TW202124741A - Oxide semiconductor thin film, thin film transistor, and sputtering target - Google Patents

Oxide semiconductor thin film, thin film transistor, and sputtering target Download PDF

Info

Publication number
TW202124741A
TW202124741A TW109143989A TW109143989A TW202124741A TW 202124741 A TW202124741 A TW 202124741A TW 109143989 A TW109143989 A TW 109143989A TW 109143989 A TW109143989 A TW 109143989A TW 202124741 A TW202124741 A TW 202124741A
Authority
TW
Taiwan
Prior art keywords
oxide semiconductor
semiconductor layer
thin film
satisfies
atomic ratio
Prior art date
Application number
TW109143989A
Other languages
Chinese (zh)
Other versions
TWI834014B (en
Inventor
越智元隆
西山功兵
寺前裕美
湖山貴之
Original Assignee
日商神戶製鋼所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商神戶製鋼所股份有限公司 filed Critical 日商神戶製鋼所股份有限公司
Publication of TW202124741A publication Critical patent/TW202124741A/en
Application granted granted Critical
Publication of TWI834014B publication Critical patent/TWI834014B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

In the present invention, a thin film transistor is obtained which has excellent electron field-effect mobility and stress tolerance, has excellent wet etching processability with respect to a wet etching liquid used when processing an oxide semiconductor layer, and has an oxide semiconductor layer having excellent wet etching resistance against a wet etching liquid used when patterning source and drain electrodes. This oxide semiconductor thin film contains In, Ga, Zn, Sn, and O, wherein the ratio of the number of atoms of each metal element to the total number of atoms of In, Ga, Zn, and Sn satisfies 0.070 ≤ In/(In+Ga+Zn+Sn) ≤ 0.200, 0.250 ≤ Ga/(In+Ga+Zn+Sn) ≤ 0.600, 0.180 ≤ Zn/(In+Ga+Zn+Sn) ≤ 0.550, and 0.030 ≤ Sn/(In+Ga+Zn+Sn) ≤ 0.150, and also satisfies 0.10 ≤ Sn/Zn ≤ 0.25 and (Sn*In)/Ga ≥ 0.009.

Description

氧化物半導體薄膜、薄膜電晶體及濺鍍靶Oxide semiconductor thin film, thin film transistor and sputtering target

本發明是有關於一種可適宜地用於例如液晶顯示器或有機電致發光(Electroluminescence,EL)顯示器等顯示裝置的氧化物半導體薄膜、及包括包含該氧化物半導體薄膜的氧化物半導體層的薄膜電晶體(Thin Film Transistor,TFT)。另外,本發明是有關於一種用以形成包含該氧化物半導體薄膜的氧化物半導體層的濺鍍靶(sputtering target)。The present invention relates to an oxide semiconductor film that can be suitably used in display devices such as liquid crystal displays or organic electroluminescence (Electroluminescence, EL) displays, and a thin film electrical device including an oxide semiconductor layer containing the oxide semiconductor film. Crystal (Thin Film Transistor, TFT). In addition, the present invention relates to a sputtering target for forming an oxide semiconductor layer including the oxide semiconductor thin film.

作為非晶(amorphous)氧化物半導體,如專利文獻1所示,已知有一種包含銦(In)、鎵(Ga)、鋅(Zn)及氧(O)的In-Ga-Zn系氧化物半導體(Indium Gallium Zinc Oxide,IGZO)。 [現有技術文獻] [專利文獻]As an amorphous oxide semiconductor, as shown in Patent Document 1, an In-Ga-Zn-based oxide containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is known Semiconductor (Indium Gallium Zinc Oxide, IGZO). [Prior Art Literature] [Patent Literature]

[專利文獻1]日本專利特開2010-219538號公報[Patent Document 1] Japanese Patent Laid-Open No. 2010-219538

[發明所欲解決之課題] 氧化物半導體可應用於構成要求高解析度及高速驅動的顯示裝置等的電子電路的薄膜電晶體的通道層。 對使用了氧化物半導體薄膜的薄膜電晶體要求相對於光照射或電壓施加等應力的耐受性(應力耐受性)優異。若應力耐受性低,則電晶體的臨限值電壓偏移(shift),或者產生偏差而導致顯示裝置自身的可靠性降低。[The problem to be solved by the invention] The oxide semiconductor can be applied to the channel layer of thin film transistors that constitute electronic circuits such as display devices that require high resolution and high-speed driving. Thin-film transistors using an oxide semiconductor thin film are required to have excellent resistance to stress (stress resistance) such as light irradiation or voltage application. If the stress tolerance is low, the threshold voltage of the transistor shifts, or deviation occurs, which reduces the reliability of the display device itself.

進而,於製作在氧化物半導體薄膜上包括源極/汲極電極的薄膜電晶體時,亦要求所述氧化物半導體薄膜相對於濕式蝕刻(wet etching)液等藥液而具有高的特性(耐濕式蝕刻性)。具體而言,要求以下兩種特性。Furthermore, when fabricating a thin film transistor including source/drain electrodes on an oxide semiconductor film, the oxide semiconductor film is also required to have high characteristics compared to chemical solutions such as wet etching solutions ( Resistance to wet etching). Specifically, the following two characteristics are required.

(i)氧化物半導體薄膜相對於氧化物半導體加工用濕式蝕刻液而具有優異的可溶性(濕式蝕刻加工性優異) 即,要求:藉由在對氧化物半導體薄膜進行加工時所使用的草酸等有機酸系或無機酸系的濕式蝕刻液,所述氧化物半導體薄膜以適當的速度被蝕刻,可無殘渣地進行圖案化。 (ii)氧化物半導體薄膜相對於源極/汲極電極用濕式蝕刻液而為不溶性(耐濕式蝕刻性優異)(I) The oxide semiconductor thin film has excellent solubility in wet etching solutions for oxide semiconductor processing (excellent wet etching processability) That is, it is required that the oxide semiconductor thin film is etched at an appropriate speed by using an organic acid-based or inorganic acid-based wet etching solution such as oxalic acid used when processing the oxide semiconductor thin film. Perform patterning. (Ii) The oxide semiconductor thin film is insoluble in wet etching solutions for source/drain electrodes (excellent wet etching resistance)

本發明的目的在於提供一種可獲得於氧化物半導體電晶體中,場效應遷移率與應力耐受性優異,並且相對於在對氧化物半導體層進行加工時所使用的濕式蝕刻液而具有優異的濕式蝕刻加工性,且相對於在對源極/汲極電極進行圖案化時所使用的濕式蝕刻液而氧化物半導體層具有優異的耐濕式蝕刻性的薄膜電晶體的氧化物半導體薄膜、包含該氧化物半導體層的薄膜電晶體及用以形成該氧化物半導體層的濺鍍靶。The object of the present invention is to provide an oxide semiconductor transistor that has excellent field-effect mobility and stress tolerance, and is superior to wet etching solutions used when processing oxide semiconductor layers. Wet etching processability, and the oxide semiconductor layer has excellent wet etching resistance compared to the wet etching solution used when patterning the source/drain electrodes. A thin film, a thin film transistor including the oxide semiconductor layer, and a sputtering target for forming the oxide semiconductor layer.

[解決課題之手段] 本發明者等人反覆進行了努力研究,結果發現:藉由採用包含作為金屬元素的In、Ga、Zn及Sn、以及O的氧化物半導體薄膜,並對各金屬元素的組成進行適當控制,可解決所述課題,從而完成了本發明。[Means to solve the problem] The inventors of the present invention have conducted diligent studies and found that by using an oxide semiconductor film containing In, Ga, Zn, Sn, and O as metal elements, and appropriately controlling the composition of each metal element, it is possible to The above-mentioned problems are solved, and the present invention has been completed.

即,本發明的所述目的可藉由與氧化物半導體薄膜相關的下述[1]的結構來達成。 [1] 一種氧化物半導體薄膜,包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。That is, the above-mentioned object of the present invention can be achieved by the following structure [1] related to an oxide semiconductor thin film. [1] An oxide semiconductor thin film containing In, Ga, Zn, Sn, and O as metal elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.

另外,本發明的所述目的可藉由與薄膜電晶體相關的下述[2]的結構來達成。 [2] 一種薄膜電晶體,其於基板上依序具有閘極電極、閘極絕緣膜、第二氧化物半導體層、第一氧化物半導體層、源極/汲極電極及保護膜,且所述薄膜電晶體中, 所述第一氧化物半導體層包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。In addition, the objective of the present invention can be achieved by the following structure [2] related to thin film transistors. [2] A thin film transistor having a gate electrode, a gate insulating film, a second oxide semiconductor layer, a first oxide semiconductor layer, a source/drain electrode, and a protective film in sequence on a substrate, and In the thin film transistor, The first oxide semiconductor layer contains In, Ga, Zn, and Sn, and O as metal elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.

另外,與薄膜電晶體相關的本發明的較佳實施形態是有關於以下的[3]。 [3] 如所述[2]所記載的薄膜電晶體,其中,所述源極/汲極電極與所述第一氧化物半導體層直接接合,所述源極/汲極電極包含Cu或Cu合金。In addition, the preferred embodiment of the present invention related to the thin film transistor is related to the following [3]. [3] The thin film transistor according to [2], wherein the source/drain electrode is directly bonded to the first oxide semiconductor layer, and the source/drain electrode includes Cu or Cu alloy.

另外,本發明的所述目的可藉由與濺鍍靶相關的下述[4]的結構來達成。 [4] 一種濺鍍靶,其用以形成如所述[2]或[3]所記載的薄膜電晶體中的所述第一氧化物半導體層,且 所述濺鍍靶包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。In addition, the object of the present invention can be achieved by the structure of the following [4] related to the sputtering target. [4] A sputtering target for forming the first oxide semiconductor layer in the thin film transistor described in [2] or [3], and The sputtering target includes In, Ga, Zn, Sn, and O as metallic elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.

[發明的效果] 根據本發明,可提供一種可獲得於氧化物半導體電晶體中,場效應遷移率與應力耐受性優異,並且相對於在對氧化物半導體層進行加工時所使用的濕式蝕刻液而具有優異的濕式蝕刻加工性,且相對於在對源極/汲極電極進行圖案化時所使用的濕式蝕刻液而氧化物半導體層具有優異的耐濕式蝕刻性的薄膜電晶體的氧化物半導體薄膜、薄膜電晶體及濺鍍靶。[Effects of the invention] According to the present invention, it is possible to provide an oxide semiconductor transistor that is excellent in field-effect mobility and stress tolerance, and is excellent in comparison with the wet etching solution used when processing the oxide semiconductor layer. Wet etching processability, and the oxide semiconductor layer has excellent wet etching resistance compared to the wet etching solution used when patterning the source/drain electrodes. Thin film, thin film transistor and sputtering target.

以下,對本發明的實施形態的氧化物半導體薄膜及薄膜電晶體進行說明。Hereinafter, the oxide semiconductor thin film and the thin film transistor according to the embodiment of the present invention will be described.

本實施形態的氧化物半導體薄膜包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。The oxide semiconductor thin film of this embodiment contains In, Ga, Zn, Sn, and O as metal elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.

另外,本實施形態的薄膜電晶體於基板上依序具有閘極電極、閘極絕緣膜、第二氧化物半導體層、第一氧化物半導體層、源極/汲極電極及保護膜,且所述薄膜電晶體中, 所述第一氧化物半導體層包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。In addition, the thin film transistor of this embodiment sequentially has a gate electrode, a gate insulating film, a second oxide semiconductor layer, a first oxide semiconductor layer, a source/drain electrode, and a protective film on the substrate. In the thin film transistor, The first oxide semiconductor layer contains In, Ga, Zn, and Sn, and O as metal elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.

再者,於本實施形態中,有時將包含In、Ga、Zn、Sn及O的氧化物稱為「IGZTO」。另外,有時將相對於除O以外的所有金屬元素(In、Ga、Zn及Sn)的原子數的合計量的In、Ga、Zn及Sn的含量(原子數比)分別稱為「In原子數比」、「Ga原子數比」、「Zn原子數比」及「Sn原子數比」。In addition, in this embodiment, an oxide containing In, Ga, Zn, Sn, and O may be referred to as "IGZTO". In addition, the contents (atomic ratio) of In, Ga, Zn, and Sn relative to the total atomic number of all metal elements (In, Ga, Zn, and Sn) other than O are sometimes referred to as "In atom "Number ratio", "Ga atomic number ratio", "Zn atomic number ratio" and "Sn atomic number ratio".

<氧化物半導體薄膜> 以下,對本實施形態的氧化物半導體薄膜(或後述的薄膜電晶體中的第一氧化物半導體層)進行說明。<Oxide semiconductor thin film> Hereinafter, the oxide semiconductor thin film of this embodiment (or the first oxide semiconductor layer in the thin film transistor described later) will be described.

〔0.070≦In/(In+Ga+Zn+Sn)≦0.200〕 In為有助於提高電傳導性的元素。In原子數比越大,即In於所有金屬元素中所佔的量越多,則氧化物半導體層的導電性越提高,因此場效應遷移率增加。〔0.070≦In/(In+Ga+Zn+Sn)≦0.200〕 In is an element that contributes to the improvement of electrical conductivity. The greater the In atomic ratio, that is, the greater the amount of In in all metal elements, the more the conductivity of the oxide semiconductor layer is improved, and therefore the field-effect mobility increases.

為了有效地發揮所述作用,需要將所述In原子數比設為0.070以上。所述In原子數比較佳為0.080以上,更佳為0.100以上。但是,若In原子數比過大,則存在載子密度過度增加而臨限值電壓降低等問題,因此In原子數比設為0.200以下。所述In原子數比較佳為0.150以下,更佳為0.130以下。In order to effectively exert the effect, it is necessary to set the In atomic ratio to 0.070 or more. The number of In atoms is preferably 0.080 or more, more preferably 0.100 or more. However, if the In atomic ratio is too large, there are problems such as an excessive increase in the carrier density and a decrease in the threshold voltage. Therefore, the In atomic ratio is set to 0.200 or less. The number of In atoms is preferably 0.150 or less, more preferably 0.130 or less.

〔0.250≦Ga/(In+Ga+Zn+Sn)≦0.600〕 Ga為有助於減少氧空缺及控制載子密度的元素。Ga原子數比越大,即Ga於所有金屬元素中所佔的量越多,則氧化物半導體層的電性穩定性越提高,且發揮抑制載子的過量產生的效果。另外,Ga亦為阻礙利用過氧化氫系的Cu蝕刻液進行的蝕刻的元素。因此,Ga原子數比越大,相對於作為源極/汲極電極的Cu電極的蝕刻加工中所使用的過氧化氫系蝕刻液而選擇比越大,越不易受損。〔0.250≦Ga/(In+Ga+Zn+Sn)≦0.600〕 Ga is an element that helps reduce oxygen vacancies and control carrier density. The greater the Ga atomic ratio, that is, the greater the amount of Ga in all metal elements, the more improved the electrical stability of the oxide semiconductor layer, and the effect of suppressing excessive generation of carriers is exerted. In addition, Ga is also an element that inhibits etching with a hydrogen peroxide-based Cu etching solution. Therefore, the larger the Ga atomic ratio, the larger the selection ratio with respect to the hydrogen peroxide-based etchant used in the etching process of the Cu electrode as the source/drain electrode, and the less likely it is to be damaged.

為了有效地發揮所述作用,需要將Ga原子數比設為0.250以上。所述Ga原子數比較佳為0.300以上,更佳為0.410以上。但是,若Ga原子數比過大,則氧化物半導體層的導電性降低而場效應遷移率容易降低。另外,用以形成氧化物半導體層的濺鍍靶材的電導度降低,且難以穩定地持續進行直流放電。因此,Ga原子數比設為0.600以下。所述Ga原子數比較佳為0.500以下,更佳為0.450以下。In order to effectively exert the effect, the Ga atomic ratio must be 0.250 or more. The number of Ga atoms is preferably 0.300 or more, more preferably 0.410 or more. However, if the Ga atomic ratio is too large, the conductivity of the oxide semiconductor layer decreases and the field-effect mobility tends to decrease. In addition, the conductivity of the sputtering target used to form the oxide semiconductor layer is reduced, and it is difficult to stably continue DC discharge. Therefore, the Ga atomic ratio is set to 0.600 or less. The number of Ga atoms is preferably 0.500 or less, more preferably 0.450 or less.

〔0.180≦Zn/(In+Ga+Zn+Sn)≦0.550〕 Zn相對於薄膜電晶體特性並不如其他金屬元素般敏感,但Zn原子數比越大,即Zn於所有金屬元素中所佔的量越多,則越容易非晶化,因此容易被有機酸或無機酸的蝕刻液蝕刻。〔0.180≦Zn/(In+Ga+Zn+Sn)≦0.550〕 Zn is not as sensitive to the characteristics of thin film transistors as other metal elements, but the larger the atomic ratio of Zn, that is, the greater the amount of Zn in all metal elements, the easier it is to amorphize, so it is easily affected by organic acids or Etching with inorganic acid etching solution.

為了有效地發揮所述作用,需要將Zn原子數比設為0.180以上。所述Zn原子數比較佳為0.300以上,更佳為0.350以上。但是,若Zn原子數比過大,則氧化物半導體層相對於源極/汲極電極用蝕刻液的溶解性變高,結果存在如下情況:耐濕式蝕刻性容易變差,或者因In相對減少而場效應遷移率降低,或者因Ga相對減少而氧化物半導體層的電性穩定性容易降低。因此,Zn原子數比設為0.550以下。所述Zn原子數比較佳為0.500以下,更佳為0.400以下。In order to effectively exert the effect, the atomic ratio of Zn needs to be 0.180 or more. The number of Zn atoms is preferably 0.300 or more, more preferably 0.350 or more. However, if the Zn atomic ratio is too large, the solubility of the oxide semiconductor layer with respect to the source/drain electrode etching solution becomes high. As a result, there are cases where the wet etching resistance tends to deteriorate, or In is relatively reduced. However, the field-effect mobility is reduced, or the electrical stability of the oxide semiconductor layer is easily reduced due to the relative reduction of Ga. Therefore, the atomic ratio of Zn is set to 0.550 or less. The number of Zn atoms is preferably 0.500 or less, more preferably 0.400 or less.

〔0.030≦Sn/(In+Ga+Zn+Sn)≦0.150〕 Sn為阻礙利用酸系的藥液進行的蝕刻的元素。因此,Sn原子數比越大,即Sn於所有金屬元素中所佔的量越多,則氧化物半導體層的利用圖案化中所使用的有機酸或無機酸的蝕刻液進行的蝕刻加工越困難。另一方面,添加有Sn的氧化物半導體藉由氫擴散而表現出載子密度的增加,從而場效應遷移率增加,另外,若Sn添加量適度,則薄膜電晶體的相對於光應力的可靠性提高。〔0.030≦Sn/(In+Ga+Zn+Sn)≦0.150〕 Sn is an element that inhibits etching with an acid-based chemical solution. Therefore, the larger the Sn atomic ratio, that is, the larger the amount of Sn in all metal elements, the more difficult the etching process of the oxide semiconductor layer using the organic acid or inorganic acid etching solution used in the patterning. . On the other hand, oxide semiconductors doped with Sn exhibit an increase in carrier density through hydrogen diffusion, thereby increasing field-effect mobility. In addition, if the amount of Sn added is appropriate, the thin film transistors are more reliable with respect to optical stress. Sexual improvement.

為了有效地發揮所述作用,所述Sn原子數比需設為0.030以上。Sn原子數比較佳為0.060以上,更佳為0.070以上。另一方面,若Sn原子數比過大,則氧化物半導體層的相對於有機酸或無機酸的蝕刻液的耐受性提高至必要程度以上,氧化物半導體層自身的加工變得困難。另外,有因強烈受到氫擴散的影響而相對於光應力的可靠性降低之虞。因此,所述Sn原子數比設為0.150以下。Sn原子數比較佳為0.110以下,更佳為0.080以下。In order to effectively exert the effect, the Sn atomic number ratio needs to be 0.030 or more. The number of Sn atoms is preferably 0.060 or more, more preferably 0.070 or more. On the other hand, if the Sn atomic ratio is too large, the resistance of the oxide semiconductor layer with respect to an organic acid or an inorganic acid etching solution is increased to a necessary level or more, and the processing of the oxide semiconductor layer itself becomes difficult. In addition, the reliability with respect to optical stress may decrease due to the strong influence of hydrogen diffusion. Therefore, the Sn atomic number ratio is set to 0.150 or less. The number of Sn atoms is preferably 0.110 or less, more preferably 0.080 or less.

〔0.10≦Sn/Zn≦0.25〕 關於所述氧化物半導體層的相對於圖案化中所使用的有機酸或無機酸的蝕刻液的耐蝕刻性,雖根據In/Ga原子數比而發生變化,但即便In/Ga原子數比為任意值,亦可藉由增加Sn添加量來提高耐蝕刻性。另外,藉由增加Sn添加量,於製造薄膜電晶體時,於使對於氧化物半導體層的熱處理高溫化的情況下,可防止Zn自氧化物半導體層脫離。〔0.10≦Sn/Zn≦0.25〕 Regarding the etching resistance of the oxide semiconductor layer with respect to the organic acid or inorganic acid etching solution used for patterning, although the In/Ga atomic number ratio changes, even if the In/Ga atomic number ratio is For any value, the etching resistance can also be improved by increasing the amount of Sn added. In addition, by increasing the addition amount of Sn, when the heat treatment of the oxide semiconductor layer is increased in temperature during the manufacture of thin film transistors, it is possible to prevent Zn from detaching from the oxide semiconductor layer.

Zn的脫離是因藉由熱處理的高溫化而氧化物半導體層中的氫脫離,伴隨於此,Zn與O的鍵結力變弱而產生的。如上所述,若氧化物半導體層的表面的金屬原子(Zn)脫離,則氧化物半導體層中及層表面的組成發生變化,特別是氧化物半導體層的表面成為Zn空缺的狀態。因此,可容易設想Zn空缺的部位成為來自形成於氧化物半導體層上的Cu電極的Cu擴散源。The detachment of Zn is caused by the detachment of hydrogen in the oxide semiconductor layer due to the high temperature increase of the heat treatment, and with this, the bonding force between Zn and O becomes weak. As described above, when the metal atoms (Zn) on the surface of the oxide semiconductor layer are detached, the composition of the oxide semiconductor layer and the layer surface changes, and in particular, the surface of the oxide semiconductor layer becomes Zn-vacant. Therefore, it can be easily assumed that the part where Zn is vacant becomes a Cu diffusion source from the Cu electrode formed on the oxide semiconductor layer.

藉由氧化物半導體薄膜的Zn量發生變化,伴隨Sn的添加量的、相對於有機酸或無機酸的蝕刻液的氧化物半導體層的耐蝕刻性及相對於金屬原子(Zn)的脫離的影響不同。所述Cu的擴散是因頂蓋層(cap layer)的所述耐蝕刻性與金屬原子脫離這兩者而產生的,因此藉由對氧化物半導體薄膜的Zn量及Sn/Zn原子數比進行適當調整,可獲得優異的TFT特性。The change in the amount of Zn in the oxide semiconductor thin film affects the etching resistance of the oxide semiconductor layer with respect to the organic acid or inorganic acid etchant and the detachment of metal atoms (Zn) with the addition of Sn different. The Cu diffusion is caused by both the etching resistance of the cap layer and the separation of metal atoms. Therefore, the amount of Zn and the ratio of Sn/Zn atoms in the oxide semiconductor film are determined. Proper adjustment can obtain excellent TFT characteristics.

為了防止如上所述的Cu的擴散,需要滿足Sn/Zn≧0.10。另外,較佳為滿足Sn/Zn≧0.18。 另一方面,若Sn/Zn的值超過0.25,則氧化物半導體薄膜自身的蝕刻(使用混合酸:磷酸、硝酸、乙酸、水的混合)的速率降低。因此,需要滿足Sn/Zn≦0.25,較佳為滿足Sn/Zn≦0.22。In order to prevent the diffusion of Cu as described above, it is necessary to satisfy Sn/Zn≧0.10. In addition, it is preferable to satisfy Sn/Zn≧0.18. On the other hand, if the value of Sn/Zn exceeds 0.25, the etching rate of the oxide semiconductor film itself (using a mixed acid: a mixture of phosphoric acid, nitric acid, acetic acid, and water) decreases. Therefore, it is necessary to satisfy Sn/Zn≦0.25, preferably Sn/Zn≦0.22.

若增加Ga的添加量,則載子密度降低而導電率降低,並且容易使薄膜電晶體的場效應遷移率降低,但另一方面,相對於過氧化氫水系蝕刻液的耐濕式蝕刻性提高。另外,若過度增加Sn的添加量,則有來自保護膜的氫擴散的影響變得顯著,因氫擴散而載子密度或導電率降低的傾向。 另外,於為了抑制作為增加Ga添加量的弊端的場效應遷移率的降低、或濺鍍靶材的導電性的降低而欲增加In添加量的情況下,有引起薄膜電晶體的相對於光應力的可靠性的降低、或臨限值電壓偏移至負電壓側等問題之虞。If the amount of Ga added is increased, the carrier density is reduced and the conductivity is reduced, and the field effect mobility of the thin film transistor is easily reduced, but on the other hand, the wet etching resistance relative to the hydrogen peroxide aqueous etching solution is improved . In addition, if the addition amount of Sn is excessively increased, the influence of hydrogen diffusion from the protective film becomes significant, and the carrier density or conductivity tends to decrease due to hydrogen diffusion. In addition, in order to suppress the decrease in field-effect mobility or decrease in the conductivity of the sputtering target material, which is a disadvantage of increasing the amount of Ga addition, when it is desired to increase the amount of In addition, the thin film transistors may be exposed to light stress. The reliability of the device is reduced, or the threshold voltage shifts to the negative voltage side.

相對於此,於代替In而增加Sn添加量的情況下,場效應遷移率的降低得到抑制,濺鍍靶材的導電性可得到改善。另外,於增加Sn添加量的情況下,亦有臨限值電壓於0 V附近穩定的傾向。因此,認為於增加Ga添加量的情況下,有效的是增加Sn的添加量來代替增加In的添加量。 但是,Sn的添加量具有適度的添加範圍,若超過該添加範圍,則薄膜電晶體的光應力耐受性的劣化可變得顯著。因此,藉由以滿足所述Ga及Sn的添加量的關係的方式平衡性良好地添加Ga,可獲得可靠性高的氧化物半導體。In contrast, when the addition amount of Sn is increased instead of In, the decrease in field-effect mobility is suppressed, and the conductivity of the sputtering target can be improved. In addition, when the amount of Sn added is increased, the threshold voltage tends to be stable around 0 V. Therefore, it is considered that in the case of increasing the addition amount of Ga, it is effective to increase the addition amount of Sn instead of increasing the addition amount of In. However, the addition amount of Sn has a moderate addition range, and if it exceeds this addition range, the deterioration of the optical stress resistance of the thin film transistor may become significant. Therefore, by adding Ga in a well-balanced manner to satisfy the relationship between the addition amounts of Ga and Sn, a highly reliable oxide semiconductor can be obtained.

〔(Sn×In)/Ga≧0.009〕 IGZTO系氧化物半導體中,根據構成元素的均衡而表現出被原子間的化學鍵結力影響的電傳導性或熱激發脫離性等特徵,但藉由將具有抑制Zn的脫離/空缺的效果的Sn的原子數比乘以影響電傳導性的In與Ga的原子數比(In/Ga),可實現所期望的遷移率與應力耐受性。再者,為了獲得所述效果,需要滿足(Sn×In)/Ga≧0.009,為了獲得更高的效果,較佳為滿足(Sn×In)/Ga≧0.018,更佳為滿足(Sn×In)/Ga≧0.028。〔(Sn×In)/Ga≧0.009〕 In IGZTO-based oxide semiconductors, depending on the balance of constituent elements, they exhibit characteristics such as electrical conductivity and thermally excited detachability that are affected by the chemical bonding force between atoms. Multiplying the atomic number ratio of In/Ga by the atomic number ratio of In and Ga (In/Ga), which affects electrical conductivity, can achieve the desired mobility and stress tolerance. Furthermore, in order to obtain the effect, it is necessary to satisfy (Sn×In)/Ga≧0.009. In order to obtain a higher effect, it is preferable to satisfy (Sn×In)/Ga≧0.018, and it is more preferable to satisfy (Sn×In)/Ga≧0.018. )/Ga≧0.028.

再者,氧化物半導體層的厚度並無特別限定,但若為10 nm以上,則源極/汲極電極的蝕刻加工時的選擇性優異,因此較佳,更佳為15 nm以上。另外,就維持高場效應遷移率的方面而言,例如較佳為40 nm以下。In addition, the thickness of the oxide semiconductor layer is not particularly limited, but if it is 10 nm or more, the selectivity during the etching process of the source/drain electrode is excellent, so it is preferable, and 15 nm or more is more preferable. In addition, in terms of maintaining high field-effect mobility, for example, it is preferably 40 nm or less.

<薄膜電晶體> 繼而,對本實施形態的薄膜電晶體進一步進行詳細說明。但是,該些僅示出較佳實施形態的例子,本發明並不限定於該些實施形態。<Thin Film Transistor> Next, the thin film transistor of this embodiment will be described in further detail. However, these are only examples of preferred embodiments, and the present invention is not limited to these embodiments.

如圖1所示,於基板1上形成有閘極電極2及閘極絕緣膜3,且於其上依序形成有第二氧化物半導體層(通道形成層)4B及第一氧化物半導體層(背後通道層)4A。另外,於第一氧化物半導體層4A上形成有源極/汲極電極5,於其上形成有保護膜(絕緣膜)6。進而,形成有經由形成於保護膜6中的接觸孔(contact hole)7而與源極/汲極電極5電性連接的透明導電膜8。As shown in FIG. 1, a gate electrode 2 and a gate insulating film 3 are formed on a substrate 1, and a second oxide semiconductor layer (channel forming layer) 4B and a first oxide semiconductor layer are sequentially formed thereon (Back channel layer) 4A. In addition, a source/drain electrode 5 is formed on the first oxide semiconductor layer 4A, and a protective film (insulating film) 6 is formed thereon. Furthermore, a transparent conductive film 8 electrically connected to the source/drain electrode 5 via a contact hole 7 formed in the protective film 6 is formed.

再者,第一氧化物半導體層4A表示所述氧化物半導體薄膜,因此第一氧化物半導體層4A中的金屬元素的原子數比如在所述氧化物半導體薄膜中所說明般。Furthermore, the first oxide semiconductor layer 4A represents the oxide semiconductor thin film, so the number of atoms of the metal element in the first oxide semiconductor layer 4A is as described in the oxide semiconductor thin film.

關於以所述方式構成的薄膜電晶體的製造方法,除第一氧化物半導體層4A及第二氧化物半導體層4B的組成以外,例如與日本專利特開2020-136302號公報的圖2所示的薄膜電晶體的製造方法相同,因此,此處省略說明。Regarding the manufacturing method of the thin film transistor structured in the above manner, in addition to the composition of the first oxide semiconductor layer 4A and the second oxide semiconductor layer 4B, for example, it is shown in FIG. 2 of Japanese Patent Laid-Open No. 2020-136302 The manufacturing method of the thin film transistor is the same, therefore, the description is omitted here.

於本實施形態的薄膜電晶體中,第二氧化物半導體層4B的組成並無特別限定,例如,可與第一氧化物半導體層4A同樣地使用IGZTO。於該情況下,第二氧化物半導體層4B中,金屬元素比可與第一氧化物半導體層4A中所使用的IGZTO不同。 更具體而言,於將第一氧化物半導體層4A中的In、Ga、Sn相對於Sn、In、Ga及Zn的合計的原子數比分別設為[In1]、[Ga1]、[Sn1],將第二氧化物半導體層4B中的In、Ga、Sn相對於Sn、In、Ga及Zn的合計的原子數比分別設為[In2]、[Ga2]、[Sn2]時,較佳為滿足 [In1]≦[In2]、 [Ga1]≧[Ga2]、 [Sn1]≦[Sn2]。In the thin film transistor of this embodiment, the composition of the second oxide semiconductor layer 4B is not particularly limited. For example, IGZTO can be used similarly to the first oxide semiconductor layer 4A. In this case, the metal element ratio in the second oxide semiconductor layer 4B may be different from the IGZTO used in the first oxide semiconductor layer 4A. More specifically, let the atomic ratios of In, Ga, and Sn in the first oxide semiconductor layer 4A to the total of Sn, In, Ga, and Zn be [In1], [Ga1], [Sn1], respectively When the atomic ratios of In, Ga, and Sn to the total of Sn, In, Ga, and Zn in the second oxide semiconductor layer 4B are respectively [In2], [Ga2], and [Sn2], it is preferably Satisfy [In1]≦[In2], [Ga1]≧[Ga2], [Sn1]≦[Sn2].

另外,本實施形態的薄膜電晶體中,源極/汲極電極5與第一氧化物半導體層4A直接接合,第一氧化物半導體層4A直接暴露於源極/汲極電極加工用蝕刻液中。但是,本實施形態的氧化物半導體層的耐濕式蝕刻性優異,於源極/汲極電極的加工時對於氧化物半導體層表面的損傷少,因此可獲得良好的薄膜電晶體特性。另外,具有所述組成的第一氧化物半導體層4A可獲得相對於光應力的高可靠性。In addition, in the thin film transistor of this embodiment, the source/drain electrode 5 is directly joined to the first oxide semiconductor layer 4A, and the first oxide semiconductor layer 4A is directly exposed to the source/drain electrode processing etching solution . However, the oxide semiconductor layer of this embodiment is excellent in wet etching resistance, and the surface of the oxide semiconductor layer is less damaged during the processing of the source/drain electrodes, and therefore, good thin film transistor characteristics can be obtained. In addition, the first oxide semiconductor layer 4A having the above composition can obtain high reliability with respect to optical stress.

進而,於本實施形態中,即便是適當地調整了Sn/Zn的值且實施了高溫的熱處理的情況,亦可防止第一氧化物半導體層4A的表面中的Zn的脫離(空缺)。因此,即便是包含Cu或Cu合金的源極/汲極電極5與第一氧化物半導體層4A直接接合的結構,亦可防止Cu的擴散,可獲得優異的TFT特性。Furthermore, in this embodiment, even when the value of Sn/Zn is appropriately adjusted and high-temperature heat treatment is performed, it is possible to prevent the detachment (vacancy) of Zn on the surface of the first oxide semiconductor layer 4A. Therefore, even if the source/drain electrode 5 containing Cu or a Cu alloy is directly bonded to the first oxide semiconductor layer 4A, the diffusion of Cu can be prevented, and excellent TFT characteristics can be obtained.

再者,若第二氧化物半導體層4B中的In、Ga、Sn的原子數比相對於第一氧化物半導體層4A的原子數比而滿足所述關係,則可獲得高場效應遷移率。另外,藉由將第二氧化物半導體層4B形成於第一氧化物半導體層4A之下,可將作為氧化物半導體層整體的場效應遷移率維持得高,且獲得優異的耐濕式蝕刻性。Furthermore, if the atomic ratio of In, Ga, Sn in the second oxide semiconductor layer 4B to the atomic ratio of the first oxide semiconductor layer 4A satisfies the above relationship, a high field-effect mobility can be obtained. In addition, by forming the second oxide semiconductor layer 4B under the first oxide semiconductor layer 4A, the field-effect mobility of the entire oxide semiconductor layer can be maintained high, and excellent wet etching resistance can be obtained. .

進而,若於第二氧化物半導體層4B中,相對於In、Ga、Zn及Sn的合計,各金屬元素的原子數比滿足例如 0.20≦In/(In+Ga+Zn+Sn)≦0.60 0.05≦Ga/(In+Ga+Zn+Sn)≦0.25 0.15≦Zn/(In+Ga+Zn+Sn)≦0.60 0.01≦Sn/(In+Ga+Zn+Sn)≦0.20, 則作為氧化物半導體層整體,可實現更高的場效應遷移率,因此較佳。Furthermore, if in the second oxide semiconductor layer 4B, the atomic ratio of each metal element to the total of In, Ga, Zn, and Sn satisfies, for example, 0.20≦In/(In+Ga+Zn+Sn)≦0.60 0.05≦Ga/(In+Ga+Zn+Sn)≦0.25 0.15≦Zn/(In+Ga+Zn+Sn)≦0.60 0.01≦Sn/(In+Ga+Zn+Sn)≦0.20, As the entire oxide semiconductor layer can achieve higher field-effect mobility, it is preferable.

通常而言,若將氧化物半導體層設為積層結構,則於形成配線圖案時,因金屬的種類或含量的不同而可產生第一層與第二層中側蝕(side etching)量不同等無法圖案化為所期望的形狀等問題。但是,如所述本實施形態所示,若第二氧化物半導體層4B與第一氧化物半導體層4A同樣地含有Sn、In、Ga及Zn,則即便是各金屬元素的比率不同的情況,亦可將第一氧化物半導體層4A及第二氧化物半導體層4B的蝕刻速率設為同等程度。其結果,相對於氧化物加工用濕式蝕刻液而可溶,從而可一體地對所述積層結構進行蝕刻。Generally speaking, if the oxide semiconductor layer is set as a build-up structure, when the wiring pattern is formed, the amount of side etching in the first layer and the second layer may be different due to the difference in the type or content of the metal. Unable to pattern into the desired shape and other problems. However, as shown in this embodiment, if the second oxide semiconductor layer 4B contains Sn, In, Ga, and Zn in the same way as the first oxide semiconductor layer 4A, even if the ratio of each metal element is different, The etching rates of the first oxide semiconductor layer 4A and the second oxide semiconductor layer 4B may be set to the same level. As a result, it is soluble with respect to the wet etching liquid for oxide processing, and the said laminated structure can be etched integrally.

另外,若將第一氧化物半導體層4A與第二氧化物半導體層4B設為相同的組成體系,則積層界面中的組成的雜亂變少,可防止各金屬元素的深度分佈的急劇變化,因此亦可防止於製造步驟中經受熱歷程時的膜的剝落或偏析、異常粒成長等。In addition, if the first oxide semiconductor layer 4A and the second oxide semiconductor layer 4B are made of the same composition system, the disorder of the composition at the interface of the build-up layer is reduced, and the rapid change of the depth distribution of each metal element can be prevented. It can also prevent peeling or segregation of the film, abnormal grain growth, etc. when undergoing a thermal history in the manufacturing process.

<濺鍍靶> 本實施形態亦是有關於一種用以形成所述薄膜電晶體中的第一氧化物半導體層4A的濺鍍靶。作為濺鍍靶,較佳為使用包含所述元素且與所期望的氧化物半導體層為相同組成的濺鍍靶,藉此,組成差異少,可形成所期望的成分組成的氧化物半導體層。<Sputtering target> This embodiment also relates to a sputtering target for forming the first oxide semiconductor layer 4A in the thin film transistor. As the sputtering target, it is preferable to use a sputtering target containing the above-mentioned elements and having the same composition as the desired oxide semiconductor layer. This reduces the difference in composition and can form an oxide semiconductor layer of the desired composition.

具體而言,本實施形態的濺鍍靶包含作為金屬元素的In、Ga、Zn及Sn、以及O, 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。Specifically, the sputtering target of this embodiment contains In, Ga, Zn, Sn, and O as metallic elements, With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.

再者,本實施形態的濺鍍靶中的In、Ga、Zn及Sn的較佳數值範圍及其限定理由與所述氧化物半導體層中所說明者相同。 [實施例]In addition, the preferable numerical ranges of In, Ga, Zn, and Sn in the sputtering target of this embodiment and the reason for limitation are the same as those described in the oxide semiconductor layer. [Example]

以下,關於本實施形態的薄膜電晶體,列舉實施例及比較例對本發明進一步進行具體說明,但本發明並不限定於該些實施例。Hereinafter, regarding the thin film transistor of the present embodiment, examples and comparative examples are given to further specifically describe the present invention, but the present invention is not limited to these examples.

[薄膜電晶體的製造] 藉由下述程序來製作具有第一氧化物半導體層4A與第二氧化物半導體層4B的薄膜電晶體。 如圖1所示,首先,於直徑為100 nm、厚度為0.7 mm的玻璃基板1(伊戈爾(Eagle)XG:康寧(Corning)公司製造)上,藉由使用Mo濺鍍靶的濺鍍法而形成膜厚為100 nm的Mo薄膜。繼而,藉由光微影來對Mo薄膜進行圖案化,藉此形成閘極電極2。然後,於玻璃基板1及閘極電極2的整個表面上,使用電漿化學氣相沈積(Chemical Vapor Deposition,CVD)法以250 nm的膜厚形成作為閘極絕緣膜3的SiOx膜。以下示出閘極電極2及閘極絕緣膜3的成膜條件。[Manufacturing of thin film transistors] The thin film transistor having the first oxide semiconductor layer 4A and the second oxide semiconductor layer 4B is produced by the following procedure. As shown in Figure 1, first, on a glass substrate 1 (Eagle XG: Corning) with a diameter of 100 nm and a thickness of 0.7 mm, sputtering by using a Mo sputtering target Method to form a Mo thin film with a thickness of 100 nm. Then, the Mo thin film is patterned by photolithography, thereby forming the gate electrode 2. Then, on the entire surfaces of the glass substrate 1 and the gate electrode 2, a SiOx film as the gate insulating film 3 was formed using a plasma chemical vapor deposition (Chemical Vapor Deposition, CVD) method with a film thickness of 250 nm. The film forming conditions of the gate electrode 2 and the gate insulating film 3 are shown below.

(Mo薄膜的成膜條件) 成膜溫度:室溫 成膜功率:300 W 載氣:Ar 氣體壓力:2 mTorr (SiOx膜的成膜條件) 載氣:SiH4 與N2 O的混合氣體 成膜功率:300 W 成膜溫度:320℃(Film-forming conditions of Mo thin film) Film-forming temperature: Room temperature Film-forming power: 300 W Carrier gas: Ar Gas pressure: 2 mTorr (Film-forming conditions of SiOx film) Carrier gas: SiH 4 and N 2 O mixed gas Film power: 300 W Film forming temperature: 320℃

繼而,於閘極絕緣膜3上以40 nm的膜厚形成具有In:Ga:Zn:Sn=4:1:4:1這一組成的第二氧化物半導體層4B。然後,於第二氧化物半導體層4B上以40 nm的膜厚形成具有下述表1中記載的各種組成的第一氧化物半導體層4A。所述第一氧化物半導體層4A及第二氧化物半導體層4B均是使用具有與目標氧化物半導體層的組成相同的金屬元素比率的濺鍍靶並藉由濺鍍法而形成。濺鍍中所使用的裝置為愛發科(ULVAC)(股)製造的「CS-200」,用以形成第一氧化物半導體層4A及第二氧化物半導體層4B的濺鍍條件如下所述。Then, a second oxide semiconductor layer 4B having a composition of In:Ga:Zn:Sn=4:1:4:1 is formed on the gate insulating film 3 with a film thickness of 40 nm. Then, the first oxide semiconductor layer 4A having various compositions described in Table 1 below was formed on the second oxide semiconductor layer 4B with a thickness of 40 nm. Both the first oxide semiconductor layer 4A and the second oxide semiconductor layer 4B are formed by a sputtering method using a sputtering target having the same metal element ratio as the composition of the target oxide semiconductor layer. The device used in sputtering is "CS-200" manufactured by ULVAC (stock). The sputtering conditions for forming the first oxide semiconductor layer 4A and the second oxide semiconductor layer 4B are as follows .

(用以形成第一氧化物半導體層及第二氧化物半導體層的濺鍍條件) 基板溫度:室溫 成膜功率:直流(direct current,DC)200 W 氣體壓力:1 mTorr 氧氣分壓:100×O2 /(Ar+O2 )=4%(The sputtering conditions for forming the first oxide semiconductor layer and the second oxide semiconductor layer) Substrate temperature: room temperature Film forming power: direct current (DC) 200 W Gas pressure: 1 mTorr Oxygen partial pressure: 100 ×O 2 /(Ar+O 2 )=4%

以所述方式形成第二氧化物半導體層4B及第一氧化物半導體層4A後,藉由光微影及濕式蝕刻來進行圖案化。作為濕式蝕刻液,使用包含草酸的蝕刻液(ITO-07N:關東化學(股)製造),並將液溫設為室溫。After the second oxide semiconductor layer 4B and the first oxide semiconductor layer 4A are formed in the manner described above, they are patterned by photolithography and wet etching. As the wet etching liquid, an etching liquid containing oxalic acid (ITO-07N: manufactured by Kanto Chemical Co., Ltd.) was used, and the liquid temperature was set to room temperature.

然後,為了提高第二氧化物半導體層4B及第一氧化物半導體層4A的膜質,而實施預退火處理。預退火處理是於大氣環境下且於400℃下進行1小時。Then, in order to improve the film quality of the second oxide semiconductor layer 4B and the first oxide semiconductor layer 4A, pre-annealing treatment is performed. The pre-annealing treatment is carried out at 400°C for 1 hour in an atmospheric environment.

繼而,形成源極/汲極電極5。具體而言,連續地形成膜厚為35 nm的MoNb膜、膜厚為300 nm的Cu膜,並藉由光微影及濕式蝕刻來進行圖案化,從而形成積層結構的源極/汲極電極5。於圖案化時,使用包含過氧化氫水(H2 O2 )的無機系蝕刻液,將TFT的通道長度設為10 μm,將通道寬度設為200 μm。Then, source/drain electrodes 5 are formed. Specifically, a MoNb film with a thickness of 35 nm and a Cu film with a thickness of 300 nm are continuously formed, and patterned by photolithography and wet etching, thereby forming a source/drain of a multilayer structure Electrode 5. During patterning, an inorganic etching solution containing hydrogen peroxide water (H 2 O 2 ) is used, and the channel length of the TFT is set to 10 μm and the channel width is set to 200 μm.

以所述方式形成源極/汲極電極5後,藉由使用薩姆肯(SAMCO)(股)製造的「PD-220NL」的電漿CVD法而以膜厚200 nm形成SiOx膜,進而,以膜厚150 nm形成SiN膜,藉此形成包含SiOx膜及SiN膜的保護膜6。以下示出SiOx膜及SiN膜的成膜條件。After the source/drain electrodes 5 are formed in the manner described above, a SiOx film is formed with a thickness of 200 nm by the plasma CVD method using "PD-220NL" manufactured by SAMCO (stock), and further, The SiN film was formed with a film thickness of 150 nm, thereby forming a protective film 6 including an SiOx film and a SiN film. The film formation conditions of the SiOx film and the SiN film are shown below.

(SiOx膜的成膜條件) 載氣:SiH4 及N2 O的混合氣體 成膜功率:100 W 成膜溫度:230℃ (SiN膜的成膜條件) 載氣:NH3 、N2 及N2 O的混合氣體 成膜功率:100 W 成膜溫度:150℃(Film formation conditions of SiOx film) Carrier gas: SiH 4 and N 2 O mixed gas Film formation power: 100 W Film formation temperature: 230°C (Film formation conditions of SiN film) Carrier gas: NH 3 , N 2 and N 2 O mixed gas film forming power: 100 W Film forming temperature: 150℃

進而,針對保護膜6,於大氣中且於300℃下實施1小時的退火處理,使用旋塗機將光硬化樹脂(鐘淵(KANEKA)(股)製造:樹脂膜TypeA2)以600 nm的膜厚成膜於保護膜6上,然後藉由光微影來形成通孔圖案,並使用反應離子蝕刻(Reactive Ion Etching,RIE)電漿蝕刻裝置而於保護膜6中形成接觸孔7。 然後,於氮氣環境下且於250℃下實施30分鐘的後退火處理。Furthermore, the protective film 6 was annealed in the atmosphere at 300°C for 1 hour, and the photocurable resin (KANEKA (Stock) Manufacturing: Resin Film TypeA2) was made into a 600 nm film using a spin coater. A thick film is formed on the protective film 6, and then a through hole pattern is formed by photolithography, and a reactive ion etching (RIE) plasma etching device is used to form a contact hole 7 in the protective film 6. Then, a post-annealing treatment was performed at 250°C for 30 minutes in a nitrogen atmosphere.

然後,於保護膜6及接觸孔7的內部形成氧化銦錫膜(ITO膜),藉由光微影及蝕刻而對所得膜進行圖案化,藉此形成經由接觸孔7而與源極/汲極電極5電性連接的透明導電膜8。 藉由以上的程序來製造實施例的薄膜電晶體。Then, an indium tin oxide film (ITO film) is formed inside the protective film 6 and the contact hole 7, and the resultant film is patterned by photolithography and etching, thereby forming the contact hole 7 and the source/drain The polar electrode 5 is electrically connected to the transparent conductive film 8. The thin film transistor of the embodiment is manufactured by the above procedure.

[薄膜電晶體的評價] 針對各薄膜電晶體,於以下的條件下對成為薄膜電晶體特性的指標的場效應遷移率、應力耐受性及濕式蝕刻特性進行評價。[Evaluation of thin film transistors] For each thin-film transistor, field-effect mobility, stress tolerance, and wet etching characteristics, which are indicators of the characteristics of the thin-film transistor, were evaluated under the following conditions.

〔電晶體特性的測定〕 電晶體特性(汲極電流(Id)-閘極電壓(Vg)特性)的測定中使用安捷倫科技(Agilent Technologies)公司製造的「HP4156C」的半導體參數分析儀(semiconductor parameter analyzer)。 詳細的測定條件如下所述。[Measurement of Transistor Characteristics] Transistor characteristics (drain current (Id)-gate voltage (Vg) characteristics) were measured using the "HP4156C" semiconductor parameter analyzer manufactured by Agilent Technologies. The detailed measurement conditions are as follows.

(Id-Vg特性的測定條件) 源極電壓:0 V 汲極電壓:10 V 閘極電壓:-30 V~30 V(測定間隔:0.25 V) 基板溫度:室溫(Measurement conditions of Id-Vg characteristics) Source voltage: 0 V Drain voltage: 10 V Gate voltage: -30 V~30 V (measurement interval: 0.25 V) Substrate temperature: room temperature

<場效應遷移率μFE > 場效應遷移率μFE 是根據所述電晶體特性而於Vg>Vd-Vth的飽和區域中導出。場效應遷移率μFE 可根據以下的式而導出。再者,於下述式中,Vg表示閘極電壓,Vd表示汲極電壓,Id表示汲極電流,L、W分別表示TFT元件的通道長度、通道寬度,Ci表示閘極絕緣膜的靜電電容。<Field-effect mobility μ FE > The field-effect mobility μ FE is derived in the saturation region of Vg>Vd-Vth based on the characteristics of the transistor. The field-effect mobility μ FE can be derived from the following equation. Furthermore, in the following formula, Vg represents the gate voltage, Vd represents the drain voltage, Id represents the drain current, L and W represent the channel length and channel width of the TFT element, respectively, and Ci represents the electrostatic capacitance of the gate insulating film .

[數式1]

Figure 02_image001
[Numerical formula 1]
Figure 02_image001

再者,場效應遷移率μFE 是根據滿足線形區域的閘極電壓附近的汲極電流-閘極電壓特性(Id-Vg特性)的傾斜率而導出的。本實施例中,將場效應遷移率為18.0 cm2 /Vs以上者判斷為高場效應遷移率。In addition, the field-effect mobility μ FE is derived from the slope that satisfies the drain current-gate voltage characteristic (Id-Vg characteristic) near the gate voltage of the linear region. In this embodiment, a field-effect mobility of 18.0 cm 2 /Vs or more is judged to be a high field-effect mobility.

<臨限值電壓> 所謂臨限值電壓(Vth)是電晶體自斷開狀態(汲極電流低的狀態)移行至接通狀態(汲極電流高的狀態)時的閘極電壓的值。本實施例中,將薄膜電晶體的汲極電流成為10-9 A時的閘極電壓定義為臨限值電壓,並測定各薄膜電晶體的臨限值電壓(V)。<Threshold voltage> The so-called threshold voltage (Vth) is the value of the gate voltage when the transistor moves from the off state (the state where the drain current is low) to the on state (the state where the drain current is high). In this embodiment, the gate voltage when the drain current of the thin film transistor becomes 10 -9 A is defined as the threshold voltage, and the threshold voltage (V) of each thin film transistor is measured.

<S值(次臨限擺動)> S值是使汲極電流上昇1位所需的閘極電壓的變化量的最小值,且可藉由測定S值來評價TFT的開關斷開的尺度。本實施例中,將S值為0.5(V/decade)以下者判斷為良好的電晶體特性。<S value (second threshold swing)> The S value is the minimum value of the change in the gate voltage required to increase the drain current by one bit, and the TFT switch off scale can be evaluated by measuring the S value. In this embodiment, the S value is determined to be less than 0.5 (V/decade) as good transistor characteristics.

[應力耐受性的評價] <負偏壓溫度光照應力(Negative Bias Temperature Illumination Stress,NBTIS)試驗> 於各電晶體中,對實際的液晶面板驅動時的環境(應力)進行模擬,實施一邊對電晶體照射光(白色光),一邊對閘極電極持續施加負偏壓的應力施加試驗(NBTIS試驗),將應力施加試驗前後的臨限值電壓(Vth)的變動值(臨限值電壓偏移量:△Vth)設為TFT特性中的光應力耐受性的指標。光應力耐受性於驅動液晶顯示器的方面為重要特性。 NBTIS試驗的測定條件如下所述。[Evaluation of stress tolerance] <Negative Bias Temperature Illumination Stress (NBTIS) test> In each transistor, the environment (stress) when the actual liquid crystal panel is driven is simulated, and a stress application test (NBTIS test) is performed in which light (white light) is irradiated to the transistor and a negative bias is continuously applied to the gate electrode. ), the variation value of the threshold voltage (Vth) before and after the stress application test (the threshold voltage deviation: ΔVth) is used as an index of the optical stress tolerance in the TFT characteristics. Light stress resistance is an important characteristic in driving liquid crystal displays. The measurement conditions of the NBTIS test are as follows.

(NBTIS試驗的測定條件) 閘極電壓:-20 V 源極/汲極電壓:10 V 基板溫度:60℃ 應力施加時間:2小時 光應力時的光強度:25000 nit 光應力時的光源:白色發光二極體(Light Emitting Diode,LED)(Measurement conditions of NBTIS test) Gate voltage: -20 V Source/drain voltage: 10 V Substrate temperature: 60℃ Stress application time: 2 hours Light intensity under light stress: 25000 nit Light source under light stress: white light emitting diode (Light Emitting Diode, LED)

本實施例中,將NBTIS試驗前後的臨限值電壓(Vth)的偏移量(△Vth)為3.30 V以下者判斷為應力耐受性優異。In the present example, the deviation (ΔVth) of the threshold voltage (Vth) before and after the NBTIS test is determined to be 3.30 V or less as having excellent stress tolerance.

<正偏壓溫度應力(Positive Bias Temperature Stress,PBTS)試驗> 於各電晶體中,實施對閘極電極持續施加正偏壓的應力施加試驗(PBTS試驗),將應力施加試驗前後的臨限值電壓(Vth)的變動值(臨限值電壓偏移量:△Vth)設為TFT特性中的應力耐受性的指標。 PBTS試驗的測定條件如下所述。<Positive Bias Temperature Stress (PBTS) test> In each transistor, a stress application test (PBTS test) that continuously applies a positive bias voltage to the gate electrode is implemented, and the threshold voltage (Vth) variation value before and after the stress application test (the threshold voltage offset: ΔVth) is used as an index of stress tolerance in TFT characteristics. The measurement conditions of the PBTS test are as follows.

(PBTS試驗的測定條件) 閘極電壓:+20 V 源極/汲極電壓:0.1 V 基板溫度:60℃ 應力施加時間:2小時 光應力:無(Measurement conditions of PBTS test) Gate voltage: +20 V Source/drain voltage: 0.1 V Substrate temperature: 60℃ Stress application time: 2 hours Light stress: none

本實施例中,將PBTS試驗前後的臨限值電壓(Vth)的偏移量(△Vth)為3.30 V以下者判斷為應力耐受性優異。 將實施例1~實施例5及比較例1~比較例4的薄膜電晶體中的第一氧化物半導體層的組成示於下述表1中,將各評價結果示於下述表2中。再者,氧化物半導體層的組成是藉由感應耦合電漿(Inductively Coupled Plasma,ICP)發光分光分析法來測定的。In this example, the deviation (ΔVth) of the threshold voltage (Vth) before and after the PBTS test was determined to be 3.30 V or less as having excellent stress tolerance. The composition of the first oxide semiconductor layer in the thin film transistors of Example 1 to Example 5 and Comparative Example 1 to Comparative Example 4 is shown in Table 1 below, and each evaluation result is shown in Table 2 below. Furthermore, the composition of the oxide semiconductor layer is measured by inductively coupled plasma (ICP) emission spectrometry.

[表1] 表1 試驗材No. 第一氧化物半導體層 各元素的組成(ICP): 各元素相對於所有金屬元素的合計的原子數比 Sn/Zn (Sn×In)/Ga In Ga Zn Sn 實施例1 0.086 0.270 0.544 0.100 0.184 0.032 實施例2 0.125 0.419 0.377 0.078 0.207 0.023 實施例3 0.151 0.532 0.284 0.034 0.120 0.010 實施例4 0.196 0.569 0.192 0.043 0.224 0.015 實施例5 0.188 0.428 0.342 0.042 0.121 0.018 比較例1 0.133 0.405 0.433 0.029 0.066 0.009 比較例2 0.138 0.435 0.427 0 0 0 比較例3 0.101 0.306 0.542 0.051 0.094 0.017 比較例4 0.417 0.125 0.373 0.085 0.229 0.284 [Table 1] Table 1 Test material No. First oxide semiconductor layer Composition of each element (ICP): The atomic ratio of each element to the total of all metal elements Sn/Zn (Sn×In)/Ga In Ga Zn Sn Example 1 0.086 0.270 0.544 0.100 0.184 0.032 Example 2 0.125 0.419 0.377 0.078 0.207 0.023 Example 3 0.151 0.532 0.284 0.034 0.120 0.010 Example 4 0.196 0.569 0.192 0.043 0.224 0.015 Example 5 0.188 0.428 0.342 0.042 0.121 0.018 Comparative example 1 0.133 0.405 0.433 0.029 0.066 0.009 Comparative example 2 0.138 0.435 0.427 0 0 0 Comparative example 3 0.101 0.306 0.542 0.051 0.094 0.017 Comparative example 4 0.417 0.125 0.373 0.085 0.229 0.284

[表2] 表2 試驗材No. 電晶體特性 應力耐受性 場效應遷移率μFE (cm2 /Vs) 臨限值電壓Vth (V) S值 (V/decade) 臨限值電壓的偏移量 △Vth (V) NBTIS試驗 PBTS試驗 實施例1 27.8 -0.5 0.27 0.75 1.00 實施例2 20.6 1.5 0.22 1.50 1.75 實施例3 24.7 3.0 0.17 2.25 3.25 實施例4 22.3 2.8 0.14 1.75 2.00 實施例5 18.6 2.8 0.16 1.75 1.50 比較例1 22.4 3.0 0.16 2.25 4.25 比較例2 20.5 3.5 1.18 2.50 4.50 比較例3 26.7 -6.8 1.47 N/D* N/D* 比較例4 24.2 2.8 0.92 1.50 2.00 *N/D:無法測定[Table 2] Table 2 Test material No. Transistor characteristics Stress tolerance Field effect mobility μ FE (cm 2 /Vs) Threshold voltage Vth (V) S value (V/decade) Offset of threshold voltage △Vth (V) NBTIS test PBTS test Example 1 27.8 -0.5 0.27 0.75 1.00 Example 2 20.6 1.5 0.22 1.50 1.75 Example 3 24.7 3.0 0.17 2.25 3.25 Example 4 22.3 2.8 0.14 1.75 2.00 Example 5 18.6 2.8 0.16 1.75 1.50 Comparative example 1 22.4 3.0 0.16 2.25 4.25 Comparative example 2 20.5 3.5 1.18 2.50 4.50 Comparative example 3 26.7 -6.8 1.47 N/D* N/D* Comparative example 4 24.2 2.8 0.92 1.50 2.00 *N/D: Cannot be measured

如表1及表2所示,實施例1~實施例5中,薄膜電晶體中所使用的氧化物半導體層中的各金屬元素的組成、(Sn/Zn)及(Sn×In)/Ga為本發明規定的範圍內,因此場效應遷移率滿足18.0 cm2 /Vs以上,S值為0.5(V/decade)以下,且NBTIS試驗及PBTS試驗中的應力施加試驗前後的臨限值電壓(Vth)的偏移量(△Vth)均滿足3.30 V以下,並且電晶體特性及應力耐受性均優異。As shown in Table 1 and Table 2, in Examples 1 to 5, the composition of each metal element in the oxide semiconductor layer used in the thin film transistor, (Sn/Zn) and (Sn×In)/Ga It is within the range specified by the present invention, so the field-effect mobility satisfies 18.0 cm 2 /Vs or more, the S value is 0.5 (V/decade) or less, and the threshold voltage before and after the stress application test in the NBTIS test and PBTS test ( Vth) offset (△Vth) meets 3.30 V or less, and the transistor characteristics and stress tolerance are both excellent.

另一方面,比較例1中,In、Ga及Zn的原子數比為本發明的範圍內,但由於Sn原子數比及(Sn/Zn)的值不滿足本發明範圍,因此應力耐受性的評價結果差。 比較例2中,In、Ga及Zn的原子數比為本發明的範圍內,但由於不含有Sn,因此S值及應力耐受性的評價結果差。 比較例3中,金屬元素的原子數比均為本發明的範圍內,但由於(Sn/Zn)的值未滿本發明範圍,因此S值及應力耐受性差,特別是,關於應力耐受性,於任一試驗中,於60℃下均不進行開關而無法測定(N/D)。 比較例4中,Zn的原子數比、Sn的原子數比、(Sn/Zn)的值及(Sn×In)/Ga的值為本發明的範圍內,但由於In原子數比及Ga原子數比不滿足本發明範圍,因此S值的評價結果差。On the other hand, in Comparative Example 1, the atomic ratio of In, Ga, and Zn is within the range of the present invention, but since the Sn atomic ratio and the value of (Sn/Zn) do not satisfy the range of the present invention, the stress tolerance The evaluation result is poor. In Comparative Example 2, the atomic ratios of In, Ga, and Zn are within the range of the present invention, but since Sn is not contained, the evaluation results of the S value and stress tolerance are poor. In Comparative Example 3, the atomic ratios of the metal elements are all within the range of the present invention, but since the value of (Sn/Zn) is not within the range of the present invention, the S value and stress resistance are poor, especially with regard to stress resistance In any test, it cannot be measured without switching at 60°C (N/D). In Comparative Example 4, the atomic number ratio of Zn, the atomic number ratio of Sn, the value of (Sn/Zn), and the value of (Sn×In)/Ga are within the scope of the present invention, but due to the atomic ratio of In and Ga atoms The number ratio does not satisfy the range of the present invention, so the evaluation result of the S value is poor.

繼而,關於本發明的氧化物半導體薄膜,列舉實施例及比較例對本發明進一步進行具體說明。Next, regarding the oxide semiconductor thin film of the present invention, examples and comparative examples are given to further specifically describe the present invention.

[氧化物半導體薄膜的形成] 於玻璃基板上,藉由濺鍍而形成在所述表1中作為第一氧化物半導體層而示出的各種組成的氧化物半導體薄膜,並設為以下所示的各評價的試樣。再者,玻璃基板使用與製造所述薄膜電晶體時所使用的玻璃基板相同的玻璃基板,氧化物半導體薄膜是利用與所述第一氧化物半導體層4A相同的方法及條件來形成的。[Formation of oxide semiconductor thin film] On a glass substrate, oxide semiconductor thin films of various compositions shown as the first oxide semiconductor layer in Table 1 were formed by sputtering, and were used as samples for each evaluation shown below. In addition, the same glass substrate as that used when manufacturing the thin film transistor is used as the glass substrate, and the oxide semiconductor thin film is formed by the same method and conditions as the first oxide semiconductor layer 4A.

[氧化物半導體薄膜的評價] 針對各氧化物半導體薄膜,利用以下的方法來測定耐濕式蝕刻性、濕式蝕刻性,並且藉由昇溫脫離氣體分析法(熱脫附譜法(Thermal Desorption Spectroscopy,TDS))來測定伴隨溫度上昇的Zn脫離量。[Evaluation of oxide semiconductor thin film] For each oxide semiconductor thin film, the wet etching resistance and wet etching resistance are measured by the following methods, and the accompanying temperature is measured by the temperature rise desorption gas analysis method (Thermal Desorption Spectroscopy (TDS)) Increased Zn desorption amount.

〔耐濕式蝕刻性的測定〕 將所述各試樣浸漬於源極/汲極電極加工用濕式蝕刻液(包含過氧化氫水(H2 O2 )的無機系蝕刻液)中來進行蝕刻。然後,測定蝕刻前後的氧化物半導體薄膜的膜厚變化(削減量),並基於與蝕刻時間的關係來算出蝕刻速度(nm/min)。於本實施例中,將蝕刻速度為16 nm/min以下者判斷為耐濕式蝕刻性優異。[Measurement of wet etching resistance] The samples were immersed in a wet etching solution for source/drain electrode processing (an inorganic etching solution containing hydrogen peroxide (H 2 O 2 )). Etching. Then, the film thickness change (reduction amount) of the oxide semiconductor thin film before and after the etching was measured, and the etching rate (nm/min) was calculated based on the relationship with the etching time. In this example, it is judged that an etching rate of 16 nm/min or less is excellent in wet etching resistance.

〔濕式蝕刻性的測定〕 將所述各試樣浸漬於氧化物半導體薄膜加工用濕式蝕刻液(草酸濕式蝕刻液「ITO-07N」:關東化學(股)製造)中來進行蝕刻。然後,測定蝕刻前後的氧化物半導體薄膜的膜厚變化(削減量),並基於與蝕刻時間的關係來算出蝕刻速度(nm/min)。於本實施例中,將蝕刻速度為5 nm/min以上、130 nm/min以下者判斷為濕式蝕刻性優異。〔Measurement of wet etching properties〕 Each of the samples was immersed in a wet etching solution for processing an oxide semiconductor thin film (oxalic acid wet etching solution "ITO-07N": manufactured by Kanto Chemical Co., Ltd.) to perform etching. Then, the film thickness change (reduction amount) of the oxide semiconductor thin film before and after the etching was measured, and the etching rate (nm/min) was calculated based on the relationship with the etching time. In this example, it is judged that an etching rate of 5 nm/min or more and 130 nm/min or less is excellent in wet etching properties.

另外,為了評價相對於其他濕式蝕刻液的濕式蝕刻性,而使用「PAN蝕刻液」(磷酸、硝酸、乙酸的混合液)作為所述氧化物半導體薄膜加工用濕式蝕刻液,與所述濕式蝕刻性的測定同樣地算出蝕刻速度(nm/min)。In addition, in order to evaluate the wet etching properties relative to other wet etching solutions, "PAN etching solution" (a mixture of phosphoric acid, nitric acid, and acetic acid) was used as the wet etching solution for oxide semiconductor thin film processing. The etching rate (nm/min) was calculated in the same manner as in the measurement of the wet etching property.

〔藉由TDS分析進行的Zn脫離量的測定〕 針對所述氧化物半導體薄膜評價用的各試樣(實施例1~實施例2及比較例1~比較例3),藉由昇溫脫離氣體分析法(TDS)來進行分析。於TDS分析中,測定相當於Zn的質量電荷比(M/z)為64的成分的脫離量。再者,作為用於TDS分析的試樣,另行準備如下試樣:與上文所述同樣地藉由濺鍍法而於玻璃基板上形成膜厚40 nm的各氧化物半導體薄膜的試樣。[Measurement of the amount of Zn released by TDS analysis] The samples (Example 1 to Example 2 and Comparative Example 1 to Comparative Example 3) for the evaluation of the oxide semiconductor thin film were analyzed by the temperature-rising degassing analysis method (TDS). In the TDS analysis, the amount of detachment of the component corresponding to the mass-to-charge ratio (M/z) of Zn of 64 was measured. In addition, as a sample for TDS analysis, a sample was separately prepared in which each oxide semiconductor thin film having a thickness of 40 nm was formed on a glass substrate by a sputtering method in the same manner as described above.

將與實施例1~實施例5及比較例1~比較例4的第二氧化物半導體層相關的耐濕式蝕刻性及濕式蝕刻性的評價結果示於下述表3中,將與實施例1~實施例2及比較例1~比較例3的第二氧化物半導體層相關的TDS分析結果示於圖2中。The evaluation results of wet etching resistance and wet etching resistance related to the second oxide semiconductor layers of Example 1 to Example 5 and Comparative Example 1 to Comparative Example 4 are shown in Table 3 below. The results of TDS analysis on the second oxide semiconductor layer of Example 1 to Example 2 and Comparative Example 1 to Comparative Example 3 are shown in FIG. 2.

[表3] 表3 試驗材No. 耐濕式蝕刻性 濕式蝕刻性 相對於包含過氧化氫水(H2 O2 )的無機系蝕刻液的蝕刻速度 (nm/min) 相對於ITO-07N的蝕刻速度 (nm/min) 相對於PAN蝕刻液的蝕刻速度 (nm/min) 實施例1 15.03 66.48 32.73 實施例2 3.68 25.60 35.04 實施例3 0.88 12.51 66.46 實施例4 0.85 9.01 42.43 實施例5 1.65 23.04 128.51 比較例1 5.15 31.17 150.00 比較例2 9.31 95.13 545.00 比較例3 19.80 123.50 384.80 比較例4 5.24 37.87 7.89 [Table 3] Table 3 Test material No. Wet etching resistance Wet etching Etching rate (nm/min) relative to inorganic etching solution containing hydrogen peroxide water (H 2 O 2) Relative to ITO-07N etching speed (nm/min) Relative to the etching rate of PAN etching solution (nm/min) Example 1 15.03 66.48 32.73 Example 2 3.68 25.60 35.04 Example 3 0.88 12.51 66.46 Example 4 0.85 9.01 42.43 Example 5 1.65 23.04 128.51 Comparative example 1 5.15 31.17 150.00 Comparative example 2 9.31 95.13 545.00 Comparative example 3 19.80 123.50 384.80 Comparative example 4 5.24 37.87 7.89

如所述表3所示,實施例1~實施例5中,由於氧化物半導體層中的各金屬元素的組成及Sn/Zn為本發明規定的範圍內,因此耐濕式蝕刻性及濕式蝕刻性優異。 另一方面,比較例1~比較例3中,氧化物半導體層的Sn原子數比及Sn/Zn比的任一者或兩者脫離本發明範圍,因此根據濕式蝕刻液的種類而脫離評價為良好的蝕刻速度的範圍。 再者,比較例4與實施例1~實施例5同樣地,氧化物半導體層中的各金屬元素的組成及Sn/Zn為本發明規定的範圍內,因此耐濕式蝕刻性及濕式蝕刻性優異。As shown in Table 3, in Examples 1 to 5, since the composition of each metal element in the oxide semiconductor layer and Sn/Zn are within the range specified in the present invention, the wet etching resistance and wet etching resistance are Excellent etching properties. On the other hand, in Comparative Example 1 to Comparative Example 3, either or both of the Sn atomic ratio and the Sn/Zn ratio of the oxide semiconductor layer are out of the scope of the present invention, so the evaluation is deviated according to the type of wet etching solution. It is a good etching speed range. In addition, in Comparative Example 4, similar to Examples 1 to 5, the composition of each metal element in the oxide semiconductor layer and Sn/Zn are within the range specified in the present invention, so the wet etching resistance and wet etching resistance are The sex is excellent.

繼而,於圖2中,橫軸是基板的加熱溫度(℃),縱軸是與質量電荷比M/z=64的脫離量成比例的電流強度(A)。如圖2所示,讀取到:於在製造薄膜電晶體時通常進行的熱處理溫度(300℃~400℃)的範圍內,藉由增加Sn原子數比而使Zn的脫離量減少。據此,可認為基於Sn的添加量的增加的ΔVth的改善受到Zn自氧化物半導體膜脫離的量的減少的影響。 再者,由於在製造薄膜電晶體時,將膜減少量設定為5 nm左右,因此若蝕刻速度大,則膜減少量的控制變得困難。另外,如所述表1~表3及圖2所示,比較例1及比較例2中,由於相對於ITO-07N的蝕刻速度良好,因此可將膜減少量控制得少,但由於在通常的熱處理溫度下Zn的脫離量增加,因此Zn的空缺部位成為來自Cu電極的Cu擴散源,電晶體特性降低。Next, in FIG. 2, the horizontal axis is the heating temperature (° C.) of the substrate, and the vertical axis is the current intensity (A) proportional to the amount of detachment at the mass-to-charge ratio M/z=64. As shown in Fig. 2, it is read that in the range of the heat treatment temperature (300° C. to 400° C.) that is usually performed in the manufacture of thin film transistors, the amount of Zn desorption is reduced by increasing the Sn atomic ratio. From this, it can be considered that the improvement of ΔVth based on the increase in the addition amount of Sn is affected by the decrease in the amount of Zn detached from the oxide semiconductor film. Furthermore, since the film reduction amount is set to about 5 nm when manufacturing the thin film transistor, if the etching rate is high, it becomes difficult to control the film reduction amount. In addition, as shown in Table 1 to Table 3 and Fig. 2, in Comparative Example 1 and Comparative Example 2, since the etching rate relative to ITO-07N is good, the film reduction can be controlled to be small, but due to normal The amount of Zn detachment increases at the heat treatment temperature of, so the vacancy part of Zn becomes the Cu diffusion source from the Cu electrode, and the transistor characteristics are reduced.

以上,一邊參照圖式一邊對各種實施形態進行了說明,但本發明當然不限定於所述例子。對本領域技術人員而言明確的是,於申請專利範圍記載的範圍內,可想到各種變更例或修正例,應了解該些當然亦屬於本發明的技術範圍內。另外,於不脫離發明的主旨的範圍內,可對所述實施形態的各構成要素進行任意組合。In the foregoing, various embodiments have been described with reference to the drawings, but the present invention is of course not limited to the above-mentioned examples. It is clear to those skilled in the art that various modifications or amendments are conceivable within the scope described in the scope of patent application, and it should be understood that these naturally also belong to the technical scope of the present invention. In addition, the constituent elements of the above-mentioned embodiment can be combined arbitrarily within a range that does not deviate from the gist of the invention.

再者,本申請案基於2019年12月16日提出申請的日本專利申請(日本專利特願2019-226091)及2020年11月9日提出申請的日本專利申請(日本專利特願2020-186821),將其內容作為參照而引用至本申請案中。Furthermore, this application is based on a Japanese patent application filed on December 16, 2019 (Japanese Patent Application No. 2019-226091) and a Japanese patent application filed on November 9, 2020 (Japanese Patent Application No. 2020-186821) , The content is cited as a reference in this application.

1:基板 2:閘極電極 3:閘極絕緣膜 4A:第一氧化物半導體層 4B:第二氧化物半導體層 5:源極/汲極電極 6:保護膜 7:接觸孔 8:透明導電膜1: substrate 2: Gate electrode 3: Gate insulating film 4A: First oxide semiconductor layer 4B: second oxide semiconductor layer 5: source/drain electrode 6: Protective film 7: Contact hole 8: Transparent conductive film

圖1是本發明的一實施形態的薄膜電晶體的概略剖面圖。 圖2是表示將橫軸設為溫度(℃)、將縱軸設為檢測離子的電流強度(A)時的、氧化物半導體薄膜中的伴隨溫度上昇的Zn脫離量的圖表。Fig. 1 is a schematic cross-sectional view of a thin film transistor according to an embodiment of the present invention. FIG. 2 is a graph showing the amount of Zn desorption in the oxide semiconductor thin film accompanying temperature rise when the horizontal axis is temperature (° C.) and the vertical axis is current intensity (A) of detection ions.

1:基板 1: substrate

2:閘極電極 2: Gate electrode

3:閘極絕緣膜 3: Gate insulating film

4A:第一氧化物半導體層 4A: First oxide semiconductor layer

4B:第二氧化物半導體層 4B: second oxide semiconductor layer

5:源極/汲極電極 5: source/drain electrode

6:保護膜 6: Protective film

7:接觸孔 7: Contact hole

8:透明導電膜 8: Transparent conductive film

Claims (4)

一種氧化物半導體薄膜,包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。An oxide semiconductor thin film containing In, Ga, Zn, Sn, and O as metal elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009. 一種薄膜電晶體,其於基板上依序具有閘極電極、閘極絕緣膜、第二氧化物半導體層、第一氧化物半導體層、源極/汲極電極及保護膜,且所述薄膜電晶體中, 所述第一氧化物半導體層包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。A thin film transistor, which sequentially has a gate electrode, a gate insulating film, a second oxide semiconductor layer, a first oxide semiconductor layer, a source/drain electrode, and a protective film on a substrate, and the thin film transistor In the crystal, The first oxide semiconductor layer contains In, Ga, Zn, and Sn, and O as metal elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009. 如請求項2所述的薄膜電晶體,其中,所述源極/汲極電極與所述第一氧化物半導體層直接接合,所述源極/汲極電極包含Cu或Cu合金。The thin film transistor according to claim 2, wherein the source/drain electrode is directly bonded to the first oxide semiconductor layer, and the source/drain electrode includes Cu or Cu alloy. 一種濺鍍靶,其用以形成如請求項2或請求項3所述的薄膜電晶體中的所述第一氧化物半導體層,且 所述濺鍍靶包含作為金屬元素的In、Ga、Zn及Sn、以及O,且 相對於所述In、Ga、Zn及Sn的原子數的合計,各金屬元素的原子數比滿足 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150,並且 相對於所述Zn的原子數比,所述Sn的原子數比滿足 0.10≦Sn/Zn≦0.25,並且 所述Sn、In及Ga的原子數比滿足 (Sn×In)/Ga≧0.009。A sputtering target for forming the first oxide semiconductor layer in the thin film transistor according to claim 2 or claim 3, and The sputtering target includes In, Ga, Zn, Sn, and O as metallic elements, and With respect to the total number of atoms of In, Ga, Zn, and Sn, the atomic number ratio of each metal element satisfies 0.070≦In/(In+Ga+Zn+Sn)≦0.200 0.250≦Ga/(In+Ga+Zn+Sn)≦0.600 0.180≦Zn/(In+Ga+Zn+Sn)≦0.550 0.030≦Sn/(In+Ga+Zn+Sn)≦0.150, and Relative to the atomic ratio of Zn, the atomic ratio of Sn satisfies 0.10≦Sn/Zn≦0.25, and The atomic ratio of Sn, In and Ga satisfies (Sn×In)/Ga≧0.009.
TW109143989A 2019-12-16 2020-12-14 Oxide semiconductor films, thin film transistors and sputtering targets TWI834014B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019226091 2019-12-16
JP2019-226091 2019-12-16
JP2020186821A JP7384777B2 (en) 2019-12-16 2020-11-09 Oxide semiconductor thin films, thin film transistors and sputtering targets
JP2020-186821 2020-11-09

Publications (2)

Publication Number Publication Date
TW202124741A true TW202124741A (en) 2021-07-01
TWI834014B TWI834014B (en) 2024-03-01

Family

ID=76431618

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143989A TWI834014B (en) 2019-12-16 2020-12-14 Oxide semiconductor films, thin film transistors and sputtering targets

Country Status (4)

Country Link
JP (1) JP7384777B2 (en)
KR (1) KR20220099559A (en)
TW (1) TWI834014B (en)
WO (1) WO2021124963A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037621A1 (en) * 2021-09-10 2023-03-16 ソニーセミコンダクタソリューションズ株式会社 Imaging element and imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
JP4875135B2 (en) * 2009-11-18 2012-02-15 出光興産株式会社 In-Ga-Zn-O-based sputtering target
JP6068232B2 (en) * 2012-05-30 2017-01-25 株式会社神戸製鋼所 Thin film transistor oxide for semiconductor layer, thin film transistor, display device and sputtering target
JP6134230B2 (en) 2012-08-31 2017-05-24 株式会社神戸製鋼所 Thin film transistor and display device
JP5802343B2 (en) 2014-01-15 2015-10-28 株式会社神戸製鋼所 Thin film transistor
JP6753969B2 (en) * 2019-02-13 2020-09-09 株式会社神戸製鋼所 Oxide semiconductor thin films, thin film transistors and sputtering targets

Also Published As

Publication number Publication date
WO2021124963A1 (en) 2021-06-24
TWI834014B (en) 2024-03-01
CN114761607A (en) 2022-07-15
JP7384777B2 (en) 2023-11-21
KR20220099559A (en) 2022-07-13
JP2021097219A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP5977569B2 (en) THIN FILM TRANSISTOR STRUCTURE, AND THIN FILM TRANSISTOR AND DISPLAY DEVICE HAVING THE STRUCTURE
WO2015108110A1 (en) Thin-film transistor
TWI536579B (en) Thin film transistor and display device
WO2014034872A1 (en) Thin film transistor and display device
JP6659255B2 (en) Thin film transistor
TW201735359A (en) Thin film transistor comprising oxide semiconductor layer
TWI834014B (en) Oxide semiconductor films, thin film transistors and sputtering targets
JP7080842B2 (en) Thin film transistor
JP2017069585A (en) Thin film transistor including oxide semiconductor layer
TWI767186B (en) Oxide semiconductor thin films, thin film transistors and sputtering targets
TWI718952B (en) Oxide semiconductor thin film, thin film transistor and sputtering target
CN114761607B (en) Oxide semiconductor thin film, thin film transistor, and sputtering target
CN118291930A (en) Sputtering target
JP2014082424A (en) Semiconductor device manufacturing method
JP2022076351A (en) Thin film transistor including oxide semiconductor layer, and sputtering target
KR20200136988A (en) Thin film transistor including oxide semiconductor layer