer has been improved by making the Ni alloy layer as thin as possible, but especially in the thermal cycle as required for satellite applications, etc., regardless of the thickness of the Ni alloy layer, Formation of an amorphous Ni alloy layer is not preferable because cracks that accompany crystallization extend.
  • a plating film is not formed on the diamond particles on the side surface.
  • airtightness after packaging is regarded as important, and semiconductors
  • the formation of a pinhole and a metal layer free from cracks in practical use on both main surfaces to which the element is bonded is preferred and required.
  • the crystalline Ni plating layer has a smaller thermal expansion difference from the surface layer containing aluminum than the Ni alloy plating layer, and by forming a Ni plating layer with low hardness, swelling due to temperature load during actual use is generated. Can be suppressed.
  • the aluminum-diamond composite according to this embodiment has a structure in which diamond is exposed on the side surface in order to perform processing by water jet processing, laser processing, or electric discharge processing.
  • the plating film is not formed on the diamond particles on the side surface, and pinholes are observed.
  • the brazing material When bonding the brazing material at a high temperature, it is preferable to apply Au plating with a film thickness of 0.05 to 4 ⁇ m to the outermost surface by electroplating or electroless plating. If the plating film thickness is less than 0.05 ⁇ m, bonding becomes insufficient, which is not preferable. As for the upper limit, there is no restriction on characteristics, but Au plating is very expensive and is preferably 4 ⁇ m or less.
  • the aluminum-diamond composite according to this embodiment has a thermal conductivity of 400 W / mK or more when the temperature of the aluminum-diamond composite is 25 ° C., and has a thermal expansion coefficient from 25 ° C. to 150 ° C. It is preferably 5.0 to 10.0 ⁇ 10 ⁇ 6 / K.
  • the thermal conductivity at 25 ° C. is 400 W / mK or more and the thermal expansion coefficient from 25 ° C. to 150 ° C. is 5.0 to 10.0 ⁇ 10 ⁇ 6 / K, it has high thermal conductivity and is equivalent to a semiconductor element. Low expansion rate of the level. Therefore, when used as a heat radiating component such as a heat sink, it has excellent heat radiating characteristics, and even when subjected to a temperature change, the difference in coefficient of thermal expansion between the semiconductor element and the heat radiating component is small, so that the destruction of the semiconductor element can be suppressed. As a result, it is preferably used as a highly reliable heat dissipation component.
  • the aluminum-diamond based composite heat dissipation component of this embodiment has a high thermal conductivity and a low thermal expansion coefficient equivalent to that of a semiconductor element, and is a semiconductor laser element or a high-frequency element that requires a high output such as GaN, GaAs, SiC. It is suitable as a heat dissipation component. In particular, it is suitable as a heat dissipation component for GaN-HEMT elements and GaAs-HEMT elements that are high-frequency elements.
  • the aluminum-diamond based composite according to the present invention As described above, the aluminum-diamond based composite according to the present invention, the heat radiating component using the same, and the production method thereof have been described with reference to the embodiments, but the present invention is not limited thereto.
  • Examples 1 to 13, Comparative Examples 1 to 4 7 to 3 weight ratio of commercially available high-purity diamond powder A (Diamond Innovation Co./grade MBG600) and high-purity diamond powder B (Diamond Innovation Co./grade MBM) having the average particle size shown in Table 1 Mixed.
  • the peak of the volume distribution of the particle diameter of each powder was found at the same position as the average particle diameter.
  • the ratio of the area of the volume distribution of 1 to 35 ⁇ m to the area of the volume distribution of 45 to 205 ⁇ m in the volume distribution was 3 to 7.
  • the particle size distribution was measured by adding each diamond powder to pure water to prepare a slurry to obtain a measurement solution.
  • the refractive index of water was 1.33
  • the refractive index of diamond was 2.42
  • a spectrophotometer (Beckman Coulter, Inc.). Manufactured by Coulter LS230).
  • a 40 ⁇ 40 ⁇ 2 mmt stainless steel plate (SUS430 material) is coated with alumina sol and baked at 350 ° C. for 30 minutes, and then a graphite mold release agent is applied to the surface to release the mold (see FIG. 2-9) was produced.
  • an isotropic graphite jig (7 in FIG. 2) having a 60 ⁇ 60 ⁇ 8 mmt outer shape and a 40 ⁇ 40 ⁇ 8 mmt hole in the center is placed on the top and bottom of each diamond powder in Table 1.
  • a 0.03 mm-thick pure aluminum foil was placed on the substrate and filled with a release plate 8 so that both sides were sandwiched to obtain a structure.
  • a plurality of the above structures are stacked with a stainless steel plate (10 in FIG. 2) coated with a 60 ⁇ 60 ⁇ 1 mmt graphite mold release agent sandwiched between them.
  • the six blocks were connected and tightened with a torque wrench so that the tightening torque in the surface direction was 10 Nm, thereby forming one block.
  • the obtained block was preheated to a temperature of 650 ° C. in an electric furnace, it was placed in a pre-heated press mold having an inner diameter of 300 mm, and contained 12% by mass of silicon and 1% by mass of magnesium.
  • a molten aluminum alloy at 800 ° C. was poured and pressurized at 100 MPa for 20 minutes to impregnate the diamond powder with the aluminum alloy. And after cooling to room temperature, it cut
  • the obtained aluminum-diamond composite was buffed after both surfaces were polished with # 600 polishing paper.
  • a thermal expansion coefficient measurement specimen (3 ⁇ 2 ⁇ 10 mm) and a thermal conductivity measurement specimen (25 ⁇ 25 ⁇ 2 mmt) were produced by water jet processing.
  • the thermal expansion coefficient at a temperature of 25 ° C. to 150 ° C. was measured with a thermal dilatometer (Seiko Denshi Kogyo Co., Ltd .; TMA300), and the thermal conductivity at 25 ° C. was measured with a laser flash method (manufactured by Rigaku Corporation); LF / TCM-8510B).
  • the results are shown in Table 2.
  • the thermal conductivity was 400 W / mK or less, and the thermal expansion coefficient was 10.0 ⁇ 10 ⁇ 6 / K or more.
  • the aluminum-diamond composite was ultrasonically cleaned, and after pretreatment with a Zn catalyst, electro-Ni and electro-Au plating was performed, and the surface of the aluminum-diamond composite according to Examples 1 to 13 was applied to the surface.
  • a plating layer having a thickness of 0.5 ⁇ m (Ni: 2.5 ⁇ m + Au: 2.0 ⁇ m) was formed.
  • the peel strength of the plated product was measured according to JIS 8504. As a result, it was 98 N / cm or more for all plated products.
  • Peel strength measurement is performed by masking the surface of the aluminum-diamond composite with the plated film on the surface other than the measurement part with a width of 5 mm with a heat-resistant tape, and soldering a copper plate with a thickness of 0.25 mm and a width of 5 mm to the measurement part.
  • the tensile strength was measured by pulling the copper plate directly above with a digital force gauge, and the peel strength was calculated.
  • the obtained plated product was subjected to a heat treatment at a temperature of 400 ° C. for 10 minutes in an air atmosphere, and as a result of observing the plated surface, no abnormality such as swelling was observed. Further, no cracks were observed on the plating surface after 1000 cycles of a heat cycle of ⁇ 65 ° C. to 175 ° C. (air tank, held at each temperature for 30 minutes).
  • the aluminum-diamond composites according to Examples 1 to 13 have a very smooth surface roughness of 1 ⁇ m or less, a high thermal conductivity, and a thermal expansion coefficient close to that of a semiconductor element. ing.
  • Examples 14 to 19, Comparative Examples 5 to 7 The aluminum-diamond composite produced by the same method as in Example 1 was subjected to ultrasonic cleaning, and then pre-treated with a Zn catalyst, followed by electrical Ni plating and electrical Au plating. Table 3 shows the thickness of the plating film. In Comparative Example 7, an electroless Ni—P plating film was formed after the electric Ni plating.
  • Examples 20 to 23, Comparative Examples 8 and 9 Commercially available high-purity diamond powder A (Diamond Innovation Co./average particle size: 130 ⁇ m) and high-purity diamond powder B (Diamond Innovation Co./average particle size: 15 ⁇ m) are mixed at a weight ratio shown in Table 4. did.
  • the volume distribution has a first peak at 15 ⁇ m and a second peak at 130 ⁇ m.
  • the ratio of the area of the volume distribution of 205 ⁇ m was the value shown in Table 4.
  • the particle size distribution was measured by adding each diamond powder to pure water to prepare a slurry to obtain a measurement solution.
  • the refractive index of water was 1.33
  • the refractive index of diamond was 2.42
  • a spectrophotometer (Beckman Coulter, Inc.). Manufactured by Coulter LS230).
  • a diamond powder having a ⁇ -type silicon carbide layer formed on the surface is used, and 0.045 mm thick pure aluminum foil is placed on the top and bottom of the diamond powder, and the both sides are sandwiched between the release plates 8.
  • An aluminum-diamond composite was produced in the same manner as in Example 1 except that the structure was used.
  • the obtained aluminum-diamond composite was subjected to the same polishing and processing as in Example 1 and processed into a 25 ⁇ 25 ⁇ 2 mmt shape to obtain an aluminum-diamond composite.
  • the average thickness of the surface layer 4 was 0.045 mm.
  • Table 5 shows the surface roughness (Ra) measured with a surface roughness meter.
  • Example 5 the obtained aluminum-diamond composite was subjected to the same characteristic evaluation as in Example 1, and the results are shown in Table 5.
  • the thermal conductivity was 400 W / mK or less, and the thermal expansion coefficient was 10.0 ⁇ 10 ⁇ 6 / K or more.
  • Examples 24 to 30, Comparative Examples 10 to 12 In the same manner as in Example 1, except that the inserts having the thicknesses shown in Table 6 were arranged above and below the diamond powder and filled so that both surfaces were sandwiched between the release plates 8 to form a structure, aluminum was obtained in the same manner as in Example 1. -A diamond composite was produced.
  • Examples 29 and 30 are alumina fibers (Denka Arsen Board / type: BD-1600 and BD-1700LN manufactured by Denki Kagaku Kogyo), and alumina fibers (Denka Alsen Board / type: BD 1700 manufactured by Denki Kagaku Kogyo Co., Ltd.) are used in Comparative Example 12.
  • the volume distribution has a first peak at 15 ⁇ m and a second peak at 130 ⁇ m, and the volume distribution area of 1 to 35 ⁇ m and the volume distribution area of 45 to 205 ⁇ m in the volume distribution.
  • the ratio was 3 to 7.
  • the particle size distribution was measured by adding each diamond powder to pure water to prepare a slurry to obtain a measurement solution.
  • the refractive index of water was 1.33
  • the refractive index of diamond was 2.42
  • a spectrophotometer (Beckman Coulter, Inc.). Manufactured by Coulter LS230).
  • the obtained aluminum-diamond composite was subjected to the same polishing and processing as in Example 1 and processed into a 25 ⁇ 25 ⁇ 2 mmt shape to obtain an aluminum-diamond composite.
  • Table 6 shows the results of observing the cross section with an industrial microscope and measuring the average thickness of the surface layers on both sides (4 in FIG. 1) and the surface roughness (Ra) measured with a surface roughness meter.
  • Comparative Example 11 the content of diamond particles was 50% by volume or less, the thermal conductivity was 400 W / mK or less, and the thermal expansion coefficient was 10.0 ⁇ 10 ⁇ 6 / K or more.
  • Comparative Example 12 the surface roughness after the polishing treatment was high, and polishing scratches were generated due to the detachment of the ceramic fibers.
  • the aluminum-diamond based composite according to Examples 24 to 28 and Comparative Example 10 was prepared by ultrasonically cleaning the aluminum-diamond based composite, followed by pretreatment with a Zn catalyst, followed by electro-Ni and electro-Au plating. A plating layer having a thickness of 6.0 ⁇ m (Ni: 2.0 ⁇ m + Au: 2.0 ⁇ m) was formed on the surface. In Comparative Example 10, no plating was observed, and the subsequent evaluation was not performed. As for the other obtained plated products, the peel strength was measured in the same manner as in Example 1, and as a result, all the plated products were 80 N / cm or more. Furthermore, the obtained plated product was subjected to a heat treatment at a temperature of 400 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】高い熱伝導率と半導体素子に近い熱膨張率とを備え、実使用条件下で膨れおよびクラックの発生しない半導体素子用放熱部品を提供する。【解決手段】粒子径の体積分布の第一ピークが5~25μmにあり、第二ピークが55~195μmにあり、粒子径が1~35μmである体積分布の面積と粒子径が45~205μmである体積分布の面積との比率が1対9ないし4対6であるダイヤモンド粉末を50体積%~80体積%含有し、残部がアルミニウムを含有する金属で構成される複合化部を備え、該複合化部の両主面に、アルミニウムを含有する金属を80体積%以上含有する、膜厚0.03~0.2mmの表面層を備え、少なくとも一方の表面層上に、(1)膜厚が0.5~6.5μmである結晶質のNi層、(2)膜厚が0.05μm以上であるAu層を更に備えることを特徴とする半導体素子用放熱部品を提供する。

Description

半導体素子用放熱部品
 本発明は、半導体素子用放熱部品に関する。
 一般的に、光通信等に用いられる半導体レーザー素子や高周波素子等の半導体素子では、同素子から発生する熱を如何に効率的に逃がすかが、動作不良等を防止する為に非常に重要である。近年、半導体素子の技術の進歩に伴い、素子の高出力化、高速化、高集積化が進み、ますます、その放熱に対する要求は厳しくなってきている。この為、一般には、ヒートシンク等の放熱部品に対しても、高い熱伝導率が要求され、熱伝導率が390W/mKと高い銅(Cu)が用いられている。
 一方、個々の半導体素子は、高出力化に伴いその寸法が大きくなってきており、半導体素子と放熱に用いるヒートシンクとの熱膨張のミスマッチの問題が顕在化してきた。これらの問題を解決する為には、高熱伝導という特性と半導体素子との熱膨張率のマッチングを両立するヒートシンク材料の開発が求められている。このような材料として、金属とセラミックスの複合体、例えばアルミニウム(Al)と炭化珪素(SiC)の複合体が提案されている(特許文献1)。
 しかしながら、Al-SiC系の複合体においては、如何に条件を適正化しても熱伝導率は300W/mK以下であり、銅の熱伝導率以上の更に高い熱伝導率を有するヒートシンク材料の開発が求められている。このような材料として、ダイヤモンドの持つ高い熱伝導率と金属の持つ大きな熱膨張率とを組み合わせて、高熱伝導率で且つ熱膨張係数が半導体素子材料に近い、金属-ダイヤモンド複合体が提案されている(特許文献2)。
 また、特許文献3では、ダイヤモンド粒子の表面にβ型のSiC層を形成することで、複合化時に形成される低熱伝導率の金属炭化物の生成を抑えると共に、溶融金属との濡れ性を改善して、得られる金属-ダイヤモンド複合体の熱伝導率を改善している。
 更に、ダイヤモンドは非常に硬い材料である為、金属と複合化して得られる金属-ダイヤモンド複合体も同様に非常に硬く、難加工性材料である。このため、金属-ダイヤモンド複合体は、通常のダイヤモンド工具では、殆ど加工することが出来ず、小型で種々の形状が存在するヒートシンクとして、金属-ダイヤモンド複合体を使用するには、如何に低コストで形状加工を行うかが課題である。この様な課題に対して、レーザー加工、ウォータージェット加工、更には、金属-セラミックス複合体は、通電が可能であり、放電加工による加工方法も検討されている。
特開平9-157773号公報 特開2000-303126号公報 特表2007-518875号公報
 半導体素子用の放熱部品では、素子との接合の為、放熱部品表面は、めっき等による金属層を付加する必要がある。通常の半導体素子の場合、はんだによる接合が中心であり、接合温度も300℃以下であったため、表面にNi-P合金等のめっき処理による金属層が設けられている。しかしながら、本発明のようなヒートシンク用材料の使用形態としては、通常、半導体素子の発熱を効率よく放熱する為に、半導体素子に対してヒートシンクがロウ材等で接合される形で接触配置されている。この為、接合面に金めっきを付加した多層めっき等が用いられている。さらに衛星用途では実環境を想定した厳しい信頼性が要求されており、従来のNi-P合金等の合金めっきでは接合温度で結晶化に伴うクラックが発生し、さらには冷熱サイクルに伴いクラックが伸展するといった課題がある。
 さらに、半導体素子に対してヒートシンクがロウ材等で接合される場合、接合界面の面精度が放熱に対して重要である。従来の金属-ダイヤモンド複合体の場合、接合面にダイヤモンド粒子が露出しているため、接合面の面粗さが粗く、その結果、接触界面の熱抵抗が増大して好ましくない。このため、ヒートシンク用材料に求められる特性として、表面の面粗さを如何に小さくするかといった課題がある。
 即ち、本発明の目的は、高い熱伝導率と半導体素子に近い熱膨張率を兼ね備え、さらには、半導体素子のヒートシンク等として使用するのに好適なように、表面の面粗さ平面度を改善し、且つ高負荷での実使用においても、表面金属層部分に膨れ、クラック等の発生のないアルミニウム-ダイヤモンド系複合体を提供することである。
 本発明によれば、粒子径の体積分布の第一ピークが5~25μmにあり、第二ピークが55~195μmにあり、粒子径が1~35μmである体積分布の面積と粒子径が45~205μmである体積分布の面積との比率が1対9ないし4対6であるダイヤモンド粉末を50体積%~80体積%含有し、残部がアルミニウムを含有する金属で構成される複合化部を備え、該複合化部の両主面に、アルミニウムを含有する金属を80体積%以上含有する、膜厚0.03~0.2mmの表面層を備え、少なくとも一方の表面層上に、(1)膜厚が0.5~6.5μmである結晶質のNi層、(2)膜厚が0.05μm以上であるAu層を更に備えることを特徴とする半導体素子用放熱部品が提供される。
 本発明の一態様によれば、上記半導体素子用放熱部品において、Ni層およびAu層がめっき処理により形成されるめっき膜であり、めっき膜のピール強度が50N/cm以上であることを特徴とする。
 本発明の一態様によれば、上記半導体素子用放熱部品において、搭載される半導体素子が、GaN、GaAsまたはSiCからなる半導体レーザー素子または高周波素子であることを特徴とする。
 本発明の一態様によれば、上記半導体素子用放熱部品において、前記複合化部が、溶湯鍛造法により製造されるアルミニウム-ダイヤモンド系複合体であり、温度25℃での熱伝導率が400W/mK以上、温度25℃から150℃の線熱膨張係数が5.0×10-6~10.0×10-6/K、両主面の表面粗さ(Ra)が、1μm以下であるアルミニウム-ダイヤモンド系複合体であることを特徴とする。
 本発明の一態様によれば、上記半導体素子用放熱部品において、ダイヤモンド粉末の粒子が、その表面に化学的に結合したβ型炭化珪素の層の存在により特徴づけられるアルミニウム-ダイヤモンド系複合体であることを特徴とする。
 本発明に係るアルミニウム-ダイヤモンド系複合体は、高熱伝導かつ半導体素子に近い熱膨張率を有し、さらには、高負荷での実使用においても、表面金属層部分に膨れやクラック等の発生を抑制できるため、半導体素子の放熱用ヒートシンク等として好ましく用いられる。
本発明の実施形態に係る半導体素子用放熱部品の概念的な構造図である。 本発明の実施形態に係る半導体素子用放熱部品の複合化部の複合化前の構造体の概念的な断面図である。
[用語の説明]
 本明細書において、「~」という記号は「以上」及び「以下」を意味する。例えば、「A~B」というのは、A以上でありB以下であるという意味である。
 本明細書において、「両面」とは、平板状の部材について、表面および裏面の両方の面を意味する。また本明細書において、「側面部」とは、平板状の部材について、上記両面の周囲をめぐり、両面に対して略垂直の部分を意味する。本明細書において、「主面」とは、平板状の部材について、表面および裏面のいずれかの面を意味する。
 以下、図1及び2を参照して、本発明に係るアルミニウム-ダイヤモンド系複合体及びこれを用いた放熱部品、並びにこれらの製造方法について一実施形態を説明する。
 本実施形態に係る半導体素子用放熱部品は、アルミニウム-ダイヤモンド系複合体(図1の1)と表面金属層(図1の2)から構成される。また、放熱部品に用いられるアルミニウム-ダイヤモンド系複合体は、ダイヤモンド粒子とアルミニウムを含有する金属とを含む平板状のアルミニウム-ダイヤモンド系複合体であって、上記アルミニウム-ダイヤモンド系複合体1は複合化部(図1の3)及び上記複合化部3の両面に設けられた表面層(図1の4)からなり、上記表面層4がアルミニウムを含有する金属を含む材料からなり、上記ダイヤモンド粒子の含有量が、上記アルミニウム-ダイヤモンド系複合体1全体の50体積%~80体積%である。
 上記構成からなる半導体素子用放熱部品は、高熱伝導かつ半導体素子に近い熱膨張率を有し、高負荷での実使用においても、表面金属層部分の膨れ等の発生を抑制できる。このため、本実施形態に係るアルミニウム-ダイヤモンド系複合体は、半導体素子の放熱用ヒートシンク等の放熱部品として好ましく用いられる。
 本実施形態に係る半導体素子用放熱部品は、結晶質のNi層(図1の5)及びAu層(図1の6)からなる表面金属層2を有していてもよい。
 以下、本実施形態に係るアルミニウム-ダイヤモンド系複合体について、溶湯鍛造法による製造方法を説明する。
 ここで、アルミニウム-ダイヤモンド系複合体の製法は、大別すると含浸法と粉末冶金法の2種がある。このうち、熱伝導率等の特性面から、実際に商品化されているのは、含浸法によるものが多い。含浸法にも種々の製法が有り、常圧で行う方法と、高圧下で行う高圧鍛造法がある。高圧鍛造法には、溶湯鍛造法とダイキャスト法がある。
 本実施形態に好適な方法は、高圧下で含浸を行う高圧鍛造法であり、熱伝導率等の特性に優れた緻密な複合体を得るには溶湯鍛造法が好ましい。溶湯鍛造法とは、一般的に、高圧容器内に、ダイヤモンド等の粉末又は成形体を装填し、これにアルミニウム合金等の溶湯を高温、高圧下で含浸させて複合材料を得る方法である。
[ダイヤモンド粉末]
 アルミニウム-ダイヤモンド系複合体の原料であるダイヤモンド粉末は、天然ダイヤモンド粉末もしくは人造ダイヤモンド粉末のいずれも使用することができる。また、該ダイヤモンド粉末には、必要に応じて、例えばシリカ等の結合材を添加してもよい。結合材を添加することにより、成形体を形成することができるという効果を得ることができる。
 ダイヤモンド粉末の粒度に関しては、熱伝導率の点から、粒子径の体積分布の第一ピークの粒子径が5μm~25μm、第二ピークの粒子径が55μm~195μmにあり、体積分布における第一ピークを含む1μm~35μmの体積分布の面積と第二ピークを含む45μm~205μmの体積分布の面積との比率が1対9ないし4対6であることが好ましい。
 粒子径の分布に関して更に好ましくは、第一ピークの粒子径は10μm~20μm、第二ピークの粒子径は100μm~180μmである。また、ダイヤモンドの充填量を上げるため、上記の比率となることが好ましいが、更に好ましくは、2対8ないし3対7である。粒度分布測定は、コールター法を用いて行う。
 アルミニウム-ダイヤモンド系複合体中のダイヤモンド粒子の含有量は、50体積%以上80体積%以下が好ましい。ダイヤモンド粒子の含有量が50体積%以上であれば、得られるアルミニウム-ダイヤモンド系複合体の熱伝導率を十分に確保できる。また、充填性の面より、ダイヤモンド粒子の含有量が80体積%以下であることが好ましい。80体積%以下であれば、ダイヤモンド粒子の形状を球形等に加工する必要がなく、安定したコストでアルミニウム-ダイヤモンド系複合体を得ることができる。
 溶湯鍛造法によって得られる複合体は、適切な条件であれば溶湯が粉末同士の空隙間に行き渡るので、充填体積に対する粉末の体積の割合が、得られる複合体全体の体積に対する粉末材料の体積(粒子の含有量)とほぼ等しくなる。
 更に、上記ダイヤモンド粒子の表面にβ型炭化珪素の層を形成したダイヤモンド粉末を使用することにより、複合化時に形成される低熱伝導率の金属炭化物(Al)の生成を抑えることができ、且つ、溶湯アルミニウムとの濡れ性を改善することができる。その結果、得られるアルミニウム-ダイヤモンド系複合体の熱伝導率が向上するという効果を得ることができる。
 溶湯鍛造の準備として、アルミニウム合金が含浸し得る多孔質体からなる型材(図2の7)、離型剤を塗布した緻密な離型板(図2の8)及び上記ダイヤモンド粉末(図2の9)を図2に示すように配置することにより、型材7、離型板8及び充填されたダイヤモンド粉末9からなる溶湯鍛造のための構造体とする。
 ここで、図2は溶湯鍛造のための構造体の断面図であり、上記ダイヤモンド粉末が充填された部分についての断面図である。なお、溶湯鍛造法でアルミニウム合金とダイヤモンド粉末を複合化する際には、アルミニウム合金は、上記多孔質体からなる型材を通ってダイヤモンド粉末が充填される部分に到達する。
[多孔質体からなる型材]
 ここで、溶湯鍛造法にてアルミニウム合金が含浸し得る多孔質体からなる型材7の材料としては、溶湯鍛造法にてアルミニウム合金が含浸できる多孔質体であれば特に制約はない。しかし、該多孔質体としては、耐熱性に優れ、安定した溶湯の供給が行える、黒鉛、窒化ホウ素、アルミナ繊維等の多孔質体等が好ましく用いられる。
[離型板]
 更に、緻密な離型板8としては、ステンレス板やセラミックス板を使用することができ、溶湯鍛造法にてアルミニウム合金が含浸されない緻密体であれば特に制限はない。また、離型板に塗布する離型剤については、耐熱性に優れる、黒鉛、窒化ホウ素、アルミナ等の離型剤が好ましく使用できる。さらには、離型板の表面をアルミナゾル等によりコーティングした後、上記離型剤を塗布することにより、より安定した離型が行える離型板を得ることができる。
[アルミニウム合金]
 本実施形態に係るアルミニウム-ダイヤモンド系複合体中のアルミニウム合金(アルミニウムを含有する金属)は、含浸時にダイヤモンド粉末の空隙中(ダイヤモンド粒子間)に十分に浸透させるために、なるべく融点が低いことが好ましい。このようなアルミニウム合金として、例えばシリコンを5~25質量%含有したアルミニウム合金が挙げられる。シリコンを5~25質量%含有したアルミニウム合金を用いることにより、アルミニウム-ダイヤモンド系複合体の緻密化が促進されるという効果を得ることができる。
 更に、上記アルミニウム合金にマグネシウムを含有させることにより、ダイヤモンド粒子及びセラミックス粒子と金属部分との結合がより強固になるので好ましい。アルミニウム合金中のアルミニウム、シリコン、マグネシウム以外の金属成分に関しては、アルミニウム合金の特性が極端に変化しない範囲であれば特に制限はなく、例えば、銅等が含まれていても良い。
 本実施形態に係るアルミニウム-ダイヤモンド系複合体は、複合化時のダイヤモンド粉末の充填量により厚みを調整することができ、その厚みは0.4~6mmが好ましい。該厚みが0.4mm未満の場合、ヒートシンク等として用いるのに十分な強度が得られず好ましくない。該厚みが6mmを超える場合、材料自体が高価となると共に、高熱伝導という効果が十分に得られなくなり好ましくない。
 本実施形態においては、複合化後に、両面に配置した離型板8を剥がすことを特徴とする。このような特有の構成により、非常に平滑な表面を有するアルミニウム-ダイヤモンド系複合体を得ることができる。
 図2に示すように、上記構造体の両面に金属板(図2の10)を配置してもよい。また、複数枚の構造体を積層してブロックとする場合には、構造体の間に該金属板10を介して積層してもよい。このような離型板を配置することにより、溶湯を均一に含浸させることができ、また、含浸処理後のアルミニウム-ダイヤモンド系複合体の取り出し等の操作が容易に行えるようになる。
 得られた構造体は、複数枚を更に積層してブロックとし、このブロックを600~750℃程度で加熱する。そして、該ブロックを高圧容器内に1個または2個以上配置し、ブロックの温度低下を防ぐために出来るだけ速やかに、融点以上に加熱したアルミニウム合金の溶湯を給湯して20MPa以上の圧力で加圧する。
 ここで、ブロックの加熱温度は、600℃以上であれば、アルミニウム合金の複合化が安定し、十分な熱伝導率を有するアルミニウム-ダイヤモンド系複合体を得ることができる。また、加熱温度が750℃以下であれば、アルミニウム合金との複合化時に、ダイヤモンド粉末表面のアルミニウムカーバイド(Al)の生成を抑制でき、十分な熱伝導率を有するアルミニウム-ダイヤモンド系複合体を得ることができる。
 また、含浸時の圧力に関しては、20MPa以上であればアルミニウム合金の複合化が安定し、十分な熱伝導率を有するアルミニウム-ダイヤモンド系複合体を得ることができる。さらに好ましくは、含浸圧力は、50MPa以上である。50MPa以上であれば、より安定した熱伝導率特性を有するアルミニウム-ダイヤモンド系複合体を得ることができる。
[アニール処理]
 なお、上記操作により得られたアルミニウム-ダイヤモンド系成形体には、アニール処理を行ってもよい。アニール処理を行うことにより、上記アルミニウム-ダイヤモンド系成形体内の歪みが除去され、より安定した熱伝導率特性を有するアルミニウム-ダイヤモンド系複合体を得ることができる。
 得られたアルミニウム-ダイヤモンド系成形体の表面に影響を与えずに、成形体中の歪みのみを除去するには、上記アニール処理は、温度400℃~550℃の条件で10分間以上行うことが好ましい。
[加工方法]
 次に、本実施形態に係るアルミニウム-ダイヤモンド系複合体の加工方法の例を説明する。上記アルミニウム-ダイヤモンド系複合体は、非常に硬い難加工性材料である。このため、通常の機械加工やダイヤモンド工具を用いた研削加工が難しく、ウォータージェット加工、レーザー加工、放電加工によって加工する。
 なお、本実施形態に係るアルミニウム-ダイヤモンド系成形体は、通常のダイヤモンド工具等を用いた加工も可能ではあるが、非常に硬い難加工性材料であるため、工具の耐久性や加工コストの面から、ウォータージェット加工、レーザー加工又は放電加工による加工が好ましい。
[表面層]
 本実施形態に係るアルミニウム-ダイヤモンド系複合体では、複合化部(図1の3)の両面がアルミニウムを含有する金属(アルミニウム合金)を含む材料からなる表面層(図1の4)で被覆されていることを特徴とする。
 ここで、上記表面層4は、主にアルミニウムを含有する金属を含む材料からなるが、アルミニウムを含有する金属以外の物質が含まれていてもよい。即ち、上記ダイヤモンド粒子や他の不純物等が含まれていてもよい。
 しかし、ダイヤモンド粒子は、表面層4の表面から0.01mmの部分には存在しないことが好ましい。このような構成により、通常の金属加工で採用される加工方法が採用でき、研磨傷をつけることなく、表面層4を平滑にすることができる。
 また、上記表面層4は、アルミニウムを含有する金属を80体積%以上含有している。アルミニウムを含有する金属の含有量が80体積%以上であれば、通常の金属加工で採用される加工方法が採用でき、表面層4の研磨を行える。更には、アルミニウムを含有する金属の含有量が90体積%以上であることが好ましい。アルミニウムを含有する金属の含有量が90体積%以上であれば、表面の研磨時に、内部の不純物等が脱離して研磨傷をつけることがない。
 また、上記表面層4の厚みは、平均厚みで0.03mm以上0.2mm以下が好ましい。上記表面層4の平均厚みが0.03mm以上であれば、その後の処理において、ダイヤモンド粒子が露出してしまうことがなく、目標とする面精度及びめっき性を得ることが容易となる。また、表面層4の平均厚みが0.2mm以下であれば、得られるアルミニウム-ダイヤモンド系複合体1に占める複合化部3の十分な厚みが得られ、十分な熱伝導率を確保することができる。
 また、両面の表面層4の平均厚みの合計が、アルミニウム-ダイヤモンド系複合体1の厚みの20%以下であることが好ましく、更に好ましくは10%以下である。両面の表面層4の平均厚みの合計が、アルミニウム-ダイヤモンド系複合体1の厚みの20%以下であれば、面精度及びめっき性に加え、十分な熱伝導率を得ることができる。
 上記表面層4の厚みに関しては、ダイヤモンド粉末の充填時に、ダイヤモンド粉末と離型剤を塗布した緻密な離型板との間にアルミナ繊維等のセラミックス繊維を配置してアルミニウム合金を複合化することにより調整してもよい。また、セラミックス繊維の代わりにアルミニウム箔を用いることによっても調整できる。
[表面層の加工]
 本実施形態に係るアルミニウム-ダイヤモンド系複合体は、両面がアルミニウムを含有する金属を含む材料からなる表面層4で被覆された構造を有しているため、この表面層4を加工(研磨)することにより、表面精度(表面粗さ:Ra)を調整することができる。この表面層4の加工は、通常の金属加工で採用される加工方法が採用でき、例えばバフ研磨機等を用いて研磨を行い、表面粗さ(Ra)を1μm以下とすることができる。
 更に、この表面層4を加工することで、表面層の平均厚みを調整することもできる。本実施形態に係るアルミニウム-ダイヤモンド系複合体は、ヒートシンク等の放熱部品として使用する場合、接合面の熱抵抗を考慮すると、表面粗さが小さい平滑な面であることが好ましく、その表面粗さ(Ra)は1μm以下が好ましく、更に好ましくは、0.5μm以下である。表面粗さが1μm以下であることにより、接合層の厚みを均一にすることができ、より高い放熱性を得ることができる。
 また、上記表面層4の平面度についても、50mm×50mmサイズに換算して、30μm以下であることが好ましく、更に好ましくは10μm以下である。該平面度が30μm以下であることにより、接合層の厚みを均一にすることができ、より高い放熱性を得ることができる。
[複合化部]
 本実施形態に係るアルミニウム-ダイヤモンド系複合体では、上記ダイヤモンド粒子とアルミニウム合金との複合化部(図1の3)を有する。このような構造のアルミニウム-ダイヤモンド系複合体では、上記表面層4と複合化部3との間に応力が生じにくく、研磨等で力が加わった時に、表面層4が破損することがない。
[表面金属層]
 本実施形態に係るアルミニウム-ダイヤモンド系複合体は、半導体素子のヒートシンクとして用いる場合、半導体素子とロウ付けにより接合して用いられることが多い。よって、アルミニウム-ダイヤモンド系複合体の接合表面には、表面金属層を設ける必要がある。表面金属層の形成方法としては、めっき法、蒸着法、スパッタリング法等の方法を採用することができる。処理費用の面からは、めっき処理が好ましい。
 以下、めっき処理について説明する。
 まずアルミニウム‐ダイヤモンド系複合体の表面のアルミニウムを含有する金属に膜厚が0.5~6.5μmの結晶質のNiめっきを施す。めっき法は、電気めっき処理法が好ましいが、結晶質のNiめっき膜が得られるのであれば、無電解めっき処理法を適用することもできる。Niめっきの膜厚が1μm未満では、めっき膜のピンホール(めっき未着部分)が発生し好ましくない。6.5μmを超えると、めっき膜中に発生する残留応力が増加し、本実施形態のような用途では、実使用時の温度負荷により、めっき膜の膨れ、剥離やクラック発生の問題があり好ましくない。
 さらに、アルミニウムにNiめっきを施す際には、亜鉛置換等の前処理が必要であり、めっき密着性に優れる亜鉛置換を施すことが好ましい。Niめっきの密着性に関しては、ピール強度が50N/cm以上であることが好ましく、さらに好ましくは78N/cm以上である。ピール強度が50N/cm未満では、半導体素子の放熱部品として用いる場合、実使用時の温度負荷により、めっき層が剥離する問題が発生することがあり好ましくない。
 また、本発明のアルミニウムーダイヤモンド系複合体はウォータージェット加工、レーザー加工又は放電加工による加工を行う為、側面にダイヤモンドが露出した構造であり、電気めっき処理によるNiめっき層の形成では、側面のダイヤモンド粒子上にめっき膜の形成が行われず、ピンホールが発生してしまうため、Niめっき表面の上に無電解めっき処理によるアモルファスなNi合金層の形成が必要である。但し、アモルファスのNi合金層が存在する場合には、接合温度の上昇、実使用時の温度負荷の増加に伴い結晶化し、その際の体積変化によりマイクロクラックが発生し、その後の温度負荷でクラックが伸展するといった問題があり、Ni合金層を極力薄くすることで改善を図ってきたが、特に衛星用途等に要求されるような冷熱サイクルでは、Ni合金層の厚みによらず温度負荷において、結晶化に伴い生じたクラックが伸展してしまうためアモルファスなNi合金層の形成は好ましくない。
 無電解めっき処理によるアモルファスなNi合金層の形成を行わないことで側面のダイヤモンド粒子上にめっき膜の形成が行われないが、衛星用途等では、パッケージ化後の気密性が重要視され、半導体素子が接合される両主面上にピンホールおよび実使用化においてクラックが存在しない金属層形成の方が優先されるて要求される。
 さらに、高出力の半導体素子の放熱部品として用いる用途では、接合温度の上昇、実使用時の温度負荷の増加に伴い、アルミニウムを含有する表面層とめっき膜との熱膨張差により膨れが発生するといった問題がある。また、結晶質のNiめっき層はNi合金メッキ層よりもアルミニウムを含有する表面層との熱膨張差が小さく、硬度が低いNiめっき層を形成することで実使用時の温度負荷による膨れの発生を抑えることができる。
 また、本実施形態に係るアルミニウム-ダイヤモンド系複合体はウォータージェット加工、レーザー加工又は放電加工による加工を行う為、側面にダイヤモンドが露出した構造であり、電気めっき処理によるNiめっき層の形成では、側面のダイヤモンド粒子上にめっき膜の形成が行われず、ピンホールの発生が見られる。
 高温でのロウ材接合を行う場合、最表面に電気めっき処理法又は無電解めっき処理法で、膜厚が0.05~4μmのAuめっきを施すことが好ましい。めっき膜厚が0.05μm未満では、接合が不十分となり好ましくない。上限に関しては、特性上の制約はないが、Auめっきは非常に高価であり、4μm以下であることが好ましい。
 また、本実施形態に係るアルミニウム-ダイヤモンド系複合体は、アルミニウム-ダイヤモンド系複合体の温度が25℃のときの熱伝導率が400W/mK以上であり、25℃から150℃における熱膨張係数が5.0~10.0×10-6/Kであることが好ましい。
 25℃での熱伝導率が400W/mK以上であり、25℃から150℃の熱膨張係数が5.0~10.0×10-6/Kであれば、高熱伝導率かつ半導体素子と同等レベルの低膨張率となる。そのため、ヒートシンク等の放熱部品として用いた場合、放熱特性に優れ、また、温度変化を受けても半導体素子と放熱部品との熱膨張率の差が小さいため、半導体素子の破壊を抑制できる。その結果、高信頼性の放熱部品として好ましく用いられる。
[半導体素子]
 本実施形態のアルミニウム-ダイヤモンド系複合体放熱部品は、高熱伝導率かつ半導体素子と同等レベルの低熱膨張率であり、GaN、GaAs、SiC等の高出力が要求される半導体レーザー素子又は高周波素子の放熱部品として好適である。特に、高周波素子であるGaN-HEMT素子、GaAs-HEMT素子の放熱部品として好適である。
 以上、本発明に係るアルミニウム-ダイヤモンド系複合体及びこれを用いた放熱部品、並びにこれらの製造方法について、実施形態を挙げて説明したが、本発明はこれらに制限されるものではない。
 以下に、実施例及び比較例を挙げて、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1~13、比較例1~4]
 表1に示す平均粒子径を持つ市販されている高純度ダイヤモンド粉末A(ダイヤモンドイノベーション社製/グレード MBG600)と高純度のダイヤモンド粉末B(ダイヤモンドイノベーション社製/グレード MBM)を7対3の重量比で混合した。各粉末の粒子径の体積分布のピークは平均粒子径と同位置に見られた。ダイヤモンド粉末Aとダイヤモンド粉末Bの混合粉末の粒度分布測定を行った結果、体積分布における1~35μmの体積分布の面積と45~205μmの体積分布の面積の比率が3対7であった。粒度分布の測定は、純水に各ダイヤモンド粉末を加えスラリーを作製して測定溶液とし、水の屈折率を1.33、ダイヤモンドの屈折率を2.42として、分光光度計(ベックマン・コールター社製:コールターLS230)により測定した。
Figure JPOXMLDOC01-appb-T000001
 次に、40×40×2mmtのステンレス板(SUS430材)に、アルミナゾルをコーティングして350℃で30分間焼き付け処理を行った後、黒鉛系離型剤を表面に塗布して離型板(図2の9)を作製した。そして、60×60×8mmtの外形で、中央部に40×40×8mmtの穴を有する気孔率20%の等方性黒鉛治具(図2の7)に、表1の各ダイヤモンド粉末の上下に0.03mm厚の純アルミニウム箔を配置し離型板8で両面を挟む様に充填して構造体とした。
 上記構造体を、60×60×1mmtの黒鉛系離型剤を塗布したステンレス板(図2の10)を挟んで複数個積層し、両側に厚さ12mmの鉄板を配置して、M10のボルト6本で連結して面方向の締め付けトルクが10Nmとなるようにトルクレンチで締め付けて一つのブロックとした。
 次に、得られたブロックを、電気炉で温度650℃に予備加熱した後、あらかじめ加熱しておいた内径300mmのプレス型内に収め、シリコンを12質量%、マグネシウムを1質量%含有する温度800℃のアルミニウム合金の溶湯を注ぎ、100MPaの圧力で20分間加圧してダイヤモンド粉末にアルミニウム合金を含浸させた。そして、室温まで冷却した後、湿式バンドソーにて離型板の形状に沿って切断し、挟んだステンレス板をはがした。その後、含浸時の歪み除去のために530℃の温度で3時間アニール処理を行い、アルミニウム-ダイヤモンド系複合体を得た。
 得られたアルミニウム-ダイヤモンド系複合体は、両面を#600の研磨紙で研磨した後、バフ研磨を行った。
 続いて、ウォータージェット加工機(スギノマシン製アブレッシブ・ジェットカッタNC)により、圧力250MPa、加工速度50mm/minの条件で、研磨砥粒として粒度100μmのガーネットを使用して、25×25×2mmtの形状に加工してアルミニウム-ダイヤモンド系複合体とした。
 得られたアルミニウム-ダイヤモンド系複合体の断面を、工業顕微鏡で観察し両面の表面層(図1の4)の中心点と両端を含む5ヶ所の厚みを等間隔に測定し平均厚みとした結果、いずれのサンプルも0.03mmであった。また、表面粗さ計による表面粗さ(Ra)を測定した。その結果を表2に示す。
 また、ウォータージェット加工により熱膨張係数測定用試験体(3×2×10mm)、熱伝導率測定用試験体(25×25×2mmt)を作製した。それぞれの試験片を用いて、温度25℃~150℃の熱膨張係数を熱膨張計(セイコー電子工業社製;TMA300)で、25℃での熱伝導率をレーザーフラッシュ法(理学電機社製;LF/TCM-8510B)で測定した。その結果を表2に示す。比較例1~4では、熱伝導率が400W/mK以下、熱膨張係数が10.0×10-6/K以上であった。
 また、得られたアルミニウム-ダイヤモンド系複合体の室温25℃で密度をアルキメデス法により測定し、Vf(ダイヤモンド粒子の含有量)を複合則を用いて算出した。その結果を表2に示す。(ダイヤモンド密度:3.52g/cm、アルミニウム合金密度:2.7g/cm
Figure JPOXMLDOC01-appb-T000002
 また、上記のアルミニウム-ダイヤモンド系複合体を超音波洗浄した後、Zn触媒による前処理後に、電気Ni、電気Auめっきを行い、実施例1~13に係るアルミニウム-ダイヤモンド系複合体の表面に6.5μm厚(Ni:2.5μm+Au:2.0μm)のめっき層を形成した。得られためっき品について、JIS 8504に準じてめっき品のピール強度を測定した結果、全てのめっき品で98N/cm以上であった。ピール強度測定は、めっき膜を形成したアルミニウムーダイヤモンド系複合体の表面に、耐熱テープで5mm幅の測定部以外をマスキングし、測定部に厚み0.25mm、幅5mmの銅板を半田付けし、デジタルフォースゲージにより銅板を真上に引っ張ることで引張り強度を測定しピール強度を算出した。更に、得られためっき品は、大気雰囲気下、温度400℃で10分間の加熱処理を行った後、めっき表面を観察した結果、膨れ等の異常は認められなかった。また、-65℃~175℃のヒートサイクル(気槽、各温度で30分保持)1000サイクル後にめっき表面のクラックの発生は認められなかった。
 表2に示されるように、実施例1~13に係るアルミニウム-ダイヤモンド系複合体は、表面粗さが1μm以下と非常に平滑であり、高熱伝導率及び半導体素子に近い熱膨張係数を有している。
 [実施例14~19、比較例5~7]
 実施例1と同様の方法で作製したアルミニウム-ダイヤモンド系複合体を超音波洗浄した後、Zn触媒による前処理後に電気Niめっき、電気Auめっきの順に形成した。めっき膜厚みを表3に示す。また、比較例7では電気Niめっきの後に無電解Ni-Pめっき膜を形成させた。
Figure JPOXMLDOC01-appb-T000003
 比較例5はめっき膜のピンホールが見られ、その後の評価は実施しなかった。得られためっき品について、ピール強度を測定した結果、全てのめっき品で80N/cm以上であった。更に、得られためっき品は、大気雰囲気下、温度400℃で10分間の加熱処理を行った後、めっき表面を観察した結果、実施例14~19、比較例7ではめっき表面に膨れの発生が認められた。比較例6ではめっき表面に膨れの発生が見られた。また、実施例14~19では-65℃~175℃のヒートサイクル1000サイクル後にめっき表面のクラックの発生は認められなかったが、比較例7ではめっき表面にクラックの発生が認められた。
[実施例20~23、比較例8、9]
 市販されている高純度のダイヤモンド粉末A(ダイヤモンドイノベーション社製/平均粒径:130μm)と高純度のダイヤモンド粉末B(ダイヤモンドイノベーション社製/平均粒子径:15μm)を表4に示す重量比で混合した。ダイヤモンド粉末Aとダイヤモンド粉末Bの混合粉末の粒度分布測定を行った結果、体積分布において15μmに第一ピーク、130μmに第二ピークを持ち、体積分布における1~35μmの体積分布の面積と45~205μmの体積分布の面積の比率は表4に示す値であった。粒度分布の測定は、純水に各ダイヤモンド粉末を加えスラリーを作製して測定溶液とし、水の屈折率を1.33、ダイヤモンドの屈折率を2.42として、分光光度計(ベックマン・コールター社製:コールターLS230)により測定した。
Figure JPOXMLDOC01-appb-T000004
 得られた混合粉末50g、シリカ粉末(平均粒子径:5μm)16g、珪素粉末(平均粒子径:10μm):16gを混合した後、炭化珪素製のるつぼに充填し、アルゴン雰囲気下、温度1450℃で3時間加熱処理を行い、ダイヤモンド粉末表面にβ型炭化珪素の層を形成したダイヤモンド粉末を作製した。
 ダイヤモンド粉末として、表面にβ型炭化珪素の層を形成したダイヤモンド粉末を使用し、ダイヤモンド粉末の上下に0.045mm厚の純アルミニウム箔を配置し離型板8で両面を挟む様に充填して構造体とした以外は、実施例1と同様にして、アルミニウム-ダイヤモンド系複合体を作製した。
 得られたアルミニウム-ダイヤモンド系複合体は、実施例1と同様の研磨、加工を行い、25×25×2mmtの形状に加工してアルミニウム-ダイヤモンド系複合体とし、該アルミニウム-ダイヤモンド系複合体の断面を工業顕微鏡で観察し両面の表面層(図1の4)の平均厚みを測定した結果、表面層4の平均厚みは、0.045mmであった。また、表面粗さ計で測定した表面粗さ(Ra)を表5に示す。 
 更に、得られたアルミニウム-ダイヤモンド系複合体は、実施例1と同様の特性評価を実施し、その結果を表5に示す。比較例8、9では、熱伝導率が400W/mK以下、熱膨張係数が10.0×10-6/K以上であった。
Figure JPOXMLDOC01-appb-T000005
 また、上記のアルミニウム-ダイヤモンド系複合体を超音波洗浄した後、Zn触媒による前処理後に、電気Ni、電気Auめっきを行い、実施例20~23に係るアルミニウム-ダイヤモンド系複合体の表面に6.5μm厚(Ni:2.0μm+Au:2.5μm)のめっき層を形成した。得られためっき品について、実施例1と同様の方法でピール強度を測定した結果、全てのめっき品で80N/cm以上であった。更に、得られためっき品は、大気雰囲気下、温度400℃で10分間の加熱処理を行った後、めっき表面を観察した結果、膨れ等の異常は認められなかった。また、-65℃~175℃のヒートサイクル(気槽、各温度で30分保持)1000サイクル後にめっき表面のクラックの発生は認められなかった。
[実施例24~30、比較例10~12]
 実施例1で、ダイヤモンド粉末の上下に表6に示す厚みの挿入材を配置し離型板8で両面を挟む様に充填して構造体とした以外は、実施例1と同様にして、アルミニウム-ダイヤモンド系複合体を作製した。実施例29、30はアルミナ繊維(電気化学工業社製デンカアルセンボード/品種:BD-1600およびBD-1700LN)を、比較例12ではアルミナ繊維(電気化学工業社製/デンカアルセンボード/品種:BD1700)をプレス機で押しつぶし嵩密度を1.1g/cmにしたものを挿入材として配置した。使用したダイヤモンド粉末の粒度分布測定を行った結果、体積分布において15μmに第一ピーク、130μmに第二ピークを持ち、体積分布における1~35μmの体積分布の面積と45~205μmの体積分布の面積の比率は3対7であった。粒度分布の測定は、純水に各ダイヤモンド粉末を加えスラリーを作製して測定溶液とし、水の屈折率を1.33、ダイヤモンドの屈折率を2.42として、分光光度計(ベックマン・コールター社製:コールターLS230)により測定した。
 得られたアルミニウム-ダイヤモンド系複合体は、実施例1と同様の研磨、加工を行い、25×25×2mmtの形状に加工してアルミニウム-ダイヤモンド系複合体とし、該アルミニウム-ダイヤモンド系複合体の断面を工業顕微鏡で観察し両面の表面層(図1の4)の平均厚みを測定した結果および表面粗さ計で測定した表面粗さ(Ra)を表6に示す。
 更に、得られたアルミニウム-ダイヤモンド系複合体は、実施例1と同様の特性評価を実施し、その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 比較例11ではダイヤモンド粒子の含有量が50体積%以下、熱伝導率が400W/mK以下、熱膨張係数が10.0×10-6/K以上であった。また、比較例12では研磨処理後の表面粗さが高く、また、セラミックス繊維の脱離により研磨傷が生じた。
 また、上記のアルミニウム-ダイヤモンド系複合体を超音波洗浄した後、Zn触媒による前処理後に、電気Ni、電気Auめっきを行い、実施例24~28、比較例10に係るアルミニウム-ダイヤモンド系複合体の表面に6.0μm厚(Ni:2.0μm+Au:2.0μm)のめっき層を形成した。比較例10ではめっき未着が見られその後の評価は実施しなかった。その他の得られためっき品について、実施例1と同様の方法でピール強度を測定した結果、全てのめっき品で80N/cm以上であった。更に、得られためっき品は、大気雰囲気下、温度400℃で10分間の加熱処理を行った後、めっき表面を観察した結果、膨れ等の異常は認められなかった。また、-65℃~175℃のヒートサイクル(気槽、各温度で30分保持)1000サイクル後にめっき表面のクラックの発生は認められなかった。
1  アルミニウム-ダイヤモンド系複合体
2  表面金属層
3  複合化部
4  表面層
5  Ni層
6  Au層
7  多孔質体からなる型材
8  離型材を塗布した離型板
9  ダイヤモンド粉末
10 金属板

Claims (5)

  1.  粒子径の体積分布の第一ピークが5~25μmにあり、第二ピークが55~195μmにあり、粒子径が1~35μmである体積分布の面積と粒子径が45~205μmである体積分布の面積との比率が1対9ないし4対6であるダイヤモンド粉末を50体積%~80体積%含有し、残部がアルミニウムを含有する金属で構成される複合化部を備え、
     該複合化部の両主面に、アルミニウムを含有する金属を80体積%以上含有する、膜厚0.03~0.2mmの表面層を備え、
     少なくとも一方の表面層上に、(1)膜厚が0.5~6.5μmである結晶質のNi層、(2)膜厚が0.05μm以上であるAu層を更に備えることを特徴とする半導体素子用放熱部品。
  2.  Ni層およびAu層がめっき処理により形成されるめっき膜であり、めっき膜のピール強度が50N/cm以上であることを特徴とする請求項1に記載の半導体素子用放熱部品。
  3.  搭載される半導体素子が、GaN、GaAsまたはSiCからなる半導体レーザー素子または高周波素子であることを特徴とする請求項1または2記載の半導体素子用放熱部品。
  4.  前記複合化部が、溶湯鍛造法により製造されるアルミニウム-ダイヤモンド系複合体であり、温度25℃での熱伝導率が400W/mK以上、温度25℃から150℃の線熱膨張係数が5.0×10-6~10.0×10-6/K、両主面の表面粗さ(Ra)が、1μm以下であるアルミニウム-ダイヤモンド系複合体であることを特徴とする請求項1から3のいずれか一項に記載の半導体素子用放熱部品。
  5.  ダイヤモンド粉末の粒子が、その表面に化学的に結合したβ型炭化珪素の層の存在により特徴づけられるアルミニウム-ダイヤモンド系複合体であることを特徴とする請求項1から4いずれか一項に記載の半導体素子用放熱部品。
PCT/JP2015/074843 2014-09-02 2015-09-01 半導体素子用放熱部品 WO2016035789A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/508,187 US10539379B2 (en) 2014-09-02 2015-09-01 Heat dissipation component for semiconductor element
JP2016546655A JP7010592B2 (ja) 2014-09-02 2015-09-01 半導体素子用放熱部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-177850 2014-09-02
JP2014177850 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035789A1 true WO2016035789A1 (ja) 2016-03-10

Family

ID=55439849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074843 WO2016035789A1 (ja) 2014-09-02 2015-09-01 半導体素子用放熱部品

Country Status (4)

Country Link
US (1) US10539379B2 (ja)
JP (2) JP7010592B2 (ja)
TW (1) TWI668312B (ja)
WO (1) WO2016035789A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065139A1 (ja) * 2015-10-13 2017-04-20 デンカ株式会社 アルミニウム-ダイヤモンド系複合体及びその製造方法
WO2017158993A1 (ja) * 2016-03-15 2017-09-21 デンカ株式会社 アルミニウム-ダイヤモンド系複合体及び放熱部品
CN107470588A (zh) * 2017-09-18 2017-12-15 上海开朋科技有限公司 在铝金刚石复合材料表面覆盖铜箔的方法
CN107611040A (zh) * 2017-09-18 2018-01-19 上海开朋科技有限公司 铝金刚石复合材料表面覆盖铜箔同时镶嵌陶瓷材料的工艺
CN107660099A (zh) * 2016-07-26 2018-02-02 东莞爵士先进电子应用材料有限公司 平板薄膜式散热装置
CN107695321A (zh) * 2017-09-18 2018-02-16 江南大学 一种在铝碳化硅复合材料表面覆盖铝箔的工艺
EP3451376A1 (en) * 2017-09-04 2019-03-06 The Provost, Fellows, Foundation Scholars, and The Other Members of Board, of The College of The Holy and Undivided Trinity of Queen Elizabeth Thermal structures for dissipating heat and methods for manufacture thereof
JP2019071328A (ja) * 2017-10-06 2019-05-09 株式会社豊田中央研究所 半導体実装基板、半導体モジュールおよび半導体実装基板の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232845B (zh) * 2014-04-25 2019-04-26 电化株式会社 铝-金刚石系复合体及使用其的散热部件
KR20180056648A (ko) * 2015-09-18 2018-05-29 도레이 카부시키가이샤 하우징
EP3564993B1 (en) * 2016-12-28 2021-09-29 Denka Company Limited Heat dissipation component for semiconductor element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015158A1 (ja) * 2011-07-28 2013-01-31 電気化学工業株式会社 半導体素子用放熱部品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157773A (ja) 1995-10-03 1997-06-17 Hitachi Metals Ltd 低熱膨張・高熱伝導性アルミニウム複合材料及びその製造方法
JP2000303126A (ja) 1999-04-15 2000-10-31 Sumitomo Electric Ind Ltd ダイヤモンド−アルミニウム系複合材料およびその製造方法
US7279023B2 (en) 2003-10-02 2007-10-09 Materials And Electrochemical Research (Mer) Corporation High thermal conductivity metal matrix composites
WO2010027504A1 (en) * 2008-09-08 2010-03-11 Materials And Electrochemical Research (Mer) Corporation Machinable metal/diamond metal matrix composite compound structure and method of making same
US20140018828A1 (en) * 2011-05-19 2014-01-16 Dallen Medical, Inc. Variable friction buckle tightening system with friction indicator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015158A1 (ja) * 2011-07-28 2013-01-31 電気化学工業株式会社 半導体素子用放熱部品

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017065139A1 (ja) * 2015-10-13 2017-04-20 デンカ株式会社 アルミニウム-ダイヤモンド系複合体及びその製造方法
US10751912B2 (en) 2015-10-13 2020-08-25 Denka Company Limited Aluminum-diamond-based composite and method for producing same
WO2017158993A1 (ja) * 2016-03-15 2017-09-21 デンカ株式会社 アルミニウム-ダイヤモンド系複合体及び放熱部品
JP7104620B2 (ja) 2016-03-15 2022-07-21 デンカ株式会社 アルミニウム-ダイヤモンド系複合体及び放熱部品
US10640853B2 (en) 2016-03-15 2020-05-05 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
JPWO2017158993A1 (ja) * 2016-03-15 2019-01-24 デンカ株式会社 アルミニウム−ダイヤモンド系複合体及び放熱部品
US20190093201A1 (en) * 2016-03-15 2019-03-28 Denka Company Limited Aluminum-diamond-based composite and heat dissipation component
CN107660099A (zh) * 2016-07-26 2018-02-02 东莞爵士先进电子应用材料有限公司 平板薄膜式散热装置
WO2019043269A1 (en) * 2017-09-04 2019-03-07 The Provost, Fellows, Foundation Scholars, & The Other Members Of Board, Of The College Of The Holy & Undiv. Trinity Of Queen Elizabeth Near Dublin THERMAL STRUCTURES FOR DISSIPATING HEAT AND METHODS OF MAKING SAME
EP3451376A1 (en) * 2017-09-04 2019-03-06 The Provost, Fellows, Foundation Scholars, and The Other Members of Board, of The College of The Holy and Undivided Trinity of Queen Elizabeth Thermal structures for dissipating heat and methods for manufacture thereof
KR20200052301A (ko) * 2017-09-04 2020-05-14 더 프로보스트, 펠로우스, 파운데이션 스콜라스, 앤드 디 아더 멤버스 오브 보오드 오브 더 칼리지 오브 더 홀리 앤드 언디바이디드 트리니티 오브 퀸 엘리자베스 니어 더블린 방열시키기 위한 열적 구조체 및 이를 제작하는 방법
KR102551453B1 (ko) 2017-09-04 2023-07-04 더 프로보스트, 펠로우스, 파운데이션 스콜라스, 앤드 디 아더 멤버스 오브 보오드 오브 더 칼리지 오브 더 홀리 앤드 언디바이디드 트리니티 오브 퀸 엘리자베스 니어 더블린 방열시키기 위한 열적 구조체 및 이를 제작하는 방법
CN107470588B (zh) * 2017-09-18 2019-05-10 上海开朋科技有限公司 在铝金刚石复合材料表面覆盖铜箔的方法
CN107611040B (zh) * 2017-09-18 2019-06-14 上海开朋科技有限公司 铝金刚石复合材料表面覆盖铜箔同时镶嵌陶瓷材料的工艺
CN107695321A (zh) * 2017-09-18 2018-02-16 江南大学 一种在铝碳化硅复合材料表面覆盖铝箔的工艺
CN107611040A (zh) * 2017-09-18 2018-01-19 上海开朋科技有限公司 铝金刚石复合材料表面覆盖铜箔同时镶嵌陶瓷材料的工艺
CN107470588A (zh) * 2017-09-18 2017-12-15 上海开朋科技有限公司 在铝金刚石复合材料表面覆盖铜箔的方法
JP2019071328A (ja) * 2017-10-06 2019-05-09 株式会社豊田中央研究所 半導体実装基板、半導体モジュールおよび半導体実装基板の製造方法

Also Published As

Publication number Publication date
JPWO2016035789A1 (ja) 2017-08-17
JP7010592B2 (ja) 2022-02-10
JP2021059782A (ja) 2021-04-15
TWI668312B (zh) 2019-08-11
US10539379B2 (en) 2020-01-21
US20170268834A1 (en) 2017-09-21
TW201621060A (zh) 2016-06-16

Similar Documents

Publication Publication Date Title
WO2016035789A1 (ja) 半導体素子用放熱部品
JP5988977B2 (ja) 半導体素子用放熱部品
JP5940244B2 (ja) アルミニウム−ダイヤモンド系複合体及びその製造方法
JP7104620B2 (ja) アルミニウム-ダイヤモンド系複合体及び放熱部品
JP5759152B2 (ja) アルミニウム−ダイヤモンド系複合体及びその製造方法
TWI669386B (zh) Composite and manufacturing method thereof
JP5755895B2 (ja) アルミニウム−ダイヤモンド系複合体及びその製造方法
JP6621736B2 (ja) アルミニウム−ダイヤモンド系複合体及びこれを用いた放熱部品
JP2012158783A (ja) アルミニウム−ダイヤモンド系複合体及びその製造方法
JP7000347B2 (ja) 半導体素子用放熱部品
JP6105262B2 (ja) アルミニウム−ダイヤモンド系複合体放熱部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15508187

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15837644

Country of ref document: EP

Kind code of ref document: A1