WO2016035434A1 - Motor drive device - Google Patents

Motor drive device Download PDF

Info

Publication number
WO2016035434A1
WO2016035434A1 PCT/JP2015/068844 JP2015068844W WO2016035434A1 WO 2016035434 A1 WO2016035434 A1 WO 2016035434A1 JP 2015068844 W JP2015068844 W JP 2015068844W WO 2016035434 A1 WO2016035434 A1 WO 2016035434A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
converter
output voltage
control unit
inverter
Prior art date
Application number
PCT/JP2015/068844
Other languages
French (fr)
Japanese (ja)
Inventor
圭一 石田
洋平 久保田
治信 温品
慧 小川
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Publication of WO2016035434A1 publication Critical patent/WO2016035434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage

Definitions

  • Embodiments of the present invention relate to a motor drive device that converts the voltage of an AC power source into DC, converts the DC voltage into an AC voltage of a predetermined frequency, and outputs the AC voltage as drive power to the motor.
  • a motor drive device that converts the voltage of an AC power source into DC with a converter, converts the DC voltage into an AC voltage with a predetermined frequency by an inverter, and outputs the AC voltage as drive power to the motor.
  • the rotor speed of the motor is estimated from the current flowing in the motor winding, and sensorless vector control is performed to control the on / off duty of the inverter switching so that the estimated rotor speed becomes the target speed. .
  • it is on in the low speed operation range where the target speed is low, and the output voltage of the inverter is decreased by reducing the off duty, and it is on in the high speed operation range where the target speed is high (or from the medium speed operation range to the high speed operation range).
  • Control to increase the output voltage of the inverter by increasing the off duty.
  • the on / off duty reaches the upper limit value, the motor speed is increased by field weakening control in which a negative field component current -Id is injected.
  • An object of an embodiment of the present invention is to provide a motor driving device capable of increasing a motor speed while suppressing power loss as much as possible.
  • the motor drive device includes a converter, an inverter, and a control unit.
  • the converter can convert an AC voltage into a DC voltage and perform a boosting operation.
  • the inverter converts the output voltage of the converter into an AC voltage having a predetermined frequency by switching, and outputs the AC voltage as drive power to the motor.
  • the control unit controls the output voltage of the inverter so that the speed of the motor becomes a target speed, and executes the field weakening control for the motor when the output voltage reaches the upper limit, and the control amount of the field weakening control Is higher than a set value and the load of the inverter is larger than a certain level, the converter is boosted to increase the output voltage of the converter.
  • the block diagram which shows the structure of one Embodiment.
  • the flowchart which shows the control of the embodiment.
  • the figure which shows an example of the change of the output voltage in the same embodiment, a torque component current, and an advance angle.
  • the input end of the PWM converter 2 is connected to the three-phase AC power source 1, and the input end of the inverter 3 is connected to the output end of the PWM converter 2.
  • a phase winding Lu, Lm, Lw of a brushless DC motor (also referred to as a permanent magnet synchronous motor) 4 is connected to the output terminal of the inverter 3.
  • the PWM converter 2 includes reactors 11, 12, and 13, bridge circuits of diodes 14a to 19a, switching elements such as IGBTs 14 to 19, and a smoothing capacitor 20, and has a function of direct current conversion (full wave rectification) by the diodes 14a to 19a.
  • the boosting operation for example, an AC voltage of 100V can be converted into a DC voltage of 300V.
  • the bridge circuit of the diodes 14a to 19a includes a series circuit of the diodes 14a and 15a, a series circuit of the diodes 16a and 17a, and a series circuit of the diodes 18a and 19a.
  • the interconnection points of the diodes 14a and 15a are connected to the R-phase power supply line of the three-phase AC power supply 1 through the reactor 11, and the interconnection points of the diodes 16a and 17a are connected to the S-phase of the three-phase AC power supply 1 through the reactor 12.
  • the interconnection point of the diodes 18 a and 19 a is connected to the T-phase power supply line of the three-phase AC power supply 1 through the reactor 13.
  • the diodes 14a to 19a are free-wheeling diodes built in the IGBTs 14 to 19.
  • the smoothing capacitor 20 smoothes the output voltage of the PWM converter.
  • the voltage of the smoothing capacitor 20 becomes the output voltage Vdc of the PWM converter 2.
  • the inverter 3 is a U-phase series circuit in which IGBTs 31 and 32 are connected in series, and an interconnection point between the IGBTs 31 and 32 is connected to the phase winding Lu of the brushless DC motor 4, and IGBTs 33 and 34 are connected in series.
  • the V-phase series circuit, IGBTs 35 and 36, whose interconnection points are connected to the phase winding Lv of the brushless DC motor 4, are connected in series, and the interconnection points of the IGBTs 35 and 36 are connected to the phase winding Lw of the brushless DC motor 4.
  • the output voltage Vdc of the PWM converter 2 is converted into a three-phase AC voltage of a predetermined frequency by switching on and off the IGBTs 31 to 36, and the three-phase AC voltage is driven to the brushless DC motor 4 Output as.
  • the IGBTs 31 to 36 have freewheeling diodes 31a to 36a.
  • the element configurations and ratings of the IGBTs 31 to 36 are the same as the element configurations and ratings of the IGBTs 14 to 19 in the PWM converter 2.
  • the brushless DC motor 4 includes a stator having three phase windings Lu, Lv, and Lw connected in a star shape, and a rotor having a permanent magnet.
  • the rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field generated by the permanent magnet.
  • Current sensors 41, 42, and 43 for detecting a phase winding current (motor current) are arranged in a current path between the phase windings Lu, Lv, and Lw and the output terminal of the inverter 3.
  • the inverter control unit 50 is connected to the inverter 3.
  • a converter control unit 70 is connected to the PWM converter 2.
  • a main control unit 80 is connected to the inverter control unit 50 and the converter control unit 70.
  • the inverter control unit 50 is a so-called sensorless vector control unit that controls switching of the inverter 3 in accordance with the outputs of the current sensors 41, 42, 43 and a command from the main control unit 80.
  • the current detector 51 captures currents (motor currents) flowing through the phase windings Lu, Lv, Lw of the brushless DC motor 4 from the outputs of the current sensors 41, 42, 43, and field components (d-axis components) of the captured currents. ) Id and torque component (q-axis component) Iq are detected.
  • the field component current Id is a current converted into a field axis (d axis) coordinate on the rotor axis, and is also referred to as a d axis current or a reactive current.
  • the torque component current Iq is a current converted into a torque axis (q-axis) coordinate on the rotor axis, and is also referred to as a q-axis current or an effective current.
  • the value of field component current Id and the value of torque component current Iq are notified to main controller 80.
  • the speed estimation calculation unit 52 estimates the rotor speed ⁇ est of the brushless DC motor 4 by calculation using the field component current Id and the torque component current Iq detected by the current detection unit 51.
  • the integration unit 53 detects the rotor position ⁇ est of the brushless DC motor 4 by integrating the estimated rotor speed ⁇ est of the speed estimation calculation unit 52.
  • the detected rotor position ⁇ est is supplied to the current detection unit 51 and the PWM signal generation unit 63.
  • the subtracting unit 54 obtains a deviation ⁇ err between the target speed ⁇ ref and the estimated rotor speed ⁇ est by subtracting the estimated rotor speed ⁇ est from the target speed ⁇ ref commanded from the main control unit 80.
  • the speed control unit 55 calculates a target value Iqref of the torque component current Iq by calculating a proportional / integral control (PI control) on the deviation ⁇ err obtained by the subtracting unit 54.
  • the Id control unit 56 obtains the target value Idref of the field component current Id from the target value Iqref of the torque component current Iq, and calculates the “negative field component current” ⁇ Id commanded from the main control unit 80 as the target value Idref.
  • the subtractor 57 obtains a deviation ⁇ Id between the field component current Id and the target value Idref by subtracting the field component current Id detected by the current detector 51 from the target value Idref.
  • the subtractor 58 obtains a deviation ⁇ Iq between the torque component current Iq and the target value Iqref by subtracting the torque component current Iq detected by the current detector 51 from the target value Iqref.
  • the current control unit 61 obtains the field component (d-axis component) Vd of the drive voltage to be applied to the brushless DC motor 4 by calculating the deviation ⁇ Id by proportional / integral control (PI control).
  • the field component Vd is a voltage converted into a field axis (d axis) coordinate on the rotor axis, and is also referred to as a d axis voltage or a reactive voltage.
  • the current control unit 62 calculates the torque component (q-axis component) Vq of the drive voltage to be applied to the brushless DC motor 4 by calculating the deviation ⁇ Iq in proportion / integral control (PI control).
  • the torque component voltage Vq is a voltage converted into a torque axis (q-axis) coordinate on the rotor axis, and is also referred to as a q-axis voltage or an effective voltage.
  • the PWM signal generator 63 generates a switching pulse width modulation signal (referred to as a PWM signal) for the inverter 3 according to the field component voltage Vd, the torque component voltage Vq, and the detected rotor position ⁇ est. By this PWM signal, each switching element of the inverter 3 is turned on and off. The main control unit 80 is notified of the on / off duty D of the switching by the PWM signal.
  • a PWM signal a switching pulse width modulation signal
  • Converter control unit 70 is a vector control unit that controls switching of PWM converter 2 in accordance with a command from main control unit 80 and output voltage Vdc of PWM converter 2.
  • the main controller 80 controls the inverter 3 via the inverter controller 50 and controls the PWM converter 2 via the converter controller 70.
  • the main control unit 80 controls the output voltage of the inverter 3 so that the speed of the brushless DC motor 4 (estimated rotor speed ⁇ est) becomes the target speed ( ⁇ ref). Then, the main control unit 80 executes field weakening control on the brushless DC motor 4 when the output voltage of the inverter 3 reaches the upper limit. Furthermore, the main control unit 80 boosts the PWM converter 2 to increase the output voltage Vdc of the PWM converter 2 when the control amount of the field weakening control is equal to or greater than the set value and the load of the inverter 3 is greater than a certain level. To raise.
  • the upper limit is a state in which the on / off duty D of switching of the inverter 3 reaches the upper limit value Ds, and the output voltage of the inverter 3 cannot be increased beyond that.
  • the main control unit 80 controls the on / off duty D of switching of the inverter 3 so that the estimated rotor speed ⁇ est becomes the target speed ⁇ ref. Then, when the on / off duty D reaches the upper limit value Ds, the main control unit 80 executes field weakening control that injects “negative field component current” ⁇ Id into the field component current Id. Further, the main control unit 80 determines that the PWM converter 2 when the advance angle ⁇ , which is the control amount of the field weakening control, increases to a set value ⁇ 1 (for example, 40 °) or more and the torque component current Iq is the set value Iq1 or more. To increase the output voltage Vdc of the PWM converter 2.
  • the main control unit 80 recognizes that the torque load of the inverter 3 is greater than or equal to a certain value as “the torque component current Iq is greater than or equal to the set value Iq1”. Further, the main control unit 80 sets a voltage change rate (Vdc / sec) when the output voltage Vdc of the PWM converter 2 is raised, and a voltage change rate (Vdc / sec) when the output voltage Vdc of the PWM converter 2 is lowered. Larger than.
  • step S1 the main control unit 80 determines the switching ON / OFF duty D in the inverter 3 according to the deviation ⁇ err between the estimated rotor speed ⁇ est and the target speed ⁇ ref. Increase by the amount (step S2).
  • step S3 the main control unit 80 determines whether the on / off duty D has reached the upper limit value Ds.
  • step S3 the main control unit 80 repeats the processing from step S1.
  • step S3 When the on / off duty D reaches the upper limit value Ds (YES in step S3), the speed of the brushless DC motor 4 cannot be increased as it is, so the main control unit 80 sets the field component current Id to a predetermined amount.
  • Field-weakening control for injecting “negative field component current” ⁇ Id is executed (step S4). By this field weakening control, the speed of the brushless DC motor 4 increases.
  • the main control unit 80 determines whether or not the advance angle ⁇ , which is the control amount of the field weakening control, is equal to or larger than the set value ⁇ 1 as the field weakening control is executed (step S5). When the advance angle ⁇ has not reached the set value ⁇ 1 (NO in step S5), the main control unit 80 repeats the processing from step S1.
  • the advance angle ⁇ can be expressed by the following equation using the torque component current Iq and “negative field component current” ⁇ Id.
  • the main control unit 80 determines whether or not the torque component current Iq corresponding to the magnitude of the load of the inverter 3 is greater than or equal to the set value Iq1. (Step S6).
  • torque component current Iq has not reached set value Iq1 (NO in step S6), main controller 80 repeats the processing from step S1.
  • main control unit 80 starts the boost operation (switching) of PWM converter 2 and increases output voltage Vdc of PWM converter 2 by a predetermined value.
  • the direction is adjusted (step S7).
  • the on / off duty control functions again effectively (on / off duty D can be increased), and the speed of the brushless DC motor 4 further increases.
  • the main control unit 80 does not immediately boost the PWM converter 2 even when the advance angle ⁇ increases to the set value ⁇ 1 or more (YES in step S5), and responds to the load of the inverter 3. Under the condition that the torque component current Iq to be set is equal to or greater than the set value Iq1 (YES in step S6), the PWM converter 2 is first boosted (step S7).
  • the main control unit 80 increases the speed of the brushless DC motor 4 by field weakening control in order to give priority to suppression of power loss.
  • Step S5 In a state where the advance angle ⁇ has increased to the set value ⁇ 1 or more (YES in Step S5), when the torque component current Iq becomes the set value Iq1 or more (the load of the inverter 3 is a certain value or more) (YES in Step S6), Since the operation of the brushless DC motor 4 becomes unstable and the risk that the brushless DC motor 4 will step out increases, the main controller 80 starts the boost operation of the PWM converter 2 in order to prioritize the resolution of the problem. (Step S7).
  • the speed of the brushless DC motor 4 is increased while preventing unstable operation and step-out of the brushless DC motor 4 and suppressing power loss as much as possible. be able to.
  • the speed control area of the brushless DC motor 4 extends to the high speed side.
  • FIG. 3 shows an example of changes in the lead angle ⁇ , the torque component current Iq, and the output voltage Vdc.
  • the step-up operation of the PWM converter 2 starts at a timing t1 when the advance angle ⁇ increases to the set value ⁇ 1 or more and the torque component current Iq becomes the set value Iq1 or more.
  • the output voltage Vdc of the PWM converter 2 maintains the level Vdc1 of only full-wave rectification until the timing t1.
  • the main control unit 80 determines whether or not the output voltage Vdc has reached the allowable maximum value Vdc2 as the output voltage Vdc is increased by the process of Step S7 (Step S8). When the output voltage Vdc has not reached the allowable maximum value Vdc2 (NO in step S8), the main control unit 80 repeats the processing from step S1.
  • step S8 When the output voltage Vdc reaches the allowable maximum value Vdc2 (YES in step S8), the main control unit 80 determines whether or not the advance angle ⁇ is a set value ⁇ 2 (for example, 45 °) (step S9). When the advance angle ⁇ does not reach the set value ⁇ 2 (NO in step S9), the main control unit 80 repeats the processing from step S1.
  • step S9 When the advance angle ⁇ reaches the set value ⁇ 2 despite the increase of the output voltage Vdc (YES in step S9), the main control unit 80 supplies the “negative field component current” ⁇ Id that has been injected so far to a predetermined amount. It decreases by only (step S10). After this decrease, the main control unit 80 repeats the processing from step S1.
  • step S9 the main control unit 80 decreases the “negative field component current” ⁇ Id (in step S9). YES, step S10).
  • step S11 determines whether the estimated rotor speed ⁇ est exceeds the target speed ⁇ ref (step S11).
  • the main control unit 80 repeats the processing from step S1.
  • the main control unit 80 determines whether the advance angle ⁇ is equal to or greater than the set value ⁇ 1 (step S12).
  • the main control unit 80 sets the output voltage Vdc of the PWM converter 2 to a predetermined value if the PWM converter 2 is performing a boosting operation (YES in step 13). (Step S14). After the descent, the main control unit 80 repeats the processing from step S1.
  • the main control unit 80 decreases the “negative field component current” ⁇ Id by a predetermined amount (step S15). After this decrease, the main control unit 80 repeats the processing from step S1.
  • step S12 When the advance angle ⁇ is less than the set value ⁇ 1 (NO in step S12), the main control unit 80 determines that “negative field component current” ⁇ Id is set if field weakening control is being executed (YES in step S16). Decrease by a fixed amount (step S17). After this decrease, the main control unit 80 repeats the processing from step S1.
  • the main control unit 80 reduces the switching ON / OFF duty D in the inverter 3 by an amount corresponding to the deviation ⁇ err between the estimated rotor speed ⁇ est and the target speed ⁇ ref. (Step S18). After this decrease, the main control unit 80 repeats the processing from step S1.
  • the rise and fall of the output voltage Vdc are shown in FIG. 4 together with the changes in the advance angle ⁇ and the target speed ⁇ ref.
  • the main controller 80 sets the advance angle ⁇ to almost the set value regardless of the increase in the target speed ⁇ ref or the sudden change in the load.
  • the adjustment of the output voltage Vdc is preferentially performed so that ⁇ 1 remains constant.
  • the main control unit 80 can stably suppress the advance angle ⁇ below the set value ⁇ 2, and the output voltage Vdc so as not to cause a failure in the adjustment control at the time of lowering.
  • the voltage change rate (Vdc / sec) at the time of rising is set larger than the voltage change rate (Vdc / sec) at the time of falling.
  • the advance angle ⁇ is captured as the control amount of the field weakening control.
  • the injection amount of “negative field component current” ⁇ Id may be captured as the control amount of the field weakening control.
  • the torque component current Iq is captured as the magnitude of the load of the inverter 3, but the load factor M of the brushless DC motor 4 relative to the rated load of the inverter 3 may be captured as the magnitude of the load as it is.
  • the main control unit 80 controls the switching ON / OFF duty D of the inverter 3 so that the estimated rotor speed ⁇ est becomes the target speed ⁇ ref, and when the ON / OFF duty D reaches the upper limit value Ds.
  • the field weakening control is executed by injecting “negative field component current” ⁇ Id into the field component current Id, the advance angle ⁇ , which is the control amount of the field weakening control, rises to the set value ⁇ 1 or more and the rating of the inverter 3
  • the load factor M of the brushless DC motor 4 with respect to the load is a set value M1 (for example, 76%) or more
  • the PWM converter 2 is boosted to increase the output voltage Vdc of the PWM converter 2.
  • SYMBOLS 1 Three-phase alternating current power supply, 2 ... PWM converter, 3 ... Inverter, 4 ... Brushless DC motor, 41, 42, 43 ... Current sensor, 50 ... Inverter control part, 70 ... Converter control part, 80 ... Main control part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A motor drive device is equipped with a converter, an inverter, and a control unit. The control unit controls the output voltage of the inverter so that the speed of a motor reaches a target speed. When the output voltage reaches an upper limit, the control unit performs a field-weakening control on the motor. When the control amount of the field-weakening control rises to a setting value or more and the load of the inverter has a certain magnitude or more, the control unit causes the converter to perform a boost operation, thereby raising the output voltage of the converter.

Description

モータ駆動装置Motor drive device
 本発明の実施形態は、交流電源の電圧を直流に変換し、その直流電圧を所定周波数の交流電圧に変換しモータへの駆動電力として出力するモータ駆動装置に関する。 Embodiments of the present invention relate to a motor drive device that converts the voltage of an AC power source into DC, converts the DC voltage into an AC voltage of a predetermined frequency, and outputs the AC voltage as drive power to the motor.
 交流電源の電圧をコンバータで直流に変換し、その直流電圧をインバータで所定周波数の交流電圧に変換し、その交流電圧をモータへの駆動電力として出力するモータ駆動装置が知られている。 2. Description of the Related Art A motor drive device is known that converts the voltage of an AC power source into DC with a converter, converts the DC voltage into an AC voltage with a predetermined frequency by an inverter, and outputs the AC voltage as drive power to the motor.
 このモータ駆動装置では、モータの巻線に流れる電流からモータのロータ速度を推定し、その推定ロータ速度が目標速度となるようにインバータのスイッチングのオン,オフデューティを制御するセンサレス・ベクトル制御を行う。すなわち、目標速度が低い低速運転域ではオン,オフデューティを小さくしてインバータの出力電圧を低下させ、目標速度が高くなる高速度運転域(または中速度運転域から高速度運転域)ではオン,オフデューティを大きくしてインバータの出力電圧を高める制御を行う。オン,オフデューティが上限値に達した場合は、負の界磁成分電流-Idを注入する弱め界磁制御によりモータ速度を上昇させる。 In this motor drive device, the rotor speed of the motor is estimated from the current flowing in the motor winding, and sensorless vector control is performed to control the on / off duty of the inverter switching so that the estimated rotor speed becomes the target speed. . In other words, it is on in the low speed operation range where the target speed is low, and the output voltage of the inverter is decreased by reducing the off duty, and it is on in the high speed operation range where the target speed is high (or from the medium speed operation range to the high speed operation range). Control to increase the output voltage of the inverter by increasing the off duty. When the on / off duty reaches the upper limit value, the motor speed is increased by field weakening control in which a negative field component current -Id is injected.
特開平05-15193号公報Japanese Patent Laid-Open No. 05-15193
 ただし、弱め界磁制御によって進み角が大きくなっていくと、やがてモータの動作が不安定となり、モータが脱調に至るリスクが高くなる。 However, if the lead angle increases due to field-weakening control, the motor operation will eventually become unstable, and the risk that the motor will step out increases.
 一方、スイッチングによる昇圧動作が可能なPWMコンバータを用い、そのPWMコンバータの出力電圧を昇圧動作により上昇させることで、モータ速度を高めることが可能となる。しかしながら、PWMコンバータの昇圧動作は、大きな電力損失を生じるという問題がある。 On the other hand, it is possible to increase the motor speed by using a PWM converter capable of boosting operation by switching and increasing the output voltage of the PWM converter by boosting operation. However, the step-up operation of the PWM converter has a problem that a large power loss occurs.
 本発明の実施形態の目的は、電力損失をできるだけ抑えながらモータ速度を高めることができるモータ駆動装置を提供することである。 An object of an embodiment of the present invention is to provide a motor driving device capable of increasing a motor speed while suppressing power loss as much as possible.
 請求項1のモータ駆動装置は、コンバータと、インバータと、制御部とを備える。コンバータは、交流電圧を直流電圧に変換するとともに昇圧動作が可能である。インバータは、前記コンバータの出力電圧をスイッチングにより所定周波数の交流電圧に変換し、その交流電圧をモータへの駆動電力として出力する。制御部は、前記モータの速度が目標速度となるように前記インバータの出力電圧を制御し、その出力電圧が上限に達した場合には前記モータに対する弱め界磁制御を実行し、その弱め界磁制御の制御量が設定値以上で且つ前記インバータの負荷が一定以上の大きさである場合に前記コンバータを昇圧動作させて前記コンバータの出力電圧を上昇させる。 The motor drive device according to claim 1 includes a converter, an inverter, and a control unit. The converter can convert an AC voltage into a DC voltage and perform a boosting operation. The inverter converts the output voltage of the converter into an AC voltage having a predetermined frequency by switching, and outputs the AC voltage as drive power to the motor. The control unit controls the output voltage of the inverter so that the speed of the motor becomes a target speed, and executes the field weakening control for the motor when the output voltage reaches the upper limit, and the control amount of the field weakening control Is higher than a set value and the load of the inverter is larger than a certain level, the converter is boosted to increase the output voltage of the converter.
一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment. 同実施形態の制御を示すフローチャート。The flowchart which shows the control of the embodiment. 同実施形態における出力電圧、トルク成分電流、進み角の変化の一例を示す図。The figure which shows an example of the change of the output voltage in the same embodiment, a torque component current, and an advance angle. 同実施形態における出力電圧の上昇および下降を進み角および目標速度の変化と共に示す図。The figure which shows the raise and fall of the output voltage in the same embodiment with the change of a lead angle and target speed.
 以下、一実施形態について図面を参照して説明する。 
 図1に示すように、三相交流電源1にPWMコンバータ2の入力端が接続され、そのPWMコンバータ2の出力端にインバータ3の入力端が接続される。このインバータ3の出力端に、ブラシレスDCモータ(永久磁石同期モータともいう)4の相巻線Lu,Lm,Lwが接続される。
Hereinafter, an embodiment will be described with reference to the drawings.
As shown in FIG. 1, the input end of the PWM converter 2 is connected to the three-phase AC power source 1, and the input end of the inverter 3 is connected to the output end of the PWM converter 2. A phase winding Lu, Lm, Lw of a brushless DC motor (also referred to as a permanent magnet synchronous motor) 4 is connected to the output terminal of the inverter 3.
 PWMコンバータ2は、リアクタ11,12,13、ダイオード14a~19aのブリッジ回路、スイッチング素子たとえばIGBT14~19、および平滑コンデンサ20を備え、ダイオード14a~19aによる直流変換(全波整流)の機能を有するとともに、IGBT14~19のオン,オフスイッチングによる昇圧動作・高調波抑制・力率改善が可能である。昇圧動作により、例えば100Vの交流電圧を300Vの直流電圧に変換することができる。 The PWM converter 2 includes reactors 11, 12, and 13, bridge circuits of diodes 14a to 19a, switching elements such as IGBTs 14 to 19, and a smoothing capacitor 20, and has a function of direct current conversion (full wave rectification) by the diodes 14a to 19a. At the same time, it is possible to perform boosting operation, harmonic suppression, and power factor improvement by on / off switching of the IGBTs 14 to 19. By the boosting operation, for example, an AC voltage of 100V can be converted into a DC voltage of 300V.
 ダイオード14a~19aのブリッジ回路は、ダイオード14a,15aの直列回路、ダイオード16a,17aの直列回路、ダイオード18a,19aの直列回路により構成される。ダイオード14a,15aの相互接続点がリアクタ11を介して三相交流電源1のR相電源ラインに接続され、ダイオード16a,17aの相互接続点がリアクタ12を介して三相交流電源1のS相電源ラインに接続され、ダイオード18a,19aの相互接続点がリアクタ13を介して三相交流電源1のT相電源ラインに接続される。なお、ダイオード14a~19aは、IGBT14~19に内蔵されている還流ダイオードである。平滑コンデンサ20は、PWMコンバータの出力電圧を平滑する。この平滑コンデンサ20の電圧がPWMコンバータ2の出力電圧Vdcとなる。 The bridge circuit of the diodes 14a to 19a includes a series circuit of the diodes 14a and 15a, a series circuit of the diodes 16a and 17a, and a series circuit of the diodes 18a and 19a. The interconnection points of the diodes 14a and 15a are connected to the R-phase power supply line of the three-phase AC power supply 1 through the reactor 11, and the interconnection points of the diodes 16a and 17a are connected to the S-phase of the three-phase AC power supply 1 through the reactor 12. The interconnection point of the diodes 18 a and 19 a is connected to the T-phase power supply line of the three-phase AC power supply 1 through the reactor 13. The diodes 14a to 19a are free-wheeling diodes built in the IGBTs 14 to 19. The smoothing capacitor 20 smoothes the output voltage of the PWM converter. The voltage of the smoothing capacitor 20 becomes the output voltage Vdc of the PWM converter 2.
 インバータ3は、IGBT31,32を直列接続しそのIGBT31,32の相互接続点がブラシレスDCモータ4の相巻線Luに接続されるU相直列回路、IGBT33,34を直列接続しそのIGBT33,34の相互接続点がブラシレスDCモータ4の相巻線Lvに接続されるV相直列回路、IGBT35,36を直列接続しそのIGBT35,36の相互接続点がブラシレスDCモータ4の相巻線Lwに接続されるW相直列回路を含み、PWMコンバータ2の出力電圧VdcをIGBT31~36のオン,オフスイッチングにより所定周波数の三相交流電圧に変換し、その三相交流電圧をブラシレスDCモータ4への駆動電力として出力する。なお、IGBT31~36は、還流ダイオード31a~36aを有する。また、IGBT31~36の素子構成や定格は、PWMコンバータ2におけるIGBT14~19の素子構成や定格と同じである。 The inverter 3 is a U-phase series circuit in which IGBTs 31 and 32 are connected in series, and an interconnection point between the IGBTs 31 and 32 is connected to the phase winding Lu of the brushless DC motor 4, and IGBTs 33 and 34 are connected in series. The V-phase series circuit, IGBTs 35 and 36, whose interconnection points are connected to the phase winding Lv of the brushless DC motor 4, are connected in series, and the interconnection points of the IGBTs 35 and 36 are connected to the phase winding Lw of the brushless DC motor 4. The output voltage Vdc of the PWM converter 2 is converted into a three-phase AC voltage of a predetermined frequency by switching on and off the IGBTs 31 to 36, and the three-phase AC voltage is driven to the brushless DC motor 4 Output as. The IGBTs 31 to 36 have freewheeling diodes 31a to 36a. The element configurations and ratings of the IGBTs 31 to 36 are the same as the element configurations and ratings of the IGBTs 14 to 19 in the PWM converter 2.
 ブラシレスDCモータ4は、星形結線された3つの相巻線Lu,Lv,Lwを有する固定子、および永久磁石を有する回転子により構成される。相巻線Lu,Lv,Lwに電流が流れることにより生じる磁界と上記永久磁石が作る磁界との相互作用により、上記回転子が回転する。そして、相巻線Lu,Lv,Lwとインバータ3の出力端との間の通電路に相巻線電流(モータ電流)検知用の電流センサ41,42,43が配置される。 The brushless DC motor 4 includes a stator having three phase windings Lu, Lv, and Lw connected in a star shape, and a rotor having a permanent magnet. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field generated by the permanent magnet. Current sensors 41, 42, and 43 for detecting a phase winding current (motor current) are arranged in a current path between the phase windings Lu, Lv, and Lw and the output terminal of the inverter 3.
 インバータ3に、インバータ制御部50が接続される。PWMコンバータ2に、コンバータ制御部70が接続される。これらインバータ制御部50およびコンバータ制御部70に、主制御部80が接続される。 The inverter control unit 50 is connected to the inverter 3. A converter control unit 70 is connected to the PWM converter 2. A main control unit 80 is connected to the inverter control unit 50 and the converter control unit 70.
 インバータ制御部50は、電流センサ41,42,43の出力および主制御部80の指令に応じてインバータ3のスイッチングを制御するいわゆるセンサレス・ベクトル制御部であり、電流検出部51、速度推定演算部52、積分部53、減算部54、速度制御部55、Id制御部56、減算部57,58、電流制御部61,62、PWM信号生成部63を備える。 The inverter control unit 50 is a so-called sensorless vector control unit that controls switching of the inverter 3 in accordance with the outputs of the current sensors 41, 42, 43 and a command from the main control unit 80. The current detection unit 51, speed estimation calculation unit 52, an integration unit 53, a subtraction unit 54, a speed control unit 55, an Id control unit 56, subtraction units 57 and 58, current control units 61 and 62, and a PWM signal generation unit 63.
 電流検出部51は、ブラシレスDCモータ4の相巻線Lu,Lv,Lwに流れる電流(モータ電流)を電流センサ41,42,43の出力から捕らえ、捕らえた電流の界磁成分(d軸成分)Idおよびトルク成分(q軸成分)Iqを検出する。界磁成分電流Idは、ロータ軸上の界磁軸(d軸)座標に換算された電流のことで、d軸電流や無効電流ともいう。トルク成分電流Iqは、ロータ軸上のトルク軸(q軸)座標に換算された電流のことで、q軸電流や有効電流ともいう。この界磁成分電流Idの値およびトルク成分電流Iqの値が主制御部80に通知される。 The current detector 51 captures currents (motor currents) flowing through the phase windings Lu, Lv, Lw of the brushless DC motor 4 from the outputs of the current sensors 41, 42, 43, and field components (d-axis components) of the captured currents. ) Id and torque component (q-axis component) Iq are detected. The field component current Id is a current converted into a field axis (d axis) coordinate on the rotor axis, and is also referred to as a d axis current or a reactive current. The torque component current Iq is a current converted into a torque axis (q-axis) coordinate on the rotor axis, and is also referred to as a q-axis current or an effective current. The value of field component current Id and the value of torque component current Iq are notified to main controller 80.
 速度推定演算部52は、電流検出部51で検出された界磁成分電流Idおよびトルク成分電流Iqを用いる演算により、ブラシレスDCモータ4のロータ速度ωestを推定する。積分部53は、速度推定演算部52の推定ロータ速度ωestを積分することにより、ブラシレスDCモータ4のロータ位置θestを検出する。この検出ロータ位置θestは、電流検出部51およびPWM信号生成部63に供給される。減算部54は、主制御部80から指令される目標速度ωrefから推定ロータ速度ωestを減算することにより、目標速度ωrefと推定ロータ速度ωestとの偏差ωerrを得る。 The speed estimation calculation unit 52 estimates the rotor speed ωest of the brushless DC motor 4 by calculation using the field component current Id and the torque component current Iq detected by the current detection unit 51. The integration unit 53 detects the rotor position θest of the brushless DC motor 4 by integrating the estimated rotor speed ωest of the speed estimation calculation unit 52. The detected rotor position θest is supplied to the current detection unit 51 and the PWM signal generation unit 63. The subtracting unit 54 obtains a deviation ωerr between the target speed ωref and the estimated rotor speed ωest by subtracting the estimated rotor speed ωest from the target speed ωref commanded from the main control unit 80.
 速度制御部55は、減算部54で得られた偏差ωerrを比例・積分制御(PI制御)演算することにより、トルク成分電流Iqの目標値Iqrefを求める。Id制御部56は、トルク成分電流Iqの目標値Iqrefから界磁成分電流Idの目標値Idrefを求めるとともに、主制御部80から指令される“負の界磁成分電流”-Idを目標値Idrefに加える。減算部57は、電流検出部51の検出による界磁成分電流Idを目標値Idrefから減算することにより、界磁成分電流Idと目標値Idrefとの偏差ΔIdを求める。減算部58は、電流検出部51の検出によるトルク成分電流Iqを目標値Iqrefから減算することにより、トルク成分電流Iqと目標値Iqrefとの偏差ΔIqを求める。 The speed control unit 55 calculates a target value Iqref of the torque component current Iq by calculating a proportional / integral control (PI control) on the deviation ωerr obtained by the subtracting unit 54. The Id control unit 56 obtains the target value Idref of the field component current Id from the target value Iqref of the torque component current Iq, and calculates the “negative field component current” −Id commanded from the main control unit 80 as the target value Idref. Add to. The subtractor 57 obtains a deviation ΔId between the field component current Id and the target value Idref by subtracting the field component current Id detected by the current detector 51 from the target value Idref. The subtractor 58 obtains a deviation ΔIq between the torque component current Iq and the target value Iqref by subtracting the torque component current Iq detected by the current detector 51 from the target value Iqref.
 電流制御部61は、偏差ΔIdを比例・積分制御(PI制御)演算することにより、ブラシレスDCモータ4に印加するべき駆動電圧の界磁成分(d軸成分)Vdを求める。界磁成分Vdは、ロータ軸上の界磁軸(d軸)座標に換算された電圧のことで、d軸電圧や無効電圧とも称される。電流制御部62は、偏差ΔIqを比例・積分制御(PI制御)演算することにより、ブラシレスDCモータ4に印加するべき駆動電圧のトルク成分(q軸成分)Vqを求める。トルク成分電圧Vqは、ロータ軸上のトルク軸(q軸)座標に換算された電圧のことで、q軸電圧や有効電圧とも称される。 The current control unit 61 obtains the field component (d-axis component) Vd of the drive voltage to be applied to the brushless DC motor 4 by calculating the deviation ΔId by proportional / integral control (PI control). The field component Vd is a voltage converted into a field axis (d axis) coordinate on the rotor axis, and is also referred to as a d axis voltage or a reactive voltage. The current control unit 62 calculates the torque component (q-axis component) Vq of the drive voltage to be applied to the brushless DC motor 4 by calculating the deviation ΔIq in proportion / integral control (PI control). The torque component voltage Vq is a voltage converted into a torque axis (q-axis) coordinate on the rotor axis, and is also referred to as a q-axis voltage or an effective voltage.
 PWM信号生成部63は、界磁成分電圧Vd、トルク成分電圧Vq、および検出ロータ位置θestに応じて、インバータ3に対するスイッチング用のパルス幅変調信号(PWM信号という)を生成する。このPWM信号により、インバータ3の各スイッチング素子がオン,オフ動作する。このPWM信号によるスイッチングのオン,オフデューティDが主制御部80に通知される。 The PWM signal generator 63 generates a switching pulse width modulation signal (referred to as a PWM signal) for the inverter 3 according to the field component voltage Vd, the torque component voltage Vq, and the detected rotor position θest. By this PWM signal, each switching element of the inverter 3 is turned on and off. The main control unit 80 is notified of the on / off duty D of the switching by the PWM signal.
 コンバータ制御部70は、主制御部80の指令およびPWMコンバータ2の出力電圧Vdcに応じてPWMコンバータ2のスイッチングを制御するベクトル制御部である。 Converter control unit 70 is a vector control unit that controls switching of PWM converter 2 in accordance with a command from main control unit 80 and output voltage Vdc of PWM converter 2.
 主制御部80は、インバータ制御部50を介してインバータ3を制御するとともに、コンバータ制御部70を介してPWMコンバータ2を制御する。 The main controller 80 controls the inverter 3 via the inverter controller 50 and controls the PWM converter 2 via the converter controller 70.
 すなわち、主制御部80は、ブラシレスDCモータ4の速度(推定ロータ速度ωest)が目標速度(ωref)となるように、インバータ3の出力電圧を制御する。そして、主制御部80は、インバータ3の出力電圧が上限に達した場合に、ブラシレスDCモータ4に対する弱め界磁制御を実行する。さらに、主制御部80は、その弱め界磁制御の制御量が設定値以上で且つインバータ3の負荷が一定以上の大きさである場合に、PWMコンバータ2を昇圧動作させてPWMコンバータ2の出力電圧Vdcを上昇させる。上限とは、インバータ3のスイッチングのオン,オフデューティDが上限値Dsに達して、それ以上はインバータ3の出力電圧を高めることができない状態のことである。 That is, the main control unit 80 controls the output voltage of the inverter 3 so that the speed of the brushless DC motor 4 (estimated rotor speed ωest) becomes the target speed (ωref). Then, the main control unit 80 executes field weakening control on the brushless DC motor 4 when the output voltage of the inverter 3 reaches the upper limit. Furthermore, the main control unit 80 boosts the PWM converter 2 to increase the output voltage Vdc of the PWM converter 2 when the control amount of the field weakening control is equal to or greater than the set value and the load of the inverter 3 is greater than a certain level. To raise. The upper limit is a state in which the on / off duty D of switching of the inverter 3 reaches the upper limit value Ds, and the output voltage of the inverter 3 cannot be increased beyond that.
 具体的には、主制御部80は、推定ロータ速度ωestが目標速度ωrefとなるように、インバータ3のスイッチングのオン,オフデューティDを制御する。そして、主制御部80は、オン,オフデューティDが上限値Dsに達した場合に、界磁成分電流Idに“負の界磁成分電流”-Idを注入する弱め界磁制御を実行する。さらに、主制御部80は、その弱め界磁制御の制御量である進み角βが設定値β1(例えば40°)以上に増えて且つトルク成分電流Iqが設定値Iq1以上である場合に、PWMコンバータ2を昇圧動作させてPWMコンバータ2の出力電圧Vdcを上昇させる。インバータ3の負荷の大きさが一定以上であることを、主制御部80は、“トルク成分電流Iqが設定値Iq1以上である”として捕らえている。また、主制御部80は、PWMコンバータ2の出力電圧Vdcを上昇させる際の電圧変化率(Vdc/秒)を、PWMコンバータ2の出力電圧Vdcを下降させる際の電圧変化率(Vdc/秒)よりも大きくする。 Specifically, the main control unit 80 controls the on / off duty D of switching of the inverter 3 so that the estimated rotor speed ωest becomes the target speed ωref. Then, when the on / off duty D reaches the upper limit value Ds, the main control unit 80 executes field weakening control that injects “negative field component current” −Id into the field component current Id. Further, the main control unit 80 determines that the PWM converter 2 when the advance angle β, which is the control amount of the field weakening control, increases to a set value β1 (for example, 40 °) or more and the torque component current Iq is the set value Iq1 or more. To increase the output voltage Vdc of the PWM converter 2. The main control unit 80 recognizes that the torque load of the inverter 3 is greater than or equal to a certain value as “the torque component current Iq is greater than or equal to the set value Iq1”. Further, the main control unit 80 sets a voltage change rate (Vdc / sec) when the output voltage Vdc of the PWM converter 2 is raised, and a voltage change rate (Vdc / sec) when the output voltage Vdc of the PWM converter 2 is lowered. Larger than.
 つぎに、主制御部80がインバータ制御部50およびコンバータ制御部70を介して実行する制御を、図2のフローチャートを参照しながら説明する。 
 主制御部80は、推定ロータ速度ωestが目標速度ωref未満の場合(ステップS1のYES)、インバータ3におけるスイッチングのオン,オフデューティDを、推定ロータ速度ωestと目標速度ωrefとの偏差ωerrに応じた分だけ増加する(ステップS2)。このオン,オフデューティDの増加に伴い、主制御部80は、オン,オフデューティDが上限値Dsに達したか否かを判定する(ステップS3)。オン,オフデューティDが上限値Dsに達していない場合(ステップS3のNO)、主制御部80は、ステップS1からの処理を繰り返す。
Next, the control executed by the main control unit 80 via the inverter control unit 50 and the converter control unit 70 will be described with reference to the flowchart of FIG.
When the estimated rotor speed ωest is less than the target speed ωref (YES in step S1), the main control unit 80 determines the switching ON / OFF duty D in the inverter 3 according to the deviation ωerr between the estimated rotor speed ωest and the target speed ωref. Increase by the amount (step S2). As the on / off duty D increases, the main control unit 80 determines whether the on / off duty D has reached the upper limit value Ds (step S3). When the on / off duty D has not reached the upper limit value Ds (NO in step S3), the main control unit 80 repeats the processing from step S1.
 オン,オフデューティDが上限値Dsに達した場合(ステップS3のYES)、そのままではブラシレスDCモータ4の速度を上昇させることができないので、主制御部80は、界磁成分電流Idに所定量の“負の界磁成分電流”-Idを注入する弱め界磁制御を実行する(ステップS4)。この弱め界磁制御により、ブラシレスDCモータ4の速度が上昇する。 When the on / off duty D reaches the upper limit value Ds (YES in step S3), the speed of the brushless DC motor 4 cannot be increased as it is, so the main control unit 80 sets the field component current Id to a predetermined amount. Field-weakening control for injecting “negative field component current” −Id is executed (step S4). By this field weakening control, the speed of the brushless DC motor 4 increases.
 主制御部80は、弱め界磁制御の実行に伴い、その弱め界磁制御の制御量である進み角βが設定値β1以上であるか否かを判定する(ステップS5)。進み角βが設定値β1に達していない場合(ステップS5のNO)、主制御部80は、ステップS1からの処理を繰り返す。 The main control unit 80 determines whether or not the advance angle β, which is the control amount of the field weakening control, is equal to or larger than the set value β1 as the field weakening control is executed (step S5). When the advance angle β has not reached the set value β1 (NO in step S5), the main control unit 80 repeats the processing from step S1.
 進み角βは、トルク成分電流Iqおよび“負の界磁成分電流”-Idを用いて次式のように表わすことができる。Arctanは、逆正接関数である。 
 β=arctan(|-Id|/|Iq|)
 進み角βが設定値β1以上の場合(ステップS5のYES)、主制御部80は、インバータ3の負荷の大きさに対応するトルク成分電流Iqが設定値Iq1以上であるか否かを判定する(ステップS6)。トルク成分電流Iqが設定値Iq1に達していない場合(ステップS6のNO)、主制御部80は、ステップS1からの処理を繰り返す。
The advance angle β can be expressed by the following equation using the torque component current Iq and “negative field component current” −Id. Arctan is an arc tangent function.
β = arctan (| −Id | / | Iq |)
When the advance angle β is greater than or equal to the set value β1 (YES in step S5), the main control unit 80 determines whether or not the torque component current Iq corresponding to the magnitude of the load of the inverter 3 is greater than or equal to the set value Iq1. (Step S6). When torque component current Iq has not reached set value Iq1 (NO in step S6), main controller 80 repeats the processing from step S1.
 トルク成分電流Iqが設定値Iq1以上の場合(ステップS6のYES)、主制御部80は、PWMコンバータ2の昇圧動作(スイッチング)を開始してそのPWMコンバータ2の出力電圧Vdcを所定値だけ上昇方向に調整する(ステップS7)。出力電圧Vdcが上昇すると、オン,オフデューティ制御が再び有効に機能するようになり(オン,オフデューティDの増加が可能となり)、ブラシレスDCモータ4の速度がさらに上昇する。 When torque component current Iq is equal to or larger than set value Iq1 (YES in step S6), main control unit 80 starts the boost operation (switching) of PWM converter 2 and increases output voltage Vdc of PWM converter 2 by a predetermined value. The direction is adjusted (step S7). When the output voltage Vdc increases, the on / off duty control functions again effectively (on / off duty D can be increased), and the speed of the brushless DC motor 4 further increases.
 PWMコンバータ2の出力電圧Vdcを上昇させることによりブラシレスDCモータ4の速度を上昇させることが可能となるが、反面、PWMコンバータ2のスイッチングによる昇圧動作は大きな電力損失を生じる。そこで、主制御部80は、進み角βが設定値β1以上に上昇した場合でも(ステップS5のYES)、直ちにPWMコンバータ2を昇圧動作させることはせず、インバータ3の負荷の大きさに対応するトルク成分電流Iqが設定値Iq1以上となったことを条件に(ステップS6のYES)、そこで初めてPWMコンバータ2を昇圧動作させるようにしている(ステップS7)。 Although it is possible to increase the speed of the brushless DC motor 4 by increasing the output voltage Vdc of the PWM converter 2, on the other hand, the boosting operation by switching of the PWM converter 2 causes a large power loss. Therefore, the main control unit 80 does not immediately boost the PWM converter 2 even when the advance angle β increases to the set value β1 or more (YES in step S5), and responds to the load of the inverter 3. Under the condition that the torque component current Iq to be set is equal to or greater than the set value Iq1 (YES in step S6), the PWM converter 2 is first boosted (step S7).
 換言すると、トルク成分電流Iqが設定値Iq1未満(インバータ3の負荷が一定未満)の場合は、進み角βが設定値β1以上であってもすぐにはブラシレスDCモータ4の動作が不安定とならないので、主制御部80は、電力損失の抑制を優先するべく、弱め界磁制御によってブラシレスDCモータ4の速度を上昇させる。進み角βが設定値β1以上に増えた状態で(ステップS5のYES)、トルク成分電流Iqが設定値Iq1以上(インバータ3の負荷が一定以上)となった場合は(ステップS6のYES)、ブラシレスDCモータ4の動作が不安定となってブラシレスDCモータ4が脱調に至るリスクが高くなるので、その不具合の解消を優先するべく、主制御部80は、PWMコンバータ2の昇圧動作を開始するようにしている(ステップS7)。 In other words, when the torque component current Iq is less than the set value Iq1 (the load of the inverter 3 is less than a certain value), the operation of the brushless DC motor 4 becomes unstable immediately even if the advance angle β is equal to or greater than the set value β1. Therefore, the main control unit 80 increases the speed of the brushless DC motor 4 by field weakening control in order to give priority to suppression of power loss. In a state where the advance angle β has increased to the set value β1 or more (YES in Step S5), when the torque component current Iq becomes the set value Iq1 or more (the load of the inverter 3 is a certain value or more) (YES in Step S6), Since the operation of the brushless DC motor 4 becomes unstable and the risk that the brushless DC motor 4 will step out increases, the main controller 80 starts the boost operation of the PWM converter 2 in order to prioritize the resolution of the problem. (Step S7).
 このように、弱め界磁制御と昇圧動作とを適切に組み合わせることにより、ブラシレスDCモータ4の不安定動作や脱調を未然に防ぎながら、しかも電力損失をできるだけ抑えながら、ブラシレスDCモータ4の速度を高めることができる。ブラシレスDCモータ4の速度制御域が高速度側に拡がる。 As described above, by appropriately combining the field-weakening control and the step-up operation, the speed of the brushless DC motor 4 is increased while preventing unstable operation and step-out of the brushless DC motor 4 and suppressing power loss as much as possible. be able to. The speed control area of the brushless DC motor 4 extends to the high speed side.
 進み角β、トルク成分電流Iq、および出力電圧Vdcの変化の一例を図3に示す。PWMコンバータ2の昇圧動作は、進み角βが設定値β1以上に上昇し且つトルク成分電流Iqが設定値Iq1以上となるタイミングt1で始まる。PWMコンバータ2の出力電圧Vdcは、タイミングt1まで、全波整流のみのレベルVdc1を保つ。 FIG. 3 shows an example of changes in the lead angle β, the torque component current Iq, and the output voltage Vdc. The step-up operation of the PWM converter 2 starts at a timing t1 when the advance angle β increases to the set value β1 or more and the torque component current Iq becomes the set value Iq1 or more. The output voltage Vdc of the PWM converter 2 maintains the level Vdc1 of only full-wave rectification until the timing t1.
 主制御部80は、ステップS7の処理よる出力電圧Vdcの上昇に伴い、出力電圧Vdcが許容最大値Vdc2に達したか否かを判定する(ステップS8)。出力電圧Vdcが許容最大値Vdc2に達していない場合(ステップS8のNO)、主制御部80は、ステップS1からの処理を繰り返す。 The main control unit 80 determines whether or not the output voltage Vdc has reached the allowable maximum value Vdc2 as the output voltage Vdc is increased by the process of Step S7 (Step S8). When the output voltage Vdc has not reached the allowable maximum value Vdc2 (NO in step S8), the main control unit 80 repeats the processing from step S1.
 出力電圧Vdcが許容最大値Vdc2に達した場合(ステップS8のYES)、主制御部80は、進み角βが設定値β2(例えば45°)であるか否かを判定する(ステップS9)。進み角βが設定値β2に達していない場合(ステップS9のNO)、主制御部80は、ステップS1からの処理を繰り返す。 When the output voltage Vdc reaches the allowable maximum value Vdc2 (YES in step S8), the main control unit 80 determines whether or not the advance angle β is a set value β2 (for example, 45 °) (step S9). When the advance angle β does not reach the set value β2 (NO in step S9), the main control unit 80 repeats the processing from step S1.
 出力電圧Vdcの上昇にもかかわらず進み角βが設定値β2に達した場合(ステップS9のYES)、主制御部80は、これまで注入した“負の界磁成分電流”-Idを所定量だけ減少する(ステップS10)。この減少後、主制御部80は、ステップS1からの処理を繰り返す。 When the advance angle β reaches the set value β2 despite the increase of the output voltage Vdc (YES in step S9), the main control unit 80 supplies the “negative field component current” −Id that has been injected so far to a predetermined amount. It decreases by only (step S10). After this decrease, the main control unit 80 repeats the processing from step S1.
 進み角βが設定値β2を超える高速度運転域では、負荷の大きさにかかわらずブラシレスDCモータ4の動作が不安定となる。このため、主制御部80は、進み角βが設定値β2に達した場合には(ステップS9のYES)、“負の界磁成分電流”-Idを減少するようにしている(ステップS9のYES、ステップS10)。 In the high speed operation range where the advance angle β exceeds the set value β2, the operation of the brushless DC motor 4 becomes unstable regardless of the load. Therefore, when the advance angle β reaches the set value β2 (YES in step S9), the main control unit 80 decreases the “negative field component current” −Id (in step S9). YES, step S10).
 一方、推定ロータ速度ωestが目標速度ωref以上の場合(ステップS1のNO)、主制御部80は、推定ロータ速度ωestが目標速度ωrefを超えているか否かを判定する(ステップS11)。推定ロータ速度ωestが目標速度ωrefと同じ場合(ステップS11のNO)、主制御部80は、ステップS1からの処理を繰り返す。推定ロータ速度ωestが目標速度ωrefを超えている場合(ステップS11のYES)、主制御部80は、進み角βが設定値β1以上であるかを判定する(ステップS12)。 On the other hand, when the estimated rotor speed ωest is equal to or higher than the target speed ωref (NO in step S1), the main control unit 80 determines whether the estimated rotor speed ωest exceeds the target speed ωref (step S11). When the estimated rotor speed ωest is the same as the target speed ωref (NO in step S11), the main control unit 80 repeats the processing from step S1. When the estimated rotor speed ωest exceeds the target speed ωref (YES in step S11), the main control unit 80 determines whether the advance angle β is equal to or greater than the set value β1 (step S12).
 進み角βが設定値β1以上の場合(ステップS12のYES)、主制御部80は、PWMコンバータ2が昇圧動作中であれば(ステップ13のYES)、PWMコンバータ2の出力電圧Vdcを所定値だけ下降する(ステップS14)。この下降後、主制御部80は、ステップS1からの処理を繰り返す。PWMコンバータ2が昇圧動作していない場合(ステップ13のNO)、主制御部80は、“負の界磁成分電流”-Idを所定量だけ減少する(ステップS15)。この減少後、主制御部80は、ステップS1からの処理を繰り返す。 When the advance angle β is equal to or larger than the set value β1 (YES in step S12), the main control unit 80 sets the output voltage Vdc of the PWM converter 2 to a predetermined value if the PWM converter 2 is performing a boosting operation (YES in step 13). (Step S14). After the descent, the main control unit 80 repeats the processing from step S1. When the PWM converter 2 is not performing a step-up operation (NO in step 13), the main control unit 80 decreases the “negative field component current” −Id by a predetermined amount (step S15). After this decrease, the main control unit 80 repeats the processing from step S1.
 進み角βが設定値β1未満の場合(ステップS12のNO)、主制御部80は、弱め界磁制御の実行中であれば(ステップS16のYES)、“負の界磁成分電流”-Idを所定量だけ減少する(ステップS17)。この減少後、主制御部80は、ステップS1からの処理を繰り返す。弱め界磁制御の実行中でない場合(ステップS16のNO)、主制御部80は、インバータ3におけるスイッチングのオン,オフデューティDを、推定ロータ速度ωestと目標速度ωrefとの偏差ωerrに応じた分だけ減少する(ステップS18)。この減少後、主制御部80は、ステップS1からの処理を繰り返す。 When the advance angle β is less than the set value β1 (NO in step S12), the main control unit 80 determines that “negative field component current” −Id is set if field weakening control is being executed (YES in step S16). Decrease by a fixed amount (step S17). After this decrease, the main control unit 80 repeats the processing from step S1. When the field weakening control is not being executed (NO in step S16), the main control unit 80 reduces the switching ON / OFF duty D in the inverter 3 by an amount corresponding to the deviation ωerr between the estimated rotor speed ωest and the target speed ωref. (Step S18). After this decrease, the main control unit 80 repeats the processing from step S1.
 出力電圧Vdcの上昇および下降を進み角βおよび目標速度ωrefの変化と共に図4に示す。主制御部80は、PWMコンバータ2が昇圧を開始してから出力電圧Vdcが許容最大値Vdc2に至るまでの期間では、目標速度ωrefの上昇や負荷の急変にかかわらず進み角βがほぼ設定値β1一定で推移するよう、ステップS7において出力電圧Vdcの調整を優先的に実行する。また、主制御部80は、出力電圧Vdcの調整に際しては、進み角βを設定値β2未満に安定的に抑えることができるよう、しかも下降時の調整制御に破綻が生じないよう、出力電圧Vdcの上昇に際しての電圧変化率(Vdc/秒)を、下降に際しての電圧変化率(Vdc/秒)よりも、大きく設定する。 The rise and fall of the output voltage Vdc are shown in FIG. 4 together with the changes in the advance angle β and the target speed ωref. In the period from when the PWM converter 2 starts boosting until the output voltage Vdc reaches the maximum allowable value Vdc2, the main controller 80 sets the advance angle β to almost the set value regardless of the increase in the target speed ωref or the sudden change in the load. In step S7, the adjustment of the output voltage Vdc is preferentially performed so that β1 remains constant. Further, when adjusting the output voltage Vdc, the main control unit 80 can stably suppress the advance angle β below the set value β2, and the output voltage Vdc so as not to cause a failure in the adjustment control at the time of lowering. The voltage change rate (Vdc / sec) at the time of rising is set larger than the voltage change rate (Vdc / sec) at the time of falling.
 [変形例] 
 上記実施形態では、弱め界磁制御の制御量として進み角βを捕らえたが、進み角βに代えて、“負の界磁成分電流”-Idの注入量を弱め界磁制御の制御量として捕らえてもよい。
[Modification]
In the above embodiment, the advance angle β is captured as the control amount of the field weakening control. However, instead of the advance angle β, the injection amount of “negative field component current” −Id may be captured as the control amount of the field weakening control. .
 上記実施形態では、トルク成分電流Iqをインバータ3の負荷の大きさとして捕らえたが、インバータ3の定格負荷に対するブラシレスDCモータ4の負荷率Mをそのまま負荷の大きさとして捕らえてもよい。この場合、主制御部80は、推定ロータ速度ωestが目標速度ωrefとなるようにインバータ3のスイッチングのオン,オフデューティDを制御し、そのオン,オフデューティDが上限値Dsに達した場合に、界磁成分電流Idに“負の界磁成分電流”-Idを注入する弱め界磁制御を実行し、その弱め界磁制御の制御量である進み角βが設定値β1以上に上昇し且つインバータ3の定格負荷に対するブラシレスDCモータ4の負荷率Mが設定値M1(例えば76%)以上である場合に、PWMコンバータ2を昇圧動作させてPWMコンバータ2の出力電圧Vdcを上昇させる。 In the above embodiment, the torque component current Iq is captured as the magnitude of the load of the inverter 3, but the load factor M of the brushless DC motor 4 relative to the rated load of the inverter 3 may be captured as the magnitude of the load as it is. In this case, the main control unit 80 controls the switching ON / OFF duty D of the inverter 3 so that the estimated rotor speed ωest becomes the target speed ωref, and when the ON / OFF duty D reaches the upper limit value Ds. The field weakening control is executed by injecting “negative field component current” −Id into the field component current Id, the advance angle β, which is the control amount of the field weakening control, rises to the set value β1 or more and the rating of the inverter 3 When the load factor M of the brushless DC motor 4 with respect to the load is a set value M1 (for example, 76%) or more, the PWM converter 2 is boosted to increase the output voltage Vdc of the PWM converter 2.
 その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Other than the above, the above-described embodiment and modification examples are presented as examples, and are not intended to limit the scope of the invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.
 1…三相交流電源、2…PWMコンバータ、3…インバータ、4…ブラシレスDCモータ、41,42,43…電流センサ、50…インバータ制御部、70…コンバータ制御部、80…主制御部 DESCRIPTION OF SYMBOLS 1 ... Three-phase alternating current power supply, 2 ... PWM converter, 3 ... Inverter, 4 ... Brushless DC motor, 41, 42, 43 ... Current sensor, 50 ... Inverter control part, 70 ... Converter control part, 80 ... Main control part

Claims (4)

  1.  交流電圧を直流電圧に変換するとともに昇圧動作が可能なコンバータと、
     前記コンバータの出力電圧をスイッチングにより所定周波数の交流電圧に変換し、その交流電圧をモータへの駆動電力として出力するインバータと、
     前記モータの速度が目標速度となるように前記インバータの出力電圧を制御し、その出力電圧が上限に達した場合に前記モータに対する弱め界磁制御を実行し、その弱め界磁制御の制御量が設定値以上に上昇し且つ前記インバータの負荷が一定以上である場合に前記コンバータを昇圧動作させて前記コンバータの出力電圧を上昇させる制御部と、
     を備えることを特徴とするモータ駆動装置。
    A converter that converts an AC voltage into a DC voltage and is capable of boosting operation;
    An inverter that converts the output voltage of the converter into an alternating voltage of a predetermined frequency by switching, and outputs the alternating voltage as drive power to the motor;
    The output voltage of the inverter is controlled so that the speed of the motor becomes the target speed, and when the output voltage reaches the upper limit, the field weakening control for the motor is executed, and the control amount of the field weakening control is greater than or equal to the set value. A control unit that raises the output voltage of the converter by boosting the converter when the load of the inverter rises above a certain level, and
    A motor drive device comprising:
  2.  前記制御部は、前記モータに流れる界磁成分電流Idおよびトルク成分電流Iqから前記モータのロータ速度ωestを推定し、この推定ロータ速度ωestが目標速度ωrefとなるように前記インバータのスイッチングのオン,オフデューティDを制御し、このオン,オフデューティDが上限値Dsに達した場合に前記界磁成分電流Idに“負の界磁成分電流”-Idを注入する弱め界磁制御を実行し、この弱め界磁制御の制御量である進み角βが設定値β1以上に上昇し且つ前記トルク成分電流Iqが設定値Iq1以上である場合に前記コンバータを昇圧動作させて前記コンバータの出力電圧を上昇させる、
     ことを特徴とする請求項1記載のモータ駆動装置。
    The control unit estimates the rotor speed ωest of the motor from the field component current Id and torque component current Iq flowing through the motor, and switches on the inverter so that the estimated rotor speed ωest becomes the target speed ωref. The off-duty D is controlled, and when the on-off duty D reaches the upper limit value Ds, the field-weakening control is performed to inject the “negative field component current” −Id into the field component current Id. When the advance angle β, which is a control amount of field control, rises to a set value β1 or more and the torque component current Iq is a set value Iq1 or more, the converter is boosted to raise the output voltage of the converter;
    The motor driving apparatus according to claim 1.
  3.  前記制御部は、前記モータに流れる界磁成分電流Idおよびトルク成分電流Iqから前記モータのロータ速度ωestを推定し、この推定ロータ速度ωestが目標速度ωrefとなるように前記インバータにおけるスイッチングのオン,オフデューティDを制御し、このオン,オフデューティDが上限値Dsに達した場合に前記界磁成分電流Idに“負の界磁成分電流”-Idを注入する弱め界磁制御を実行し、この弱め界磁制御の制御量である進み角βが設定値β1以上で且つ前記インバータの定格負荷に対する前記モータの負荷率Mが設定値M1以上の場合に前記コンバータを昇圧動作させて前記コンバータの出力電圧を上昇させる、
     ことを特徴とする請求項1記載のモータ駆動装置。
    The control unit estimates the rotor speed ωest of the motor from the field component current Id and torque component current Iq flowing through the motor, and switches on the inverter so that the estimated rotor speed ωest becomes the target speed ωref. The off-duty D is controlled, and when the on-off duty D reaches the upper limit value Ds, the field-weakening control is performed to inject the “negative field component current” −Id into the field component current Id. When the advance angle β, which is a control amount of field control, is equal to or greater than a set value β1 and the load factor M of the motor with respect to the rated load of the inverter is equal to or greater than a set value M1, the converter is boosted to increase the output voltage of the converter Let
    The motor driving apparatus according to claim 1.
  4.  前記制御部は、前記コンバータの出力電圧を上昇させる際の電圧変化率を、前記コンバータの出力電圧を下降させる際の電圧変化率よりも大きくする、
     ことを特徴とする請求項1乃至請求項3のいずれか記載のモータ駆動装置。
    The control unit increases the voltage change rate when increasing the output voltage of the converter to be larger than the voltage change rate when decreasing the output voltage of the converter.
    The motor driving device according to claim 1, wherein the motor driving device is a motor driving device.
PCT/JP2015/068844 2014-09-03 2015-06-30 Motor drive device WO2016035434A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-179062 2014-09-03
JP2014179062A JP2017188968A (en) 2014-09-03 2014-09-03 Motor drive device

Publications (1)

Publication Number Publication Date
WO2016035434A1 true WO2016035434A1 (en) 2016-03-10

Family

ID=55439505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068844 WO2016035434A1 (en) 2014-09-03 2015-06-30 Motor drive device

Country Status (2)

Country Link
JP (1) JP2017188968A (en)
WO (1) WO2016035434A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049301A1 (en) * 2017-09-08 2019-03-14 東芝三菱電機産業システム株式会社 Converter and uninterruptible power supply device using same
JP2019054635A (en) * 2017-09-14 2019-04-04 株式会社東芝 Motor driving control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064405A (en) * 2019-12-30 2020-04-24 四川虹美智能科技有限公司 Motor flux weakening control method and device and electrical equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350486A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Controller for brushless motor
JP2003181187A (en) * 2001-12-13 2003-07-02 Toshiba Corp Inverter device for washing machine and inverter device for washing and drying machine
JP2006050866A (en) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd Controller of motor for vehicle
WO2007021505A2 (en) * 2005-08-18 2007-02-22 Gm Global Technology Operations, Inc Speed measurement system for speed control of high-speed motors
JP2010279176A (en) * 2009-05-28 2010-12-09 Aisin Aw Co Ltd Device for control of motor drive unit
JP2014124042A (en) * 2012-12-21 2014-07-03 Hitachi Appliances Inc Motor control device and air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350486A (en) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd Controller for brushless motor
JP2003181187A (en) * 2001-12-13 2003-07-02 Toshiba Corp Inverter device for washing machine and inverter device for washing and drying machine
JP2006050866A (en) * 2004-08-09 2006-02-16 Nissan Motor Co Ltd Controller of motor for vehicle
WO2007021505A2 (en) * 2005-08-18 2007-02-22 Gm Global Technology Operations, Inc Speed measurement system for speed control of high-speed motors
JP2010279176A (en) * 2009-05-28 2010-12-09 Aisin Aw Co Ltd Device for control of motor drive unit
JP2014124042A (en) * 2012-12-21 2014-07-03 Hitachi Appliances Inc Motor control device and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049301A1 (en) * 2017-09-08 2019-03-14 東芝三菱電機産業システム株式会社 Converter and uninterruptible power supply device using same
JP2019054635A (en) * 2017-09-14 2019-04-04 株式会社東芝 Motor driving control device

Also Published As

Publication number Publication date
JP2017188968A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
US9374028B2 (en) Transition scheme for position sensorless control of AC motor drives
EP2797220B1 (en) Position sensorless open loop control for motor drives with output filter and transformer
EP2838193B1 (en) Method and apparatus for stability control of open loop motor drive operation
JP5047021B2 (en) Electric motor drive device and air conditioner
US9054611B2 (en) Method and apparatus for stability control of open loop motor drive operation
US9431933B2 (en) Inverter apparatus
JP5521914B2 (en) Power conversion device and electric power steering device using the same
US11218107B2 (en) Control device for power converter
JP2017046456A (en) Drive system and inverter device
US20150365008A1 (en) Power conversion device and control method therefor
WO2016167041A1 (en) Motor driving device
JP2010148199A (en) Motor drive device
WO2016035434A1 (en) Motor drive device
JP5476788B2 (en) Inverter device
JP2018088741A (en) Motor driving device and control method thereof
JP2015165757A (en) Inverter controller and control method
US9231514B2 (en) Motor control apparatus and motor control method
JP6462821B2 (en) Motor drive device
JP6358834B2 (en) Vector control device, inverter incorporating the same, and inverter and motor setting device incorporating the same
JP6550314B2 (en) Power converter
CN111034022A (en) Power conversion device and control method thereof
JP6301270B2 (en) Motor drive device
JP2017017918A (en) Control apparatus of rotating machine driving device
JP4733948B2 (en) Inverter drive blower controller
JP2012165629A (en) Power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15837900

Country of ref document: EP

Kind code of ref document: A1