WO2016035503A1 - Thin film transistor - Google Patents

Thin film transistor Download PDF

Info

Publication number
WO2016035503A1
WO2016035503A1 PCT/JP2015/072326 JP2015072326W WO2016035503A1 WO 2016035503 A1 WO2016035503 A1 WO 2016035503A1 JP 2015072326 W JP2015072326 W JP 2015072326W WO 2016035503 A1 WO2016035503 A1 WO 2016035503A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thin film
oxide semiconductor
semiconductor thin
etch stop
Prior art date
Application number
PCT/JP2015/072326
Other languages
French (fr)
Japanese (ja)
Inventor
元隆 越智
泰幸 高梨
綾 三木
後藤 裕史
釘宮 敏洋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015132533A external-priority patent/JP6659255B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/327,296 priority Critical patent/US20170170029A1/en
Priority to CN201580035556.7A priority patent/CN106489209B/en
Priority to KR1020177005510A priority patent/KR101974754B1/en
Publication of WO2016035503A1 publication Critical patent/WO2016035503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a thin film transistor having an oxide semiconductor thin film.
  • the thin film transistor of the present invention is suitably used for display devices such as a liquid crystal display and an organic EL display.
  • the thin film transistor may be referred to as a TFT (Thin Film Transistor).
  • An amorphous oxide semiconductor has higher carrier mobility than general-purpose amorphous silicon.
  • Amorphous oxide semiconductors have a large optical band gap and can be deposited at low temperatures, so they are expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance. Yes.
  • the TFT When the oxide semiconductor is used as a semiconductor layer of a TFT, it is required that the TFT has excellent switching characteristics. Specifically, (1) the on-current, that is, the maximum drain current when a positive voltage is applied to the gate electrode and the drain electrode is high, and (2) the off-current, ie, the negative voltage is applied to the gate electrode.
  • the drain current When the positive voltage is applied, the drain current is low, (3) the S value (Subthreshold Swing), that is, the gate voltage required to increase the drain current by 10 times is low, and (4) the threshold voltage, The voltage at which the drain current begins to flow when a positive voltage is applied to the drain electrode and a positive or negative voltage is applied to the gate electrode is stable without changing over time, and (5) field-effect mobility , It may be simply referred to as mobility).
  • an In—Ga—Zn amorphous oxide semiconductor made of indium, gallium, zinc, and oxygen is well known.
  • the field-effect mobility when a TFT is manufactured using the above oxide semiconductor is 10 cm 2 / Vs or less.
  • materials with higher mobility are required.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a thin film transistor having an extremely high mobility of about 40 cm 2 / Vs or more.
  • the thin film transistor according to the present invention that has solved the above problems includes a gate electrode, a gate insulating film, an oxide semiconductor thin film, an etch stop layer for protecting the oxide semiconductor thin film, a source / drain electrode, A thin film transistor having a protective film in this order, wherein the oxide semiconductor thin film is made of an oxide composed of In, Ga and Sn; and O as metal elements, has an amorphous structure, and
  • the gist is that the atomic ratio of each metal element to the total of In, Ga and Sn satisfies all of the following formulas (1) to (3), and at least one of the etch stop layer and the protective film contains SiNx. . 0.30 ⁇ In / (In + Ga + Sn) ⁇ 0.50 (1) 0.20 ⁇ Ga / (In + Ga + Sn) ⁇ 0.30 (2) 0.25 ⁇ Sn / (In + Ga + Sn) ⁇ 0.45 (3)
  • a thin film transistor including SiNx only in the protective film is referred to as a first thin film transistor (TFT), and a thin film transistor including SiNx only in the etch stop layer and SiNx in each of the etch stop layer and the protective film.
  • the thin film transistor may be referred to as a second thin film transistor (TFT).
  • At least a part of the oxide semiconductor thin film is crystallized.
  • the protective film contains SiNx, and both ends of the oxide semiconductor thin film in the channel length direction and the channel width direction are in contact with the etch stop layer.
  • a TFT having extremely high mobility of about 40 cm 2 / Vs or more can be provided.
  • FIG. 1 is a schematic cross-sectional view for explaining a first thin film transistor according to the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining a conventional thin film transistor.
  • FIG. FIG. 11 is a diagram showing Id-Vg characteristics in 1-1. 4 shows No. 1 in Table 1. It is a figure which shows the TEM observation result of the oxide semiconductor thin film cross section in 1-1.
  • FIG. 5 is a diagram showing a TEM observation result of the cross section of the oxide semiconductor thin film from after the formation of the In—Ga—Sn-based oxide semiconductor to the completion of the TFT.
  • FIG. 1 is a schematic cross-sectional view for explaining a first thin film transistor according to the present invention.
  • FIG. 2 is a schematic cross-sectional view for explaining a conventional thin film transistor.
  • FIG. 11 is a diagram showing Id-Vg characteristics in 1-1. 4 shows No. 1 in Table 1. It is a figure which shows the TEM observation result of the oxide semiconductor thin film cross section in
  • FIG. 6 is a diagram illustrating a TEM observation result of the planar surface of the oxide semiconductor thin film after the film formation of the In—Ga—Zn-based oxide semiconductor and after the pre-annealing.
  • FIG. 7 is a diagram illustrating a TEM observation result of the oxide semiconductor thin film plane after the In—Ga—Zn-based oxide semiconductor is formed and after the pre-annealing.
  • FIG. 8 is a graph showing a result of measuring X-ray diffraction of an In—Ga—Sn-based oxide semiconductor thin film.
  • FIG. 9 is a schematic view of the TFTs with patterns (i) to (iv) used in Example 2 as viewed from above.
  • FIG. 10 is a cross-sectional view taken along the line A-A ′ of FIG. FIG.
  • FIG. 11 is a cross-sectional view taken along line B-B ′ of FIG.
  • FIG. 12 is a schematic cross-sectional view for explaining a second thin film transistor according to the present invention.
  • FIG. 13 is a schematic cross-sectional view illustrating the manufacturing process of the second thin film transistor according to the present invention.
  • FIG. 14 is a schematic cross-sectional view for explaining different aspects of the second thin film transistor according to the present invention.
  • FIG. 15 is a schematic cross-sectional view illustrating a manufacturing process of the thin film transistor of FIG.
  • the present inventors have repeatedly studied in order to improve mobility when an In—Ga—Sn-based oxide containing In, Ga, and Sn as metal elements is used for a semiconductor layer of a TFT.
  • the oxide semiconductor thin film including In—Ga—Sn-based oxide the atomic ratio of each metal element in the In—Ga—Sn-based oxide is appropriately controlled, and the protective film including SiNx and SiNx
  • the protective film containing SiNx and the etch stop layer containing SiNx may be collectively referred to as a SiNx-containing layer.
  • the present inventors use an In—Ga—Sn-based oxide in which at least a part of the oxide is crystallized as the oxide semiconductor thin film. It was also found that when the protective film contains SiNx, a TFT configured so that both ends of the oxide semiconductor thin film in the channel length direction and the channel width direction are in contact with the etch stop layer may be used.
  • the oxide semiconductor thin film used in the present invention is made of an oxide composed of In, Ga, and Sn as metal elements; and O, and the atomic ratio of each metal element to the total of In, Ga, and Sn is represented by the following formula (1 ) To (3) are all satisfied. 0.30 ⁇ In / (In + Ga + Sn) ⁇ 0.50 (1) 0.20 ⁇ Ga / (In + Ga + Sn) ⁇ 0.30 (2) 0.25 ⁇ Sn / (In + Ga + Sn) ⁇ 0.45 (3)
  • the In content (atomic%) with respect to the total of all metal elements In, Ga, and Sn represented by the above formula (1) may be referred to as In atomic ratio.
  • the Ga content (atomic%) relative to the total of all metal elements In, Ga, and Sn represented by the above formula (2) may be referred to as a Ga atomic ratio.
  • the Sn content (atomic%) with respect to the total of all metal elements In, Ga and Sn represented by the above formula (3) may be referred to as the Sn atomic ratio.
  • In is an element contributing to the improvement of electrical conductivity.
  • the In atom number ratio represented by the above formula (1) increases, that is, as the amount of In occupying the metal element increases, the conductivity of the oxide semiconductor thin film improves and the mobility increases.
  • the In atom number ratio needs to be 0.30 or more.
  • the In atom number ratio is preferably 0.31 or more, more preferably 0.35 or more, and further preferably 0.40 or more.
  • the In atom number ratio is preferably 0.48 or less, more preferably 0.45 or less.
  • Ga atom number ratio Ga is an element that contributes to reduction of oxygen deficiency and control of carrier density.
  • the Ga atom number ratio represented by the above formula (2) is larger, the electrical stability of the oxide semiconductor thin film is improved, and the effect of suppressing the excessive generation of carriers is exhibited.
  • the Ga atom number ratio needs to be 0.20 or more.
  • the Ga atom number ratio is preferably 0.22 or more, more preferably 0.25 or more.
  • the Ga atom number ratio is set to 0.30 or less.
  • the Ga atom number ratio is preferably 0.28 or less.
  • Sn is an element which contributes to the improvement of acid etching tolerance.
  • the resistance to the inorganic acid etching solution in the oxide semiconductor thin film is improved as the Sn atomic ratio represented by the above formula (3) is larger.
  • the Sn atom number ratio needs to be 0.25 or more.
  • the Sn atom number ratio is preferably 0.30 or more, more preferably 0.31 or more, and still more preferably 0.35 or more.
  • the Sn atom number ratio is set to 0.45 or less.
  • the Sn atom number ratio is preferably 0.40 or less, more preferably 0.38 or less.
  • the above-mentioned oxide semiconductor thin film for TFT usually has an amorphous structure, but it is preferable that at least a part thereof is crystallized (hereinafter, sometimes referred to as having a microcrystalline structure).
  • the degree of crystallinity of the oxide semiconductor thin film is not particularly limited as long as an extremely excellent mobility improvement effect by the use of the TFT including the oxide semiconductor thin film is effectively exhibited.
  • the fact that the oxide semiconductor thin film of the present invention has a microcrystalline structure can be confirmed, for example, by an electron beam diffraction image described later. Although details will be described later in the column of Examples, the diffraction point becomes clearer as the ratio of the crystal structure increases.
  • the oxide semiconductor thin film of the present invention is partially crystallized, which can suppress a decrease in etching rate and generation of residues in the wet etching process. Therefore, the workability of the wet etching process and the high mobility in the TFT can be compatible.
  • the oxide semiconductor thin film having the microcrystalline structure described above is controlled to a gas pressure in the range of 1 to 5 mTorr during the formation of the oxide semiconductor thin film in the TFT formation process, and after the formation of the SiNx-containing layer, the oxide semiconductor thin film is 200 ° C. It can be obtained by heat treatment (post-annealing) at a temperature.
  • the TFT formation process other than the above is not particularly limited, and a normal method can be adopted.
  • an oxide semiconductor thin film is formed by controlling the gas pressure within a range of 1 to 5 mTorr.
  • the gas pressure is less than 1 mTorr, the film density is insufficient.
  • a preferable lower limit of the gas pressure is 2 mTorr or more.
  • a preferable upper limit of the gas pressure is 4 mTorr or less, more preferably 3 mTorr or less.
  • the concentration of oxygen in the atmospheric gas is preferably 1 to 40% by volume, more preferably 2 to 30% by volume.
  • a preferable atmosphere when forming the oxide semiconductor thin film is an air atmosphere or a water vapor atmosphere.
  • the TFT of the present invention further has a SiNx-containing layer.
  • hydrogen contained in the SiNx-containing layer diffuses into the oxide semiconductor thin film by using a TFT including an oxide semiconductor thin film having a predetermined composition and a SiNx-containing layer. (Diffusion) has been found to contribute greatly to the development of high mobility.
  • Such a mobility improving effect was found by using the TFT of the present invention. For example, it will be described later that it was not seen when using the IGZO described in Patent Document 1 described above. This is described in the examples.
  • the amount of hydrogen in the SiNx-containing layer is preferably 20 to 50 atomic%, and more preferably 30 to 40 atomic%.
  • the amount of hydrogen in the SiNx-containing layer can be controlled by the mixing ratio of SiH 4 and NH 3 gas, the film formation temperature, or the like.
  • heat treatment is performed at a temperature of 200 ° C. or higher.
  • the heat treatment may be performed after forming an etch stop layer containing SiNx, or the heat treatment may be performed after forming a protective film containing SiNx.
  • the heat treatment may be performed after forming the etch stop layer including SiNx, and then the protective film including SiNx may be formed and the heat treatment may be performed again.
  • the minimum with preferable heat processing temperature is 250 degreeC or more, More preferably, it is 260 degreeC or more.
  • the upper limit is preferably 280 ° C. or lower. A more preferable upper limit is 270 ° C. or less.
  • the heat treatment time it is preferable to control the heat treatment time within a range of, for example, 30 to 90 minutes so that a desired microcrystalline structure can be obtained.
  • the atmosphere is not particularly limited, and examples thereof include a nitrogen atmosphere and an air atmosphere.
  • the TFT of the present invention preferably has a structure in which both ends of the oxide semiconductor thin film in the channel length direction and the channel width direction (hereinafter, simply referred to as both ends) are in contact with the etch stop layer.
  • the mobility of the TFT is remarkably increased to about 40 cm 2 / Vs or more as compared with the general-purpose In—Ga—Zn-based oxide semiconductor thin film described in Patent Documents 1 to 3 described above.
  • FIG. 2 shows a conventional general TFT structure.
  • the configuration of the first TFT according to the present invention is not limited to FIG.
  • the first TFT of the above embodiment includes a gate electrode 2, a gate insulating film 3, an oxide semiconductor thin film 4, an etch stop layer 9 for protecting the oxide semiconductor thin film 4 on the substrate 1,
  • the source / drain electrode 5 and the protective film 6 are provided in this order, and the transparent conductive film 8 is electrically connected to the source / drain electrode 5 through the contact hole 7.
  • the first TFT of the above embodiment uses the oxide semiconductor thin film 4 having the above-described composition and microcrystalline structure.
  • the conventional TFT shown in FIG. 2 has the same configuration order except that an amorphous In—Ga—Zn-based oxide semiconductor thin film is used as the oxide semiconductor thin film 4.
  • the first TFT of the above embodiment is configured such that both ends in the channel length direction of the oxide semiconductor thin film 4 are in contact with the etch stop layer 9 as shown in FIG.
  • the etch stop layer 9 is covered so as to cover both ends in the channel length direction), and both ends in the channel length direction of the oxide semiconductor thin film 4 are not in contact with the source / drain electrodes 5.
  • 4 is configured to be in contact with the source / drain electrode 5 (that is, the source / drain electrode 5 is covered so as to cover both ends of the oxide semiconductor thin film 4 in the channel length direction). It is greatly different from the TFT of FIG. Further, when attention is paid to the upper surface of the oxide semiconductor thin film 4 in FIGS.
  • etch stop layer 9 is patterned in the example of the present invention in FIG. 1, and a region in contact with the contact hole 7 through the source / drain electrode 5.
  • 2 is different from the conventional example of FIG. 2 in that the etch stop layer 9 is not patterned and does not have a region in contact with the contact hole 7 via the source / drain electrode 5. 1 and 2, both end portions in the channel length direction of the oxide semiconductor thin film 4 are not in direct contact with the protective film 6.
  • the present invention is not limited to this.
  • the gate electrode 2 and the gate insulating film 3 are formed on the substrate 1. These forming methods are not particularly limited, and commonly used methods can be employed. Further, the types of the gate electrode 2 and the gate insulating film 3 are not particularly limited, and those commonly used can be used. For example, as the gate electrode 2, Al or Cu metal having a low electrical resistivity, refractory metal such as Mo, Cr, or Ti having high heat resistance, or an alloy thereof can be preferably used.
  • the gate insulating film 3 is typically exemplified by a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and the like. In addition, oxides such as Al 2 O 3 and Y 2 O 3 and those obtained by stacking these can also be used.
  • the above-described oxide semiconductor thin film 4 is formed.
  • the other steps are not particularly limited, and a normal method can be adopted, but a preferable method is as follows.
  • the oxide semiconductor thin film 4 is preferably formed by a sputtering target using a sputtering method, for example, by a DC sputtering method or an RF sputtering method.
  • the sputtering target may be simply referred to as “target”.
  • the oxide may be formed by a chemical film formation method such as a coating method.
  • a target used in the sputtering method it is preferable to use a target containing the above-described elements and having the same composition as the desired oxide, whereby a thin film having a desired component composition can be formed with little compositional deviation.
  • a target that is made of an oxide containing In, Ga, and Sn as metal elements and that has an atomic ratio of each metal element to the total of In, Ga, and Sn satisfying the above formulas (1) to (3) is used. Is recommended.
  • an oxide target of each element of In, Ga, and Sn such as In 2 O 3 , Ga 2 O 3 , and SnO 2
  • an oxide target of a mixture containing at least two or more of the above elements can be used.
  • One or a plurality of pure metal targets or alloy targets containing the above metal elements may be used, and film formation may be performed while supplying oxygen as an atmospheric gas.
  • the target can be manufactured by, for example, a powder sintering method.
  • a film under the following sputtering conditions.
  • the amount of oxygen added is preferably adjusted so that the carrier density of the oxide semiconductor thin film 4 is in the range of 1 ⁇ 10 15 to 10 17 / cm 3 .
  • the higher the film formation power density the better. It is recommended that the DC sputtering method or the RF sputtering method be set to approximately 2.0 W / cm 2 or more. However, if the film formation power density is too high, the oxide target may be broken or cracked, and the upper limit is about 50 W / cm 2 .
  • the substrate temperature during film formation is controlled within the range of room temperature to 200 ° C.
  • the amount of defects in the oxide semiconductor thin film 4 is also affected by the heat treatment conditions after film formation, it is preferably controlled appropriately.
  • the heat treatment conditions after the film formation for example, it is recommended that the heat treatment is generally performed at 250 to 400 ° C. for 10 minutes to 3 hours in an air atmosphere.
  • the heat treatment include a pre-annealing process (a heat treatment performed immediately after patterning after wet etching of the oxide semiconductor thin film 4).
  • the preferable film thickness of the oxide semiconductor thin film 4 can be about 10 nm or more, further 20 nm or more, 200 nm or less, and further 100 nm or less.
  • pre-annealing treatment for improving the film quality of the oxide semiconductor thin film 4, thereby increasing the on-current and field-effect mobility of the transistor characteristics and improving the transistor performance. It becomes like this.
  • the pre-annealing treatment is preferably performed, for example, in a steam atmosphere or an air atmosphere at 350 to 400 ° C. for 30 to 60 minutes.
  • an etch stop layer 9 is formed.
  • the method for forming the etch stop layer 9 is not particularly limited, and a commonly used method can be employed.
  • a SiNx film is used only for the protective film 6, and any film normally used in the field of TFT can be used for the etch stop layer 9.
  • a film such as a SiOxNy (silicon oxynitride) film, a SiOx (silicon oxide) film, an Al 2 O 3 film, or a Ta 2 O 5 film can be used.
  • the etch stop layer 9 only one of these films may be used as a single layer, or any one of these films may be used by laminating a plurality of layers. Alternatively, two or more types of films may be stacked.
  • source / drain electrodes 5 are formed.
  • the type of the source / drain electrode 5 is not particularly limited, and a commonly used one can be used.
  • a metal or alloy such as Al, Mo, or Cu may be used as in the gate electrode.
  • the source / drain electrodes 5 for example, after forming a metal thin film by a magnetron sputtering method, patterning can be performed by photolithography, and wet etching can be performed to form an electrode.
  • heat treatment 200 ° C. to 300 ° C.
  • N 2 O plasma treatment may be performed as necessary to recover damage to the oxide surface.
  • a protective film 6 is formed on the oxide semiconductor thin film 4 by a CVD (Chemical Vapor Deposition) method.
  • the protective film 6 containing SiNx in the first TFT of this embodiment.
  • the protective film 6 containing SiNx By using the protective film 6 containing SiNx, the mobility improving effect by hydrogen diffusion to the oxide semiconductor thin film 4 can be effectively exhibited.
  • any film other than the SiNx film may be stacked as long as it has a SiNx film.
  • a SiNx film may be used as a single layer, or a plurality of SiNx films may be stacked.
  • a SiNx film and at least one film such as a SiOxNy film, a SiOx film, an Al 2 O 3 film, and a Ta 2 O 5 film may be laminated.
  • an upper layer is formed. It is preferable to use a laminated film in which a SiNx film and a SiOx film as a lower layer are used.
  • the film thickness of the SiNx film in the protective film 6 is preferably 50 to 400 nm, and more preferably 100 to 200 nm. In the case of the protective film 6 in which a plurality of SiNx films are stacked, the thickness of the SiNx film indicates the total thickness of all the SiNx films. Further, the ratio of the film thickness of the SiNx film to the film thickness of the entire protective film 6 is preferably 20 to 100%, more preferably 40 to 70%.
  • a contact hole 7 for probing for transistor characteristic evaluation is formed in the protective film 6. Thereafter, the post-annealing described above is performed.
  • the transparent conductive film 8 is electrically connected to the source / drain electrode 5 through the contact hole 7.
  • the kind of the transparent conductive film 8 is not specifically limited, What is normally used can be used.
  • the configuration of the second TFT according to the present invention is not limited to FIGS. Note that the steps up to the step of forming the oxide semiconductor thin film 4 are the same as the steps described for the first TFT, and thus are omitted.
  • an etch stop layer 9 is formed.
  • the method for forming the etch stop layer 9 is not particularly limited, and a commonly used method can be employed.
  • the etch stop layer 9 containing SiNx By using the etch stop layer 9 containing SiNx, it is possible to effectively exert a mobility improving effect by hydrogen diffusion into the oxide semiconductor thin film 4.
  • any film other than the SiNx film may be laminated as long as it has a SiNx film. That is, only a SiNx film may be used as a single layer, or a plurality of SiNx films may be stacked and used.
  • a SiNx film and at least one film such as a SiOxNy film, a SiOx film, an Al 2 O 3 film, or a Ta 2 O 5 film may be laminated, and an upper layer may be formed as shown in an embodiment described later.
  • a laminated film in which the SiNx film 9-2 and the SiOx film 9-1 as the lower layer may be used.
  • both ends of the oxide semiconductor thin film 4 may be in contact with the etch stop layer 9 as shown in FIG. 12 and FIG. As shown, both ends of the oxide semiconductor thin film 4 may be configured not to contact the etch stop layer 9. Therefore, in the second TFT of this embodiment, the etch stop layer 9 can be disposed only in the channel portion of the oxide semiconductor thin film 4.
  • the film thickness of the SiNx film in the etch stop layer 9 is preferably 50 to 250 nm, and more preferably 100 to 200 nm. In the case of the etch stop layer 9 in which a plurality of SiNx films are stacked, the film thickness of the SiNx film indicates the total film thickness of all the SiNx films. Further, the ratio of the film thickness of the SiNx film to the film thickness of the entire etch stop layer 9 is preferably 30 to 100%, more preferably 40 to 80%.
  • a contact hole 7 for probing for transistor characteristic evaluation is formed in the etch stop layer 9.
  • the post-annealing described above is performed. As long as the post-annealing is after the formation of the etch stop layer 9, the post-annealing may be performed before the formation of the source / drain electrodes 5 described later or after the formation of the source / drain electrodes 5.
  • source / drain electrodes 5 are formed.
  • the type of the source / drain electrode 5 is not particularly limited, and a commonly used one can be used.
  • a metal or alloy such as Al, Mo, or Cu may be used as in the gate electrode.
  • the source / drain electrodes 5 for example, after forming a metal thin film by a magnetron sputtering method, patterning can be performed by photolithography, and wet etching can be performed to form an electrode.
  • heat treatment 200 ° C. to 300 ° C.
  • N 2 O plasma treatment may be performed as necessary to recover damage to the oxide surface.
  • the protective film 6 may be formed over the oxide semiconductor thin film 4 by a CVD method.
  • examples of the protective film 6 include SiNx films, SiOxNy films, SiOx films, Al 2 O 3 films, Ta 2 O 5 films, and any one of these films. Only one of these films may be used as a single layer, or any one of these films may be laminated and used, or two or more kinds of films may be laminated.
  • the transparent conductive film 8 is electrically connected to the source / drain electrode 5 through the contact hole 7.
  • the kind of the transparent conductive film 8 is not specifically limited, What is normally used can be used.
  • the first and second TFTs of the present invention thus obtained have a mobility of about 40 cm 2 / Vs or more when the mobility is measured by Hall measurement that derives the mobility from Id-Vg measurement. Very high mobility.
  • the present application includes Japanese Patent Application No. 2014-178857 filed on September 2, 2014, Japanese Patent Application No. 2014-245124 filed on December 3, 2014, and July 1, 2015. Claims the benefit of priority based on Japanese Patent Application No. 2015-132533 filed in. Japanese Patent Application No. 2014-178857 filed on September 2, 2014, Japanese Patent Application No. 2014-245124 filed on December 3, 2014, and Japanese Patent Application No. 2014-245124 filed on July 1, 2015 The entire contents of Japanese Patent Application No. 2015-132533 are incorporated herein by reference.
  • Example 1 In this example relating to the first TFT, the influence of the formation conditions of the oxide semiconductor thin film on the mobility of the TFT was examined. In Example 1, a film containing SiNx was used only for the protective film.
  • a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed.
  • the gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target.
  • the sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm.
  • the gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film formation power density: 0.96 W / cm 2 , film formation temperature: 320 ° C., gas during film formation The film was formed under a pressure of 133 Pa.
  • an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness: 40 nm) having the following composition was formed under various sputtering conditions shown in Table 1.
  • Ga: Sn 42.7: 26.7: 30.6 atomic%
  • a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
  • each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above.
  • the analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
  • oxide semiconductor thin film 4 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
  • pre-annealing was performed to improve the film quality.
  • Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
  • an SiOx film (film thickness: 100 nm) was formed on the oxide semiconductor thin film 4 as the etch stop layer 9.
  • the SiOx film was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa.
  • the etch stop layer 9 was patterned by photolithography and dry etching.
  • a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering.
  • the pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
  • a 100 nm thick SiOx film is formed by plasma CVD as a protective film 6 for protecting the oxide semiconductor thin film transistor, and a 150 nm thick SiNx film is further formed. It formed by plasma CVD method.
  • a mixed gas of SiH 4 , N 2 and N 2 O was used to form the SiOx film, and a mixed gas of SiH 4 , N 2 and NH 3 was used to form the SiNx film.
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa.
  • contact holes 7 for probing for transistor characteristic evaluation were formed in the protective film 6 by photolithography and dry etching. Then, as post-annealing, heat treatment was performed at 260 ° C. for 30 minutes in a nitrogen atmosphere.
  • an ITO film having a thickness of 80 nm was formed as the transparent conductive film 8 to produce the thin film transistor of FIG.
  • an ITO film is formed by DC sputtering using a carrier gas: a mixed gas of argon and oxygen gas, film formation power: 200 W (film formation power density: 2.5 W / cm 2 ), and gas pressure: 5 mTorr. A film was formed.
  • the fabricated thin film transistor had a channel length of 20 ⁇ m and a channel width of 200 ⁇ m.
  • Transistor characteristics (drain current-gate voltage characteristics, Id-Vg characteristics) were measured using a semiconductor parameter analyzer “HP4156C” manufactured by Agilent Technology. Detailed measurement conditions are as follows. No. in Table 1 The Id-Vg characteristic in 1-1 is shown in FIG. Source voltage: 0V Drain voltage: 10V Gate voltage: -30 to 30V (measurement interval: 0.25V) Substrate temperature: Room temperature
  • Threshold voltage The threshold voltage is roughly a value of a gate voltage when the transistor shifts from an off state (a state where the drain current is low) to an on state (a state where the drain current is high).
  • the voltage when the drain current is around 1 nA between the on-current and the off-current is defined as the threshold voltage, and the threshold voltage of each thin film transistor is measured.
  • Id drain current
  • L channel length
  • W channel width
  • Cox capacitance of gate insulating film
  • ⁇ FE field effect mobility
  • the field effect mobility ⁇ FE is derived from the slope of the drain current-gate voltage characteristic (Id-Vg characteristic) near the gate voltage that satisfies the linear region. The higher the field effect mobility, the better. In this example, 40 cm 2 / Vs was used as a reference, and more than that was accepted.
  • the S value is the minimum value of the gate voltage required to increase the drain current 10 times from the Id-Vg characteristic, and the lower the value, the better the characteristic. Specifically, in this case, the S value was 0.4 V / decade or less under favorable conditions.
  • Table 1 shows that when the oxygen partial pressure and the deposition power density are the same, the mobility increases as the gas pressure decreases (see Nos. 1-1, 4, 5, and 6 in Table 1). It was also found that, under the above experimental conditions, when the gas pressure and the deposition power density were the same, the smaller the oxygen partial pressure, the higher the mobility (see Nos. 1-1 to 3 in Table 1). In addition, regarding the film-forming power density, the influence which exerts on mobility was not seen so much.
  • FIG. 4 shows that the oxide semiconductor thin film of the present invention has a crystal structure.
  • the crystal structure of the oxide semiconductor thin film is confirmed immediately after the oxide semiconductor thin film 4 is formed on the gate insulating film 3, and it is demonstrated that the crystal structure is not greatly changed by the thin film transistor manufacturing process.
  • FIG. 5 shows a TEM observation of the cross section of the oxide semiconductor thin film at each timing of A: after formation of the oxide semiconductor thin film, B: after pre-annealing, C: after contact hole formation, and D: post-annealing. Results are shown.
  • FIGS. 5A to 5D An electron diffraction image of a circular region shining in the oxide semiconductor thin film 4 shown in FIGS. 5A to 5D is shown on the right side of FIGS. 5A to 5D. From the right diagrams shown in FIGS. 5A to 5D, it can be seen that there is a region in the ring shape that is slightly shining in any state, and the crystal structure is not greatly changed by the thin film transistor manufacturing process.
  • FIGS. 6 and 7 are different from the oxide semiconductor thin film 4 in the constituent elements, and after manufacturing the thin film transistor in which the oxide semiconductor thin film formed of the In—Ga—Zn—O film is formed, the oxide semiconductor thin film is formed.
  • the results of TEM observation of the oxide semiconductor thin film plane after pre-annealing are shown.
  • Substrate temperature room temperature gas pressure: 1 mTorr or 5 mTorr
  • Deposition power density: 2.55 W / cm 2 Sputtering target used: In: Ga: Zn 33.3: 33.3: 33.3 atomic%
  • FIG. 6 shows the result of forming an In—Ga—Zn—O film at a gas pressure of 1 mTorr
  • FIG. 6A shows the result after forming the In—Ga—Zn—O film
  • FIG. 6B shows the result after pre-annealing.
  • FIG. 7 shows the result of forming an In—Ga—Zn—O film at a gas pressure of 5 mTorr
  • FIG. 7A shows the result after forming the In—Ga—Zn—O film
  • FIG. 7B shows the result after pre-annealing. Yes.
  • FIG. 6 and FIG. 7 show electron beam diffraction images of a circular region shining in the oxide semiconductor thin film of FIGS.
  • spots diffraction points
  • FIGS. 6 and 7 do not include microcrystals. Therefore, it can be seen from the right diagrams of FIGS. 6 and 7 that there is no significant difference in light emission intensity in the ring shape, and it has an amorphous structure.
  • FIG. 8A shows the result of measuring the X-ray diffraction after forming the In—Ga—Sn—O film.
  • pre-annealing was performed to improve the film quality.
  • Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
  • X-ray diffraction measurement is performed under the same conditions as above, and the measurement results are shown in FIG. 8B.
  • FIG. 8C the result of having measured the X-ray diffraction of the glass substrate as reference data is shown in FIG. 8C.
  • FIG. 8A measured after depositing the In—Ga—Sn—O film
  • FIG. 8B measured after pre-annealing, oxides near 31 ° and 55 ° other than the halo pattern derived from the glass substrate
  • no sharp peak based on crystals was observed.
  • the size of the formed crystal grains is considered to be less than 1 nm. That is, it is suggested that most of the film is amorphous, and the size of the formed crystal grains is less than 1 nm.
  • Example 2 In this example relating to the first TFT, TFTs having four types of shapes shown in the following patterns (i) to (iv) were produced, and the transistor characteristics after the formation of the protective film (insulating film) 6 were evaluated. In Example 2, a film containing SiNx was used only for the protective film.
  • FIGS. 9A to 9D are top views of the thin film transistor in order to clarify the shape of the TFT used in this example.
  • 10A to 10D are cross-sectional views taken along the line A-A 'of FIGS. 9A to 9D.
  • Cross-sectional views taken along the line B-B 'of FIGS. 9A to 9D are shown in FIGS. 11A to 11D.
  • ACT is a region corresponding to the oxide semiconductor thin film 4.
  • Pattern (i) See FIGS. 9A, 10A, and 11A
  • the pattern (i) corresponds to FIG. 1 described above.
  • the source / drain electrodes 5 are not in direct contact with both ends of the oxide semiconductor thin film 4 but are in direct contact with part of the upper surface of the oxide semiconductor thin film 4, and the etch stop layer 9 is formed of the oxide semiconductor thin film 4.
  • 4 is in contact with both ends of the oxide semiconductor thin film 4 and is in direct contact with part of the upper surface of the oxide semiconductor thin film 4.
  • the source / drain electrode 5 does not directly contact both ends of the oxide semiconductor thin film 4, but directly contacts a part of the upper surface of the oxide semiconductor thin film 4.
  • the etch stop layer 9 does not contact both end portions of the oxide semiconductor thin film 4 but directly contacts a part of the upper surface of the oxide semiconductor thin film 4.
  • the source / drain electrodes 5 are in direct contact with both ends of the oxide semiconductor thin film 4 in the channel length direction in the cross-sectional view of FIG.
  • the oxide semiconductor thin film 4 is not in direct contact but is in direct contact with a part of the upper surface of the oxide semiconductor thin film 4, and the etch stop layer 9 is not in contact with both ends of the oxide semiconductor thin film 4. It is in direct contact with a part of the top surface.
  • the pattern (iv) corresponds to FIG. 2 described above.
  • the source / drain electrodes 5 are in direct contact with both ends of the oxide semiconductor thin film 4 and in direct contact with part of the upper surface of the oxide semiconductor thin film 4, and the etch stop layer 9 is formed of the oxide semiconductor thin film 4.
  • the etch stop layer 9 is formed of the oxide semiconductor thin film 4.
  • the TFT with the above pattern (iv) was manufactured by designing a mask so as to obtain a desired shape.
  • a method for forming a TFT having a pattern (i) will be described. Since the shape of the pattern is the same as that of the first embodiment described above, the following description will focus on differences from the first embodiment.
  • Example 1 After the gate electrode 2 and the gate insulating film 3 were sequentially formed on the glass substrate 1 in the same manner as in Example 1 described above, an oxide semiconductor thin film (In—Ga—Sn—O, film thickness having the same composition as in Example 1 was formed. 40 nm).
  • the sputtering conditions are the same as in Example 1 except for the following points.
  • Gas pressure: 1mTorr Oxygen partial pressure: 100 ⁇ O 2 / (Ar + O 2 ) 4% by volume
  • an In—Ga—Zn—O film (with a thickness of 40 nm) described in Patent Document 1 or the like was formed as an oxide semiconductor thin film.
  • an ITO film (film thickness of 80 nm) was formed as the transparent conductive film 8 in the same manner as in Example 1 to produce a thin film transistor having a pattern (i).
  • No. Examples 2-1 to 15 are examples in which an In—Ga—Sn-based oxide having a composition defined in the present invention is used as the oxide semiconductor thin film 4.
  • No. of the example of this invention which has the shape of the pattern (i) which gave the manufacturing conditions prescribed
  • Both 2-5 and 12 have a very high mobility of 40 cm 2 / Vs or more.
  • No. No. 1 treated at 270 ° C. with a higher post-annealing temperature after forming the protective film. In 2-12, the mobility was remarkably high at about 67 cm 2 / Vs.
  • the comparative example No. having the shape of the pattern (iv) does not have the shape defined in the present invention. In 2-8, 11 and 15, the desired high mobility was not obtained.
  • the reason why a very high mobility can be obtained by the configuration of the present invention as in the above pattern (i) is unknown in detail, but it is assumed as follows, for example.
  • the upper surface of the oxide semiconductor thin film 4 is in contact with the source / drain electrode 5 through the contact hole 7 of the etch stop layer 9. That is, both end portions of the oxide semiconductor thin film 4 are not in direct contact with the source / drain electrodes 5.
  • An etch stop layer 9 is disposed on the oxide semiconductor thin film 4 except for the contact hole 7.
  • Mo or Al which is a constituent material of the source / drain electrode 5, is a material in which hydrogen does not easily permeate.
  • the protective film 6 is supplied from SiNx or directly from the etch stop layer 9.
  • the protective film 6 Since the amount of hydrogen in the etch stop layer 9 (SiOx) used in this example is about 5.0 atomic% and the amount of hydrogen in the protective film 6 (SiNx) is about 32 atomic%, the protective film 6 There is a very high possibility that the hydrogen contained therein diffuses into the oxide semiconductor thin film 4 and contributes to the expression of high mobility. Probably, hydrogen passivates the bottom level under the conductor, so that defects in the oxide semiconductor thin film 4 are reduced, leading to high mobility.
  • the portion other than the channel region of the oxide semiconductor thin film 4 is covered with the source / drain electrodes 5 as in the pattern (iv), the supply of hydrogen is limited, so that the mobility is not likely to increase.
  • the oxide semiconductor thin film 4 No. 1 using an In—Ga—Zn-based oxide having a conventional composition is used. In 2-16 to 31, no significantly improved mobility was measured, and the maximum was only 7.1 cm 2 / Vs. That is, no improvement in mobility due to post-annealing and no improvement in mobility due to TFT shape control as in the case of using an In—Ga—Sn-based oxide having the composition of the present invention was observed.
  • Example 3 In this example relating to the second TFT, except that the structure of the etch stop layer is different from that of Example 1, a TFT having the same shape as the pattern (i) was produced, and the transistor characteristics were evaluated.
  • the production method described below is represented as production method A. 3-1 to 8 are manufactured by manufacturing method A.
  • the protective film 6 for protecting the oxide semiconductor transistor is not provided in order to emphasize the usefulness when the layer containing SiNx is used as the etch stop layer 9, but the above-described embodiment 1 is not provided.
  • a protective film 6 may be provided.
  • a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed.
  • the gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target.
  • the sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm.
  • the gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film formation power density: 0.96 W / cm 2 , film formation temperature: 320 ° C., gas during film formation The film was formed under a pressure of 133 Pa.
  • an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness: 40 nm) having the following composition was formed under various sputtering conditions shown in Table 3.
  • Ga: Sn 42.7: 26.7: 30.6 atomic%
  • a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
  • each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above.
  • the analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
  • oxide semiconductor thin film 4 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
  • pre-annealing was performed to improve the film quality.
  • Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
  • an SiOx film 9-1 and a SiNx film 9-2 were formed on the oxide semiconductor thin film as an etch stop layer 9 (FIG. 13A).
  • the SiOx film 9-1 was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa.
  • the SiNx film 9-2 was formed by a plasma CVD method using a mixed gas of SiH 4 , N 2 , and NH 3 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa.
  • the etch stop layer 9 was patterned by photolithography and dry etching (FIG. 13B). In Example 3-8, only the SiOx film was formed on the oxide semiconductor thin film for comparison.
  • a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering.
  • the pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
  • the source / drain electrodes 5 were patterned by photolithography and wet etching to form contact holes 7 for probing for transistor characteristic evaluation (FIG. 13C).
  • FIG. 12 is a cross-sectional view of the manufactured transistor
  • FIG. 13 is a cross-sectional view of the transistor explaining the manufacturing process.
  • the manufactured thin film transistor has a channel length of 20 ⁇ m, a channel width of 200 ⁇ m (No. 3-2, 3, 7, 8), a channel length of 10 ⁇ m, a channel width of 200 ⁇ m (No. 3-4), a channel length of 10 ⁇ m, and a channel width of 100 ⁇ m (No. 3-5), channel length 10 ⁇ m, channel width 50 ⁇ m (No. 3-6).
  • the etch stop layer is formed only of the SiOx film, it is No. As in 3-8, the mobility was comparable to that of a general In—Ga—Zn—O (IGZO) film.
  • the etch stop layer is a laminated film of a SiOx film and a SiNx film, No. 1 is used. High mobility was obtained as in 3-2 to 7. That is, high mobility was obtained when a SiNx film was provided as an upper layer. Also, the mobility was higher when the ratio of the SiNx film thickness to the entire etch stop layer was higher. In addition, the longer the channel length, the higher the mobility, and the shorter the channel width, the higher the mobility.
  • the protective film 6 for protecting the oxide semiconductor transistor is not provided.
  • a protective film 6 may be provided as in Examples 1 and 2.
  • a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed.
  • the gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target.
  • the sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm.
  • the gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film formation power density: 0.96 W / cm 2 , film formation temperature: 320 ° C., gas during film formation The film was formed under a pressure of 133 Pa.
  • an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness 40 nm) having the following composition was formed under various sputtering conditions shown in Table 4.
  • Ga: Sn 42.7: 26.7: 30.6 atomic%
  • a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
  • each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above.
  • the analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
  • oxide semiconductor thin film 4 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
  • pre-annealing was performed to improve the film quality.
  • Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
  • an SiOx film 9-1 and a SiNx film 9-2 were formed on the oxide semiconductor thin film as an etch stop layer 9 as shown in Table 4, FIG. 12, and FIG. 13 (FIG. 13A).
  • the SiOx film 9-1 was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa.
  • the SiNx film 9-2 was formed by a plasma CVD method using a mixed gas of SiH 4 , N 2 , and NH 3 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa. Then, as post-annealing, heat treatment was performed at 260 ° C. for 30 minutes in a nitrogen atmosphere. After the formation of the SiOx film 9-1 and the SiNx film 9-2, post-annealing was performed, and the etch stop layer 9 (9-1 and 9-2) was patterned by photolithography and dry etching (FIG. 13B). .
  • a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering.
  • the pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
  • the source / drain electrodes 5 were patterned by photolithography and wet etching to form contact holes 7 for probing for transistor characteristic evaluation (FIG. 13C).
  • FIG. 12 is a cross-sectional view of the manufactured transistor
  • FIG. 13 is a cross-sectional view of the transistor explaining the manufacturing process.
  • the manufactured thin film transistor had a channel length of 20 ⁇ m, a channel width of 200 ⁇ m (No. 4-2), a channel length of 10 ⁇ m, and a channel width of 50 ⁇ m (No. 4-3).
  • Example 5 In Example 5, a transistor was produced in substantially the same manner as in Example 3 except that the shape TFT shown in the pattern (iv) was produced instead of the shape shown in the pattern (i) in Example 3, and transistor characteristics were obtained. Evaluated.
  • a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed.
  • the gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target.
  • the sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm.
  • the gate insulating film 3 uses a plasma CVD method, carrier gas: mixed gas of SiH 4 and N 2 O, deposition power density: 1.27 W / cm 2 , deposition temperature: 320 ° C., gas during deposition The film was formed under a pressure of 133 Pa.
  • an oxide semiconductor thin film 4 (In—Ga—Sn—O film, thickness 40 nm) having the following composition was formed under the sputtering conditions shown in Table 5.
  • Ga: Sn 42.7: 26.7: 30.6 atomic%
  • a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
  • each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above.
  • the analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
  • oxide semiconductor thin film 4 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
  • pre-annealing was performed to improve the film quality.
  • Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
  • an SiOx film 9-1 and a SiNx film 9-2 were formed on the oxide semiconductor thin film as an etch stop layer 9 as shown in Table 5, FIG. 14, and FIG. 15 (FIG. 15A).
  • the SiOx film 9-1 was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa.
  • the SiNx film 9-2 was formed by a plasma CVD method using a mixed gas of SiH 4 , N 2 , and NH 3 .
  • the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa.
  • the etch stop layer 9 was patterned by photolithography and dry etching (FIG. 15B).
  • a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering.
  • the pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
  • the source / drain electrodes 5 were patterned by photolithography and wet etching to form contact holes 7 for probing for transistor characteristic evaluation (FIG. 15C).
  • FIG. 14 is a cross-sectional view of the manufactured transistor
  • FIG. 15 is a cross-sectional view of the transistor illustrating the manufacturing process.
  • the fabricated thin film transistors had a channel length of 10 ⁇ m, a channel width of 200 ⁇ m, 100 ⁇ m, and 25 ⁇ m (No. 5-1 to 3), a channel length of 25 ⁇ m, a channel width of 200 ⁇ m, 100 ⁇ m, and 25 ⁇ m (No. 5-4 to 6).
  • the mobility when the etch stop layer is only the SiOx film is low, but from Table 5, the etch stop layer is a laminated film of the SiOx film and the SiNx film, and the etch stop layer is the oxide semiconductor thin film. Even when arranged only in the channel portion, a high mobility of about 40 cm 2 / Vs or more was expressed. In addition, it was found that when the etch stop layer is a laminated film of a SiOx film and a SiNx film and the etch stop layer is disposed only in the channel portion of the oxide semiconductor thin film, the mobility is high regardless of the channel width.

Abstract

This thin film transistor has a gate electrode, a gate insulating film, an oxide semiconductor thin film, an etch stop layer for protecting the oxide semiconductor thin film, a source and drain electrodes, and a protection film in this order on a substrate. The oxide semiconductor thin film is formed of an oxide configured from In, Ga and Sn as metal elements, and O, and has an amorphous structure, and the etch stop layer and/or the protection film includes SiNx. The thin film transistor has an extremely high mobility of approximately 40 cm2/Vs or more.

Description

薄膜トランジスタThin film transistor
 本発明は、酸化物半導体薄膜を有する薄膜トランジスタに関する。本発明の薄膜トランジスタは、例えば液晶ディスプレイや有機ELディスプレイなどの表示装置に好適に用いられる。以下では、上記薄膜トランジスタを、TFT(Thin Film Transistor)と呼ぶことがある。 The present invention relates to a thin film transistor having an oxide semiconductor thin film. The thin film transistor of the present invention is suitably used for display devices such as a liquid crystal display and an organic EL display. Hereinafter, the thin film transistor may be referred to as a TFT (Thin Film Transistor).
 アモルファス酸化物半導体は、汎用のアモルファスシリコンに比べて高いキャリア移動度を有している。またアモルファス酸化物半導体は、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。 An amorphous oxide semiconductor has higher carrier mobility than general-purpose amorphous silicon. Amorphous oxide semiconductors have a large optical band gap and can be deposited at low temperatures, so they are expected to be applied to next-generation displays that require large size, high resolution, and high-speed driving, and resin substrates with low heat resistance. Yes.
 上記酸化物半導体をTFTの半導体層として用いる場合、TFTのスイッチング特性に優れていることが要求される。具体的には、(1)オン電流、即ち、ゲート電極とドレイン電極に正電圧をかけたときの最大ドレイン電流が高く、(2)オフ電流、即ち、ゲート電極に負電圧を、ドレイン電極に正電圧を夫々かけたときのドレイン電流が低く、(3)S値(Subthreshold Swing)、即ち、ドレイン電流を10倍大きくするのに必要なゲート電圧が低く、(4)しきい値電圧、即ち、ドレイン電極に正電圧をかけ、ゲート電極に正負いずれかの電圧をかけたときにドレイン電流が流れ始める電圧が時間的に変化せずに安定であり、且つ(5)電界効果移動度(以下、単に移動度と呼ぶ場合がある。)が高いこと、などが要求される。 When the oxide semiconductor is used as a semiconductor layer of a TFT, it is required that the TFT has excellent switching characteristics. Specifically, (1) the on-current, that is, the maximum drain current when a positive voltage is applied to the gate electrode and the drain electrode is high, and (2) the off-current, ie, the negative voltage is applied to the gate electrode. When the positive voltage is applied, the drain current is low, (3) the S value (Subthreshold Swing), that is, the gate voltage required to increase the drain current by 10 times is low, and (4) the threshold voltage, The voltage at which the drain current begins to flow when a positive voltage is applied to the drain electrode and a positive or negative voltage is applied to the gate electrode is stable without changing over time, and (5) field-effect mobility , It may be simply referred to as mobility).
 上記酸化物半導体として、例えば特許文献1~3に示すように、インジウム、ガリウム、亜鉛、および酸素からなるIn-Ga-Zn系アモルファス酸化物半導体(IGZO)が良く知られている。しかしながら、上記酸化物半導体を用いてTFTを作製したときの電界効果移動度は10cm2/Vs以下である。しかし、近年における表示装置の大画面化、高精細化や高速駆動化に対応するためには、より高い移動度をもつ材料が求められている。 As the oxide semiconductor, for example, as shown in Patent Documents 1 to 3, an In—Ga—Zn amorphous oxide semiconductor (IGZO) made of indium, gallium, zinc, and oxygen is well known. However, the field-effect mobility when a TFT is manufactured using the above oxide semiconductor is 10 cm 2 / Vs or less. However, in order to cope with the recent increase in screen size, definition and speed of display devices, materials with higher mobility are required.
特開2010-219538号公報JP 2010-219538 A 特開2011-174134号公報JP 2011-174134 A 特開2013-249537号公報JP 2013-249537 A
 本発明は上記事情に鑑みてなされたものであり、その目的は、約40cm2/Vs以上の極めて高い移動度を有する薄膜トランジスタを提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a thin film transistor having an extremely high mobility of about 40 cm 2 / Vs or more.
 上記課題を解決することの出来た本発明に係る薄膜トランジスタは、基板上にゲート電極、ゲート絶縁膜、酸化物半導体薄膜、前記酸化物半導体薄膜を保護するためのエッチストップ層、ソース・ドレイン電極、および保護膜をこの順序で有する薄膜トランジスタであって、前記酸化物半導体薄膜は、金属元素としてIn、GaおよびSnと;Oと;で構成される酸化物からなり、アモルファス構造を有し、かつ、前記In、GaおよびSnの合計に対する各金属元素の原子数比が下記式(1)~(3)を全て満たし、前記エッチストップ層及び前記保護膜の少なくとも一方がSiNxを含むところに要旨を有する。
0.30≦In/(In+Ga+Sn)≦0.50 ・・・(1)
0.20≦Ga/(In+Ga+Sn)≦0.30 ・・・(2)
0.25≦Sn/(In+Ga+Sn)≦0.45 ・・・(3)
The thin film transistor according to the present invention that has solved the above problems includes a gate electrode, a gate insulating film, an oxide semiconductor thin film, an etch stop layer for protecting the oxide semiconductor thin film, a source / drain electrode, A thin film transistor having a protective film in this order, wherein the oxide semiconductor thin film is made of an oxide composed of In, Ga and Sn; and O as metal elements, has an amorphous structure, and The gist is that the atomic ratio of each metal element to the total of In, Ga and Sn satisfies all of the following formulas (1) to (3), and at least one of the etch stop layer and the protective film contains SiNx. .
0.30 ≦ In / (In + Ga + Sn) ≦ 0.50 (1)
0.20 ≦ Ga / (In + Ga + Sn) ≦ 0.30 (2)
0.25 ≦ Sn / (In + Ga + Sn) ≦ 0.45 (3)
 なお、以下では、前記保護膜にのみSiNxを含む薄膜トランジスタを第一の薄膜トランジスタ(TFT)といい、前記エッチストップ層にのみSiNxを含む薄膜トランジスタ並びに前記エッチストップ層及び前記保護膜のそれぞれにSiNxを含む薄膜トランジスタを第二の薄膜トランジスタ(TFT)ということがある。 Hereinafter, a thin film transistor including SiNx only in the protective film is referred to as a first thin film transistor (TFT), and a thin film transistor including SiNx only in the etch stop layer and SiNx in each of the etch stop layer and the protective film. The thin film transistor may be referred to as a second thin film transistor (TFT).
 本発明の好ましい実施形態において、上記酸化物半導体薄膜の少なくとも一部が結晶化されている。 In a preferred embodiment of the present invention, at least a part of the oxide semiconductor thin film is crystallized.
 本発明の好ましい実施形態において、前記保護膜がSiNxを含み、かつ、上記酸化物半導体薄膜のチャネル長方向およびチャネル幅方向の両端部は上記エッチストップ層と接する。 In a preferred embodiment of the present invention, the protective film contains SiNx, and both ends of the oxide semiconductor thin film in the channel length direction and the channel width direction are in contact with the etch stop layer.
 本発明によれば、約40cm2/Vs以上の極めて高い移動度を有するTFTを提供することができる。 According to the present invention, a TFT having extremely high mobility of about 40 cm 2 / Vs or more can be provided.
図1は、本発明に係る第一の薄膜トランジスタを説明するための概略断面図である。FIG. 1 is a schematic cross-sectional view for explaining a first thin film transistor according to the present invention. 図2は、従来の薄膜トランジスタを説明するための概略断面図である。FIG. 2 is a schematic cross-sectional view for explaining a conventional thin film transistor. 図3は、表1のNo.1-1におけるId-Vg特性を示す図である。FIG. FIG. 11 is a diagram showing Id-Vg characteristics in 1-1. 図4は、表1のNo.1-1における酸化物半導体薄膜断面のTEM観察結果を示す図である。4 shows No. 1 in Table 1. It is a figure which shows the TEM observation result of the oxide semiconductor thin film cross section in 1-1. 図5は、In-Ga-Sn系酸化物半導体の成膜後からTFT完成後までの、酸化物半導体薄膜断面のTEM観察結果を示す図である。FIG. 5 is a diagram showing a TEM observation result of the cross section of the oxide semiconductor thin film from after the formation of the In—Ga—Sn-based oxide semiconductor to the completion of the TFT. 図6は、In-Ga-Zn系酸化物半導体の成膜後とプレアニール後の、酸化物半導体薄膜平面のTEM観察結果を示す図である。FIG. 6 is a diagram illustrating a TEM observation result of the planar surface of the oxide semiconductor thin film after the film formation of the In—Ga—Zn-based oxide semiconductor and after the pre-annealing. 図7は、In-Ga-Zn系酸化物半導体の成膜後とプレアニール後の、酸化物半導体薄膜平面のTEM観察結果を示す図である。FIG. 7 is a diagram illustrating a TEM observation result of the oxide semiconductor thin film plane after the In—Ga—Zn-based oxide semiconductor is formed and after the pre-annealing. 図8は、In-Ga-Sn系酸化物半導体薄膜のX線回折を測定した結果を示す図である。FIG. 8 is a graph showing a result of measuring X-ray diffraction of an In—Ga—Sn-based oxide semiconductor thin film. 図9は、実施例2に用いたパターン(i)~(iv)のTFTを上方から見た模式図である。FIG. 9 is a schematic view of the TFTs with patterns (i) to (iv) used in Example 2 as viewed from above. 図10は、上記図9のA-A’線に沿った断面図である。FIG. 10 is a cross-sectional view taken along the line A-A ′ of FIG. 図11は、上記図9のB-B’線に沿った断面図である。FIG. 11 is a cross-sectional view taken along line B-B ′ of FIG. 図12は、本発明に係る第二の薄膜トランジスタを説明するための概略断面図である。FIG. 12 is a schematic cross-sectional view for explaining a second thin film transistor according to the present invention. 図13は、本発明に係る第二の薄膜トランジスタの製造工程を説明した概略断面図である。FIG. 13 is a schematic cross-sectional view illustrating the manufacturing process of the second thin film transistor according to the present invention. 図14は、本発明に係る第二の薄膜トランジスタの異なる態様を説明するための概略断面図である。FIG. 14 is a schematic cross-sectional view for explaining different aspects of the second thin film transistor according to the present invention. 図15は、図14の薄膜トランジスタの製造工程を説明した概略断面図である。FIG. 15 is a schematic cross-sectional view illustrating a manufacturing process of the thin film transistor of FIG.
 本発明者らは、金属元素としてIn、Ga、およびSnを含むIn-Ga-Sn系酸化物をTFTの半導体層に用いたときの移動度を向上させるため、検討を重ねてきた。その結果、In-Ga-Sn系酸化物を含む酸化物半導体薄膜において、In-Ga-Sn系酸化物におけるそれぞれの金属元素の原子数比を適切に制御すると共に、SiNxを含む保護膜及びSiNxを含むエッチストップ層の少なくとも一方を用いれば良いことを突き止めた。なお、以下では、SiNxを含む保護膜及びSiNxを含むエッチストップ層のことをまとめてSiNx含有層ということがある。 The present inventors have repeatedly studied in order to improve mobility when an In—Ga—Sn-based oxide containing In, Ga, and Sn as metal elements is used for a semiconductor layer of a TFT. As a result, in the oxide semiconductor thin film including In—Ga—Sn-based oxide, the atomic ratio of each metal element in the In—Ga—Sn-based oxide is appropriately controlled, and the protective film including SiNx and SiNx It has been found that at least one of the etch stop layers containing can be used. Hereinafter, the protective film containing SiNx and the etch stop layer containing SiNx may be collectively referred to as a SiNx-containing layer.
 更に本発明者らは、上記TFTの移動度を更に向上させるためには、酸化物半導体薄膜として、上記酸化物の少なくとも一部が結晶化されているIn-Ga-Sn系酸化物を用いることや、保護膜がSiNxを含む場合には上記酸化物半導体薄膜のチャネル長方向およびチャネル幅方向の両端部がエッチストップ層と接するように構成されたTFTを用いれば良いことも突き止めた。 In order to further improve the mobility of the TFT, the present inventors use an In—Ga—Sn-based oxide in which at least a part of the oxide is crystallized as the oxide semiconductor thin film. It was also found that when the protective film contains SiNx, a TFT configured so that both ends of the oxide semiconductor thin film in the channel length direction and the channel width direction are in contact with the etch stop layer may be used.
 以下、本発明のTFTについて詳しく説明する。 Hereinafter, the TFT of the present invention will be described in detail.
 まず、本発明に用いられる酸化物半導体薄膜について説明する。上記酸化物半導体薄膜は、金属元素としてIn、GaおよびSnと;Oと;で構成される酸化物からなり、前記In、GaおよびSnの合計に対する各金属元素の原子数比が下記式(1)~(3)を全て満足するものである。
0.30≦In/(In+Ga+Sn)≦0.50 ・・・(1)
0.20≦Ga/(In+Ga+Sn)≦0.30 ・・・(2)
0.25≦Sn/(In+Ga+Sn)≦0.45 ・・・(3)
First, the oxide semiconductor thin film used in the present invention will be described. The oxide semiconductor thin film is made of an oxide composed of In, Ga, and Sn as metal elements; and O, and the atomic ratio of each metal element to the total of In, Ga, and Sn is represented by the following formula (1 ) To (3) are all satisfied.
0.30 ≦ In / (In + Ga + Sn) ≦ 0.50 (1)
0.20 ≦ Ga / (In + Ga + Sn) ≦ 0.30 (2)
0.25 ≦ Sn / (In + Ga + Sn) ≦ 0.45 (3)
 以下では、上記式(1)で表される、全金属元素であるIn、GaおよびSnの合計に対するInの含有量(原子%)をIn原子比と呼ぶ場合がある。同様に、上記式(2)で表される、全金属元素であるIn、GaおよびSnの合計に対するGaの含有量(原子%)をGa原子比と呼ぶ場合がある。同様に、上記式(3)で表される、全金属元素であるIn、GaおよびSnの合計に対するSnの含有量(原子%)をSn原子比と呼ぶ場合がある。 Hereinafter, the In content (atomic%) with respect to the total of all metal elements In, Ga, and Sn represented by the above formula (1) may be referred to as In atomic ratio. Similarly, the Ga content (atomic%) relative to the total of all metal elements In, Ga, and Sn represented by the above formula (2) may be referred to as a Ga atomic ratio. Similarly, the Sn content (atomic%) with respect to the total of all metal elements In, Ga and Sn represented by the above formula (3) may be referred to as the Sn atomic ratio.
 In原子数比について
 Inは電気伝導性の向上に寄与する元素である。上記式(1)で示すIn原子数比が大きくなるほど、即ち、金属元素に占めるIn量が多くなるほど、酸化物半導体薄膜の導電性が向上するため移動度は増加する。上記作用を有効に発揮させるには、上記In原子数比を0.30以上とする必要がある。上記In原子数比は、好ましくは0.31以上、より好ましくは0.35以上、更に好ましくは0.40以上である。但し、In原子数比が大き過ぎると、キャリア密度が増加しすぎてしきい値電圧が低下するなどの問題があるため、その上限を0.50以下とする。上記In原子数比は、好ましくは0.48以下、より好ましくは0.45以下である。
About In atomic ratio In is an element contributing to the improvement of electrical conductivity. As the In atom number ratio represented by the above formula (1) increases, that is, as the amount of In occupying the metal element increases, the conductivity of the oxide semiconductor thin film improves and the mobility increases. In order to effectively exhibit the above action, the In atom number ratio needs to be 0.30 or more. The In atom number ratio is preferably 0.31 or more, more preferably 0.35 or more, and further preferably 0.40 or more. However, if the In atom number ratio is too large, there is a problem that the carrier density increases excessively and the threshold voltage decreases, so the upper limit is made 0.50 or less. The In atom number ratio is preferably 0.48 or less, more preferably 0.45 or less.
 Ga原子数比について
 Gaは、酸素欠損の低減およびキャリア密度の制御に寄与する元素である。上記式(2)で示すGa原子数比が大きいほど、酸化物半導体薄膜の電気的安定性が向上し、キャリアの過剰発生を抑制する効果を発揮する。上記作用を更に有効に発揮させるには、Ga原子数比を0.20以上とする必要がある。上記Ga原子数比は、好ましくは0.22以上、より好ましくは0.25以上である。但し、Ga原子数比が大き過ぎると、酸化物半導体薄膜の導電性が低下して移動度が低下しやすくなる。よって上記Ga原子数比は、0.30以下とする。Ga原子数比は、好ましくは0.28以下である。
Ga atom number ratio Ga is an element that contributes to reduction of oxygen deficiency and control of carrier density. As the Ga atom number ratio represented by the above formula (2) is larger, the electrical stability of the oxide semiconductor thin film is improved, and the effect of suppressing the excessive generation of carriers is exhibited. In order to exhibit the above action more effectively, the Ga atom number ratio needs to be 0.20 or more. The Ga atom number ratio is preferably 0.22 or more, more preferably 0.25 or more. However, when the Ga atom number ratio is too large, the conductivity of the oxide semiconductor thin film is lowered and the mobility is easily lowered. Therefore, the Ga atom number ratio is set to 0.30 or less. The Ga atom number ratio is preferably 0.28 or less.
 Sn原子数比について
 Snは酸エッチング耐性の向上に寄与する元素である。上記式(3)で示すSn原子数比が大きいほど、酸化物半導体薄膜における無機酸エッチング液に対する耐性は向上する。上記作用を更に有効に発揮させるには、上記Sn原子数比は0.25以上とする必要がある。Sn原子数比は、好ましくは0.30以上、より好ましくは0.31以上、更に好ましくは0.35以上である。一方、Sn原子数比が大き過ぎると、酸化物半導体薄膜の移動度が低下すると共に、無機酸エッチング液に対する耐性が必要以上に高まり、酸化物半導体薄膜自体の加工が困難になる。よって上記Sn原子数比は0.45以下とする。Sn原子数比は、好ましくは0.40以下、より好ましくは0.38以下である。
About Sn atomic ratio Sn is an element which contributes to the improvement of acid etching tolerance. The resistance to the inorganic acid etching solution in the oxide semiconductor thin film is improved as the Sn atomic ratio represented by the above formula (3) is larger. In order to exhibit the above action more effectively, the Sn atom number ratio needs to be 0.25 or more. The Sn atom number ratio is preferably 0.30 or more, more preferably 0.31 or more, and still more preferably 0.35 or more. On the other hand, if the Sn atomic ratio is too large, the mobility of the oxide semiconductor thin film is lowered and the resistance to the inorganic acid etching solution is increased more than necessary, making it difficult to process the oxide semiconductor thin film itself. Therefore, the Sn atom number ratio is set to 0.45 or less. The Sn atom number ratio is preferably 0.40 or less, more preferably 0.38 or less.
 上記TFT用酸化物半導体薄膜は、通常、アモルファス構造を有しているが、少なくとも一部が結晶化されている(以下、微結晶構造を有するということがある)ことが好ましい。酸化物半導体薄膜の少なくとも一部が結晶化されることによって、TFTの移動度が格段に向上する。ここで酸化物半導体薄膜の結晶化度の度合いについては、上記酸化物半導体薄膜を備えたTFTの使用による極めて優れた移動度向上効果が有効に発揮される限り、特に限定されない。本発明の酸化物半導体薄膜が微結晶構造を有することは、例えば、後記する電子線回折像により確認することができる。詳細は実施例の欄で後述するが、結晶構造を有する割合が高くなるほど、回折点が明確になる。 The above-mentioned oxide semiconductor thin film for TFT usually has an amorphous structure, but it is preferable that at least a part thereof is crystallized (hereinafter, sometimes referred to as having a microcrystalline structure). When at least part of the oxide semiconductor thin film is crystallized, the mobility of the TFT is remarkably improved. Here, the degree of crystallinity of the oxide semiconductor thin film is not particularly limited as long as an extremely excellent mobility improvement effect by the use of the TFT including the oxide semiconductor thin film is effectively exhibited. The fact that the oxide semiconductor thin film of the present invention has a microcrystalline structure can be confirmed, for example, by an electron beam diffraction image described later. Although details will be described later in the column of Examples, the diffraction point becomes clearer as the ratio of the crystal structure increases.
 一方、上記酸化物半導体薄膜が結晶化すると、移動度は高くなるが、ウェットエッチング工程でのエッチングレートの低下や残渣の発生等を引き起こすため、生産性や歩留まりが低下する。そこで、本発明の上記酸化物半導体薄膜は、部分的に結晶化されていることがより好ましく、これによりウェットエッチング工程でのエッチングレートの低下や残渣の発生等も抑制できる。そのため、ウェットエッチング工程の加工性とTFTでの高移動度を両立させることができる。 On the other hand, when the oxide semiconductor thin film is crystallized, the mobility is increased, but the etching rate in the wet etching process and the generation of residues are caused, so that productivity and yield are reduced. Therefore, it is more preferable that the oxide semiconductor thin film of the present invention is partially crystallized, which can suppress a decrease in etching rate and generation of residues in the wet etching process. Therefore, the workability of the wet etching process and the high mobility in the TFT can be compatible.
 上述した微結晶構造を有する酸化物半導体薄膜は、TFTの形成工程において、酸化物半導体薄膜形成の際、ガス圧1~5mTorrの範囲に制御すると共に、SiNx含有層形成の後、200℃以上の温度で熱処理(ポストアニール)することにより得られる。上記以外の、TFTの形成工程は特に限定されず、通常の方法を採用することができる。 The oxide semiconductor thin film having the microcrystalline structure described above is controlled to a gas pressure in the range of 1 to 5 mTorr during the formation of the oxide semiconductor thin film in the TFT formation process, and after the formation of the SiNx-containing layer, the oxide semiconductor thin film is 200 ° C. It can be obtained by heat treatment (post-annealing) at a temperature. The TFT formation process other than the above is not particularly limited, and a normal method can be adopted.
 まず、ガス圧1~5mTorrの範囲に制御して酸化物半導体薄膜を形成する。ガス圧が1mTorr未満では膜密度が不十分になる。ガス圧の好ましい下限は2mTorr以上である。但し、ガス圧が5mTorrを超えると、所望とする微結晶構造が得られない。ガス圧の好ましい上限は4mTorr以下であり、より好ましくは3mTorr以下である。 First, an oxide semiconductor thin film is formed by controlling the gas pressure within a range of 1 to 5 mTorr. When the gas pressure is less than 1 mTorr, the film density is insufficient. A preferable lower limit of the gas pressure is 2 mTorr or more. However, if the gas pressure exceeds 5 mTorr, the desired microcrystalline structure cannot be obtained. A preferable upper limit of the gas pressure is 4 mTorr or less, more preferably 3 mTorr or less.
 雰囲気ガス中の酸素の濃度は、1~40体積%であることが好ましく、2~30体積%であることがより好ましい。 The concentration of oxygen in the atmospheric gas is preferably 1 to 40% by volume, more preferably 2 to 30% by volume.
 酸化物半導体薄膜形成時の好ましい雰囲気は、大気雰囲気または水蒸気雰囲気である。 A preferable atmosphere when forming the oxide semiconductor thin film is an air atmosphere or a water vapor atmosphere.
 本発明のTFTは、更にSiNx含有層を有することも重要である。本発明者らの検討結果によれば、所定組成物の酸化物半導体薄膜とSiNx含有層とを備えたTFTを用いることにより、上記SiNx含有層に含有される水素が上記酸化物半導体薄膜に拡散(ディフュージョン)されて高移動度の発現に大きく寄与することが明らかになった。このような移動度向上作用は、本発明のTFTを用いることによって見出されたものであり、例えば、前述した特許文献1などに記載のIGZOを用いたときは見られなかったことを後記する実施例で説明している。 It is important that the TFT of the present invention further has a SiNx-containing layer. According to the examination results of the present inventors, hydrogen contained in the SiNx-containing layer diffuses into the oxide semiconductor thin film by using a TFT including an oxide semiconductor thin film having a predetermined composition and a SiNx-containing layer. (Diffusion) has been found to contribute greatly to the development of high mobility. Such a mobility improving effect was found by using the TFT of the present invention. For example, it will be described later that it was not seen when using the IGZO described in Patent Document 1 described above. This is described in the examples.
 SiNx含有層中の水素量は20~50原子%であることが好ましく、30~40原子%であることがより好ましい。SiNx含有層中の水素量はSiH4とNH3ガスの混合比や成膜温度などで制御することができる。 The amount of hydrogen in the SiNx-containing layer is preferably 20 to 50 atomic%, and more preferably 30 to 40 atomic%. The amount of hydrogen in the SiNx-containing layer can be controlled by the mixing ratio of SiH 4 and NH 3 gas, the film formation temperature, or the like.
 更に本発明では、SiNx含有層形成の後、200℃以上の温度で熱処理する。具体的には、SiNxを含むエッチストップ層を形成した後、上記熱処理を行ってもよいし、SiNxを含む保護膜を形成した後、上記熱処理を行ってもよい。また、SiNxを含むエッチストップ層を形成した後、上記熱処理を行い、その後、SiNxを含む保護膜を形成し、再び上記熱処理を行ってもよい。上記熱処理の温度が200℃未満ではTFTの高移動度が発現しない。熱処理温度の好ましい下限は250℃以上であり、より好ましくは260℃以上である。但し、熱処理温度が高過ぎると、TFTが導体化するため、その上限を280℃以下とすることが好ましい。より好ましい上限は270℃以下である。 Furthermore, in the present invention, after the SiNx-containing layer is formed, heat treatment is performed at a temperature of 200 ° C. or higher. Specifically, the heat treatment may be performed after forming an etch stop layer containing SiNx, or the heat treatment may be performed after forming a protective film containing SiNx. Alternatively, the heat treatment may be performed after forming the etch stop layer including SiNx, and then the protective film including SiNx may be formed and the heat treatment may be performed again. When the temperature of the heat treatment is less than 200 ° C., high mobility of the TFT does not appear. The minimum with preferable heat processing temperature is 250 degreeC or more, More preferably, it is 260 degreeC or more. However, if the heat treatment temperature is too high, the TFT becomes a conductor, so the upper limit is preferably 280 ° C. or lower. A more preferable upper limit is 270 ° C. or less.
 更に上記熱処理では、所望とする微結晶構造が得られるよう、熱処理時間を例えば、30~90分の範囲内に制御することが好ましい。なお、雰囲気は特に限定されず、例えば、窒素雰囲気、大気雰囲気などが挙げられる。 Furthermore, in the above heat treatment, it is preferable to control the heat treatment time within a range of, for example, 30 to 90 minutes so that a desired microcrystalline structure can be obtained. The atmosphere is not particularly limited, and examples thereof include a nitrogen atmosphere and an air atmosphere.
 更に本発明のTFTは、上記酸化物半導体薄膜のチャネル長方向およびチャネル幅方向の両端部(以下、単に両端部ということがある)がエッチストップ層と接する構造を有することが好ましい。これにより、前述した特許文献1~3などに記載された、汎用のIn-Ga-Zn系酸化物半導体薄膜に比べて、TFTの移動度が約40cm2/Vs以上と格段に高められる。 Furthermore, the TFT of the present invention preferably has a structure in which both ends of the oxide semiconductor thin film in the channel length direction and the channel width direction (hereinafter, simply referred to as both ends) are in contact with the etch stop layer. Thus, the mobility of the TFT is remarkably increased to about 40 cm 2 / Vs or more as compared with the general-purpose In—Ga—Zn-based oxide semiconductor thin film described in Patent Documents 1 to 3 described above.
 上記構造を有する本発明に係る第一のTFTの好ましい実施形態について図1を参照しながら詳しく説明する。対比のため、従来の一般的なTFTの構造を図2に示す。但し、本発明に係る第一のTFTの構成は図1に限定する趣旨ではない。 A preferred embodiment of the first TFT according to the present invention having the above structure will be described in detail with reference to FIG. For comparison, FIG. 2 shows a conventional general TFT structure. However, the configuration of the first TFT according to the present invention is not limited to FIG.
 図1に示すように上記実施形態の第一のTFTは、基板1上にゲート電極2、ゲート絶縁膜3、酸化物半導体薄膜4、酸化物半導体薄膜4を保護するためのエッチストップ層9、ソース・ドレイン電極5、保護膜6をこの順序で有し、コンタクトホール7を介して透明導電膜8がソース・ドレイン電極5に電気的に接続されている。上記実施形態の第一のTFTは、前述した組成および微結晶構造を有する酸化物半導体薄膜4を用いている。一方、図2に示す従来のTFTも、酸化物半導体薄膜4としてアモルファス構造のIn-Ga-Zn系酸化物半導体薄膜を用いること以外、構成の順序は同じである。 As shown in FIG. 1, the first TFT of the above embodiment includes a gate electrode 2, a gate insulating film 3, an oxide semiconductor thin film 4, an etch stop layer 9 for protecting the oxide semiconductor thin film 4 on the substrate 1, The source / drain electrode 5 and the protective film 6 are provided in this order, and the transparent conductive film 8 is electrically connected to the source / drain electrode 5 through the contact hole 7. The first TFT of the above embodiment uses the oxide semiconductor thin film 4 having the above-described composition and microcrystalline structure. On the other hand, the conventional TFT shown in FIG. 2 has the same configuration order except that an amorphous In—Ga—Zn-based oxide semiconductor thin film is used as the oxide semiconductor thin film 4.
 しかしながら、上記実施形態の第一のTFTは、図1に示すように酸化物半導体薄膜4のチャネル長方向の両端部がエッチストップ層9と接するように構成され(すなわち、酸化物半導体薄膜4のチャネル長方向の両端部を覆うようにエッチストップ層9が被覆され)、酸化物半導体薄膜4のチャネル長方向の両端部はソース・ドレイン電極5と接していない点で、従来の酸化物半導体薄膜4のチャネル長方向の両端部がソース・ドレイン電極5と接するように構成されている(すなわち、酸化物半導体薄膜4のチャネル長方向の両端部を覆うようにソース・ドレイン電極5が被覆されている)図2のTFTと大きく相違する。更に両図1、2における酸化物半導体薄膜4の上面に着目すると、図1の本発明例ではエッチストップ層9の一部がパターニングされ、ソース・ドレイン電極5を介してコンタクトホール7と接する領域を有しているのに対し、図2の従来例では、エッチストップ層9はパターニングされず、ソース・ドレイン電極5を介してコンタクトホール7と接する領域を有していない点でも相違する。なお、図1・図2共に、酸化物半導体薄膜4のチャネル長方向の両端部は保護膜6と直接接触していない。 However, the first TFT of the above embodiment is configured such that both ends in the channel length direction of the oxide semiconductor thin film 4 are in contact with the etch stop layer 9 as shown in FIG. The etch stop layer 9 is covered so as to cover both ends in the channel length direction), and both ends in the channel length direction of the oxide semiconductor thin film 4 are not in contact with the source / drain electrodes 5. 4 is configured to be in contact with the source / drain electrode 5 (that is, the source / drain electrode 5 is covered so as to cover both ends of the oxide semiconductor thin film 4 in the channel length direction). It is greatly different from the TFT of FIG. Further, when attention is paid to the upper surface of the oxide semiconductor thin film 4 in FIGS. 1 and 2, a part of the etch stop layer 9 is patterned in the example of the present invention in FIG. 1, and a region in contact with the contact hole 7 through the source / drain electrode 5. 2 is different from the conventional example of FIG. 2 in that the etch stop layer 9 is not patterned and does not have a region in contact with the contact hole 7 via the source / drain electrode 5. 1 and 2, both end portions in the channel length direction of the oxide semiconductor thin film 4 are not in direct contact with the protective film 6.
 以下、図1を参照しながら、上記実施形態に係るTFTの好ましい製造方法について説明する。但し、本発明はこれに限定されない。 Hereinafter, a preferred method for manufacturing the TFT according to the embodiment will be described with reference to FIG. However, the present invention is not limited to this.
 まず、基板1上にゲート電極2およびゲート絶縁膜3を形成する。これらの形成方法は特に限定されず、通常用いられる方法を採用することができる。また、ゲート電極2およびゲート絶縁膜3の種類も特に限定されず、汎用されているものを用いることができる。例えばゲート電極2として、電気抵抗率の低いAlやCuの金属や、耐熱性の高いMo、Cr、Tiなどの高融点金属や、これらの合金を好ましく用いることができる。また、ゲート絶縁膜3としては、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜などが代表的に例示される。そのほか、Al23やY23などの酸化物や、これらを積層したものを用いることもできる。 First, the gate electrode 2 and the gate insulating film 3 are formed on the substrate 1. These forming methods are not particularly limited, and commonly used methods can be employed. Further, the types of the gate electrode 2 and the gate insulating film 3 are not particularly limited, and those commonly used can be used. For example, as the gate electrode 2, Al or Cu metal having a low electrical resistivity, refractory metal such as Mo, Cr, or Ti having high heat resistance, or an alloy thereof can be preferably used. The gate insulating film 3 is typically exemplified by a silicon oxide film, a silicon nitride film, a silicon oxynitride film, and the like. In addition, oxides such as Al 2 O 3 and Y 2 O 3 and those obtained by stacking these can also be used.
 次いで、上述した酸化物半導体薄膜4を形成する。前述したように本発明では、特に酸化物半導体薄膜形成の際、ガス圧1~5mTorrの範囲に制御すると共に、保護膜形成の後、200℃以上の温度で熱処理することが重要であり、上記以外の工程は特に限定されず、通常の方法を採用することができるが、好ましい方法は以下のとおりである。 Next, the above-described oxide semiconductor thin film 4 is formed. As described above, in the present invention, in particular, when forming an oxide semiconductor thin film, it is important to control the gas pressure in the range of 1 to 5 mTorr and to heat-treat at a temperature of 200 ° C. or higher after forming the protective film. The other steps are not particularly limited, and a normal method can be adopted, but a preferable method is as follows.
 例えば酸化物半導体薄膜4は、スパッタリング法にてスパッタリングターゲットを用いて、例えばDCスパッタリング法またはRFスパッタリング法により成膜することが好ましい。以下、スパッタリングターゲットを単に「ターゲット」ということがある。スパッタリング法によれば、成分や膜厚の膜面内均一性に優れた薄膜を容易に形成することができる。また、塗布法などの化学的成膜法によって酸化物を形成しても良い。 For example, the oxide semiconductor thin film 4 is preferably formed by a sputtering target using a sputtering method, for example, by a DC sputtering method or an RF sputtering method. Hereinafter, the sputtering target may be simply referred to as “target”. According to the sputtering method, a thin film having excellent in-plane uniformity of components and film thickness can be easily formed. Alternatively, the oxide may be formed by a chemical film formation method such as a coating method.
 スパッタリング法に用いられるターゲットとして、前述した元素を含み、所望の酸化物と同一組成のターゲットを用いることが好ましく、これにより、組成ズレが少なく、所望の成分組成の薄膜を形成することができる。具体的には金属元素としてIn、GaおよびSnを含む酸化物からなり、In、GaおよびSnの合計に対する各金属元素の原子数比が上記式(1)~(3)を満たすターゲットを用いることが推奨される。 As a target used in the sputtering method, it is preferable to use a target containing the above-described elements and having the same composition as the desired oxide, whereby a thin film having a desired component composition can be formed with little compositional deviation. Specifically, a target that is made of an oxide containing In, Ga, and Sn as metal elements and that has an atomic ratio of each metal element to the total of In, Ga, and Sn satisfying the above formulas (1) to (3) is used. Is recommended.
 あるいは、組成の異なる二つのターゲットを同時放電するコンビナトリアルスパッタ法を用いて成膜しても良い。例えばIn23、Ga23、SnO2など、In、Ga、およびSnの各元素の酸化物ターゲット、または上記元素の少なくとも2種以上を含む混合物の酸化物ターゲットを用いることもできる。上記金属元素を含む純金属ターゲットや合金ターゲットを、単数または複数用い、雰囲気ガスとして酸素を供給しながら成膜することも挙げられる。 Or you may form into a film using the combinatorial sputtering method which discharges simultaneously two targets from which a composition differs. For example, an oxide target of each element of In, Ga, and Sn, such as In 2 O 3 , Ga 2 O 3 , and SnO 2 , or an oxide target of a mixture containing at least two or more of the above elements can be used. One or a plurality of pure metal targets or alloy targets containing the above metal elements may be used, and film formation may be performed while supplying oxygen as an atmospheric gas.
 上記ターゲットは、例えば粉末焼結法によって製造することができる。 The target can be manufactured by, for example, a powder sintering method.
 上記ターゲットを用いてスパッタリング法で成膜する場合、前述した成膜時のガス圧の他に、酸素の分圧、ターゲットへの投入パワー、基板温度、ターゲットと基板との距離であるT-S間距離などを適切に制御することが好ましい。 In the case where a film is formed by sputtering using the above target, in addition to the gas pressure at the time of film formation described above, oxygen partial pressure, power input to the target, substrate temperature, and the distance between the target and the substrate TS It is preferable to appropriately control the distance.
 具体的には、例えば、下記スパッタリング条件で成膜することが好ましい。 Specifically, for example, it is preferable to form a film under the following sputtering conditions.
 半導体として動作を示すよう、前記酸化物半導体薄膜4のキャリア密度が1×1015~1017/cm3の範囲内となるように酸素の添加量を調整することが好ましい。最適な酸素添加量はスパッタリング装置、ターゲットの組成、薄膜トランジスタ作製プロセスなどに応じて、適切に制御すれば良い。後記する実施例では、添加流量比で100×O2/(Ar+O2)=4体積%とした。 In order to operate as a semiconductor, the amount of oxygen added is preferably adjusted so that the carrier density of the oxide semiconductor thin film 4 is in the range of 1 × 10 15 to 10 17 / cm 3 . The optimum oxygen addition amount may be appropriately controlled according to the sputtering apparatus, the composition of the target, the thin film transistor manufacturing process, and the like. In Examples described later, the addition flow rate ratio was set to 100 × O 2 / (Ar + O 2 ) = 4% by volume.
 成膜パワー密度は高い程良く、DCスパッタリング法またはRFスパッタリング法でおおむね2.0W/cm2以上に設定することが推奨される。ただし成膜パワー密度が高すぎると酸化物ターゲットに割れや欠けが生じて破損することがあるため、上限は50W/cm2程度である。 The higher the film formation power density, the better. It is recommended that the DC sputtering method or the RF sputtering method be set to approximately 2.0 W / cm 2 or more. However, if the film formation power density is too high, the oxide target may be broken or cracked, and the upper limit is about 50 W / cm 2 .
 成膜時の基板温度は、おおむね室温~200℃の範囲内に制御することが推奨される。 It is recommended that the substrate temperature during film formation is controlled within the range of room temperature to 200 ° C.
 更に酸化物半導体薄膜4中の欠陥量は、成膜後の熱処理条件によっても影響を受けるため、適切に制御することが好ましい。成膜後の熱処理条件は、例えば、大気雰囲気下にて、おおむね、250~400℃で10分~3時間行うことが推奨される。上記熱処理として、例えば、後述するプレアニール処理(酸化物半導体薄膜4をウェットエッチングした後のパターニング直後に行われる熱処理)が挙げられる。 Furthermore, since the amount of defects in the oxide semiconductor thin film 4 is also affected by the heat treatment conditions after film formation, it is preferably controlled appropriately. As the heat treatment conditions after the film formation, for example, it is recommended that the heat treatment is generally performed at 250 to 400 ° C. for 10 minutes to 3 hours in an air atmosphere. Examples of the heat treatment include a pre-annealing process (a heat treatment performed immediately after patterning after wet etching of the oxide semiconductor thin film 4).
 酸化物半導体薄膜4の好ましい膜厚は、おおむね10nm以上、更には20nm以上とすることができ、200nm以下、更には100nm以下とすることができる。 The preferable film thickness of the oxide semiconductor thin film 4 can be about 10 nm or more, further 20 nm or more, 200 nm or less, and further 100 nm or less.
 酸化物半導体薄膜4を形成した後、ウェットエッチングによりパターニングを行う。パターニングの直後には、酸化物半導体薄膜4の膜質改善のために熱処理(プレアニール処理)を行うことが好ましく、これにより、トランジスタ特性のオン電流および電界効果移動度が上昇し、トランジスタ性能が向上するようになる。プレアニール処理として、例えば、水蒸気雰囲気または大気雰囲気にて、350~400℃で30~60分行うことが好ましい。 After the oxide semiconductor thin film 4 is formed, patterning is performed by wet etching. Immediately after the patterning, it is preferable to perform a heat treatment (pre-annealing treatment) for improving the film quality of the oxide semiconductor thin film 4, thereby increasing the on-current and field-effect mobility of the transistor characteristics and improving the transistor performance. It becomes like this. The pre-annealing treatment is preferably performed, for example, in a steam atmosphere or an air atmosphere at 350 to 400 ° C. for 30 to 60 minutes.
 次いで、エッチストップ層9を形成する。エッチストップ層9の形成方法は特に限定されず、通常用いられる方法を採用することができる。 Next, an etch stop layer 9 is formed. The method for forming the etch stop layer 9 is not particularly limited, and a commonly used method can be employed.
 本実施形態の第一のTFTでは、保護膜6にのみSiNx膜を用いるものであり、エッチストップ層9はTFTの分野で通常用いられる任意の膜を用いることができる。例えば、エッチストップ層9として、SiOxNy(シリコン酸窒化)膜、SiOx(シリコン酸化)膜、Al23膜、Ta25膜などの膜を用いることができる。具体的には、エッチストップ層9として、これらの膜のいずれか1種類の膜のみを単層で用いてもよく、これらの膜のいずれか1種類の膜を複数層積層して用いてもよく、2種類以上の膜を積層してもよい。 In the first TFT of the present embodiment, a SiNx film is used only for the protective film 6, and any film normally used in the field of TFT can be used for the etch stop layer 9. For example, as the etch stop layer 9, a film such as a SiOxNy (silicon oxynitride) film, a SiOx (silicon oxide) film, an Al 2 O 3 film, or a Ta 2 O 5 film can be used. Specifically, as the etch stop layer 9, only one of these films may be used as a single layer, or any one of these films may be used by laminating a plurality of layers. Alternatively, two or more types of films may be stacked.
 次いでソース・ドレイン電極5を形成する。ソース・ドレイン電極5の種類は特に限定されず、汎用されているものを用いることができる。例えばゲート電極と同様Al、MoやCuなどの金属または合金を用いても良い。 Next, source / drain electrodes 5 are formed. The type of the source / drain electrode 5 is not particularly limited, and a commonly used one can be used. For example, a metal or alloy such as Al, Mo, or Cu may be used as in the gate electrode.
 ソース・ドレイン電極5の形成方法としては、例えばマグネトロンスパッタリング法によって金属薄膜を成膜した後、フォトリソグラフィによりパターニングし、ウェットエッチングを行って電極を形成することができる。 As a method for forming the source / drain electrodes 5, for example, after forming a metal thin film by a magnetron sputtering method, patterning can be performed by photolithography, and wet etching can be performed to form an electrode.
 後記の保護膜6の形成前に、酸化物表面のダメージ回復のため、必要に応じて熱処理(200℃~300℃)やN2Oプラズマ処理を施してもよい。 Before the protective film 6 described later is formed, heat treatment (200 ° C. to 300 ° C.) or N 2 O plasma treatment may be performed as necessary to recover damage to the oxide surface.
 次に、酸化物半導体薄膜4の上方に保護膜6をCVD(Chemical Vapor Deposition)法によって成膜する。 Next, a protective film 6 is formed on the oxide semiconductor thin film 4 by a CVD (Chemical Vapor Deposition) method.
 前述したように本実施形態の第一のTFTでは、SiNxを含む保護膜6を用いることが重要である。SiNxを含む保護膜6を用いることによって、酸化物半導体薄膜4への水素拡散による移動度向上作用を有効に発揮させることができる。保護膜6としては、SiNx膜を有する限り、SiNx膜以外の任意の膜を積層してもよい。例えば、SiNx膜のみを単層で用いてもよく、複数のSiNx膜を積層して用いてもよい。また、SiNx膜とSiOxNy膜、SiOx膜、Al23膜、Ta25膜などの膜の少なくとも一つの膜とを積層してもよく、例えば、後述する実施例に示すように上層をSiNx膜、下層をSiOx膜とした積層膜を用いることが好ましい。 As described above, it is important to use the protective film 6 containing SiNx in the first TFT of this embodiment. By using the protective film 6 containing SiNx, the mobility improving effect by hydrogen diffusion to the oxide semiconductor thin film 4 can be effectively exhibited. As the protective film 6, any film other than the SiNx film may be stacked as long as it has a SiNx film. For example, only a SiNx film may be used as a single layer, or a plurality of SiNx films may be stacked. In addition, a SiNx film and at least one film such as a SiOxNy film, a SiOx film, an Al 2 O 3 film, and a Ta 2 O 5 film may be laminated. For example, as shown in an embodiment described later, an upper layer is formed. It is preferable to use a laminated film in which a SiNx film and a SiOx film as a lower layer are used.
 保護膜6におけるSiNx膜の膜厚は50~400nmであることが好ましく、100~200nmであることがより好ましい。なお、SiNx膜が複数層積層された保護膜6の場合、上記SiNx膜の膜厚は、全てのSiNx膜の膜厚の合計のことを指す。また、保護膜6全体の膜厚に対するSiNx膜の膜厚の割合は20~100%であることが好ましく、40~70%であることがより好ましい。 The film thickness of the SiNx film in the protective film 6 is preferably 50 to 400 nm, and more preferably 100 to 200 nm. In the case of the protective film 6 in which a plurality of SiNx films are stacked, the thickness of the SiNx film indicates the total thickness of all the SiNx films. Further, the ratio of the film thickness of the SiNx film to the film thickness of the entire protective film 6 is preferably 20 to 100%, more preferably 40 to 70%.
 続いて、保護膜6にトランジスタ特性評価用プロービングのためのコンタクトホール7を形成する。その後、前述したポストアニールを行う。 Subsequently, a contact hole 7 for probing for transistor characteristic evaluation is formed in the protective film 6. Thereafter, the post-annealing described above is performed.
 次に、常法に基づき、コンタクトホール7を介して透明導電膜8をソース・ドレイン電極5に電気的に接続する。透明導電膜8の種類は特に限定されず、通常用いられるものを使用することができる。 Next, based on a conventional method, the transparent conductive film 8 is electrically connected to the source / drain electrode 5 through the contact hole 7. The kind of the transparent conductive film 8 is not specifically limited, What is normally used can be used.
 以下、本発明に係る第二のTFTの好ましい実施形態について図12~図15を参照しながら詳しく説明する。ただし、本発明に係る第二のTFTの構成は図12~図15に限定する趣旨ではない。なお、酸化物半導体薄膜4を形成する工程までは、第一のTFTで記載した工程と同じであるため、省略する。 Hereinafter, a preferred embodiment of the second TFT according to the present invention will be described in detail with reference to FIGS. However, the configuration of the second TFT according to the present invention is not limited to FIGS. Note that the steps up to the step of forming the oxide semiconductor thin film 4 are the same as the steps described for the first TFT, and thus are omitted.
 酸化物半導体薄膜4に次いで、エッチストップ層9を形成する。エッチストップ層9の形成方法は特に限定されず、通常用いられる方法を採用することができる。また、本実施形態の第二のTFTでは、SiNxを含むエッチストップ層9を用いることが重要である。SiNxを含むエッチストップ層9を用いることによって、酸化物半導体薄膜4への水素拡散による移動度向上作用を有効に発揮させることができる。エッチストップ層9としては、SiNx膜を有する限り、SiNx膜以外の任意の膜を積層してもよい。つまり、SiNx膜のみを単層で用いてもよく、複数のSiNx膜を積層して用いてもよい。例えば、SiNx膜とSiOxNy膜、SiOx膜、Al23膜、Ta25膜などの膜の少なくとも一つの膜とを積層してもよく、また、後述する実施例に示すように上層をSiNx膜9-2、下層をSiOx膜9-1とした積層膜を用いてもよい。 Next to the oxide semiconductor thin film 4, an etch stop layer 9 is formed. The method for forming the etch stop layer 9 is not particularly limited, and a commonly used method can be employed. In the second TFT of this embodiment, it is important to use the etch stop layer 9 containing SiNx. By using the etch stop layer 9 containing SiNx, it is possible to effectively exert a mobility improving effect by hydrogen diffusion into the oxide semiconductor thin film 4. As the etch stop layer 9, any film other than the SiNx film may be laminated as long as it has a SiNx film. That is, only a SiNx film may be used as a single layer, or a plurality of SiNx films may be stacked and used. For example, a SiNx film and at least one film such as a SiOxNy film, a SiOx film, an Al 2 O 3 film, or a Ta 2 O 5 film may be laminated, and an upper layer may be formed as shown in an embodiment described later. A laminated film in which the SiNx film 9-2 and the SiOx film 9-1 as the lower layer may be used.
 本実施形態の第二のTFTでは、図12・図13に示すように酸化物半導体薄膜4の両端部がエッチストップ層9と接するように構成されていてもよいし、図14・図15に示すように酸化物半導体薄膜4の両端部がエッチストップ層9と接しないように構成されていてもよい。そのため、本実施形態の第二のTFTでは、エッチストップ層9を酸化物半導体薄膜4のチャネル部分のみに配置することもできる。 In the second TFT of the present embodiment, both ends of the oxide semiconductor thin film 4 may be in contact with the etch stop layer 9 as shown in FIG. 12 and FIG. As shown, both ends of the oxide semiconductor thin film 4 may be configured not to contact the etch stop layer 9. Therefore, in the second TFT of this embodiment, the etch stop layer 9 can be disposed only in the channel portion of the oxide semiconductor thin film 4.
 エッチストップ層9におけるSiNx膜の膜厚は50~250nmであることが好ましく、100~200nmであることがより好ましい。なお、SiNx膜が複数層積層されたエッチストップ層9の場合、上記SiNx膜の膜厚は、全てのSiNx膜の膜厚の合計のことを指す。また、エッチストップ層9全体の膜厚に対するSiNx膜の膜厚の割合が30~100%であることが好ましく、40~80%であることがより好ましい。 The film thickness of the SiNx film in the etch stop layer 9 is preferably 50 to 250 nm, and more preferably 100 to 200 nm. In the case of the etch stop layer 9 in which a plurality of SiNx films are stacked, the film thickness of the SiNx film indicates the total film thickness of all the SiNx films. Further, the ratio of the film thickness of the SiNx film to the film thickness of the entire etch stop layer 9 is preferably 30 to 100%, more preferably 40 to 80%.
 続いて、エッチストップ層9にトランジスタ特性評価用プロービングのためのコンタクトホール7を形成する。その後、前述したポストアニールを行う。ポストアニールは、エッチストップ層9の形成後であれば、後記のソース・ドレイン電極5の形成前に行ってもよく、ソース・ドレイン電極5の形成後に行ってもよい。 Subsequently, a contact hole 7 for probing for transistor characteristic evaluation is formed in the etch stop layer 9. Thereafter, the post-annealing described above is performed. As long as the post-annealing is after the formation of the etch stop layer 9, the post-annealing may be performed before the formation of the source / drain electrodes 5 described later or after the formation of the source / drain electrodes 5.
 次いでソース・ドレイン電極5を形成する。ソース・ドレイン電極5の種類は特に限定されず、汎用されているものを用いることができる。例えばゲート電極と同様Al、MoやCuなどの金属または合金を用いても良い。 Next, source / drain electrodes 5 are formed. The type of the source / drain electrode 5 is not particularly limited, and a commonly used one can be used. For example, a metal or alloy such as Al, Mo, or Cu may be used as in the gate electrode.
 ソース・ドレイン電極5の形成方法としては、例えばマグネトロンスパッタリング法によって金属薄膜を成膜した後、フォトリソグラフィによりパターニングし、ウェットエッチングを行って電極を形成することができる。 As a method for forming the source / drain electrodes 5, for example, after forming a metal thin film by a magnetron sputtering method, patterning can be performed by photolithography, and wet etching can be performed to form an electrode.
 後記の保護膜6の形成前に、酸化物表面のダメージ回復のため、必要に応じて熱処理(200℃~300℃)やN2Oプラズマ処理を施してもよい。 Before the protective film 6 described later is formed, heat treatment (200 ° C. to 300 ° C.) or N 2 O plasma treatment may be performed as necessary to recover damage to the oxide surface.
 次に、酸化物半導体薄膜4の上方に保護膜6をCVD法によって成膜しても良い。本実施形態の第二のTFTでは、保護膜6として、SiNx膜、SiOxNy膜、SiOx膜、Al23膜、Ta25膜などの膜が挙げられ、これらの膜のいずれか1種類の膜のみを単層で用いてもよく、これらの膜のいずれか1種類の膜を複数層積層して用いてもよく、2種類以上の膜を積層してもよい。 Next, the protective film 6 may be formed over the oxide semiconductor thin film 4 by a CVD method. In the second TFT of the present embodiment, examples of the protective film 6 include SiNx films, SiOxNy films, SiOx films, Al 2 O 3 films, Ta 2 O 5 films, and any one of these films. Only one of these films may be used as a single layer, or any one of these films may be laminated and used, or two or more kinds of films may be laminated.
 次に、常法に基づき、コンタクトホール7を介して透明導電膜8をソース・ドレイン電極5に電気的に接続する。透明導電膜8の種類は特に限定されず、通常用いられるものを使用することができる。 Next, based on a conventional method, the transparent conductive film 8 is electrically connected to the source / drain electrode 5 through the contact hole 7. The kind of the transparent conductive film 8 is not specifically limited, What is normally used can be used.
 このようにして得られる本発明の第一及び第二のTFTは、後記するように、Id-Vg測定から移動度を導出するホール測定により移動度を測定したとき、約40cm2/Vs以上の極めて高い移動度を有する。 As described later, the first and second TFTs of the present invention thus obtained have a mobility of about 40 cm 2 / Vs or more when the mobility is measured by Hall measurement that derives the mobility from Id-Vg measurement. Very high mobility.
 本願は、2014年9月2日に出願された日本国特許出願第2014-178587号、2014年12月3日に出願された日本国特許出願第2014-245124号、及び2015年7月1日に出願された日本国特許出願第2015-132533号に基づく優先権の利益を主張するものである。2014年9月2日に出願された日本国特許出願第2014-178587号、2014年12月3日に出願された日本国特許出願第2014-245124号、及び2015年7月1日に出願された日本国特許出願第2015-132533号の明細書の全内容が、本願に参考のため援用される。 The present application includes Japanese Patent Application No. 2014-178857 filed on September 2, 2014, Japanese Patent Application No. 2014-245124 filed on December 3, 2014, and July 1, 2015. Claims the benefit of priority based on Japanese Patent Application No. 2015-132533 filed in. Japanese Patent Application No. 2014-178857 filed on September 2, 2014, Japanese Patent Application No. 2014-245124 filed on December 3, 2014, and Japanese Patent Application No. 2014-245124 filed on July 1, 2015 The entire contents of Japanese Patent Application No. 2015-132533 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.
 実施例1
 第一のTFTに係る本実施例では、酸化物半導体薄膜の形成条件がTFTの移動度などに及ぼす影響を調べた。実施例1では、保護膜にのみSiNxを含む膜を用いた。
Example 1
In this example relating to the first TFT, the influence of the formation conditions of the oxide semiconductor thin film on the mobility of the TFT was examined. In Example 1, a film containing SiNx was used only for the protective film.
 まず、ガラス基板1(コーニング社製イーグル2000、直径100mm×厚さ0.7mm)上に、ゲート電極2としてMo薄膜を100nm、およびゲート絶縁膜3としてSiO2(膜厚200nm)を順次成膜した。ゲート電極2は純Moのスパッタリングターゲットを使用し、DCスパッタリング法により形成した。スパッタリング条件は、成膜温度:室温、成膜パワー密度:3.8W/cm2、キャリアガス:Ar、成膜時のガス圧:2mTorr、Arガス流量:20sccmとした。また、ゲート絶縁膜3はプラズマCVD法を用い、キャリアガス:SiH4とN2Oの混合ガス、成膜パワー密度:0.96W/cm2、成膜温度:320℃、成膜時のガス圧:133Paの条件で成膜した。 First, on a glass substrate 1 (Corning Eagle 2000, diameter: 100 mm × thickness: 0.7 mm), a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed. did. The gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target. The sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm. The gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film formation power density: 0.96 W / cm 2 , film formation temperature: 320 ° C., gas during film formation The film was formed under a pressure of 133 Pa.
 次に、下記組成の酸化物半導体薄膜4(In-Ga-Sn-O膜、膜厚40nm)を、表1に示す種々のスパッタリング条件にて成膜した。
In:Ga:Sn=42.7:26.7:30.6原子%
 詳細には、上記酸化物半導体薄膜4と同じ組成を有するスパッタリングターゲットを用い、下記条件のスパッタリング法によって成膜した。
スパッタリング装置:株式会社アルバック製「CS-200」
基板温度   :室温
ガス圧    :1、3、5、10mTorr
キャリアガス :Ar
酸素分圧   :100×O2/(Ar+O2)=4、12、20体積%
成膜パワー密度:1.27、2.55、3.83W/cm2
使用スパッタリングターゲット:In:Ga:Sn=42.7:26.7:30.6原子%
Next, an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness: 40 nm) having the following composition was formed under various sputtering conditions shown in Table 1.
In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
Specifically, a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
Substrate temperature: room temperature gas pressure: 1, 3, 5, 10 mTorr
Carrier gas: Ar
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4, 12, 20% by volume
Deposition power density: 1.27, 2.55, 3.83 W / cm 2
Sputtering target used: In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
 尚、酸化物半導体薄膜の金属元素の各含有量の分析は、ガラス基板上に膜厚40nmの各酸化物半導体薄膜を上記と同様にしてスパッタリング法で形成した試料を別途用意して行った。該分析は、CIROS MarkII(株式会社リガク製)を用い、ICP(Inductively Coupled Plasma)発光分光法により行った。 In addition, each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above. The analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
 また、ガラス基板上に膜厚40nmの各酸化物半導体薄膜を形成した上記試料を用い、以下のようにして電気抵抗率を測定した。測定結果を下記表1に示す。下記表1において、「aE+b」は、「a×10b」を意味している。
製造メーカ:三菱化学アナリテック
品名   :ハイレスタ(登録商標)UP
型番   :MCP-HT450型
測定方式 :リング電極方式
Moreover, the electrical resistivity was measured as follows using the said sample which formed each 40-nm-thick oxide semiconductor thin film on the glass substrate. The measurement results are shown in Table 1 below. In Table 1 below, “aE + b” means “a × 10 b ”.
Manufacturer: Mitsubishi Chemical Analytech Product name: Hiresta (registered trademark) UP
Model number: MCP-HT450 measurement method: Ring electrode method
 上記のようにして酸化物半導体薄膜4を成膜した後、フォトリソグラフィおよびウェットエッチングによりパターニングを行った。ウェットエッチング液として、関東化学株式会社製「ITO-07N」を使用した。本実施例では、実験を行ったすべての酸化物半導体薄膜について、ウェットエッチングによる残渣はなく、適切にエッチングできたことを確認している。 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
 上記の通り、酸化物半導体薄膜4をパターニングした後、膜質を向上させるためにプレアニールを行った。プレアニールは、大気雰囲気にて350℃で1時間行った。 As described above, after the oxide semiconductor thin film 4 was patterned, pre-annealing was performed to improve the film quality. Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
 前記プレアニールの後、エッチストップ層9としてSiOx膜(膜厚100nm)を前記酸化物半導体薄膜4の上に成膜した。上記SiOx膜の成膜は、N2OおよびSiH4の混合ガスを用い、プラズマCVD法で行った。成膜条件は、成膜パワー密度:0.32W/cm2、成膜温度:230℃、成膜時のガス圧:133Paとした。上記SiOx膜の成膜後、フォトリソグラフィおよびドライエッチングによりエッチストップ層9のパターニングを行った。 After the pre-annealing, an SiOx film (film thickness: 100 nm) was formed on the oxide semiconductor thin film 4 as the etch stop layer 9. The SiOx film was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa. After the formation of the SiOx film, the etch stop layer 9 was patterned by photolithography and dry etching.
 次に、ソース・ドレイン電極5を形成するため、膜厚200nmの純Mo膜を、スパッタリング法によって上記酸化物半導体薄膜4の上方に成膜した。上記純Mo膜の成膜条件は、投入パワー:DC300W(成膜パワー密度:3.8W/cm2)、キャリアガス:Ar、ガス圧:2mTorr、基板温度:室温とした。 Next, in order to form the source / drain electrodes 5, a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering. The pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
 次いで、フォトリソグラフィおよびウェットエッチングにより、ソース・ドレイン電極5のパターニングを行った。具体的には、リン酸:硝酸:酢酸=70:2:10(質量比)の混合液からなり液温が40℃の混酸エッチング液を用いた。 Next, the source / drain electrodes 5 were patterned by photolithography and wet etching. Specifically, a mixed acid etching solution composed of a mixed solution of phosphoric acid: nitric acid: acetic acid = 70: 2: 10 (mass ratio) and having a liquid temperature of 40 ° C. was used.
 このようにしてソース・ドレイン電極5を形成した後、酸化物半導体薄膜トランジスタを保護するための保護膜6として、膜厚100nmのSiOx膜をプラズマCVD法で形成し、さらに膜厚150nmのSiNx膜をプラズマCVD法で形成した。上記SiOx膜の形成にはSiH4、N2およびN2Oの混合ガスを用い、上記SiNx膜の形成にはSiH4、N2、NH3の混合ガスを用いた。いずれの場合も成膜条件を、成膜パワー密度:0.32W/cm2、成膜温度:150℃、成膜時のガス圧:133Paとした。 After forming the source / drain electrodes 5 in this manner, a 100 nm thick SiOx film is formed by plasma CVD as a protective film 6 for protecting the oxide semiconductor thin film transistor, and a 150 nm thick SiNx film is further formed. It formed by plasma CVD method. A mixed gas of SiH 4 , N 2 and N 2 O was used to form the SiOx film, and a mixed gas of SiH 4 , N 2 and NH 3 was used to form the SiNx film. In either case, the film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa.
 次にフォトリソグラフィおよびドライエッチングにより、保護膜6にトランジスタ特性評価用プロービングのためのコンタクトホール7を形成した。その後、ポストアニールとして、窒素雰囲気で260℃、30分の熱処理を行った。 Next, contact holes 7 for probing for transistor characteristic evaluation were formed in the protective film 6 by photolithography and dry etching. Then, as post-annealing, heat treatment was performed at 260 ° C. for 30 minutes in a nitrogen atmosphere.
 最後に、透明導電膜8として膜厚80nmのITO膜を成膜し、図1の薄膜トランジスタを作製した。具体的には、DCスパッタリング法を用い、キャリアガス:アルゴンおよび酸素ガスの混合ガス、成膜パワー:200W(成膜パワー密度:2.5W/cm2)、ガス圧:5mTorrにてITO膜を成膜した。 Finally, an ITO film having a thickness of 80 nm was formed as the transparent conductive film 8 to produce the thin film transistor of FIG. Specifically, an ITO film is formed by DC sputtering using a carrier gas: a mixed gas of argon and oxygen gas, film formation power: 200 W (film formation power density: 2.5 W / cm 2 ), and gas pressure: 5 mTorr. A film was formed.
 作製した薄膜トランジスタは、チャネル長20μm、チャネル幅200μmであった。 The fabricated thin film transistor had a channel length of 20 μm and a channel width of 200 μm.
 上記TFTについて、以下の特性を調べた。 The following characteristics were examined for the TFT.
 (1)トランジスタ特性の測定
 トランジスタ特性(ドレイン電流-ゲート電圧特性、Id-Vg特性)の測定はAgilent Technology社製「HP4156C」の半導体パラメータアナライザーを使用した。詳細な測定条件は以下のとおりである。表1のNo.1-1におけるId-Vg特性を図3に示す。
ソース電圧 :0V
ドレイン電圧:10V
ゲート電圧 :-30~30V(測定間隔:0.25V)
基板温度  :室温
(1) Measurement of transistor characteristics Transistor characteristics (drain current-gate voltage characteristics, Id-Vg characteristics) were measured using a semiconductor parameter analyzer “HP4156C” manufactured by Agilent Technology. Detailed measurement conditions are as follows. No. in Table 1 The Id-Vg characteristic in 1-1 is shown in FIG.
Source voltage: 0V
Drain voltage: 10V
Gate voltage: -30 to 30V (measurement interval: 0.25V)
Substrate temperature: Room temperature
 (2)しきい値電圧(Vth)
 しきい値電圧とは、おおまかにいえば、トランジスタがオフ状態(ドレイン電流の低い状態)からオン状態(ドレイン電流の高い状態)に移行する際のゲート電圧の値である。本実施例では、ドレイン電流が、オン電流とオフ電流の間の1nA付近であるときの電圧をしきい値電圧と定義し、各薄膜トランジスタのしきい値電圧を測定した。
(2) Threshold voltage (Vth)
The threshold voltage is roughly a value of a gate voltage when the transistor shifts from an off state (a state where the drain current is low) to an on state (a state where the drain current is high). In this example, the voltage when the drain current is around 1 nA between the on-current and the off-current is defined as the threshold voltage, and the threshold voltage of each thin film transistor is measured.
 (3)電界効果移動度μFE
 電界効果移動度μFEは、トランジスタ特性からVg>Vd-Vthである飽和領域にて、ドレイン電流とゲート電圧の関係式、Id= μFE×Cox×W×(Vg-Vth)2/2L、より導出した(Vg:ゲート電圧、Vd:ドレイン電圧、Id:ドレイン電流、L:チャネル長、W:チャネル幅、Cox:ゲート絶縁膜の静電容量、μFE:電界効果移動度)。本実施例では、線形領域を満たすゲート電圧付近におけるドレイン電流-ゲート電圧特性(Id-Vg特性)の傾きから電界効果移動度μFEを導出している。電界効果移動度は高い程よく、本実施例では40cm2/Vsを基準とし、それ以上を合格とした。
(3) Field effect mobility μFE
The field effect mobility μFE is derived from the transistor characteristics in the saturation region where Vg> Vd−Vth, the relational expression of drain current and gate voltage, Id = μFE × Cox × W × (Vg−Vth) 2 / 2L. (Vg: gate voltage, Vd: drain voltage, Id: drain current, L: channel length, W: channel width, Cox: capacitance of gate insulating film, μFE: field effect mobility). In this embodiment, the field effect mobility μFE is derived from the slope of the drain current-gate voltage characteristic (Id-Vg characteristic) near the gate voltage that satisfies the linear region. The higher the field effect mobility, the better. In this example, 40 cm 2 / Vs was used as a reference, and more than that was accepted.
 (4)S値
 S値はId-Vg特性より、ドレイン電流を10倍大きくするのに必要なゲート電圧の最小値であり、低いほど良好な特性であることを示す。具体的には、ここではS値はいずれの条件も良好で0.4V/decade以下であった。
(4) S value The S value is the minimum value of the gate voltage required to increase the drain current 10 times from the Id-Vg characteristic, and the lower the value, the better the characteristic. Specifically, in this case, the S value was 0.4 V / decade or less under favorable conditions.
 これらの結果を表1に併記する。 These results are also shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、酸素分圧および成膜パワー密度が同じ場合、ガス圧が低い程、移動度が高くなることが分かった(表1のNo.1-1、4、5、6を参照)。また、上記実験条件下では、ガス圧および成膜パワー密度が同じ場合、酸素分圧が小さい程、移動度も高くなることも分かった(表1のNo.1-1~3を参照)。なお、成膜パワー密度に関しては、移動度に及ぼす影響はあまり見られなかった。 Table 1 shows that when the oxygen partial pressure and the deposition power density are the same, the mobility increases as the gas pressure decreases (see Nos. 1-1, 4, 5, and 6 in Table 1). It was also found that, under the above experimental conditions, when the gas pressure and the deposition power density were the same, the smaller the oxygen partial pressure, the higher the mobility (see Nos. 1-1 to 3 in Table 1). In addition, regarding the film-forming power density, the influence which exerts on mobility was not seen so much.
 上記酸化物半導体薄膜の結晶構造を評価するために、断面TEM観察、電子線回折像の観察、およびX線回折測定を行なった。 In order to evaluate the crystal structure of the oxide semiconductor thin film, cross-sectional TEM observation, electron diffraction image observation, and X-ray diffraction measurement were performed.
 (断面TEM観察および電子線回折測定)
 表1のNo.1-1について、薄膜トランジスタ作製後の酸化物半導体薄膜断面をTEM観察した結果を図4に示す。図4の酸化物半導体薄膜中で光っている円形領域の電子線回折像を図4の右図に示す。図4の右図より、リング状の回折パターンの中に回折点がある。アモルファス構造であれば回折点は顕著に見られないが、酸化物半導体薄膜の結晶構造を有する割合が高くなるほど、回折点が明確になる。上記図4より、本発明の酸化物半導体薄膜は、結晶構造を有することがわかる。
(Section TEM observation and electron diffraction measurement)
No. in Table 1 With respect to 1-1, the result of TEM observation of the cross section of the oxide semiconductor thin film after the thin film transistor was produced is shown in FIG. An electron diffraction image of a circular region shining in the oxide semiconductor thin film of FIG. 4 is shown on the right side of FIG. From the right diagram in FIG. 4, there are diffraction points in the ring-shaped diffraction pattern. If the amorphous structure is used, the diffraction point is not noticeable. However, the higher the proportion of the oxide semiconductor thin film having the crystal structure, the clearer the diffraction point. FIG. 4 shows that the oxide semiconductor thin film of the present invention has a crystal structure.
 次に、上記酸化物半導体薄膜の結晶構造は、酸化物半導体薄膜4をゲート絶縁膜3の上に形成した直後から確認され、薄膜トランジスタ作製プロセスによって結晶構造は大きく変わらないことを実証する。 Next, the crystal structure of the oxide semiconductor thin film is confirmed immediately after the oxide semiconductor thin film 4 is formed on the gate insulating film 3, and it is demonstrated that the crystal structure is not greatly changed by the thin film transistor manufacturing process.
 図5は、薄膜トランジスタ作製プロセスにおいて、A:酸化物半導体薄膜形成後、B:プレアニール後、C:コンタクトホール形成後、D:ポストアニール後のそれぞれのタイミングで酸化物半導体薄膜の断面をTEM観察した結果を示している。 FIG. 5 shows a TEM observation of the cross section of the oxide semiconductor thin film at each timing of A: after formation of the oxide semiconductor thin film, B: after pre-annealing, C: after contact hole formation, and D: post-annealing. Results are shown.
 図5のA~Dに示した酸化物半導体薄膜4中で光っている円形領域の電子線回折像を図5のA~Dの右側に示す。図5のA~Dに示した右図より、いずれの状態においてもリング状の中で少し強く光っている領域が存在し、薄膜トランジスタ作製プロセスによって結晶構造は大きく変わっていないことがわかる。 An electron diffraction image of a circular region shining in the oxide semiconductor thin film 4 shown in FIGS. 5A to 5D is shown on the right side of FIGS. 5A to 5D. From the right diagrams shown in FIGS. 5A to 5D, it can be seen that there is a region in the ring shape that is slightly shining in any state, and the crystal structure is not greatly changed by the thin film transistor manufacturing process.
 次に、薄膜の構成元素が変化すると結晶構造が観察されなくなることを実証する。 Next, it will be demonstrated that the crystal structure is not observed when the constituent elements of the thin film change.
 図6、図7は、上記酸化物半導体薄膜4とは構成元素が異なり、In-Ga-Zn-O膜で構成される酸化物半導体薄膜を形成した薄膜トランジスタを製造し、酸化物半導体薄膜形成後、およびプレアニール後における酸化物半導体薄膜平面をTEM観察した結果を示す。In-Ga-Zn-O膜の組成は次の通りである。
In:Ga:Zn=33.3:33.3:33.3原子%
 詳細には、上記In-Ga-Zn-O膜と同じ組成を有するスパッタリングターゲットを用い、下記条件のスパッタリング法によって成膜した。
スパッタリング装置:株式会社アルバック製「CS-200」
基板温度   :室温
ガス圧    :1mTorrまたは5mTorr
キャリアガス :Ar
酸素分圧   :100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.55W/cm2
使用スパッタリングターゲット:In:Ga:Zn=33.3:33.3:33.3原子%
FIGS. 6 and 7 are different from the oxide semiconductor thin film 4 in the constituent elements, and after manufacturing the thin film transistor in which the oxide semiconductor thin film formed of the In—Ga—Zn—O film is formed, the oxide semiconductor thin film is formed. The results of TEM observation of the oxide semiconductor thin film plane after pre-annealing are shown. The composition of the In—Ga—Zn—O film is as follows.
In: Ga: Zn = 33.3: 33.3: 33.3 atomic%
Specifically, a sputtering target having the same composition as the above In—Ga—Zn—O film was used, and a film was formed by a sputtering method under the following conditions.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
Substrate temperature: room temperature gas pressure: 1 mTorr or 5 mTorr
Carrier gas: Ar
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.55 W / cm 2
Sputtering target used: In: Ga: Zn = 33.3: 33.3: 33.3 atomic%
 図6は、In-Ga-Zn-O膜を、ガス圧1mTorrで形成した結果を示しており、図6AはIn-Ga-Zn-O膜形成後、図6Bはプレアニール後の結果を示している。図7は、In-Ga-Zn-O膜を、ガス圧5mTorrで形成した結果を示しており、図7AはIn-Ga-Zn-O膜形成後、図7Bはプレアニール後の結果を示している。 6 shows the result of forming an In—Ga—Zn—O film at a gas pressure of 1 mTorr, FIG. 6A shows the result after forming the In—Ga—Zn—O film, and FIG. 6B shows the result after pre-annealing. Yes. FIG. 7 shows the result of forming an In—Ga—Zn—O film at a gas pressure of 5 mTorr, FIG. 7A shows the result after forming the In—Ga—Zn—O film, and FIG. 7B shows the result after pre-annealing. Yes.
 図6、図7の酸化物半導体薄膜中で光っている円形領域の電子線回折像を図6、図7の右側に示す。図5は中心に光っている点から外側のリング状に白く光っている中に、スポット(回折点)がみられる一方、図6、7ではスポットがほとんど見られない。すなわち、図5では微結晶を含んでいるが、図6、7では微結晶を含まない。従って、図6、図7の右図より、リング状の中で発光強度に大きな差はなく、アモルファス構造を有していることがわかる。 FIG. 6 and FIG. 7 show electron beam diffraction images of a circular region shining in the oxide semiconductor thin film of FIGS. In FIG. 5, spots (diffraction points) are seen while the light shines in the outer ring shape from the point shining in the center, while spots are hardly seen in FIGS. That is, FIG. 5 includes microcrystals, but FIGS. 6 and 7 do not include microcrystals. Therefore, it can be seen from the right diagrams of FIGS. 6 and 7 that there is no significant difference in light emission intensity in the ring shape, and it has an amorphous structure.
 (X線回折測定)
 表1のNo.1-1について、ガラス基板(コーニング社製イーグル2000、直径100mm×厚さ0.7mm)上に、下記組成の酸化物半導体薄膜4(In-Ga-Sn-O膜、膜厚40nm)をスパッタリングにて成膜した。
In:Ga:Sn=42.7:26.7:30.6原子%
 詳細には、上記酸化物半導体薄膜4と同じ組成を有するスパッタリングターゲットを用い、下記条件のスパッタリング法によって成膜した。
スパッタリング装置:株式会社アルバック製「CS-200」
基板温度     :室温
ガス圧      :1mTorr
酸素分圧     :100×O2/(Ar+O2)=4体積%
成膜パワー密度  :2.55W/cm2
使用スパッタリングターゲット:In:Ga:Sn=42.7:26.7:30.6原子%
(X-ray diffraction measurement)
No. in Table 1 For 1-1, an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness 40 nm) having the following composition was sputtered on a glass substrate (Corning Eagle 2000, diameter 100 mm × thickness 0.7 mm). The film was formed.
In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
Specifically, a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
Substrate temperature: room temperature gas pressure: 1 mTorr
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.55 W / cm 2
Sputtering target used: In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
 In-Ga-Sn-O膜を成膜した後、X線回折測定を行った。X線回折は株式会社リガク製Smart Labを用い、Cuターゲットを用い、ターゲット出力を45kV-200mAとして、2θスキャン測定を行なった。X線の入射角度は0.5°、測定角度は10~100°とした。In-Ga-Sn-O膜を成膜した後にX線回折を測定した結果を図8Aに示す。 After forming an In—Ga—Sn—O film, X-ray diffraction measurement was performed. For X-ray diffraction, a Rigaku Co., Ltd. Smart Lab was used, a Cu target was used, a target output was 45 kV-200 mA, and 2θ scan measurement was performed. The incident angle of X-rays was 0.5 °, and the measurement angle was 10 to 100 °. FIG. 8A shows the result of measuring the X-ray diffraction after forming the In—Ga—Sn—O film.
 次に、In-Ga-Sn-O膜を成膜した後、膜質を向上させるためにプレアニールを行った。プレアニールは、大気雰囲気にて350℃で1時間行った。プレアニール後、上記と同じ条件でX線回折測定を行い、測定結果を図8Bに示す。また、参考データとしてガラス基板のX線回折を測定した結果を図8Cに示す。 Next, after forming an In—Ga—Sn—O film, pre-annealing was performed to improve the film quality. Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere. After pre-annealing, X-ray diffraction measurement is performed under the same conditions as above, and the measurement results are shown in FIG. 8B. Moreover, the result of having measured the X-ray diffraction of the glass substrate as reference data is shown in FIG. 8C.
 図8から明らかなように、ガラス基板のX線回折を測定した図8Cによれば、2θ=23°近傍にブロードなハローパターンが認められた。これに対し、In-Ga-Sn-O膜を成膜した後に測定した図8A、プレアニール後に測定した図8Bによれば、ガラス基板由来のハローパターン以外に、31°および55°近傍に酸化物半導体薄膜由来のハローパターンが認められたが、結晶に基づくシャープなピークは認められなかった。 As is clear from FIG. 8, according to FIG. 8C in which the X-ray diffraction of the glass substrate was measured, a broad halo pattern was recognized in the vicinity of 2θ = 23 °. On the other hand, according to FIG. 8A measured after depositing the In—Ga—Sn—O film and FIG. 8B measured after pre-annealing, oxides near 31 ° and 55 ° other than the halo pattern derived from the glass substrate Although a halo pattern derived from a semiconductor thin film was observed, no sharp peak based on crystals was observed.
 上記X線回折測定で測定可能な結晶子のサイズは1nm程度であるため、形成されている結晶粒の大きさは1nm未満であると考えられる。即ち、膜の大部分はアモルファスで、形成されている結晶粒の大きさは1nm未満であることが示唆される。 Since the crystallite size measurable by the X-ray diffraction measurement is about 1 nm, the size of the formed crystal grains is considered to be less than 1 nm. That is, it is suggested that most of the film is amorphous, and the size of the formed crystal grains is less than 1 nm.
 以上の通り、In-Ga-Sn-O膜は一部が結晶化されているが、In-Ga-Sn-O膜の大部分はアモルファス構造であることから、本発明の酸化物半導体薄膜はエッチング加工性にも優れ、かつ、極短距離秩序形成による高移動度が両立しているものと推測される。 As described above, a part of the In—Ga—Sn—O film is crystallized, but most of the In—Ga—Sn—O film has an amorphous structure. It is presumed that the etching processability is also excellent, and high mobility due to the formation of very short range order is compatible.
 実施例2
 第一のTFTに係る本実施例では、下記パターン(i)~(iv)に示す4種類の形状のTFTを作製し、保護膜(絶縁膜)6の形成後のトランジスタ特性を評価した。実施例2では、保護膜にのみSiNxを含む膜を用いた。
Example 2
In this example relating to the first TFT, TFTs having four types of shapes shown in the following patterns (i) to (iv) were produced, and the transistor characteristics after the formation of the protective film (insulating film) 6 were evaluated. In Example 2, a film containing SiNx was used only for the protective film.
 本実施例で用いたTFTの形状を明らかにするため、薄膜トランジスタを上から見た図9A~Dを示す。図9A~DのA-A’線に沿った断面図を図10A~Dに示す。図9A~DのB-B’線に沿った断面図を図11A~図11Dに示す。図9中、ACTは酸化物半導体薄膜4に相当する領域である。 FIGS. 9A to 9D are top views of the thin film transistor in order to clarify the shape of the TFT used in this example. 10A to 10D are cross-sectional views taken along the line A-A 'of FIGS. 9A to 9D. Cross-sectional views taken along the line B-B 'of FIGS. 9A to 9D are shown in FIGS. 11A to 11D. In FIG. 9, ACT is a region corresponding to the oxide semiconductor thin film 4.
 ・パターン(i):図9A、図10A、図11Aを参照
 上記パターン(i)は前述した図1に対応する。ソース・ドレイン電極5は、酸化物半導体薄膜4の両端部に直接接触せず、酸化物半導体薄膜4の上面の一部と直接接触しており、且つ、エッチストップ層9は、酸化物半導体薄膜4の両端部に接触し、酸化物半導体薄膜4の上面の一部と直接接触している。
Pattern (i): See FIGS. 9A, 10A, and 11A The pattern (i) corresponds to FIG. 1 described above. The source / drain electrodes 5 are not in direct contact with both ends of the oxide semiconductor thin film 4 but are in direct contact with part of the upper surface of the oxide semiconductor thin film 4, and the etch stop layer 9 is formed of the oxide semiconductor thin film 4. 4 is in contact with both ends of the oxide semiconductor thin film 4 and is in direct contact with part of the upper surface of the oxide semiconductor thin film 4.
 ・パターン(ii):図9B、図10B、図11Bを参照
 ソース・ドレイン電極5は、酸化物半導体薄膜4の両端部に直接接触せず、酸化物半導体薄膜4の上面の一部と直接接触しており、且つ、エッチストップ層9は、酸化物半導体薄膜4の両端部に接触せず、酸化物半導体薄膜4の上面の一部と直接接触している。
Pattern (ii): See FIG. 9B, FIG. 10B, and FIG. 11B The source / drain electrode 5 does not directly contact both ends of the oxide semiconductor thin film 4, but directly contacts a part of the upper surface of the oxide semiconductor thin film 4. In addition, the etch stop layer 9 does not contact both end portions of the oxide semiconductor thin film 4 but directly contacts a part of the upper surface of the oxide semiconductor thin film 4.
 ・パターン(iii):図9C、図10C、図11Cを参照
 ソース・ドレイン電極5は、図10Cの断面図では酸化物半導体薄膜4のチャネル長方向の両端部と直接接触するが図11Cの断面図では直接接触せず、酸化物半導体薄膜4の上面の一部と直接接触しており、且つ、エッチストップ層9は、酸化物半導体薄膜4の両端部に接触せず、酸化物半導体薄膜4の上面の一部と直接接触している。
Pattern (iii): See FIGS. 9C, 10C, and 11C The source / drain electrodes 5 are in direct contact with both ends of the oxide semiconductor thin film 4 in the channel length direction in the cross-sectional view of FIG. In the figure, the oxide semiconductor thin film 4 is not in direct contact but is in direct contact with a part of the upper surface of the oxide semiconductor thin film 4, and the etch stop layer 9 is not in contact with both ends of the oxide semiconductor thin film 4. It is in direct contact with a part of the top surface.
 ・パターン(iv):図9D、図10D、図11Dを参照
 上記パターン(iv)は前述した図2に対応する。ソース・ドレイン電極5は、酸化物半導体薄膜4の両端部と直接接触し、酸化物半導体薄膜4の上面の一部と直接接触しており、且つ、エッチストップ層9は、酸化物半導体薄膜4の両端部に接触せず、酸化物半導体薄膜4の上面の一部と直接接触している。
Pattern (iv): See FIGS. 9D, 10D, and 11D The pattern (iv) corresponds to FIG. 2 described above. The source / drain electrodes 5 are in direct contact with both ends of the oxide semiconductor thin film 4 and in direct contact with part of the upper surface of the oxide semiconductor thin film 4, and the etch stop layer 9 is formed of the oxide semiconductor thin film 4. Are in direct contact with a part of the upper surface of the oxide semiconductor thin film 4.
 上記パターン(iv)のTFTは、所望の形状が得られるようにマスクを設計して作製した。以下では、その代表例として、パターン(i)のTFTを形成する方法について説明する。パターンの形状は前述した実施例1と同じであるため、以下では実施例1と異なる点を中心に説明する。 The TFT with the above pattern (iv) was manufactured by designing a mask so as to obtain a desired shape. Hereinafter, as a representative example, a method for forming a TFT having a pattern (i) will be described. Since the shape of the pattern is the same as that of the first embodiment described above, the following description will focus on differences from the first embodiment.
 前述した実施例1と同様にしてガラス基板1にゲート電極2およびゲート絶縁膜3を順次成膜した後、実施例1と同じ組成の酸化物半導体薄膜(In-Ga-Sn-O、膜厚40nm)を成膜した。スパッタリング条件は、以下の点以外は実施例1と同じである。
ガス圧:1mTorr
酸素分圧:100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.55W/cm2
After the gate electrode 2 and the gate insulating film 3 were sequentially formed on the glass substrate 1 in the same manner as in Example 1 described above, an oxide semiconductor thin film (In—Ga—Sn—O, film thickness having the same composition as in Example 1 was formed. 40 nm). The sputtering conditions are the same as in Example 1 except for the following points.
Gas pressure: 1mTorr
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.55 W / cm 2
 比較のため、酸化物半導体薄膜として、特許文献1などに記載のIn-Ga-Zn-O(膜厚40nm)を成膜した。In-Ga-Zn-Oの組成は以下のとおりである。
In:Ga:Zn=33.3:33.3:33.3原子%
For comparison, an In—Ga—Zn—O film (with a thickness of 40 nm) described in Patent Document 1 or the like was formed as an oxide semiconductor thin film. The composition of In—Ga—Zn—O is as follows.
In: Ga: Zn = 33.3: 33.3: 33.3 atomic%
 次いで、実施例1と同様にしてエッチストップ層9、ソース・ドレイン電極5、保護膜6、コンタクトホール7を形成した後、ポストアニールとして、表2に示すように、以下の熱処理を行った。参考のため、熱処理を行わなかったものも用意した。
窒素雰囲気、250℃、260℃、270℃で、30分
Next, after the etch stop layer 9, the source / drain electrodes 5, the protective film 6, and the contact hole 7 were formed in the same manner as in Example 1, the following heat treatment was performed as post-annealing as shown in Table 2. For reference, a sample without heat treatment was also prepared.
Nitrogen atmosphere, 250 ° C, 260 ° C, 270 ° C, 30 minutes
 最後に実施例1と同様にして透明導電膜8としてITO膜(膜厚80nm)を成膜し、パターン(i)の薄膜トランジスタを作製した。 Finally, an ITO film (film thickness of 80 nm) was formed as the transparent conductive film 8 in the same manner as in Example 1 to produce a thin film transistor having a pattern (i).
 このようにして得られた各薄膜トランジスタについて、実施例1と同様にしてS値、しきい値電圧Vth、および電界効果移動度μFEを測定した。 For each thin film transistor thus obtained, the S value, threshold voltage Vth, and field effect mobility μFE were measured in the same manner as in Example 1.
 これらの結果を表2に併記する。 These results are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 No.2-1~15は、酸化物半導体薄膜4として、本発明で規定する組成のIn-Ga-Sn系酸化物を用いた例である。このうち、本発明で規定する製造条件を施した、パターン(i)の形状を有する本発明例のNo.2-5、および12はいずれも、移動度が40cm2/Vs以上と、極めて高い移動度を有している。特に保護膜形成後のポストアニール温度がより高い270℃で処理したNo.2-12では、移動度が約67cm2/Vsと著しく高くなった。 No. Examples 2-1 to 15 are examples in which an In—Ga—Sn-based oxide having a composition defined in the present invention is used as the oxide semiconductor thin film 4. Among these, No. of the example of this invention which has the shape of the pattern (i) which gave the manufacturing conditions prescribed | regulated by this invention. Both 2-5 and 12 have a very high mobility of 40 cm 2 / Vs or more. In particular, No. No. 1 treated at 270 ° C. with a higher post-annealing temperature after forming the protective film. In 2-12, the mobility was remarkably high at about 67 cm 2 / Vs.
 これに対し、パターン(ii)の形状を有する比較例のNo.2-6、9、および13;パターン(iii)の形状を有する比較例のNo.2-7、10、および14は導体化したため、種々の特性を測定できなかった(表2中、「-」と記載)。 In contrast, the comparative example No. having the shape of the pattern (ii). 2-6, 9, and 13; comparative examples No. 2 having the shape of pattern (iii) Since 2-7, 10 and 14 were made into conductors, various characteristics could not be measured (indicated as “-” in Table 2).
 また、本発明で規定する形状を有しない、パターン(iv)の形状を有する比較例のNo.2-8、11、および15では、所望とする高い移動度は得られなかった。 In addition, the comparative example No. having the shape of the pattern (iv) does not have the shape defined in the present invention. In 2-8, 11 and 15, the desired high mobility was not obtained.
 上記パターン(i)のように本発明の構成によって非常に高い移動度が得られる理由は詳細には不明であるが、例えば以下のように推察される。前述したようにパターン(i)では、酸化物半導体薄膜4の上面は、エッチストップ層9のコンタクトホール7を介してソース・ドレイン電極5と接触する。すなわち、酸化物半導体薄膜4の両端部はソース・ドレイン電極5と直接接触しない。また、コンタクトホール7の部分以外は、酸化物半導体薄膜4の上にエッチストップ層9が配置される。ここでソース・ドレイン電極5の構成材料であるMoやAlなどは水素透過が生じ難い材料のため、水素透過は、チャネル上のエッチストップ層9(SiOxなど)を介して、その上に形成される保護膜6のSiNxから供給されるか、または、エッチストップ層9から直接供給されることになる。本実施例で用いたエッチストップ層9(SiOx)中の水素量は約5.0原子%であり、保護膜6(SiNx)中の水素量は約32原子%であることから、保護膜6中の水素が酸化物半導体薄膜4に拡散して、高移動度の発現に寄与している可能性が極めて高い。おそらく、伝導体下の裾準位を水素がパシベートすることによって、酸化物半導体薄膜4中の欠陥が低減し、高移動度に繋がっていると考えられる。 The reason why a very high mobility can be obtained by the configuration of the present invention as in the above pattern (i) is unknown in detail, but it is assumed as follows, for example. As described above, in the pattern (i), the upper surface of the oxide semiconductor thin film 4 is in contact with the source / drain electrode 5 through the contact hole 7 of the etch stop layer 9. That is, both end portions of the oxide semiconductor thin film 4 are not in direct contact with the source / drain electrodes 5. An etch stop layer 9 is disposed on the oxide semiconductor thin film 4 except for the contact hole 7. Here, Mo or Al, which is a constituent material of the source / drain electrode 5, is a material in which hydrogen does not easily permeate. The protective film 6 is supplied from SiNx or directly from the etch stop layer 9. Since the amount of hydrogen in the etch stop layer 9 (SiOx) used in this example is about 5.0 atomic% and the amount of hydrogen in the protective film 6 (SiNx) is about 32 atomic%, the protective film 6 There is a very high possibility that the hydrogen contained therein diffuses into the oxide semiconductor thin film 4 and contributes to the expression of high mobility. Probably, hydrogen passivates the bottom level under the conductor, so that defects in the oxide semiconductor thin film 4 are reduced, leading to high mobility.
 これに対し、パターン(ii)およびパターン(iii)のように酸化物半導体薄膜4のチャネル幅方向の両端部が保護膜6と直接接触する場合は、酸化物半導体薄膜4に水素が過剰に供給されるため、逆にキャリア過剰となり、TFTが導体化しているものと推察される。 On the other hand, when both ends of the oxide semiconductor thin film 4 in the channel width direction are in direct contact with the protective film 6 as in the pattern (ii) and the pattern (iii), excessive hydrogen is supplied to the oxide semiconductor thin film 4. Therefore, on the contrary, it is surmised that the carrier becomes excessive and the TFT is made into a conductor.
 また、パターン(iv)のように酸化物半導体薄膜4のチャネル領域以外がソース・ドレイン電極5で覆われている場合、水素の供給が制限されるため、移動度が高くならないと考えられる。 Further, when the portion other than the channel region of the oxide semiconductor thin film 4 is covered with the source / drain electrodes 5 as in the pattern (iv), the supply of hydrogen is limited, so that the mobility is not likely to increase.
 一方、酸化物半導体薄膜4として、従来組成のIn-Ga-Zn系酸化物を用いたNo.2-16~31では、著しく向上した移動度は測定されず、最大でも7.1cm2/Vsにとどまっていた。すなわち、本発明組成のIn-Ga-Sn系酸化物を用いたときのようにポストアニールによる移動度向上やTFTの形状制御による移動度向上は観測されなかった。 On the other hand, as the oxide semiconductor thin film 4, No. 1 using an In—Ga—Zn-based oxide having a conventional composition is used. In 2-16 to 31, no significantly improved mobility was measured, and the maximum was only 7.1 cm 2 / Vs. That is, no improvement in mobility due to post-annealing and no improvement in mobility due to TFT shape control as in the case of using an In—Ga—Sn-based oxide having the composition of the present invention was observed.
 実施例3
 第二のTFTに係る本実施例では、実施例1とはエッチストップ層の構成が異なる以外は、上記パターン(i)に示す形状の同じTFTを作製し、トランジスタ特性を評価した。なお、表3~表5では、以下に記載の製造方法のことを製造方法Aと表しており、No.3-1~8については製造方法Aで作製している。また、本実施例ではエッチストップ層9としてSiNxを含む層を用いたときの有用性を強調するため、酸化物半導体トランジスタを保護するための保護膜6を設けていないが、前述した実施例1および2同様に保護膜6を設けてもよい。
Example 3
In this example relating to the second TFT, except that the structure of the etch stop layer is different from that of Example 1, a TFT having the same shape as the pattern (i) was produced, and the transistor characteristics were evaluated. In Tables 3 to 5, the production method described below is represented as production method A. 3-1 to 8 are manufactured by manufacturing method A. Further, in this embodiment, the protective film 6 for protecting the oxide semiconductor transistor is not provided in order to emphasize the usefulness when the layer containing SiNx is used as the etch stop layer 9, but the above-described embodiment 1 is not provided. Similarly to 2 and 2, a protective film 6 may be provided.
 まず、ガラス基板1(コーニング社製イーグル2000、直径100mm×厚さ0.7mm)上に、ゲート電極2としてMo薄膜を100nm、およびゲート絶縁膜3としてSiO2(膜厚200nm)を順次成膜した。ゲート電極2は純Moのスパッタリングターゲットを使用し、DCスパッタリング法により形成した。スパッタリング条件は、成膜温度:室温、成膜パワー密度:3.8W/cm2、キャリアガス:Ar、成膜時のガス圧:2mTorr、Arガス流量:20sccmとした。また、ゲート絶縁膜3はプラズマCVD法を用い、キャリアガス:SiH4とN2Oの混合ガス、成膜パワー密度:0.96W/cm2、成膜温度:320℃、成膜時のガス圧:133Paの条件で成膜した。 First, on a glass substrate 1 (Corning Eagle 2000, diameter: 100 mm × thickness: 0.7 mm), a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed. did. The gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target. The sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm. The gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film formation power density: 0.96 W / cm 2 , film formation temperature: 320 ° C., gas during film formation The film was formed under a pressure of 133 Pa.
 次に、下記組成の酸化物半導体薄膜4(In-Ga-Sn-O膜、膜厚40nm)を、表3に示す種々のスパッタリング条件にて成膜した。
In:Ga:Sn=42.7:26.7:30.6原子%
 詳細には、上記酸化物半導体薄膜4と同じ組成を有するスパッタリングターゲットを用い、下記条件のスパッタリング法によって成膜した。
スパッタリング装置:株式会社アルバック製「CS-200」
基板温度   :室温
ガス圧    :1mTorr
キャリアガス :Ar
酸素分圧   :100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.55W/cm2
使用スパッタリングターゲット:In:Ga:Sn=42.7:26.7:30.6原子%
Next, an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness: 40 nm) having the following composition was formed under various sputtering conditions shown in Table 3.
In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
Specifically, a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
Substrate temperature: room temperature gas pressure: 1 mTorr
Carrier gas: Ar
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.55 W / cm 2
Sputtering target used: In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
 尚、酸化物半導体薄膜の金属元素の各含有量の分析は、ガラス基板上に膜厚40nmの各酸化物半導体薄膜を上記と同様にしてスパッタリング法で形成した試料を別途用意して行った。該分析は、CIROS MarkII(株式会社リガク製)を用い、ICP(Inductively Coupled Plasma)発光分光法により行った。 In addition, each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above. The analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
 上記のようにして酸化物半導体薄膜4を成膜した後、フォトリソグラフィおよびウェットエッチングによりパターニングを行った。ウェットエッチング液として、関東化学株式会社製「ITO-07N」を使用した。本実施例では、実験を行ったすべての酸化物半導体薄膜について、ウェットエッチングによる残渣はなく、適切にエッチングできたことを確認している。 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
 上記の通り、酸化物半導体薄膜4をパターニングした後、膜質を向上させるためにプレアニールを行った。プレアニールは、大気雰囲気にて350℃で1時間行った。 As described above, after the oxide semiconductor thin film 4 was patterned, pre-annealing was performed to improve the film quality. Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
 前記プレアニールの後、表3、図12、図13に示すようにエッチストップ層9として、SiOx膜9-1およびSiNx膜9-2を前記酸化物半導体薄膜の上に成膜した(図13A)。上記SiOx膜9-1の成膜は、N2OおよびSiH4の混合ガスを用い、プラズマCVD法で行った。成膜条件は、成膜パワー密度:0.32W/cm2、成膜温度:230℃、成膜時のガス圧:133Paとした。上記SiNx膜9-2の成膜はSiH4、N2、NH3の混合ガスを用い、プラズマCVD法で行った。成膜条件を、成膜パワー密度:0.32W/cm2、成膜温度:150℃、成膜時のガス圧:133Paとした。上記SiOx膜9-1およびSiNx膜9-2の成膜後、フォトリソグラフィおよびドライエッチングによりエッチストップ層9のパターニングを行った(図13B)。なお、実施例3-8では、比較のため、SiOx膜のみを前記酸化物半導体薄膜の上に成膜した。 After the pre-annealing, as shown in Table 3, FIG. 12, and FIG. 13, an SiOx film 9-1 and a SiNx film 9-2 were formed on the oxide semiconductor thin film as an etch stop layer 9 (FIG. 13A). . The SiOx film 9-1 was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa. The SiNx film 9-2 was formed by a plasma CVD method using a mixed gas of SiH 4 , N 2 , and NH 3 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa. After the formation of the SiOx film 9-1 and the SiNx film 9-2, the etch stop layer 9 was patterned by photolithography and dry etching (FIG. 13B). In Example 3-8, only the SiOx film was formed on the oxide semiconductor thin film for comparison.
 次に、ソース・ドレイン電極5を形成するため、膜厚200nmの純Mo膜を、スパッタリング法によって上記酸化物半導体薄膜4の上方に成膜した。上記純Mo膜の成膜条件は、投入パワー:DC300W(成膜パワー密度:3.8W/cm2)、キャリアガス:Ar、ガス圧:2mTorr、基板温度:室温とした。 Next, in order to form the source / drain electrodes 5, a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering. The pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
 次いで、フォトリソグラフィおよびウェットエッチングにより、ソース・ドレイン電極5のパターニングを行い、トランジスタ特性評価用プロービングのためのコンタクトホール7を形成した(図13C)。具体的には、リン酸:硝酸:酢酸=70:2:10(質量比)の混合液からなり液温が40℃の混酸エッチング液を用いた。 Next, the source / drain electrodes 5 were patterned by photolithography and wet etching to form contact holes 7 for probing for transistor characteristic evaluation (FIG. 13C). Specifically, a mixed acid etching solution composed of a mixed solution of phosphoric acid: nitric acid: acetic acid = 70: 2: 10 (mass ratio) and having a liquid temperature of 40 ° C. was used.
 このようにしてソース・ドレイン電極5を形成した後、ポストアニールとして、窒素雰囲気で260℃、30分の熱処理を行った。 After forming the source / drain electrodes 5 in this manner, a heat treatment was performed in a nitrogen atmosphere at 260 ° C. for 30 minutes as post-annealing.
 作製したトランジスタの断面図を図12に示し、製造工程を説明したトランジスタの断面図を図13に示す。 FIG. 12 is a cross-sectional view of the manufactured transistor, and FIG. 13 is a cross-sectional view of the transistor explaining the manufacturing process.
 作製した薄膜トランジスタは、チャネル長20μm、チャネル幅200μm(No.3-2、3、7、8)、チャネル長10μm、チャネル幅200μm(No.3-4)、チャネル長10μm、チャネル幅100μm(No.3-5)、チャネル長10μm、チャネル幅50μm(No.3-6)であった。 The manufactured thin film transistor has a channel length of 20 μm, a channel width of 200 μm (No. 3-2, 3, 7, 8), a channel length of 10 μm, a channel width of 200 μm (No. 3-4), a channel length of 10 μm, and a channel width of 100 μm (No. 3-5), channel length 10 μm, channel width 50 μm (No. 3-6).
 上記TFTについて、実施例1および2と同様に上述の各種特性(S値、しきい値電圧Vth、および電界効果移動度μFE)を調べた。 The above-described various characteristics (S value, threshold voltage Vth, and field-effect mobility μFE) were examined for the TFT in the same manner as in Examples 1 and 2.
 これらの結果を表3に併記する。参考のため、実施例1の方法で作製したTFTの構成、物性、及び各種特性をNo.3-1として記載する。 These results are also shown in Table 3. For reference, the structure, physical properties, and various characteristics of the TFT fabricated by the method of Example 1 are No. Described as 3-1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、エッチストップ層をSiOx膜のみで形成した場合はNo.3-8のように、移動度は一般的なIn-Ga-Zn-O(IGZO)膜と同程度の値であった。その一方で、エッチストップ層をSiOx膜とSiNx膜の積層膜とした場合はNo.3-2~7のように高移動度が得られた。つまり、上層としてSiNx膜が設けた場合に、高移動度が得られた。また、エッチストップ層全体の膜厚に対するSiNx膜の膜厚の割合が高い方が移動度が高くなった。加えて、チャネル長は長い方が移動度が高くなり、チャネル幅は短い方が移動度が高くなった。 From Table 3, when the etch stop layer is formed only of the SiOx film, it is No. As in 3-8, the mobility was comparable to that of a general In—Ga—Zn—O (IGZO) film. On the other hand, when the etch stop layer is a laminated film of a SiOx film and a SiNx film, No. 1 is used. High mobility was obtained as in 3-2 to 7. That is, high mobility was obtained when a SiNx film was provided as an upper layer. Also, the mobility was higher when the ratio of the SiNx film thickness to the entire etch stop layer was higher. In addition, the longer the channel length, the higher the mobility, and the shorter the channel width, the higher the mobility.
 実施例4
 No.4-2~3については、実施例1とエッチストップ層の構造の異なる第二のTFTを作製し、また、実施例3と異なる以下の製造方法(以下、製造方法Bという)でトランジスタを作製し、トランジスタ特性を評価した。
Example 4
No. For 4-2 to 3, a second TFT having an etch stop layer structure different from that of Example 1 is manufactured, and a transistor is manufactured by the following manufacturing method (hereinafter referred to as manufacturing method B) different from Example 3. Then, transistor characteristics were evaluated.
 なお、本実施例ではエッチストップ層9としてSiNxを含む層を用いたときの有用性を強調するため、便宜上、酸化物半導体トランジスタを保護するための保護膜6を設けていないが、前述した実施例1および2と同様に保護膜6を設けてもよい。 In this embodiment, in order to emphasize the usefulness when a layer containing SiNx is used as the etch stop layer 9, for convenience, the protective film 6 for protecting the oxide semiconductor transistor is not provided. A protective film 6 may be provided as in Examples 1 and 2.
 まず、ガラス基板1(コーニング社製イーグル2000、直径100mm×厚さ0.7mm)上に、ゲート電極2としてMo薄膜を100nm、およびゲート絶縁膜3としてSiO2(膜厚200nm)を順次成膜した。ゲート電極2は純Moのスパッタリングターゲットを使用し、DCスパッタリング法により形成した。スパッタリング条件は、成膜温度:室温、成膜パワー密度:3.8W/cm2、キャリアガス:Ar、成膜時のガス圧:2mTorr、Arガス流量:20sccmとした。また、ゲート絶縁膜3はプラズマCVD法を用い、キャリアガス:SiH4とN2Oの混合ガス、成膜パワー密度:0.96W/cm2、成膜温度:320℃、成膜時のガス圧:133Paの条件で成膜した。 First, on a glass substrate 1 (Corning Eagle 2000, diameter: 100 mm × thickness: 0.7 mm), a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed. did. The gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target. The sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm. The gate insulating film 3 uses a plasma CVD method, carrier gas: a mixed gas of SiH 4 and N 2 O, film formation power density: 0.96 W / cm 2 , film formation temperature: 320 ° C., gas during film formation The film was formed under a pressure of 133 Pa.
 次に、下記組成の酸化物半導体薄膜4(In-Ga-Sn-O膜、膜厚40nm)を、表4に示す種々のスパッタリング条件にて成膜した。
In:Ga:Sn=42.7:26.7:30.6原子%
 詳細には、上記酸化物半導体薄膜4と同じ組成を有するスパッタリングターゲットを用い、下記条件のスパッタリング法によって成膜した。
スパッタリング装置:株式会社アルバック製「CS-200」
基板温度   :室温
ガス圧    :1mTorr
キャリアガス :Ar
酸素分圧   :100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.55W/cm2
使用スパッタリングターゲット:In:Ga:Sn=42.7:26.7:30.6原子%
Next, an oxide semiconductor thin film 4 (In—Ga—Sn—O film, film thickness 40 nm) having the following composition was formed under various sputtering conditions shown in Table 4.
In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
Specifically, a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
Substrate temperature: room temperature gas pressure: 1 mTorr
Carrier gas: Ar
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.55 W / cm 2
Sputtering target used: In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
 尚、酸化物半導体薄膜の金属元素の各含有量の分析は、ガラス基板上に膜厚40nmの各酸化物半導体薄膜を上記と同様にしてスパッタリング法で形成した試料を別途用意して行った。該分析は、CIROS MarkII(株式会社リガク製)を用い、ICP(Inductively Coupled Plasma)発光分光法により行った。 In addition, each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above. The analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
 上記のようにして酸化物半導体薄膜4を成膜した後、フォトリソグラフィおよびウェットエッチングによりパターニングを行った。ウェットエッチング液として、関東化学株式会社製「ITO-07N」を使用した。本実施例では、実験を行ったすべての酸化物半導体薄膜について、ウェットエッチングによる残渣はなく、適切にエッチングできたことを確認している。 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
 上記の通り、酸化物半導体薄膜4をパターニングした後、膜質を向上させるためにプレアニールを行った。プレアニールは、大気雰囲気にて350℃で1時間行った。 As described above, after the oxide semiconductor thin film 4 was patterned, pre-annealing was performed to improve the film quality. Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
 前記プレアニールの後、表4、図12、図13に示すようにエッチストップ層9として、SiOx膜9-1およびSiNx膜9-2を前記酸化物半導体薄膜の上に成膜した(図13A)。上記SiOx膜9-1の成膜は、N2OおよびSiH4の混合ガスを用い、プラズマCVD法で行った。成膜条件は、成膜パワー密度:0.32W/cm2、成膜温度:230℃、成膜時のガス圧:133Paとした。上記SiNx膜9-2の成膜はSiH4、N2、NH3の混合ガスを用い、プラズマCVD法で行った。成膜条件を、成膜パワー密度:0.32W/cm2、成膜温度:150℃、成膜時のガス圧:133Paとした。その後、ポストアニールとして、窒素雰囲気で260℃、30分の熱処理を行った。上記SiOx膜9-1およびSiNx膜9-2の成膜後、ポストアニールを経て、フォトリソグラフィおよびドライエッチングによりエッチストップ層9(9-1および9-2)のパターニングを行った(図13B)。 After the pre-annealing, an SiOx film 9-1 and a SiNx film 9-2 were formed on the oxide semiconductor thin film as an etch stop layer 9 as shown in Table 4, FIG. 12, and FIG. 13 (FIG. 13A). . The SiOx film 9-1 was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa. The SiNx film 9-2 was formed by a plasma CVD method using a mixed gas of SiH 4 , N 2 , and NH 3 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa. Then, as post-annealing, heat treatment was performed at 260 ° C. for 30 minutes in a nitrogen atmosphere. After the formation of the SiOx film 9-1 and the SiNx film 9-2, post-annealing was performed, and the etch stop layer 9 (9-1 and 9-2) was patterned by photolithography and dry etching (FIG. 13B). .
 次に、ソース・ドレイン電極5を形成するため、膜厚200nmの純Mo膜を、スパッタリング法によって上記酸化物半導体薄膜4の上方に成膜した。上記純Mo膜の成膜条件は、投入パワー:DC300W(成膜パワー密度:3.8W/cm2)、キャリアガス:Ar、ガス圧:2mTorr、基板温度:室温とした。 Next, in order to form the source / drain electrodes 5, a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering. The pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
 次いで、フォトリソグラフィおよびウェットエッチングにより、ソース・ドレイン電極5のパターニングを行い、トランジスタ特性評価用プロービングのためのコンタクトホール7を形成した(図13C)。具体的には、リン酸:硝酸:酢酸=70:2:10(質量比)の混合液からなり液温が40℃の混酸エッチング液を用いた。 Next, the source / drain electrodes 5 were patterned by photolithography and wet etching to form contact holes 7 for probing for transistor characteristic evaluation (FIG. 13C). Specifically, a mixed acid etching solution composed of a mixed solution of phosphoric acid: nitric acid: acetic acid = 70: 2: 10 (mass ratio) and having a liquid temperature of 40 ° C. was used.
 作製したトランジスタの断面図を図12に示し、製造工程を説明したトランジスタの断面図を図13に示す。 FIG. 12 is a cross-sectional view of the manufactured transistor, and FIG. 13 is a cross-sectional view of the transistor explaining the manufacturing process.
 作製した薄膜トランジスタは、チャネル長20μm、チャネル幅200μm(No.4-2)、チャネル長10μm、チャネル幅50μm(No.4-3)であった。 The manufactured thin film transistor had a channel length of 20 μm, a channel width of 200 μm (No. 4-2), a channel length of 10 μm, and a channel width of 50 μm (No. 4-3).
 上記TFTについて、実施例1~3と同様に上述の各種特性(S値、しきい値電圧Vth、および電界効果移動度μFE)を調べた。 The above-mentioned various characteristics (S value, threshold voltage Vth, and field effect mobility μFE) of the TFT were examined in the same manner as in Examples 1 to 3.
 これらの結果を表4に併記する。参考のため、実施例1の方法で作製したTFTの構成、物性、及び各種特性をNo.4-1として記載する。 These results are also shown in Table 4. For reference, the structure, physical properties, and various characteristics of the TFT fabricated by the method of Example 1 are No. It is described as 4-1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、エッチストップ層をSiOx膜のみで形成した場合は、移動度は一般的なIn-Ga-Zn-O(IGZO)膜と同程度の値であった。その一方で、エッチストップ層をSiOx膜とSiNx膜の積層膜とした場合は、上層としてSiNx膜が設けられたため、高移動度が得られた。また、表3及び表4より、ポストアニールは、エッチストップ層9の形成後であれば、ソース・ドレイン電極5の形成前に行ってもよく、ソース・ドレイン電極5の形成後に行ってもよいことがわかった。 From Table 4, when the etch stop layer was formed only of the SiOx film, the mobility was the same value as that of a general In—Ga—Zn—O (IGZO) film. On the other hand, when the etch stop layer is a laminated film of a SiOx film and a SiNx film, a high mobility was obtained because the SiNx film was provided as an upper layer. From Tables 3 and 4, post-annealing may be performed before the formation of the source / drain electrodes 5 or after the formation of the source / drain electrodes 5 as long as the etching stop layer 9 is formed. I understood it.
 実施例5
 実施例5では、実施例3において、上記パターン(i)に示す形状に代えて上記パターン(iv)に示す形状TFTを作製した以外は、実施例3とほぼ同様にトランジスタを作製し、トランジスタ特性を評価した。
Example 5
In Example 5, a transistor was produced in substantially the same manner as in Example 3 except that the shape TFT shown in the pattern (iv) was produced instead of the shape shown in the pattern (i) in Example 3, and transistor characteristics were obtained. Evaluated.
 まず、ガラス基板1(コーニング社製イーグル2000、直径100mm×厚さ0.7mm)上に、ゲート電極2としてMo薄膜を100nm、およびゲート絶縁膜3としてSiO2(膜厚200nm)を順次成膜した。ゲート電極2は純Moのスパッタリングターゲットを使用し、DCスパッタリング法により形成した。スパッタリング条件は、成膜温度:室温、成膜パワー密度:3.8W/cm2、キャリアガス:Ar、成膜時のガス圧:2mTorr、Arガス流量:20sccmとした。また、ゲート絶縁膜3はプラズマCVD法を用い、キャリアガス:SiH4とN2Oの混合ガス、成膜パワー密度:1.27W/cm2、成膜温度:320℃、成膜時のガス圧:133Paの条件で成膜した。 First, on a glass substrate 1 (Corning Eagle 2000, diameter: 100 mm × thickness: 0.7 mm), a Mo thin film of 100 nm as the gate electrode 2 and a SiO 2 (film thickness of 200 nm) as the gate insulating film 3 are sequentially formed. did. The gate electrode 2 was formed by a DC sputtering method using a pure Mo sputtering target. The sputtering conditions were film formation temperature: room temperature, film formation power density: 3.8 W / cm 2 , carrier gas: Ar, gas pressure during film formation: 2 mTorr, and Ar gas flow rate: 20 sccm. The gate insulating film 3 uses a plasma CVD method, carrier gas: mixed gas of SiH 4 and N 2 O, deposition power density: 1.27 W / cm 2 , deposition temperature: 320 ° C., gas during deposition The film was formed under a pressure of 133 Pa.
 次に、下記組成の酸化物半導体薄膜4(In-Ga-Sn-O膜、膜厚40nm)を、表5に示すスパッタリング条件にて成膜した。
In:Ga:Sn=42.7:26.7:30.6原子%
 詳細には、上記酸化物半導体薄膜4と同じ組成を有するスパッタリングターゲットを用い、下記条件のスパッタリング法によって成膜した。
スパッタリング装置:株式会社アルバック製「CS-200」
基板温度   :室温
ガス圧    :1mTorr
キャリアガス :Ar
酸素分圧   :100×O2/(Ar+O2)=4体積%
成膜パワー密度:2.55W/cm2
使用スパッタリングターゲット:In:Ga:Sn=42.7:26.7:30.6原子%
Next, an oxide semiconductor thin film 4 (In—Ga—Sn—O film, thickness 40 nm) having the following composition was formed under the sputtering conditions shown in Table 5.
In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
Specifically, a sputtering target having the same composition as that of the oxide semiconductor thin film 4 was used, and a film was formed by a sputtering method under the following conditions.
Sputtering equipment: “CS-200” manufactured by ULVAC, Inc.
Substrate temperature: room temperature gas pressure: 1 mTorr
Carrier gas: Ar
Oxygen partial pressure: 100 × O 2 / (Ar + O 2 ) = 4% by volume
Deposition power density: 2.55 W / cm 2
Sputtering target used: In: Ga: Sn = 42.7: 26.7: 30.6 atomic%
 尚、酸化物半導体薄膜の金属元素の各含有量の分析は、ガラス基板上に膜厚40nmの各酸化物半導体薄膜を上記と同様にしてスパッタリング法で形成した試料を別途用意して行った。該分析は、CIROS MarkII(株式会社リガク製)を用い、ICP(Inductively Coupled Plasma)発光分光法により行った。 In addition, each content of the metal element of the oxide semiconductor thin film was analyzed by separately preparing a sample in which each oxide semiconductor thin film having a film thickness of 40 nm was formed on a glass substrate by the sputtering method in the same manner as described above. The analysis was performed by ICP (Inductively Coupled Plasma) emission spectroscopy using CIROS Mark II (manufactured by Rigaku Corporation).
 上記のようにして酸化物半導体薄膜4を成膜した後、フォトリソグラフィおよびウェットエッチングによりパターニングを行った。ウェットエッチング液として、関東化学株式会社製「ITO-07N」を使用した。本実施例では、実験を行ったすべての酸化物半導体薄膜について、ウェットエッチングによる残渣はなく、適切にエッチングできたことを確認している。 After forming the oxide semiconductor thin film 4 as described above, patterning was performed by photolithography and wet etching. As a wet etching solution, “ITO-07N” manufactured by Kanto Chemical Co., Inc. was used. In this example, it was confirmed that all oxide semiconductor thin films tested were free from residues due to wet etching and could be properly etched.
 上記の通り、酸化物半導体薄膜4をパターニングした後、膜質を向上させるためにプレアニールを行った。プレアニールは、大気雰囲気にて350℃で1時間行った。 As described above, after the oxide semiconductor thin film 4 was patterned, pre-annealing was performed to improve the film quality. Pre-annealing was performed at 350 ° C. for 1 hour in an air atmosphere.
 前記プレアニールの後、表5、図14、図15に示すようにエッチストップ層9として、SiOx膜9-1およびSiNx膜9-2を前記酸化物半導体薄膜の上に成膜した(図15A)。上記SiOx膜9-1の成膜は、N2OおよびSiH4の混合ガスを用い、プラズマCVD法で行った。成膜条件は、成膜パワー密度:0.32W/cm2、成膜温度:230℃、成膜時のガス圧:133Paとした。上記SiNx膜9-2の成膜はSiH4、N2、NH3の混合ガスを用い、プラズマCVD法で行った。成膜条件を、成膜パワー密度:0.32W/cm2、成膜温度:150℃、成膜時のガス圧:133Paとした。上記SiOx膜9-1およびSiNx膜9-2の成膜後、フォトリソグラフィおよびドライエッチングによりエッチストップ層9のパターニングを行った(図15B)。 After the pre-annealing, an SiOx film 9-1 and a SiNx film 9-2 were formed on the oxide semiconductor thin film as an etch stop layer 9 as shown in Table 5, FIG. 14, and FIG. 15 (FIG. 15A). . The SiOx film 9-1 was formed by a plasma CVD method using a mixed gas of N 2 O and SiH 4 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 230 ° C., and gas pressure during film formation: 133 Pa. The SiNx film 9-2 was formed by a plasma CVD method using a mixed gas of SiH 4 , N 2 , and NH 3 . The film formation conditions were film formation power density: 0.32 W / cm 2 , film formation temperature: 150 ° C., and gas pressure during film formation: 133 Pa. After the formation of the SiOx film 9-1 and the SiNx film 9-2, the etch stop layer 9 was patterned by photolithography and dry etching (FIG. 15B).
 次に、ソース・ドレイン電極5を形成するため、膜厚200nmの純Mo膜を、スパッタリング法によって上記酸化物半導体薄膜4の上方に成膜した。上記純Mo膜の成膜条件は、投入パワー:DC300W(成膜パワー密度:3.8W/cm2)、キャリアガス:Ar、ガス圧:2mTorr、基板温度:室温とした。 Next, in order to form the source / drain electrodes 5, a pure Mo film having a thickness of 200 nm was formed above the oxide semiconductor thin film 4 by sputtering. The pure Mo film was formed under the following conditions: input power: DC 300 W (deposition power density: 3.8 W / cm 2 ), carrier gas: Ar, gas pressure: 2 mTorr, substrate temperature: room temperature.
 次いで、フォトリソグラフィおよびウェットエッチングにより、ソース・ドレイン電極5のパターニングを行い、トランジスタ特性評価用プロービングのためのコンタクトホール7を形成した(図15C)。具体的には、リン酸:硝酸:酢酸=70:2:10(質量比)の混合液からなり液温が40℃の混酸エッチング液を用いた。 Next, the source / drain electrodes 5 were patterned by photolithography and wet etching to form contact holes 7 for probing for transistor characteristic evaluation (FIG. 15C). Specifically, a mixed acid etching solution composed of a mixed solution of phosphoric acid: nitric acid: acetic acid = 70: 2: 10 (mass ratio) and having a liquid temperature of 40 ° C. was used.
 このようにしてソース・ドレイン電極5を形成した後、ポストアニールとして、窒素雰囲気で260℃、30分の熱処理を行った。 After forming the source / drain electrodes 5 in this manner, a heat treatment was performed in a nitrogen atmosphere at 260 ° C. for 30 minutes as post-annealing.
 作製したトランジスタの断面図を図14に示し、製造工程を説明したトランジスタの断面図を図15に示す。 FIG. 14 is a cross-sectional view of the manufactured transistor, and FIG. 15 is a cross-sectional view of the transistor illustrating the manufacturing process.
 作製した薄膜トランジスタは、チャネル長10μm、チャネル幅200μm、100μm、25μm(No.5-1~3)、チャネル長25μm、チャネル幅200μm、100μm、25μm(No.5-4~6)であった。 The fabricated thin film transistors had a channel length of 10 μm, a channel width of 200 μm, 100 μm, and 25 μm (No. 5-1 to 3), a channel length of 25 μm, a channel width of 200 μm, 100 μm, and 25 μm (No. 5-4 to 6).
 上記TFTについて、実施例1~4と同様に上述のTFT特性(S値、しきい値電圧Vth、および電界効果移動度μFE)を調べた。 The above TFT characteristics (S value, threshold voltage Vth, and field effect mobility μFE) of the above TFT were examined in the same manner as in Examples 1 to 4.
 これらの結果を表5に併記する。 These results are also shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上述のとおり、エッチストップ層をSiOx膜のみとした場合の移動度は低いが、表5より、エッチストップ層をSiOx膜とSiNx膜の積層膜とし、かつ、エッチストップ層を酸化物半導体薄膜のチャネル部分のみに配置した場合であっても、約40cm2/Vs以上の高い移動度が発現された。また、エッチストップ層をSiOx膜とSiNx膜の積層膜とし、かつ、エッチストップ層を酸化物半導体薄膜のチャネル部分のみに配置した場合、チャネル幅にかかわらず移動度は高くなることがわかった。 As described above, the mobility when the etch stop layer is only the SiOx film is low, but from Table 5, the etch stop layer is a laminated film of the SiOx film and the SiNx film, and the etch stop layer is the oxide semiconductor thin film. Even when arranged only in the channel portion, a high mobility of about 40 cm 2 / Vs or more was expressed. In addition, it was found that when the etch stop layer is a laminated film of a SiOx film and a SiNx film and the etch stop layer is disposed only in the channel portion of the oxide semiconductor thin film, the mobility is high regardless of the channel width.
 1 基板
 2 ゲート電極
 3 ゲート絶縁膜
 4 酸化物半導体薄膜
 5 ソース・ドレイン電極
 6 保護膜
 7 コンタクトホール
 8 透明導電膜
 9 エッチストップ層
 9-1 SiOx膜
 9-2 SiNx膜
DESCRIPTION OF SYMBOLS 1 Substrate 2 Gate electrode 3 Gate insulating film 4 Oxide semiconductor thin film 5 Source / drain electrode 6 Protective film 7 Contact hole 8 Transparent conductive film 9 Etch stop layer 9-1 SiOx film 9-2 SiNx film

Claims (4)

  1.  基板上にゲート電極、ゲート絶縁膜、酸化物半導体薄膜、前記酸化物半導体薄膜を保護するためのエッチストップ層、ソース・ドレイン電極、および保護膜をこの順序で有する薄膜トランジスタであって、
     前記酸化物半導体薄膜は、金属元素としてIn、GaおよびSnと;Oと;で構成される酸化物からなり、アモルファス構造を有し、かつ、前記In、GaおよびSnの合計に対する各金属元素の原子数比が下記式(1)~(3)を全て満たし、
     前記エッチストップ層及び前記保護膜の両方または一方がSiNxを含む
     ことを特徴とする薄膜トランジスタ。
    0.30≦In/(In+Ga+Sn)≦0.50 ・・・(1)
    0.20≦Ga/(In+Ga+Sn)≦0.30 ・・・(2)
    0.25≦Sn/(In+Ga+Sn)≦0.45 ・・・(3)
    A thin film transistor having a gate electrode, a gate insulating film, an oxide semiconductor thin film, an etch stop layer for protecting the oxide semiconductor thin film, a source / drain electrode, and a protective film in this order on a substrate,
    The oxide semiconductor thin film is made of an oxide composed of In, Ga and Sn; and O as metal elements, has an amorphous structure, and has a metal structure with respect to the total of In, Ga and Sn. The atomic ratio satisfies all of the following formulas (1) to (3),
    A thin film transistor, wherein both or one of the etch stop layer and the protective film contains SiNx.
    0.30 ≦ In / (In + Ga + Sn) ≦ 0.50 (1)
    0.20 ≦ Ga / (In + Ga + Sn) ≦ 0.30 (2)
    0.25 ≦ Sn / (In + Ga + Sn) ≦ 0.45 (3)
  2.  前記酸化物半導体薄膜の少なくとも一部が結晶化されている請求項1に記載の薄膜トランジスタ。 The thin film transistor according to claim 1, wherein at least a part of the oxide semiconductor thin film is crystallized.
  3.  前記保護膜がSiNxを含み、かつ、前記酸化物半導体薄膜のチャネル長方向およびチャネル幅方向の両端部は前記エッチストップ層と接する請求項1に記載の薄膜トランジスタ。 2. The thin film transistor according to claim 1, wherein the protective film includes SiNx, and both ends of the oxide semiconductor thin film in a channel length direction and a channel width direction are in contact with the etch stop layer.
  4.  前記保護膜がSiNxを含み、かつ、前記酸化物半導体薄膜のチャネル長方向およびチャネル幅方向の両端部は前記エッチストップ層と接する請求項2に記載の薄膜トランジスタ。 3. The thin film transistor according to claim 2, wherein the protective film includes SiNx, and both ends of the oxide semiconductor thin film in a channel length direction and a channel width direction are in contact with the etch stop layer.
PCT/JP2015/072326 2014-09-02 2015-08-06 Thin film transistor WO2016035503A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/327,296 US20170170029A1 (en) 2014-09-02 2015-08-06 Thin film transistor
CN201580035556.7A CN106489209B (en) 2014-09-02 2015-08-06 Thin film transistor
KR1020177005510A KR101974754B1 (en) 2014-09-02 2015-08-06 Thin film transistor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-178587 2014-09-02
JP2014178587 2014-09-02
JP2014-245124 2014-12-03
JP2014245124 2014-12-03
JP2015-132533 2015-07-01
JP2015132533A JP6659255B2 (en) 2014-09-02 2015-07-01 Thin film transistor

Publications (1)

Publication Number Publication Date
WO2016035503A1 true WO2016035503A1 (en) 2016-03-10

Family

ID=55439571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072326 WO2016035503A1 (en) 2014-09-02 2015-08-06 Thin film transistor

Country Status (1)

Country Link
WO (1) WO2016035503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175731A1 (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Thin film transistor
WO2017175732A1 (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Thin film transistor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103918A (en) * 2005-09-06 2007-04-19 Canon Inc Field effect transistor using amorphous oxide film for channel layer, method of manufacturing the same for channel layer, and method of manufacturing amorphous oxide film
JP2010166030A (en) * 2008-12-19 2010-07-29 Semiconductor Energy Lab Co Ltd Method for manufacturing transistor
JP2011142309A (en) * 2009-12-08 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact
US20140077203A1 (en) * 2011-12-31 2014-03-20 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and method of manufacturing the same and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103918A (en) * 2005-09-06 2007-04-19 Canon Inc Field effect transistor using amorphous oxide film for channel layer, method of manufacturing the same for channel layer, and method of manufacturing amorphous oxide film
JP2010166030A (en) * 2008-12-19 2010-07-29 Semiconductor Energy Lab Co Ltd Method for manufacturing transistor
JP2011142309A (en) * 2009-12-08 2011-07-21 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
WO2013027391A1 (en) * 2011-08-22 2013-02-28 出光興産株式会社 In-ga-sn based oxide sintered compact
US20140077203A1 (en) * 2011-12-31 2014-03-20 Boe Technology Group Co., Ltd. Thin film transistor, array substrate and method of manufacturing the same and display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175731A1 (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Thin film transistor
WO2017175732A1 (en) * 2016-04-04 2017-10-12 株式会社神戸製鋼所 Thin film transistor
CN108886060A (en) * 2016-04-04 2018-11-23 株式会社神户制钢所 Thin film transistor (TFT)
CN108886059A (en) * 2016-04-04 2018-11-23 株式会社神户制钢所 Thin film transistor (TFT)

Similar Documents

Publication Publication Date Title
JP6294428B2 (en) Method for manufacturing oxide for semiconductor layer of thin film transistor, and method for improving characteristics of thin film transistor
JP5977569B2 (en) THIN FILM TRANSISTOR STRUCTURE, AND THIN FILM TRANSISTOR AND DISPLAY DEVICE HAVING THE STRUCTURE
JP6659255B2 (en) Thin film transistor
KR101758538B1 (en) Thin film transistor and display device
WO2012014999A1 (en) Oxide for semiconductor layer and sputtering target of thin film transistor, and thin film transistor
WO2014034872A1 (en) Thin film transistor and display device
JP2012151469A (en) Semiconductor layer oxide and sputtering target of thin-film transistor, and thin-film transistor
JP2012033854A (en) Oxide for semiconductor layer of thin film transistor, sputtering target, and thin film transistor
JP2009231664A (en) Field-effect transistor, and manufacturing method thereof
JP2012104809A (en) Semiconductor thin film, thin-film transistor, and method for manufacturing the same
JP5552440B2 (en) Method for manufacturing transistor
JP6498745B2 (en) Thin film transistor manufacturing method
JP2016225505A (en) Thin film transistor, method of manufacturing the same, and sputtering target
JP2014056945A (en) Amorphous oxide thin film, method for producing the same, and thin-film transistor using the same
WO2016035503A1 (en) Thin film transistor
US11049976B2 (en) Thin-film transistor, oxide semiconductor film, and sputtering target
WO2020166269A1 (en) Oxide semiconductor thin film, thin-film transistor, and sputtering target
JP2018137423A (en) Thin-film transistor, thin-film device, and method for manufacturing thin-film transistor
JP7462438B2 (en) Oxide semiconductor thin film, thin film transistor using the same, and sputtering target for forming them
TWI834014B (en) Oxide semiconductor films, thin film transistors and sputtering targets
JP2021129047A (en) Thin-film transistor, oxide semiconductor thin film, and sputtering target
TW202124741A (en) Oxide semiconductor thin film, thin film transistor, and sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15327296

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177005510

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838347

Country of ref document: EP

Kind code of ref document: A1