WO2019049301A1 - Converter and uninterruptible power supply device using same - Google Patents

Converter and uninterruptible power supply device using same Download PDF

Info

Publication number
WO2019049301A1
WO2019049301A1 PCT/JP2017/032409 JP2017032409W WO2019049301A1 WO 2019049301 A1 WO2019049301 A1 WO 2019049301A1 JP 2017032409 W JP2017032409 W JP 2017032409W WO 2019049301 A1 WO2019049301 A1 WO 2019049301A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
diode
terminal
power supply
Prior art date
Application number
PCT/JP2017/032409
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 茂田
俊秀 中野
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2017/032409 priority Critical patent/WO2019049301A1/en
Publication of WO2019049301A1 publication Critical patent/WO2019049301A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a converter and an uninterruptible power supply using the same, and more particularly to a converter that converts alternating current power to direct current power and an uninterruptible power supply using the converter.
  • Japanese Patent Laid-Open No. 2002-335680 discloses a converter which converts three-phase AC power supplied to three input terminals into DC power and outputs the DC power to the first and second output terminals.
  • the converter comprises first to sixth arms.
  • the first to third arms are respectively connected between the first output terminal and the three input terminals.
  • the fourth to sixth arms are respectively connected between the three input terminals and the second output terminal.
  • Each of the first to sixth arms is configured of one semiconductor module.
  • the semiconductor module includes transistors and diodes connected in antiparallel.
  • each arm is formed of a plurality of semiconductor modules connected in parallel (see FIG. 4).
  • the powering power supplied from the AC power supply to the load via the converter is larger than the regenerative power supplied from the load to the AC power supply via the converter, the current flowing through the diode is higher than the current flowing through the transistor growing.
  • the number of transistors is increased more than necessary and the cost is increased.
  • the main object of the present invention is to provide a low cost converter.
  • a converter according to the present invention is a converter that converts AC power supplied to a plurality of input terminals into DC power and outputs the DC power to the first and second output terminals, and is provided corresponding to each input terminal, A first arm connected between the first output terminal and the corresponding input terminal, and provided corresponding to each input terminal, connected between the corresponding input terminal and the second output terminal And a second arm.
  • Each of the first and second arms includes a first transistor and a first diode connected in anti-parallel to each other, and a second diode connected in parallel to the first diode.
  • the first transistor and the first diode are mounted on a first semiconductor module, and the second diode is mounted on a second semiconductor module of a type different from the first semiconductor module.
  • each arm includes a first transistor and a first diode connected in anti-parallel, and a second diode connected in parallel to the first diode, and the first transistor and The first diode is mounted on a first semiconductor module, and the second diode is mounted on a second semiconductor module different in type from the first semiconductor module. Therefore, since the second diode is added to each arm, cost reduction of the device can be achieved as compared with the case where each arm is configured by a plurality of sets of the first transistor and the first diode.
  • FIG. 7 is a circuit diagram showing a comparative example 1 of the first embodiment.
  • FIG. 13 is a circuit diagram showing another comparative example 2 of the first embodiment.
  • It is a circuit block diagram which shows the structure of the power converter device by Embodiment 2 of this invention.
  • It is a circuit block diagram which shows the structure of the uninterruptible power supply by Embodiment 3 of this invention.
  • It is a circuit block diagram which shows the structure of the power converter device by Embodiment 4 of this invention.
  • FIG. 21 is a circuit diagram showing a modification of the fourth embodiment.
  • It is a circuit block diagram which shows the structure of the uninterruptible power supply by Embodiment 5 of this invention.
  • FIG. 1 is a circuit block diagram showing a configuration of a power conversion device according to a first embodiment of the present invention.
  • this power conversion device includes AC input terminals T1 to T3 and DC output terminals T4 and T5.
  • AC input terminals T1 to T3 receive three-phase AC power of commercial frequency from commercial AC power supply 51.
  • the DC output terminals T4 and T5 are connected to the load 52.
  • the load 52 is driven by DC power supplied from the power conversion device.
  • the power running power supplied from the commercial AC power supply 51 to the load 52 via the converter 1 is sufficiently larger than the regenerative power supplied from the load 52 to the commercial AC power supply 51 via the converter 1.
  • the power converter further includes a converter 1, a DC positive bus L 1, a DC negative bus L 2, a capacitor 12, and a controller 13.
  • Converter 1 is controlled by control device 13, converts three-phase AC power supplied from commercial AC power supply 51 into DC power, and outputs it between DC positive bus L1 and DC negative bus L2.
  • converter 1 includes six arms A1 to A6.
  • Each of the arms A1 to A6 has a positive terminal 2 and a negative terminal 3.
  • the positive terminals 2 of the arms A1 to A3 are all connected to the DC output terminal T4 via the DC positive bus L1.
  • the negative terminals 3 of the arms A1 to A3 are connected to the AC input terminals T1 to T3, respectively.
  • the positive terminals 2 of the arms A4 to A6 are connected to the AC input terminals T1 to T3, respectively.
  • the negative terminals 3 of the arms A1 to A3 are all connected to the DC output terminal T5 via the DC negative bus L2.
  • FIG. 2 is a circuit diagram showing the configuration of the arm A1.
  • the arm A1 includes two semiconductor modules M1 and M2 of different types.
  • the semiconductor module M1 includes an IGBT (Insulated Gate Bipolar Transistor) 4, a diode D1, a collector terminal 5, an emitter terminal 6, and a gate terminal 7.
  • IGBT Insulated Gate Bipolar Transistor
  • the collector of the IGBT 4 is connected to the collector terminal 5, its emitter is connected to the emitter terminal 6, and its gate is connected to the gate terminal 7.
  • the gate terminal 7 is connected to the control device 13. When the gate terminal 7 is set to the “H” level, the IGBT 4 is turned on, and when the gate terminal 7 is set to the “L” level, the IGBT 4 is turned off.
  • the anode of the diode D1 is connected to the emitter terminal 6 and its cathode is connected to the collector terminal 5. That is, IGBT 4 and diode D 1 are connected in anti-parallel between collector terminal 5 and emitter terminal 6.
  • the semiconductor module M2 includes a diode D2, a cathode terminal 10, and an anode terminal 11.
  • the cathode and the anode of the diode D2 are connected to the cathode terminal 10 and the anode terminal 11, respectively.
  • diode D2 When the voltage between anode terminal 11 and cathode terminal 10 is larger than predetermined on voltage Von2, diode D2 is turned on, and when the voltage between anode terminal 11 and cathode terminal 10 is smaller than predetermined on voltage Von2, diode D2 Turns off.
  • the on voltage Von2 of the diode D2 is smaller than the on voltage Von1 of the diode D1.
  • the cathode terminal 10 and the anode terminal 11 are respectively connected to the positive terminal 2 and the negative terminal 3 of the arm A1. Therefore, the diodes D1 and D2 are connected in parallel between the positive terminal 2 and the negative terminal 3. Since the on voltage Vo2 of the diode D2 is smaller than the on voltage Vo1 of the diode D1, the diode D2 is turned on earlier than the diode D1. The current flowing through the diode D2 is larger than the current flowing through the diode D1.
  • the arm A1 is substantially constituted by the IGBT 4 and the diode D2 connected in antiparallel between the positive terminal 2 and the negative terminal 3.
  • the IGBT 4 mainly supplies a regenerative current
  • the diode D2 mainly supplies a powering current.
  • the power running power supplied from the commercial AC power supply 51 to the load 52 via the converter 1 is larger than the regenerative power returned from the load 52 to the commercial AC power supply 51 via the converter 1. Therefore, the current flowing through the diode D2 is larger than the current flowing through the IGBT4.
  • the size of the IGBT 4 (that is, the type of the semiconductor module M1) is selected so as to suppress the temperature rise of the IGBT 4 due to the regenerative current. Further, the size of the diode D2 (that is, the type of the semiconductor module M2) is selected so as to suppress the temperature rise of the diode D2 due to the powering current.
  • the other arms A2 to A6 have the same configuration as the arm A1.
  • capacitor 12 is connected between DC positive bus L1 and DC negative bus L2 to smooth the output voltage of converter 1.
  • the capacitor 12 may be included in the converter 1.
  • Three-phase AC voltages V1 to V3 from commercial AC power supply 51 are full-wave rectified by six diodes D2 included in arms A1 to A6 of converter 1, and smoothed by capacitor 12 to become DC voltage VDC.
  • the powering current mainly flows through six diodes D2.
  • Control device 13 operates in synchronization with AC voltages V1 to V3 of AC input terminals T1 to T3 so that DC voltage VDC between DC output terminals T4 and T5 becomes a predetermined target DC voltage VDCT.
  • the six IGBTs 4 included in the arms A1 to A6 are controlled.
  • control device 13 controls six IGBTs 4, converts DC voltage VDC between DC output terminals T4 and T5 into three-phase AC voltages V11 to V13, and outputs the voltage between AC input terminals T1 to T3.
  • control device 13 controls six IGBTs 4 to set the phases of three-phase AC voltages V11 to V13 to three-phase AC voltages V1 to V3 of commercial AC power supply 51. Delay more than phase. As a result, the power running current is supplied from the commercial AC power supply 51 to the capacitor 12 via the six IGBTs 4, and the DC voltage VDC rises.
  • the control device 13 controls the six IGBTs 4 to set the phases of the three-phase AC voltages V11 to V13 to the three-phase AC voltage V1 of the commercial AC power supply 51. Advance to the phase of ⁇ V3.
  • power is supplied from the capacitor 12 to the commercial AC power supply 51 via the converter 1, and the DC voltage VDC falls. Therefore, by controlling six IGBTs 4, DC voltage VDC can be made the target DC voltage VDCT.
  • the maximum value of the DC output voltage VDC is the peak value of the AC input voltage.
  • the power running current is always supplied from the commercial AC power supply 51 to the capacitor 12 via the six diodes D2, the power running current flowing through the IGBT 4 is small. Further, in the first embodiment, since the regenerative power generated by load 52 is small, there are few cases where DC voltage VDC is higher than target DC voltage VDCT, and the regenerative current flowing through IGBT 4 is small. Therefore, the current flowing through the diode D2 is larger than the current flowing through the IGBT4.
  • FIG. 3 is a circuit diagram showing a comparative example 1 of the first embodiment, which is to be compared with FIG. Referring to FIG. 3, this comparative example 1 is different from the embodiment 1 in that each of arms A1 to A6 is replaced with arm 15.
  • the arm 15 is obtained by removing the semiconductor module M2 from the arm A1 (FIG. 2), and includes only one semiconductor module M1.
  • FIG. 4 is a circuit diagram showing another comparative example 2 of the first embodiment, which is to be compared with FIG. Referring to FIG. 4, this comparative example 2 is different from the embodiment 1 in that each of arms A1 to A6 is replaced with arm 16.
  • the arm 16 is formed by connecting a plurality of semiconductor modules M2 in parallel.
  • the plurality of collector terminals 5 are all connected to the positive terminal 2
  • the plurality of emitter terminals 6 are all connected to the negative terminal 3
  • the plurality of gate terminals 7 are connected to each other.
  • the load current is shunted to the plurality of semiconductor modules M1, so that the current flowing through one semiconductor module M1 can be reduced to a fraction of the load current. Therefore, even when the load current is large, the temperature rise of the semiconductor module M1 can be suppressed.
  • this comparative example 2 has the following problems. That is, depending on the type of load, the powering power may be larger than the regenerative power. In this case, the current flowing through the diode D1 becomes larger than the current flowing through the IGBT 4, and the temperature rise of the diode D1 becomes higher than the temperature rise of the IGBT 4. In this case, when the arm 16 is configured by connecting a plurality of semiconductor modules M1 in parallel in order to suppress the temperature rise of the diode D1, the number of IGBTs 4 increases more than necessary and the cost increases.
  • the characteristics of the IGBT 4 vary, and the characteristics of the diode D1 (for example, the on voltage Von1) also vary.
  • the variation in the characteristics of the IGBT 4 is small depending on the type of the semiconductor module M1, the variation in the characteristics of the diode D1 is large. Therefore, in the second comparative example, the on-voltage Von1 of the plurality of diodes D1 connected in parallel causes a smaller current to flow through the smaller diode D1, and the temperature rise of the diode D1 increases. For this reason, in the comparative example 2, in order to suppress the temperature rise of the diode D1, it is necessary to connect many semiconductor modules M1 in parallel, which results in an increase in cost.
  • the diode D2 having a small temperature rise is connected in parallel to the semiconductor module M1 even if the powering current is supplied to the load 52, so the number of IGBTs 4 is more than necessary as in the second comparative example. It will not be expensive and expensive.
  • the case where the IGBT 4 and the diode D1 are mounted on one semiconductor module M1 and the diode D2 is mounted on one semiconductor module M2 in each of the arms A1 to A6 has been described.
  • the N sets of IGBTs 4 and diodes D1 of the N arms may be mounted on the same semiconductor module, and the N diodes D2 of the N arms may be mounted on another semiconductor module.
  • N is an integer from 2 to 6.
  • arms A1 to A6 are grouped by two, and in each arm group, two sets of IGBT 4 and diode D1 are mounted in one semiconductor module, and two diodes D2 are mounted in another semiconductor module It does not matter. In this case, the number of semiconductor modules is six.
  • the present invention is applied to the converter 1 for converting three-phase AC power to DC power.
  • the present invention relates to a single-phase converter for converting single-phase AC power to DC power. It goes without saying that it is also applicable to The single-phase converter is obtained by removing the AC input terminal T3 and the arms A3 and A6 from the converter 1 of FIG.
  • FIG. 5 is a circuit block diagram showing a configuration of a power conversion device according to a second embodiment of the present invention, which is to be compared with FIG. Referring to FIG. 5, this power conversion device differs from the power conversion device of FIG. 1 in that reactors 21 to 23 are added and control device 13 is replaced with control device 13A.
  • One terminal of the reactor 21 is connected to the AC input terminal T1, and the other terminal is connected to the negative terminal 3 of the arm A1 and the positive terminal 2 of the arm A4.
  • One terminal of reactor 22 is connected to AC input terminal T2, and the other terminal is connected to negative terminal 3 of arm A2 and positive terminal 2 of arm A5.
  • One terminal of the reactor 23 is connected to the AC input terminal T3, and the other terminal is connected to the negative terminal 3 of the arm A3 and the positive terminal 2 of the arm A6.
  • control device 13A charges capacitor 12 using the electromagnetic energy of reactors 21-23.
  • the control device 13A turns on the IGBT 4 (FIG. 2) of the arm A4.
  • IGBT 4 FIG. 2
  • current flows from the AC input terminal T1 to the AC input terminal T2 through the reactor 21, the IGBT 4 of the arm A4, the diode D2 of the arm A5, and the reactor 22 and electromagnetic energy is accumulated in the reactors 21 and 22.
  • the control device 13A turns off the IGBT 4 of the arm A4.
  • the current flowing through the reactors 21 and 22 is diverted to the diode D2 of the arm A1, the capacitor 12 and the diode D2 of the arm A5, so that the electromagnetic energy of the reactors 21 and 22 is released and the capacitor 12 is charged.
  • the current flowing through capacitor 12 can be adjusted by adjusting the ratio of the on time to the off time of IGBT 4, and the DC output voltage VDC of converter 1 can be adjusted.
  • the other configuration and operation are the same as in the first embodiment, and the description thereof will not be repeated.
  • DC output voltage VDC can not be made higher than the peak value of AC input voltage.
  • the DC output voltage VDC can be made higher than the peak value of the AC input voltage VDC.
  • the current for storing the electromagnetic energy is supplied to the IGBT 4 in the reactors 21 to 23, the current flowing in the IGBT 4 becomes larger than that in the first embodiment.
  • Third Embodiment 6 is a circuit block diagram showing a configuration of an uninterruptible power supply according to a third embodiment of the present invention.
  • the uninterruptible power supply device includes AC input terminals T1 to T3, AC output terminals T11 to T13, and battery terminals T21 and T22.
  • AC input terminals T1 to T3 receive three-phase AC power from commercial AC power supply 51.
  • the AC output terminals T11 to T13 are connected to the load 53.
  • the load 53 is driven by three-phase AC power supplied from an uninterruptible power supply.
  • the battery terminals T21 and T22 are connected to the positive electrode and the negative electrode of the battery 54 (power storage device), respectively.
  • the battery 54 stores DC power.
  • a capacitor may be connected instead of the battery 54.
  • the uninterruptible power supply further includes a converter 1, a DC positive bus L1, a DC negative bus L2, a capacitor 12, an inverter 25, and a controller 26.
  • the configuration of converter 1 is as shown in FIGS. 1 and 2. Three input nodes of converter 1 are connected to AC input terminals T1 to T3, and three output nodes of inverter 25 are connected to AC output terminals T11 to T13.
  • the DC positive bus L1 and the DC negative bus L2 are connected between the converter 1 and the inverter 25 and connected to the battery terminals T21 and T22, respectively.
  • Capacitor 12 is connected between DC positive bus L1 and DC negative bus L2, and smoothes DC voltage VDC between buses L1 and L2.
  • Converter 1 is controlled by control device 26.
  • AC voltages V1 to V3 of commercial AC power supply 51 are normal, three-phase AC power from commercial AC power supply 51 is converted to DC power to drive DC positive bus L1 and Output to DC negative bus L2.
  • the DC power generated by the converter 1 is supplied to the inverter 25 and stored in the battery 54.
  • converter 1 outputs a DC current such that DC voltage VDC between DC positive bus L1 and DC negative bus L2 becomes target DC voltage VDCT.
  • the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal (for example, when a power failure occurs), the operation of converter 1 is stopped.
  • the inverter 25 is controlled by the control device 26.
  • the DC power generated by the converter 1 is converted to three-phase AC power of the commercial frequency to obtain the load 53 Supply to Further, when the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal, the inverter 25 converts the DC power of the battery 54 into three-phase AC power of commercial frequency and supplies it to the load 53.
  • Inverter 25 is a known circuit including a plurality of sets of IGBTs and diodes.
  • Control device 26 detects instantaneous values of AC input voltages V1 to V3 of commercial AC power supply 51, instantaneous values of DC voltage VDC between buses L1 and L2, and instantaneous values of AC output voltages VO1 to VO3 of inverter 25, The entire uninterruptible power supply is controlled based on the detected values.
  • the control device 26 determines whether or not the detected values of the AC input voltages V1 to V3 are normal. For example, when the commercial AC power supply 51 is healthy, the AC input voltages V1 to V3 have values within the normal range. When a power failure of the commercial AC power supply 51 occurs, at least one of the AC input voltages V1 to V3 falls below the lower limit value of the normal range. When at least one of the AC input voltages V1 to V3 is lower than the lower limit value, the control device 26 determines that the AC input voltages V1 to V3 are not normal.
  • control device 26 controls each of converter 1 and inverter 25 in synchronization with the phases of AC input voltages V1 to V3. At this time, control device 26 controls each IGBT 4 of converter 1 such that output voltage VDC of converter 1 becomes target DC voltage VDCT. Further, control device 26 controls each IGBT of inverter 25 such that output voltages VO1 to VO3 of inverter 25 become target AC voltages VOT1 to VOT3.
  • FIG. 7 is a circuit block diagram showing a configuration of a power conversion device according to a fourth embodiment of the present invention, which is to be compared with FIG. Referring to FIG. 7, this power converter differs from the power converter of FIG. 1 in that converter 1 is replaced by converter 31, capacitor 12 is replaced by capacitors C1 and C2, and neutral point terminal T6 ( 3) is added, and the controller 13 is replaced by the controller 36.
  • Converter 31 is obtained by adding AC switches S1 to S3 to converter 1.
  • One terminals 32 of the AC switches S1 to S3 are respectively connected to the AC input terminals T1 to T3, and the other terminals of the AC switches S1 to S3 are both connected to the neutral point terminal T6.
  • AC switch S1 includes IGBTs 34 and 35 and diodes D3 and D4 as shown in FIG.
  • the collectors of IGBTs 34 and 35 are connected to each other, and their emitters are connected to one terminal 32 and the other terminal 33, respectively.
  • the gates of the IGBTs 34 and 35 are connected to the controller 36.
  • the anode and the cathode of the diode D3 are respectively connected to the emitter and the collector of the IGBT 34, and the anode and the cathode of the diode D4 are respectively connected to the emitter and the collector of the IGBT 35. That is, the diodes D3 and D4 are connected in anti-parallel to the IGBTs 34 and 35, respectively.
  • the IGBT 34 When the gates of the IGBTs 34 and 35 are set to the “L” level and the “H” level, respectively, the IGBT 34 is turned off and the IGBT 35 is turned on, and a current flows from one terminal 32 to the other terminal 33 via the diode D3 and the IGBT 35.
  • the IGBT 34 When the gates of the IGBTs 34 and 35 are set to the “H” level and the “L” level, respectively, the IGBT 34 is turned on and the IGBT 35 is turned off, and a current flows from the other terminal 33 to the one terminal 32 via the diode D4 and the IGBT 34.
  • the IGTB 34 and the diode D3 may be configured by one semiconductor module, or may be configured by a plurality of semiconductor modules connected in parallel.
  • the IGTB 35 and the diode D4 may be configured by one semiconductor module, or may be configured by a plurality of semiconductor modules connected in parallel.
  • Each of the AC switches S2 and S3 has the same configuration as the AC switch S1.
  • capacitor C1 is connected between DC positive bus L1 and neutral point terminal T6 to smooth the DC voltage between DC positive bus L1 and neutral point terminal T6.
  • Capacitor C2 is connected between neutral point terminal T6 and DC negative bus L2, and smoothes the DC voltage between neutral point terminal T6 and DC negative bus L2.
  • the control device 36 operates in synchronization with the AC voltages V1 to V3 of the AC input terminals T1 to T3 so that the arm A1 to A5 may operate such that the DC voltage VDC between the DC output terminals T4 and T5 becomes a predetermined target DC voltage VDCT.
  • a total of six IGBTs 4 included in A6 are controlled, and a total of six IGBTs 34 and 35 included in the AC switches S1 to S3 are controlled.
  • the control device 36 turns on the IGBT 34 of the AC switch S2 and turns off the IGBT 35. Thereby, current flows from the AC input terminal T1 to the AC input terminal T2 through the diode D2 of the arm A1, the capacitor C1, the diode D4 of the AC switch S2, and the IGBT 34 of the AC switch S2, and the capacitor C1 is charged.
  • the control device 36 turns off the IGBT 34 of the AC switch S1 and turns on the IGBT 35. Thereby, current flows from the AC input terminal T1 to the AC input terminal T2 through the diode D3 of the AC switch S1, the IGBT 35 of the AC switch S1, the capacitor C2 and the diode D2 of the arm A5, and the capacitor C2 is charged.
  • Capacitors C1 and C2 are charged equally.
  • VDC1-VDC2 VDCT
  • VDC1 becomes a positive voltage
  • VDC2 becomes a negative voltage
  • VDC1 -VDC2.
  • the maximum value of the DC output voltage VDC is a voltage twice the peak value of the AC input voltage.
  • control device 36 controls 12 IGBTs 4, 4 and 35, generates three-phase AC voltages V11 to V13 based on DC voltages VDC1 to VDC3, and generates generated three-phase AC voltages V11 to V13 respectively. Output to alternating current input terminals T1 to T3.
  • control device 36 controls 12 IGBTs 4, 4 and 35 so that the phases of three-phase AC voltages V11 to V13 are three-phase AC voltages of commercial AC power supply 51. Delay from the phase of V1 to V3.
  • the powering current is supplied from the commercial AC power supply 51 to the capacitors C1 and C2 via the arms A1 to A6 and the AC switches S1 to S3, and the DC voltage VDC rises.
  • control device 36 controls 12 IGBTs 4, 3, 34 and 35 so that the phases of three-phase AC voltages V11 to V13 are three.
  • the phase AC voltage V1 to V3 are advanced.
  • electric power is supplied from the capacitors C1 and C2 to the commercial AC power supply 51 via the converter 31, and the DC voltage VDC falls. Therefore, by controlling the twelve IGBTs 4, 3, 34, the DC voltage VDC can be made the target DC voltage V DCT.
  • the DC output voltage VDC is higher than the peak value of the AC input voltage without using the electromagnetic energy of the reactors 21 to 23 (FIG. 5) (twice of the peak value of the AC input voltage Voltage). Therefore, since it is not necessary to flow a current for storing electromagnetic energy in reactors 21 to 23 to IGBTs 4 of arms A1 to A6, the size of IGBT 4 (size of semiconductor module M1) can be reduced. Therefore, the effect of the present invention in which each of the arms A1 to A6 is configured by the semiconductor modules M1 and M2 (FIG. 2) is larger than that of the second embodiment (FIG. 5).
  • FIG. 9 is a circuit diagram showing a modification of the fourth embodiment, which is to be compared with FIG. Referring to FIG. 9, in this modification, each of switches S1 to S3 (FIG. 7) is replaced with switch 36.
  • Switch 36 includes IGBTs 34 and 35 and diodes D3 and D4.
  • the emitters of IGBTs 34 and 35 are connected to each other, and the collectors of IGBTs 35 and 34 are connected to one terminal 32 and the other terminal 33, respectively.
  • the gates of the IGBTs 34 and 35 are connected to the controller 36.
  • the anode and the cathode of the diode D3 are respectively connected to the emitter and the collector of the IGBT 34, and the anode and the cathode of the diode D4 are respectively connected to the emitter and the collector of the IGBT 35. That is, the diodes D3 and D4 are connected in anti-parallel to the IGBTs 34 and 35, respectively.
  • the IGBT 34 When the gates of the IGBTs 34 and 35 are set to the “L” level and the “H” level, respectively, the IGBT 34 is turned off and the IGBT 35 is turned on, and a current flows from one terminal 32 to the other terminal 33 via the IGBT 35 and the diode D3.
  • FIG. 10 is a circuit block diagram showing a configuration of an uninterruptible power supply according to a fifth embodiment of the present invention, which is to be compared with FIG. 10, this uninterruptible power supply differs from the uninterruptible power supply of FIG. 6 in that converter 1, capacitor 12, inverter 25 and control device 26 each have three levels of converter 31 (FIG. 7), capacitor C1, C2 (FIG. 7), a 3-level inverter 40, and a control device 41 are substituted, and a DC neutral point bus L3 is added.
  • converter 1, capacitor 12, inverter 25 and control device 26 each have three levels of converter 31 (FIG. 7), capacitor C1, C2 (FIG. 7), a 3-level inverter 40, and a control device 41 are substituted, and a DC neutral point bus L3 is added.
  • converter 31 The configuration of converter 31 is as shown in FIGS. 7 and 8. Three input nodes of converter 31 are connected to AC input terminals T1 to T3, and three output nodes of inverter 40 are connected to AC output terminals T11 to T13.
  • DC positive bus L 1, DC negative bus L 2, and DC neutral point bus L 3 are connected between converter 31 and inverter 40.
  • DC positive bus L1 and DC negative bus L2 are connected to battery terminals T21 and T22, respectively.
  • Capacitor C1 is connected between DC positive bus L1 and DC neutral point bus L3 to smooth DC voltage VDC / 2 between buses L1 and L3.
  • Capacitor C2 is connected between DC neutral point bus L3 and DC negative bus L2 and smoothes DC voltage VDC / 2 between buses L3 and L2.
  • Converter 31 is controlled by control device 41, and when AC voltages V1 to V3 of commercial AC power supply 51 are normal, three-phase AC power from commercial AC power supply 51 is converted to DC power to carry out DC positive bus L1, It outputs to DC negative bus L2 and DC neutral point bus L3.
  • the DC power generated by converter 31 is supplied to inverter 40 and stored in battery 54.
  • converter 31 equally charges capacitors C1 and C2 such that DC voltage VDC between DC positive bus L1 and DC negative bus L2 becomes target DC voltage VDCT.
  • VDC1-VDC2 VDCT
  • VDC1 becomes a positive voltage
  • VDC2 becomes a negative voltage
  • VDC1 -VDC2.
  • the inverter 40 is controlled by the control device 41, and when the AC voltages V1 to V3 of the commercial AC power supply 51 are normal, the DC power generated by the converter 31 is converted to three-phase AC power of commercial frequency and the load 53 Supply to At this time, inverter 40 generates three-phase AC voltages VO1 to VO3 using three levels of DC voltages VDC1 to VDC3 from converter 31.
  • the inverter 40 converts DC power of the battery 54 into three-phase AC power of commercial frequency and supplies it to the load 53.
  • Inverter 40 is a known circuit including a plurality of sets of IGBTs and diodes.
  • Control device 41 detects instantaneous values of AC input voltages V1 to V3 of commercial AC power supply 51, instantaneous values of DC voltage VDC between buses L1 and L2, and instantaneous values of AC output voltages VO1 to VO3 of inverter 40, The entire uninterruptible power supply is controlled based on the detected values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)

Abstract

A converter (1) is provided with first to sixth arms (A1-A6) each including an IGBT (4), a first diode (D1), and a second diode (D2). The IGBT and the first diode are connected in reverse parallel to each other. The second diode is connected in parallel to the first diode. The IGBT and the first diode are mounted on a first semiconductor module (M1). The second diode (M2) is mounted on a second semiconductor module (M2) different in kind from the first semiconductor module.

Description

コンバータおよびそれを用いた無停電電源装置Converter and uninterruptible power supply using the same
 この発明はコンバータおよびそれを用いた無停電電源装置に関し、特に、交流電力を直流電力に変換するコンバータと、それを用いた無停電電源装置とに関する。 The present invention relates to a converter and an uninterruptible power supply using the same, and more particularly to a converter that converts alternating current power to direct current power and an uninterruptible power supply using the converter.
 たとえば特開2002-335680号公報には、3つの入力端子に与えられた三相交流電力を直流電力に変換して第1および第2の出力端子に出力するコンバータが開示されている。コンバータは、第1~第6のアームを備える。第1~第3のアームは、第1の出力端子と3つの入力端子との間にそれぞれ接続される。第4~第6アームは、3つの入力端子と第2の出力端子との間にそれぞれ接続される。第1~第6のアームの各々は、1つの半導体モジュールで構成されている。半導体モジュールは、逆並列に接続されたトランジスタおよびダイオードを含む。 For example, Japanese Patent Laid-Open No. 2002-335680 discloses a converter which converts three-phase AC power supplied to three input terminals into DC power and outputs the DC power to the first and second output terminals. The converter comprises first to sixth arms. The first to third arms are respectively connected between the first output terminal and the three input terminals. The fourth to sixth arms are respectively connected between the three input terminals and the second output terminal. Each of the first to sixth arms is configured of one semiconductor module. The semiconductor module includes transistors and diodes connected in antiparallel.
特開2002-335680号公報JP 2002-335680 A
 このようなコンバータでは、負荷容量が大きい場合には、半導体モジュールの温度上昇を抑制するため、並列接続された複数の半導体モジュールで各アームを構成する(図4参照)。 In such a converter, when the load capacity is large, in order to suppress the temperature rise of the semiconductor module, each arm is formed of a plurality of semiconductor modules connected in parallel (see FIG. 4).
 しかし、交流電源からコンバータを介して負荷に供給される力行電力が、負荷からコンバータを介して交流電源に供給される回生電力よりも大きい場合には、ダイオードに流れる電流がトランジスタに流れる電流よりも大きくなる。この場合にダイオードの温度上昇を抑制するため、並列接続された複数の半導体モジュールで各アームを構成すると、トランジスタの数が必要以上に多くなり、コスト高になる。 However, if the powering power supplied from the AC power supply to the load via the converter is larger than the regenerative power supplied from the load to the AC power supply via the converter, the current flowing through the diode is higher than the current flowing through the transistor growing. In this case, when each arm is formed of a plurality of semiconductor modules connected in parallel in order to suppress the temperature rise of the diode, the number of transistors is increased more than necessary and the cost is increased.
 それゆえに、この発明の主たる目的は、低コストのコンバータを提供することである。 Therefore, the main object of the present invention is to provide a low cost converter.
 この発明に係るコンバータは、複数の入力端子に与えられた交流電力を直流電力に変換して第1および第2の出力端子に出力するコンバータであって、各入力端子に対応して設けられ、第1の出力端子と対応する入力端子との間に接続された第1のアームと、各入力端子に対応して設けられ、対応する入力端子と第2の出力端子との間に接続された第2のアームとを備えたものである。第1および第2のアームの各々は、互いに逆並列に接続された第1のトランジスタおよび第1のダイオードと、第1のダイオードに並列接続された第2のダイオードとを含む。第1のトランジスタおよび第1のダイオードは第1の半導体モジュールに搭載され、第2のダイオードは、第1の半導体モジュールと異なる種類の第2の半導体モジュールに搭載されている。 A converter according to the present invention is a converter that converts AC power supplied to a plurality of input terminals into DC power and outputs the DC power to the first and second output terminals, and is provided corresponding to each input terminal, A first arm connected between the first output terminal and the corresponding input terminal, and provided corresponding to each input terminal, connected between the corresponding input terminal and the second output terminal And a second arm. Each of the first and second arms includes a first transistor and a first diode connected in anti-parallel to each other, and a second diode connected in parallel to the first diode. The first transistor and the first diode are mounted on a first semiconductor module, and the second diode is mounted on a second semiconductor module of a type different from the first semiconductor module.
 この発明に係るコンバータでは、各アームは、逆並列に接続された第1のトランジスタおよび第1のダイオードと、第1のダイオードに並列接続された第2のダイオードとを含み、第1のトランジスタおよび第1のダイオードは第1の半導体モジュールに搭載され、第2のダイオードは第1の半導体モジュールと種類の異なる第2の半導体モジュールに搭載されている。したがって、各アームに第2のダイオードを追加するので、各アームを複数組の第1のトランジスタおよび第1のダイオードで構成する場合に比べ、装置の低コスト化を図ることができる。 In the converter according to the present invention, each arm includes a first transistor and a first diode connected in anti-parallel, and a second diode connected in parallel to the first diode, and the first transistor and The first diode is mounted on a first semiconductor module, and the second diode is mounted on a second semiconductor module different in type from the first semiconductor module. Therefore, since the second diode is added to each arm, cost reduction of the device can be achieved as compared with the case where each arm is configured by a plurality of sets of the first transistor and the first diode.
この発明の実施の形態1による電力変換装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the power converter device by Embodiment 1 of this invention. 図1に示したアームの構成を示す回路図である。It is a circuit diagram which shows the structure of the arm shown in FIG. 実施の形態1の比較例1を示す回路図である。FIG. 7 is a circuit diagram showing a comparative example 1 of the first embodiment. 実施の形態1の他の比較例2を示す回路図である。FIG. 13 is a circuit diagram showing another comparative example 2 of the first embodiment. この発明の実施の形態2による電力変換装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the power converter device by Embodiment 2 of this invention. この発明の実施の形態3による無停電電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the uninterruptible power supply by Embodiment 3 of this invention. この発明の実施の形態4による電力変換装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the power converter device by Embodiment 4 of this invention. 図7に示した交流スイッチの構成を示す回路図である。It is a circuit diagram which shows the structure of the alternating current switch shown in FIG. 実施の形態4の変更例を示す回路図である。FIG. 21 is a circuit diagram showing a modification of the fourth embodiment. この発明の実施の形態5による無停電電源装置の構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the uninterruptible power supply by Embodiment 5 of this invention.
 [実施の形態1]
 図1は、この発明の実施の形態1による電力変換装置の構成を示す回路ブロック図である。図1において、この電力変換装置は、交流入力端子T1~T3および直流出力端子T4,T5を備える。交流入力端子T1~T3は、商用交流電源51から商用周波数の三相交流電力を受ける。直流出力端子T4,T5は、負荷52に接続される。負荷52は、電力変換装置から供給される直流電力によって駆動される。商用交流電源51からコンバータ1を介して負荷52に供給される力行電力は、負荷52からコンバータ1を介して商用交流電源51に供給される回生電力よりも十分に大きい。
First Embodiment
FIG. 1 is a circuit block diagram showing a configuration of a power conversion device according to a first embodiment of the present invention. In FIG. 1, this power conversion device includes AC input terminals T1 to T3 and DC output terminals T4 and T5. AC input terminals T1 to T3 receive three-phase AC power of commercial frequency from commercial AC power supply 51. The DC output terminals T4 and T5 are connected to the load 52. The load 52 is driven by DC power supplied from the power conversion device. The power running power supplied from the commercial AC power supply 51 to the load 52 via the converter 1 is sufficiently larger than the regenerative power supplied from the load 52 to the commercial AC power supply 51 via the converter 1.
 この電力変換装置は、さらに、コンバータ1、直流正母線L1、直流負母線L2、コンデンサ12、および制御装置13を備える。コンバータ1は、制御装置13によって制御され、商用交流電源51から供給される三相交流電力を直流電力に変換して直流正母線L1および直流負母線L2間に出力する。 The power converter further includes a converter 1, a DC positive bus L 1, a DC negative bus L 2, a capacitor 12, and a controller 13. Converter 1 is controlled by control device 13, converts three-phase AC power supplied from commercial AC power supply 51 into DC power, and outputs it between DC positive bus L1 and DC negative bus L2.
 すなわち、コンバータ1は、6つのアームA1~A6を含む。アームA1~A6の各々は、正側端子2および負側端子3を有する。アームA1~A3の正側端子2は、ともに直流正母線L1を介して直流出力端子T4に接続される。アームA1~A3の負側端子3は、それぞれ交流入力端子T1~T3に接続される。アームA4~A6の正側端子2は、それぞれ交流入力端子T1~T3に接続される。アームA1~A3の負側端子3は、ともに直流負母線L2を介して直流出力端子T5に接続される。 That is, converter 1 includes six arms A1 to A6. Each of the arms A1 to A6 has a positive terminal 2 and a negative terminal 3. The positive terminals 2 of the arms A1 to A3 are all connected to the DC output terminal T4 via the DC positive bus L1. The negative terminals 3 of the arms A1 to A3 are connected to the AC input terminals T1 to T3, respectively. The positive terminals 2 of the arms A4 to A6 are connected to the AC input terminals T1 to T3, respectively. The negative terminals 3 of the arms A1 to A3 are all connected to the DC output terminal T5 via the DC negative bus L2.
 図2は、アームA1の構成を示す回路図である。図2において、アームA1は、互いに異なる種類の2つの半導体モジュールM1,M2を含む。半導体モジュールM1は、IGBT(Insulated Gate Bipolar Transistor;絶縁ゲートバイポーラトランジスタ)4、ダイオードD1、コレクタ端子5、エミッタ端子6、およびゲート端子7を含む。 FIG. 2 is a circuit diagram showing the configuration of the arm A1. In FIG. 2, the arm A1 includes two semiconductor modules M1 and M2 of different types. The semiconductor module M1 includes an IGBT (Insulated Gate Bipolar Transistor) 4, a diode D1, a collector terminal 5, an emitter terminal 6, and a gate terminal 7.
 IGBT4のコレクタはコレクタ端子5に接続され、そのエミッタはエミッタ端子6に接続され、そのゲートはゲート端子7に接続されている。ゲート端子7は、制御装置13に接続される。ゲート端子7が「H」レベルにされるとIGBT4がオンし、ゲート端子7が「L」レベルにされるとIGBT4がオフする。 The collector of the IGBT 4 is connected to the collector terminal 5, its emitter is connected to the emitter terminal 6, and its gate is connected to the gate terminal 7. The gate terminal 7 is connected to the control device 13. When the gate terminal 7 is set to the “H” level, the IGBT 4 is turned on, and when the gate terminal 7 is set to the “L” level, the IGBT 4 is turned off.
 ダイオードD1のアノードはエミッタ端子6に接続され、そのカソードはコレクタ端子5に接続されている。すなわち、IGBT4およびダイオードD1は、コレクタ端子5およびエミッタ端子6間に逆並列に接続されている。 The anode of the diode D1 is connected to the emitter terminal 6 and its cathode is connected to the collector terminal 5. That is, IGBT 4 and diode D 1 are connected in anti-parallel between collector terminal 5 and emitter terminal 6.
 エミッタ端子6およびコレクタ端子5間の電圧が所定のオン電圧Von1よりも大きい場合はダイオードD1がオンし、エミッタ端子6およびコレクタ端子5間の電圧が所定のオン電圧Von1よりも小さい場合はダイオードD1がオフする。コレクタ端子5およびエミッタ端子6は、アームA1の正側端子2および負側端子3にそれぞれ接続される。 When the voltage between emitter terminal 6 and collector terminal 5 is larger than predetermined on voltage Von1, diode D1 is turned on, and when the voltage between emitter terminal 6 and collector terminal 5 is smaller than predetermined on voltage Von1, diode D1 Turns off. Collector terminal 5 and emitter terminal 6 are connected to positive side terminal 2 and negative side terminal 3 of arm A1, respectively.
 半導体モジュールM2は、ダイオードD2、カソード端子10、およびアノード端子11を含む。ダイオードD2のカソードおよびアノードは、それぞれカソード端子10およびアノード端子11に接続される。 The semiconductor module M2 includes a diode D2, a cathode terminal 10, and an anode terminal 11. The cathode and the anode of the diode D2 are connected to the cathode terminal 10 and the anode terminal 11, respectively.
 アノード端子11およびカソード端子10間の電圧が所定のオン電圧Von2よりも大きい場合はダイオードD2がオンし、アノード端子11およびカソード端子10間の電圧が所定のオン電圧Von2よりも小さい場合はダイオードD2がオフする。ダイオードD2のオン電圧Von2は、ダイオードD1のオン電圧Von1よりも小さい。 When the voltage between anode terminal 11 and cathode terminal 10 is larger than predetermined on voltage Von2, diode D2 is turned on, and when the voltage between anode terminal 11 and cathode terminal 10 is smaller than predetermined on voltage Von2, diode D2 Turns off. The on voltage Von2 of the diode D2 is smaller than the on voltage Von1 of the diode D1.
 カソード端子10およびアノード端子11は、アームA1の正側端子2および負側端子3にそれぞれ接続される。したがって、ダイオードD1,D2は、正側端子2および負側端子3間に並列接続される。ダイオードD2のオン電圧Vo2はダイオードD1のオン電圧Vo1よりも小さいので、ダイオードD2はダイオードD1よりも先にオンする。ダイオードD2に流れる電流は、ダイオードD1に流れる電流よりも大きい。 The cathode terminal 10 and the anode terminal 11 are respectively connected to the positive terminal 2 and the negative terminal 3 of the arm A1. Therefore, the diodes D1 and D2 are connected in parallel between the positive terminal 2 and the negative terminal 3. Since the on voltage Vo2 of the diode D2 is smaller than the on voltage Vo1 of the diode D1, the diode D2 is turned on earlier than the diode D1. The current flowing through the diode D2 is larger than the current flowing through the diode D1.
 したがって、アームA1は、実質的には、正側端子2および負側端子3間に逆並列に接続されたIGBT4およびダイオードD2によって構成されている。IGBT4は主に回生電流を流し、ダイオードD2は主に力行電流を流す。上述の通り、商用交流電源51からコンバータ1を介して負荷52に供給される力行電力は、負荷52からコンバータ1を介して商用交流電源51に戻される回生電力よりも大きい。このため、ダイオードD2に流れる電流はIGBT4に流れる電流よりも大きい。 Thus, the arm A1 is substantially constituted by the IGBT 4 and the diode D2 connected in antiparallel between the positive terminal 2 and the negative terminal 3. The IGBT 4 mainly supplies a regenerative current, and the diode D2 mainly supplies a powering current. As described above, the power running power supplied from the commercial AC power supply 51 to the load 52 via the converter 1 is larger than the regenerative power returned from the load 52 to the commercial AC power supply 51 via the converter 1. Therefore, the current flowing through the diode D2 is larger than the current flowing through the IGBT4.
 IGBT4のサイズ(すなわち半導体モジュールM1の種類)は、回生電流によるIGBT4の温度上昇が抑制されるように選択されている。また、ダイオードD2のサイズ(すなわち半導体モジュールM2の種類)は、力行電流によるダイオードD2の温度上昇が抑制されるように選択されている。他のアームA2~A6もアームA1と同じ構成である。 The size of the IGBT 4 (that is, the type of the semiconductor module M1) is selected so as to suppress the temperature rise of the IGBT 4 due to the regenerative current. Further, the size of the diode D2 (that is, the type of the semiconductor module M2) is selected so as to suppress the temperature rise of the diode D2 due to the powering current. The other arms A2 to A6 have the same configuration as the arm A1.
 図1に戻って、コンデンサ12は、直流正母線L1および直流負母線L2間に接続され、コンバータ1の出力電圧を平滑化する。なお、コンデンサ12がコンバータ1に含まれていても構わない。 Referring back to FIG. 1, capacitor 12 is connected between DC positive bus L1 and DC negative bus L2 to smooth the output voltage of converter 1. The capacitor 12 may be included in the converter 1.
 商用交流電源51からの三相交流電圧V1~V3は、コンバータ1のアームA1~A6に含まれる6個のダイオードD2によって全波整流され、コンデンサ12によって平滑化されて直流電圧VDCとなる。力行電流は、主に6個のダイオードD2に流れる。 Three-phase AC voltages V1 to V3 from commercial AC power supply 51 are full-wave rectified by six diodes D2 included in arms A1 to A6 of converter 1, and smoothed by capacitor 12 to become DC voltage VDC. The powering current mainly flows through six diodes D2.
 制御装置13は、交流入力端子T1~T3の交流電圧V1~V3に同期して動作し、直流出力端子T4,T5間の直流電圧VDCが所定の目標直流電圧VDCTになるように、コンバータ1のアームA1~A6に含まれる6個のIGBT4を制御する。 Control device 13 operates in synchronization with AC voltages V1 to V3 of AC input terminals T1 to T3 so that DC voltage VDC between DC output terminals T4 and T5 becomes a predetermined target DC voltage VDCT. The six IGBTs 4 included in the arms A1 to A6 are controlled.
 すなわち、制御装置13は、6個のIGBT4を制御し、直流出力端子T4,T5間の直流電圧VDCを三相交流電圧V11~V13に変換して交流入力端子T1~T3間に出力させる。 That is, control device 13 controls six IGBTs 4, converts DC voltage VDC between DC output terminals T4 and T5 into three-phase AC voltages V11 to V13, and outputs the voltage between AC input terminals T1 to T3.
 直流電圧VDCが目標直流電圧VDCTよりも低い場合は、制御装置13は、6個のIGBT4を制御し、三相交流電圧V11~V13の位相を商用交流電源51の三相交流電圧V1~V3の位相よりも遅らせる。これにより、商用交流電源51から6個のIGBT4を介してコンデンサ12に力行電流が供給され、直流電圧VDCが上昇する。 When DC voltage VDC is lower than target DC voltage VDCT, control device 13 controls six IGBTs 4 to set the phases of three-phase AC voltages V11 to V13 to three-phase AC voltages V1 to V3 of commercial AC power supply 51. Delay more than phase. As a result, the power running current is supplied from the commercial AC power supply 51 to the capacitor 12 via the six IGBTs 4, and the DC voltage VDC rises.
 逆に、直流電圧VDCが目標直流電圧VDCTよりも高い場合は、制御装置13は、6個のIGBT4を制御し、三相交流電圧V11~V13の位相を商用交流電源51の三相交流電圧V1~V3の位相よりも進ませる。これにより、電力がコンデンサ12からコンバータ1を介して商用交流電源51に供給され、直流電圧VDCが下降する。したがって、6個のIGBT4を制御することにより、直流電圧VDCを目標直流電圧VDCTにすることができる。なお、直流出力電圧VDCの最大値は、交流入力電圧のピーク値となる。 Conversely, when the DC voltage VDC is higher than the target DC voltage VDCT, the control device 13 controls the six IGBTs 4 to set the phases of the three-phase AC voltages V11 to V13 to the three-phase AC voltage V1 of the commercial AC power supply 51. Advance to the phase of ~ V3. Thus, power is supplied from the capacitor 12 to the commercial AC power supply 51 via the converter 1, and the DC voltage VDC falls. Therefore, by controlling six IGBTs 4, DC voltage VDC can be made the target DC voltage VDCT. The maximum value of the DC output voltage VDC is the peak value of the AC input voltage.
 なお、商用交流電源51から6個のダイオードD2を介してコンデンサ12に常時、力行電流が供給されるので、IGBT4に流れる力行電流は小さい。また、本実施の形態1では、負荷52で発生する回生電力が小さいので、直流電圧VDCが目標直流電圧VDCTよりも高くなる場合は少なく、IGBT4に流れる回生電流は小さい。したがって、ダイオードD2に流れる電流は、IGBT4に流れる電流よりも大きい。 Since the power running current is always supplied from the commercial AC power supply 51 to the capacitor 12 via the six diodes D2, the power running current flowing through the IGBT 4 is small. Further, in the first embodiment, since the regenerative power generated by load 52 is small, there are few cases where DC voltage VDC is higher than target DC voltage VDCT, and the regenerative current flowing through IGBT 4 is small. Therefore, the current flowing through the diode D2 is larger than the current flowing through the IGBT4.
 図3は、本実施の形態1の比較例1を示す回路図であって、図2と対比される図である。図3を参照して、この比較例1が実施の形態1と異なる点は、アームA1~A6の各々がアーム15で置換されている点である。アーム15は、アームA1(図2)から半導体モジュールM2を除去したものであり、1つの半導体モジュールM1のみを含む。 FIG. 3 is a circuit diagram showing a comparative example 1 of the first embodiment, which is to be compared with FIG. Referring to FIG. 3, this comparative example 1 is different from the embodiment 1 in that each of arms A1 to A6 is replaced with arm 15. The arm 15 is obtained by removing the semiconductor module M2 from the arm A1 (FIG. 2), and includes only one semiconductor module M1.
 この比較例1では、負荷電流が小さい場合は問題ないが、負荷電流が大きい場合には、半導体モジュールM1の温度上昇が過大になり、半導体モジュールM1が破損するという問題がある。 In this comparative example 1, there is no problem when the load current is small, but when the load current is large, the temperature rise of the semiconductor module M1 becomes excessive and there is a problem that the semiconductor module M1 is damaged.
 図4は、本実施の形態1の他の比較例2を示す回路図であって、図2と対比される図である。図4を参照して、この比較例2が実施の形態1と異なる点は、アームA1~A6の各々がアーム16で置換されている点である。アーム16は、複数の半導体モジュールM2を並列接続したものである。複数のコレクタ端子5はともに正側端子2に接続され、複数のエミッタ端子6はともに負側端子3に接続され、複数のゲート端子7は互いに接続されている。 FIG. 4 is a circuit diagram showing another comparative example 2 of the first embodiment, which is to be compared with FIG. Referring to FIG. 4, this comparative example 2 is different from the embodiment 1 in that each of arms A1 to A6 is replaced with arm 16. The arm 16 is formed by connecting a plurality of semiconductor modules M2 in parallel. The plurality of collector terminals 5 are all connected to the positive terminal 2, the plurality of emitter terminals 6 are all connected to the negative terminal 3, and the plurality of gate terminals 7 are connected to each other.
 この比較例2では、負荷電流が複数の半導体モジュールM1に分流されるので、1つの半導体モジュールM1に流れる電流を負荷電流の複数分の1にすることができる。したがって、負荷電流が大きい場合でも、半導体モジュールM1の温度上昇を抑制することができる。 In the second comparative example, the load current is shunted to the plurality of semiconductor modules M1, so that the current flowing through one semiconductor module M1 can be reduced to a fraction of the load current. Therefore, even when the load current is large, the temperature rise of the semiconductor module M1 can be suppressed.
 しかし、この比較例2には、以下の問題がある。すなわち、負荷の種類によっては、力行電力が回生電力よりも大きい場合がある。この場合は、ダイオードD1に流れる電流がIGBT4に流れる電流よりも大きくなり、ダイオードD1の温度上昇がIGBT4の温度上昇よりも高くなる。この場合にダイオードD1の温度上昇を抑制するため、複数の半導体モジュールM1を並列接続してアーム16を構成すると、IGBT4の数が必要以上に多くなり、コスト高になる。 However, this comparative example 2 has the following problems. That is, depending on the type of load, the powering power may be larger than the regenerative power. In this case, the current flowing through the diode D1 becomes larger than the current flowing through the IGBT 4, and the temperature rise of the diode D1 becomes higher than the temperature rise of the IGBT 4. In this case, when the arm 16 is configured by connecting a plurality of semiconductor modules M1 in parallel in order to suppress the temperature rise of the diode D1, the number of IGBTs 4 increases more than necessary and the cost increases.
 さらに、市販されている半導体モジュールM1では、IGBT4の特性にばらつきがあり、ダイオードD1の特性(たとえばオン電圧Von1)にもばらつきがある。半導体モジュールM1の種類によっては、IGBT4の特性のばらつきは小さいが、ダイオードD1の特性のばらつきが大きい。したがって、比較例2では、並列接続された複数のダイオードD1のうちのオン電圧Von1が小さなダイオードD1に他のダイオードD1よりも大きな電流が流れ、そのダイオードD1の温度上昇が大きくなる。このため、比較例2では、ダイオードD1の温度上昇を抑制するためには、多くの半導体モジュールM1を並列接続する必要があり、コスト高になる。 Furthermore, in the semiconductor module M1 that is commercially available, the characteristics of the IGBT 4 vary, and the characteristics of the diode D1 (for example, the on voltage Von1) also vary. Although the variation in the characteristics of the IGBT 4 is small depending on the type of the semiconductor module M1, the variation in the characteristics of the diode D1 is large. Therefore, in the second comparative example, the on-voltage Von1 of the plurality of diodes D1 connected in parallel causes a smaller current to flow through the smaller diode D1, and the temperature rise of the diode D1 increases. For this reason, in the comparative example 2, in order to suppress the temperature rise of the diode D1, it is necessary to connect many semiconductor modules M1 in parallel, which results in an increase in cost.
 これに対して本実施の形態1では、負荷52に力行電流を流しても温度上昇が小さなサイズのダイオードD2を半導体モジュールM1に並列接続するので、比較例2のようにIGBT4の数が必要以上に多くなってコスト高になることはない。 On the other hand, in the first embodiment, the diode D2 having a small temperature rise is connected in parallel to the semiconductor module M1 even if the powering current is supplied to the load 52, so the number of IGBTs 4 is more than necessary as in the second comparative example. It will not be expensive and expensive.
 なお、この実施の形態1では、アームA1~A6の各々においてIGBT4およびダイオードD1が1つの半導体モジュールM1に搭載され、ダイオードD2が1つの半導体モジュールM2に搭載された場合について説明した。しかし、N個のアームのN組のIGBT4およびダイオードD1が同じ半導体モジュールに搭載され、N個のアームのN個のダイオードD2が他の半導体モジュールに搭載されていても構わない。ただし、Nは2から6までの整数である。 In the first embodiment, the case where the IGBT 4 and the diode D1 are mounted on one semiconductor module M1 and the diode D2 is mounted on one semiconductor module M2 in each of the arms A1 to A6 has been described. However, the N sets of IGBTs 4 and diodes D1 of the N arms may be mounted on the same semiconductor module, and the N diodes D2 of the N arms may be mounted on another semiconductor module. However, N is an integer from 2 to 6.
 たとえば、アームA1~A6が2つずつグループ化され、各アームグループにおいて、2組のIGBT4およびダイオードD1が1つの半導体モジュールに搭載され、2個のダイオードD2がもう1つの半導体モジュールに搭載されていても構わない。この場合、半導体モジュールの数は6個になる。 For example, arms A1 to A6 are grouped by two, and in each arm group, two sets of IGBT 4 and diode D1 are mounted in one semiconductor module, and two diodes D2 are mounted in another semiconductor module It does not matter. In this case, the number of semiconductor modules is six.
 また、6個のアームA1~A6の6組のIGBT4およびダイオードD1が1つの半導体モジュールに搭載され、6個のアームA1~A6の6個のダイオードD2がもう1つの半導体モジュールに搭載されていても構わない。この場合、半導体モジュールの数は2個になる。 Also, six pairs of IGBT 4 and six diodes A1 to A6 and one diode D1 are mounted on one semiconductor module, and six diodes D2 of six arms A1 to A6 are mounted on another semiconductor module. I don't care. In this case, the number of semiconductor modules is two.
 また、この実施の形態1では、本願発明が三相交流電力を直流電力に変換するコンバータ1に適用された場合について説明したが、本願発明は単相交流電力を直流電力に変換する単相コンバータにも適用可能であることは言うまでもない。単相コンバータは、図1のコンバータ1から交流入力端子T3およびアームA3,A6を除去したものである。 In the first embodiment, the present invention is applied to the converter 1 for converting three-phase AC power to DC power. However, the present invention relates to a single-phase converter for converting single-phase AC power to DC power. It goes without saying that it is also applicable to The single-phase converter is obtained by removing the AC input terminal T3 and the arms A3 and A6 from the converter 1 of FIG.
 [実施の形態2]
 図5は、この発明の実施の形態2による電力変換装置の構成を示す回路ブロック図であって、図1と対比される図である。図5を参照して、この電力変換装置が図1の電力変換装置と異なる点は、リアクトル21~23が追加され、制御装置13が制御装置13Aで置換されている点である。
Second Embodiment
FIG. 5 is a circuit block diagram showing a configuration of a power conversion device according to a second embodiment of the present invention, which is to be compared with FIG. Referring to FIG. 5, this power conversion device differs from the power conversion device of FIG. 1 in that reactors 21 to 23 are added and control device 13 is replaced with control device 13A.
 リアクトル21の一方端子は交流入力端子T1に接続され、その他方端子はアームA1の負側端子3およびアームA4の正側端子2に接続される。リアクトル22の一方端子は交流入力端子T2に接続され、その他方端子はアームA2の負側端子3およびアームA5の正側端子2に接続される。リアクトル23の一方端子は交流入力端子T3に接続され、その他方端子はアームA3の負側端子3およびアームA6の正側端子2に接続される。 One terminal of the reactor 21 is connected to the AC input terminal T1, and the other terminal is connected to the negative terminal 3 of the arm A1 and the positive terminal 2 of the arm A4. One terminal of reactor 22 is connected to AC input terminal T2, and the other terminal is connected to negative terminal 3 of arm A2 and positive terminal 2 of arm A5. One terminal of the reactor 23 is connected to the AC input terminal T3, and the other terminal is connected to the negative terminal 3 of the arm A3 and the positive terminal 2 of the arm A6.
 制御装置13Aは、制御装置13の動作に加え、リアクトル21~23の電磁エネルギーを利用してコンデンサ12を充電する。たとえば、交流入力端子T1の電圧が交流入力端子T2の電圧が高い場合には、制御装置13Aは、アームA4のIGBT4(図2)をオンさせる。これにより、交流入力端子T1からリアクトル21、アームA4のIGBT4、アームA5のダイオードD2、およびリアクトル22を介して交流入力端子T2に電流が流れ、リアクトル21,22に電磁エネルギーが蓄えられる。 In addition to the operation of control device 13, control device 13A charges capacitor 12 using the electromagnetic energy of reactors 21-23. For example, when the voltage of the AC input terminal T1 is high and the voltage of the AC input terminal T2 is high, the control device 13A turns on the IGBT 4 (FIG. 2) of the arm A4. As a result, current flows from the AC input terminal T1 to the AC input terminal T2 through the reactor 21, the IGBT 4 of the arm A4, the diode D2 of the arm A5, and the reactor 22 and electromagnetic energy is accumulated in the reactors 21 and 22.
 次に制御装置13Aは、アームA4のIGBT4をオフさせる。これにより、リアクトル21,22に流れる電流がアームA1のダイオードD2、コンデンサ12、アームA5のダイオードD2に転流され、リアクトル21,22の電磁エネルギーが放出されるとともにコンデンサ12が充電される。IGBT4のオン時間とオフ時間の比を調整することによってコンデンサ12に流れる電流を調整することができ、コンバータ1の直流出力電圧VDCを調整することができる。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。 Next, the control device 13A turns off the IGBT 4 of the arm A4. As a result, the current flowing through the reactors 21 and 22 is diverted to the diode D2 of the arm A1, the capacitor 12 and the diode D2 of the arm A5, so that the electromagnetic energy of the reactors 21 and 22 is released and the capacitor 12 is charged. The current flowing through capacitor 12 can be adjusted by adjusting the ratio of the on time to the off time of IGBT 4, and the DC output voltage VDC of converter 1 can be adjusted. The other configuration and operation are the same as in the first embodiment, and the description thereof will not be repeated.
 リアクトル21~23の電磁エネルギーを利用しない実施の形態1では、直流出力電圧VDCを交流入力電圧のピーク値よりも高い電圧にすることはできない。これに対して本実施の形態2では、リアクトル21~23の電磁エネルギーを利用するので、直流出力電圧VDCを交流入力電圧VDCのピーク値よりも高い電圧にすることができる。ただし、リアクトル21~23に電磁エネルギーを蓄えるための電流をIGBT4に流すので、IGBT4に流れる電流が実施の形態1よりも大きくなる。 In the first embodiment in which the electromagnetic energy of reactors 21 to 23 is not used, DC output voltage VDC can not be made higher than the peak value of AC input voltage. On the other hand, in the second embodiment, since the electromagnetic energy of the reactors 21 to 23 is used, the DC output voltage VDC can be made higher than the peak value of the AC input voltage VDC. However, since the current for storing the electromagnetic energy is supplied to the IGBT 4 in the reactors 21 to 23, the current flowing in the IGBT 4 becomes larger than that in the first embodiment.
 [実施の形態3]
 図6は、この発明の実施の形態3による無停電電源装置の構成を示す回路ブロック図である。図6において、無停電電源装置は、交流入力端子T1~T3、交流出力端子T11~T13、およびバッテリ端子T21,T22を備える。
Third Embodiment
6 is a circuit block diagram showing a configuration of an uninterruptible power supply according to a third embodiment of the present invention. In FIG. 6, the uninterruptible power supply device includes AC input terminals T1 to T3, AC output terminals T11 to T13, and battery terminals T21 and T22.
 交流入力端子T1~T3は、商用交流電源51からの三相交流電力を受ける。交流出力端子T11~T13は、負荷53に接続される。負荷53は、無停電電源装置から供給される三相交流電力によって駆動される。バッテリ端子T21,T22は、バッテリ54(電力貯蔵装置)の正極および負極にそれぞれ接続される。バッテリ54は、直流電力を蓄える。バッテリ54の代わりにコンデンサを接続してもよい。 AC input terminals T1 to T3 receive three-phase AC power from commercial AC power supply 51. The AC output terminals T11 to T13 are connected to the load 53. The load 53 is driven by three-phase AC power supplied from an uninterruptible power supply. The battery terminals T21 and T22 are connected to the positive electrode and the negative electrode of the battery 54 (power storage device), respectively. The battery 54 stores DC power. A capacitor may be connected instead of the battery 54.
 無停電電源装置は、さらに、コンバータ1、直流正母線L1、直流負母線L2、コンデンサ12、インバータ25、および制御装置26を備える。コンバータ1の構成は、図1および図2で示した通りである。コンバータ1の3つの入力ノードは交流入力端子T1~T3に接続され、インバータ25の3つの出力ノードは交流出力端子T11~T13に接続される。 The uninterruptible power supply further includes a converter 1, a DC positive bus L1, a DC negative bus L2, a capacitor 12, an inverter 25, and a controller 26. The configuration of converter 1 is as shown in FIGS. 1 and 2. Three input nodes of converter 1 are connected to AC input terminals T1 to T3, and three output nodes of inverter 25 are connected to AC output terminals T11 to T13.
 直流正母線L1および直流負母線L2は、コンバータ1とインバータ25の間に接続されるとともに、バッテリ端子T21,T22にそれぞれ接続される。コンデンサ12は、直流正母線L1および直流負母線L2間に接続され、母線L1,L2間の直流電圧VDCを平滑化させる。 The DC positive bus L1 and the DC negative bus L2 are connected between the converter 1 and the inverter 25 and connected to the battery terminals T21 and T22, respectively. Capacitor 12 is connected between DC positive bus L1 and DC negative bus L2, and smoothes DC voltage VDC between buses L1 and L2.
 コンバータ1は、制御装置26によって制御され、商用交流電源51の交流電圧V1~V3が正常である場合は、商用交流電源51からの三相交流電力を直流電力に変換して直流正母線L1および直流負母線L2に出力する。コンバータ1によって生成された直流電力は、インバータ25に供給されるとともに、バッテリ54に蓄えられる。 Converter 1 is controlled by control device 26. When AC voltages V1 to V3 of commercial AC power supply 51 are normal, three-phase AC power from commercial AC power supply 51 is converted to DC power to drive DC positive bus L1 and Output to DC negative bus L2. The DC power generated by the converter 1 is supplied to the inverter 25 and stored in the battery 54.
 このとき、コンバータ1は、直流正母線L1および直流負母線L2間の直流電圧VDCが目標直流電圧VDCTになるように、直流電流を出力する。商用交流電源51の交流電圧V1~V3が正常でない場合(たとえば、停電が発生した場合)には、コンバータ1の運転は停止される。 At this time, converter 1 outputs a DC current such that DC voltage VDC between DC positive bus L1 and DC negative bus L2 becomes target DC voltage VDCT. When the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal (for example, when a power failure occurs), the operation of converter 1 is stopped.
 インバータ25は、制御装置26によって制御され、商用交流電源51の交流電圧V1~V3が正常である場合は、コンバータ1によって生成された直流電力を商用周波数の三相交流電力に変換して負荷53に供給する。また、インバータ25は、商用交流電源51の交流電圧V1~V3が正常でない場合は、バッテリ54の直流電力を商用周波数の三相交流電力に変換して負荷53に供給する。インバータ25は、複数組のIGBTおよびダイオードを含む周知の回路である。 The inverter 25 is controlled by the control device 26. When the AC voltages V1 to V3 of the commercial AC power supply 51 are normal, the DC power generated by the converter 1 is converted to three-phase AC power of the commercial frequency to obtain the load 53 Supply to Further, when the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal, the inverter 25 converts the DC power of the battery 54 into three-phase AC power of commercial frequency and supplies it to the load 53. Inverter 25 is a known circuit including a plurality of sets of IGBTs and diodes.
 制御装置26は、商用交流電源51の交流入力電圧V1~V3の瞬時値、母線L1,L2間の直流電圧VDCの瞬時値、およびインバータ25の交流出力電圧VO1~VO3の瞬時値を検出し、それらの検出値に基づいて無停電電源装置全体を制御する。 Control device 26 detects instantaneous values of AC input voltages V1 to V3 of commercial AC power supply 51, instantaneous values of DC voltage VDC between buses L1 and L2, and instantaneous values of AC output voltages VO1 to VO3 of inverter 25, The entire uninterruptible power supply is controlled based on the detected values.
 すなわち、制御装置26は、交流入力電圧V1~V3の検出値が正常であるか否かを判別する。たとえば、商用交流電源51が健全である場合には、交流入力電圧V1~V3が正常範囲内の値になる。商用交流電源51の停電が発生した場合には、交流入力電圧V1~V3のうちの少なくとも1つの交流入力電圧が正常範囲の下限値よりも低下する。制御装置26は、交流入力電圧V1~V3のうちの少なくとも1つの交流入力電圧が下限値よりも低下した場合は、交流入力電圧V1~V3は正常でないと判別する。 That is, the control device 26 determines whether or not the detected values of the AC input voltages V1 to V3 are normal. For example, when the commercial AC power supply 51 is healthy, the AC input voltages V1 to V3 have values within the normal range. When a power failure of the commercial AC power supply 51 occurs, at least one of the AC input voltages V1 to V3 falls below the lower limit value of the normal range. When at least one of the AC input voltages V1 to V3 is lower than the lower limit value, the control device 26 determines that the AC input voltages V1 to V3 are not normal.
 また、制御装置26は、交流入力電圧V1~V3の位相に同期してコンバータ1およびインバータ25の各々を制御する。このとき制御装置26は、コンバータ1の出力電圧VDCが目標直流電圧VDCTになるように、コンバータ1の各IGBT4を制御する。また、制御装置26は、インバータ25の出力電圧VO1~VO3が目標交流電圧VOT1~VOT3になるように、インバータ25の各IGBTを制御する。 Further, control device 26 controls each of converter 1 and inverter 25 in synchronization with the phases of AC input voltages V1 to V3. At this time, control device 26 controls each IGBT 4 of converter 1 such that output voltage VDC of converter 1 becomes target DC voltage VDCT. Further, control device 26 controls each IGBT of inverter 25 such that output voltages VO1 to VO3 of inverter 25 become target AC voltages VOT1 to VOT3.
 次に、この無停電電源装置の動作について説明する。商用交流電源51の交流電圧V1~V3が正常である場合は、商用交流電源51からの三相交流電力がコンバータ1によって直流電力に変換される。コンバータ1によって生成された直流電力は、インバータ25に供給されるとともに、バッテリ54に蓄えられる。インバータ25は、コンバータ1からの直流電力を三相交流電力に変換して負荷53に供給する。 Next, the operation of this uninterruptible power supply will be described. When the AC voltages V1 to V3 of the commercial AC power supply 51 are normal, three-phase AC power from the commercial AC power supply 51 is converted by the converter 1 into DC power. The DC power generated by the converter 1 is supplied to the inverter 25 and stored in the battery 54. The inverter 25 converts the DC power from the converter 1 into three-phase AC power and supplies it to the load 53.
 商用交流電源51の交流電圧V1~V3が正常でない場合は、コンバータ1の運転が停止され、バッテリ54の直流電力がインバータ25によって三相交流電力に変換されて負荷53に供給される。したがって、商用交流電源51の停電が発生した場合でも、バッテリ54に直流電力が蓄えられている期間は、負荷53の運転を継続することができる。 When the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal, the operation of the converter 1 is stopped, and the DC power of the battery 54 is converted into three-phase AC power by the inverter 25 and supplied to the load 53. Therefore, even when a power failure of the commercial AC power supply 51 occurs, the operation of the load 53 can be continued while DC power is stored in the battery 54.
 この実施の形態3でも、実施の形態1と同じ効果が得られる。
 [実施の形態4]
 図7は、この発明の実施の形態4による電力変換装置の構成を示す回路ブロック図であって、図1と対比される図である。図7を参照して、この電力変換装置が図1の電力変換装置と異なる点は、コンバータ1がコンバータ31で置換され、コンデンサ12がコンデンサC1,C2で置換され、中性点端子T6(第3の出力端子)が追加され、制御装置13が制御装置36で置換されている点である。
The same effects as in the first embodiment can be obtained in the third embodiment.
Fourth Embodiment
FIG. 7 is a circuit block diagram showing a configuration of a power conversion device according to a fourth embodiment of the present invention, which is to be compared with FIG. Referring to FIG. 7, this power converter differs from the power converter of FIG. 1 in that converter 1 is replaced by converter 31, capacitor 12 is replaced by capacitors C1 and C2, and neutral point terminal T6 ( 3) is added, and the controller 13 is replaced by the controller 36.
 コンバータ31は、コンバータ1に交流スイッチS1~S3を追加したものである。交流スイッチS1~S3の一方端子32はそれぞれ交流入力端子T1~T3に接続され、それらの他方端子はともに中性点端子T6に接続される。 Converter 31 is obtained by adding AC switches S1 to S3 to converter 1. One terminals 32 of the AC switches S1 to S3 are respectively connected to the AC input terminals T1 to T3, and the other terminals of the AC switches S1 to S3 are both connected to the neutral point terminal T6.
 交流スイッチS1は、図8に示すように、IGBT34,35およびダイオードD3,D4を含む。IGBT34,35のコレクタは互いに接続され、それらのエミッタはそれぞれ一方端子32および他方端子33に接続される。IGBT34,35のゲートは、制御装置36に接続される。 AC switch S1 includes IGBTs 34 and 35 and diodes D3 and D4 as shown in FIG. The collectors of IGBTs 34 and 35 are connected to each other, and their emitters are connected to one terminal 32 and the other terminal 33, respectively. The gates of the IGBTs 34 and 35 are connected to the controller 36.
 ダイオードD3のアノードおよびカソードはそれぞれIGBT34のエミッタおよびコレクタに接続され、ダイオードD4のアノードおよびカソードはそれぞれIGBT35のエミッタおよびコレクタに接続されている。すなわち、ダイオードD3,D4は、それぞれIGBT34,35に逆並列に接続されている。 The anode and the cathode of the diode D3 are respectively connected to the emitter and the collector of the IGBT 34, and the anode and the cathode of the diode D4 are respectively connected to the emitter and the collector of the IGBT 35. That is, the diodes D3 and D4 are connected in anti-parallel to the IGBTs 34 and 35, respectively.
 IGBT34,35のゲートがそれぞれ「L」レベルおよび「H」レベルにされると、IGBT34がオフするとともにIGBT35がオンし、一方端子32からダイオードD3およびIGBT35を介して他方端子33に電流が流れる。 When the gates of the IGBTs 34 and 35 are set to the “L” level and the “H” level, respectively, the IGBT 34 is turned off and the IGBT 35 is turned on, and a current flows from one terminal 32 to the other terminal 33 via the diode D3 and the IGBT 35.
 IGBT34,35のゲートがそれぞれ「H」レベルおよび「L」レベルにされると、IGBT34がオンするとともにIGBT35がオフし、他方端子33からダイオードD4およびIGBT34を介して一方端子32に電流が流れる。 When the gates of the IGBTs 34 and 35 are set to the “H” level and the “L” level, respectively, the IGBT 34 is turned on and the IGBT 35 is turned off, and a current flows from the other terminal 33 to the one terminal 32 via the diode D4 and the IGBT 34.
 IGTB34およびダイオードD3は、1つの半導体モジュールで構成されていてもよいし、並列接続された複数の半導体モジュールで構成されていてもよい。IGTB35およびダイオードD4は、1つの半導体モジュールで構成されていてもよいし、並列接続された複数の半導体モジュールで構成されていてもよい。交流スイッチS2,S3の各々は、交流スイッチS1と同じ構成である。 The IGTB 34 and the diode D3 may be configured by one semiconductor module, or may be configured by a plurality of semiconductor modules connected in parallel. The IGTB 35 and the diode D4 may be configured by one semiconductor module, or may be configured by a plurality of semiconductor modules connected in parallel. Each of the AC switches S2 and S3 has the same configuration as the AC switch S1.
 図7に戻って、コンデンサC1は、直流正母線L1と中性点端子T6との間に接続され、直流正母線L1および中性点端子T6間の直流電圧を平滑化させる。コンデンサC2は、中性点端子T6と直流負母線L2との間に接続され、中性点端子T6および直流負母線L2間の直流電圧を平滑化させる。 Returning to FIG. 7, capacitor C1 is connected between DC positive bus L1 and neutral point terminal T6 to smooth the DC voltage between DC positive bus L1 and neutral point terminal T6. Capacitor C2 is connected between neutral point terminal T6 and DC negative bus L2, and smoothes the DC voltage between neutral point terminal T6 and DC negative bus L2.
 制御装置36は、交流入力端子T1~T3の交流電圧V1~V3に同期して動作し、直流出力端子T4,T5間の直流電圧VDCが所定の目標直流電圧VDCTになるように、アームA1~A6に含まれる合計6個のIGBT4を制御するとともに、交流スイッチS1~S3に含まれる合計6個のIGBT34,35を制御する。 The control device 36 operates in synchronization with the AC voltages V1 to V3 of the AC input terminals T1 to T3 so that the arm A1 to A5 may operate such that the DC voltage VDC between the DC output terminals T4 and T5 becomes a predetermined target DC voltage VDCT. A total of six IGBTs 4 included in A6 are controlled, and a total of six IGBTs 34 and 35 included in the AC switches S1 to S3 are controlled.
 たとえば、制御装置36は、交流入力端子T1(図7)の電圧が交流入力端子T2の電圧よりも高い場合に、交流スイッチS2のIGBT34をオンさせるとともにIGBT35をオフさせる。これにより、交流入力端子T1からアームA1のダイオードD2、コンデンサC1、交流スイッチS2のダイオードD4、および交流スイッチS2のIGBT34を介して交流入力端子T2に電流が流れ、コンデンサC1が充電される。 For example, when the voltage of the AC input terminal T1 (FIG. 7) is higher than the voltage of the AC input terminal T2, the control device 36 turns on the IGBT 34 of the AC switch S2 and turns off the IGBT 35. Thereby, current flows from the AC input terminal T1 to the AC input terminal T2 through the diode D2 of the arm A1, the capacitor C1, the diode D4 of the AC switch S2, and the IGBT 34 of the AC switch S2, and the capacitor C1 is charged.
 また、制御装置36は、交流入力端子T1の電圧が交流入力端子T2の電圧よりも高い場合に、交流スイッチS1のIGBT34をオフさせるとともにIGBT35をオンさせる。これにより、交流入力端子T1から交流スイッチS1のダイオードD3、交流スイッチS1のIGBT35、コンデンサC2、アームA5のダイオードD2を介して交流入力端子T2に電流が流れ、コンデンサC2が充電される。 Further, when the voltage of the AC input terminal T1 is higher than the voltage of the AC input terminal T2, the control device 36 turns off the IGBT 34 of the AC switch S1 and turns on the IGBT 35. Thereby, current flows from the AC input terminal T1 to the AC input terminal T2 through the diode D3 of the AC switch S1, the IGBT 35 of the AC switch S1, the capacitor C2 and the diode D2 of the arm A5, and the capacitor C2 is charged.
 コンデンサC1とC2は、均等に充電される。この結果、直流出力端子T4、直流出力端子T5、および中性点端子T6の直流電圧をそれぞれVDC1~VDC3とすると、VDC1-VDC2=VDCT、VDC1-VDC3=VDC3-VDC2=VDCT/2となる。また、直流中性点母線L3を接地してVDC3=0Vにすると、VDC1は正電圧となり、VDC2は負電圧となり、VDC1=-VDC2となる。また、2つのコンデンサC1,C2の端子間電圧を加算した電圧が直流出力電圧VDCとなるので、直流出力電圧VDCの最大値は、交流入力電圧のピーク値の2倍の電圧となる。 Capacitors C1 and C2 are charged equally. As a result, assuming that DC voltages of the DC output terminal T4, the DC output terminal T5, and the neutral point terminal T6 are VDC1 to VDC3, respectively, VDC1-VDC2 = VDCT, VDC1-VDC3 = VDC3-VDC2 = VDCT / 2. Further, when the DC neutral point bus L3 is grounded and VDC3 = 0 V, VDC1 becomes a positive voltage, VDC2 becomes a negative voltage, and VDC1 = -VDC2. Further, since the voltage obtained by adding the terminal voltages of the two capacitors C1 and C2 is the DC output voltage VDC, the maximum value of the DC output voltage VDC is a voltage twice the peak value of the AC input voltage.
 換言すると、制御装置36は、12個のIGBT4,34,35を制御し、直流電圧VDC1~VDC3に基づいて三相交流電圧V11~V13を生成し、生成した三相交流電圧V11~V13をそれぞれ交流入力端子T1~T3に出力させる。 In other words, control device 36 controls 12 IGBTs 4, 4 and 35, generates three-phase AC voltages V11 to V13 based on DC voltages VDC1 to VDC3, and generates generated three-phase AC voltages V11 to V13 respectively. Output to alternating current input terminals T1 to T3.
 直流電圧VDCが目標直流電圧VDCTよりも低い場合は、制御装置36は、12個のIGBT4,34,35を制御し、三相交流電圧V11~V13の位相を商用交流電源51の三相交流電圧V1~V3の位相よりも遅らせる。これにより、商用交流電源51からアームA1~A6および交流スイッチS1~S3を介してコンデンサC1,C2に力行電流が供給され、直流電圧VDCが上昇する。 When DC voltage VDC is lower than target DC voltage VDCT, control device 36 controls 12 IGBTs 4, 4 and 35 so that the phases of three-phase AC voltages V11 to V13 are three-phase AC voltages of commercial AC power supply 51. Delay from the phase of V1 to V3. Thus, the powering current is supplied from the commercial AC power supply 51 to the capacitors C1 and C2 via the arms A1 to A6 and the AC switches S1 to S3, and the DC voltage VDC rises.
 逆に、直流電圧VDCが目標直流電圧VDCTよりも高い場合は、制御装置36は、12個のIGBT4,34,35を制御し、三相交流電圧V11~V13の位相を商用交流電源51の三相交流電圧V1~V3の位相よりも進ませる。これにより、電力がコンデンサC1,C2からコンバータ31を介して商用交流電源51に供給され、直流電圧VDCが下降する。したがって、12個のIGBT4,34,35を制御することにより、直流電圧VDCを目標直流電圧VDCTにすることができる。 On the contrary, when DC voltage VDC is higher than target DC voltage VDDT, control device 36 controls 12 IGBTs 4, 3, 34 and 35 so that the phases of three-phase AC voltages V11 to V13 are three. The phase AC voltage V1 to V3 are advanced. As a result, electric power is supplied from the capacitors C1 and C2 to the commercial AC power supply 51 via the converter 31, and the DC voltage VDC falls. Therefore, by controlling the twelve IGBTs 4, 3, 34, the DC voltage VDC can be made the target DC voltage V DCT.
 本実施の形態4では、リアクトル21~23(図5)の電磁エネルギーを利用することなく、直流出力電圧VDCを交流入力電圧のピーク値よりも高い電圧(交流入力電圧のピーク値の2倍の電圧)にすることができる。したがって、リアクトル21~23に電磁エネルギーを蓄えるための電流をアームA1~A6のIGBT4に流す必要がないので、IGBT4のサイズ(半導体モジュールM1のサイズ)を小さく抑えることができる。このため、アームA1~A6の各々を半導体モジュールM1,M2(図2)で構成する本願発明の効果が実施の形態2(図5)よりも大きくなる。 In the fourth embodiment, the DC output voltage VDC is higher than the peak value of the AC input voltage without using the electromagnetic energy of the reactors 21 to 23 (FIG. 5) (twice of the peak value of the AC input voltage Voltage). Therefore, since it is not necessary to flow a current for storing electromagnetic energy in reactors 21 to 23 to IGBTs 4 of arms A1 to A6, the size of IGBT 4 (size of semiconductor module M1) can be reduced. Therefore, the effect of the present invention in which each of the arms A1 to A6 is configured by the semiconductor modules M1 and M2 (FIG. 2) is larger than that of the second embodiment (FIG. 5).
 図9は、本実施の形態4の変更例を示す回路図であって、図8と対比される図である。図9を参照して、この変更例では、スイッチS1~S3(図7)の各々がスイッチ36で置換される。スイッチ36は、IGBT34,35およびダイオードD3,D4を含む。 FIG. 9 is a circuit diagram showing a modification of the fourth embodiment, which is to be compared with FIG. Referring to FIG. 9, in this modification, each of switches S1 to S3 (FIG. 7) is replaced with switch 36. Switch 36 includes IGBTs 34 and 35 and diodes D3 and D4.
 IGBT34,35のエミッタは互いに接続され、IGBT35,34のコレクタはそれぞれ一方端子32および他方端子33に接続される。IGBT34,35のゲートは、制御装置36に接続される。 The emitters of IGBTs 34 and 35 are connected to each other, and the collectors of IGBTs 35 and 34 are connected to one terminal 32 and the other terminal 33, respectively. The gates of the IGBTs 34 and 35 are connected to the controller 36.
 ダイオードD3のアノードおよびカソードはそれぞれIGBT34のエミッタおよびコレクタに接続され、ダイオードD4のアノードおよびカソードはそれぞれIGBT35のエミッタおよびコレクタに接続されている。すなわち、ダイオードD3,D4は、それぞれIGBT34,35に逆並列に接続されている。 The anode and the cathode of the diode D3 are respectively connected to the emitter and the collector of the IGBT 34, and the anode and the cathode of the diode D4 are respectively connected to the emitter and the collector of the IGBT 35. That is, the diodes D3 and D4 are connected in anti-parallel to the IGBTs 34 and 35, respectively.
 IGBT34,35のゲートがそれぞれ「L」レベルおよび「H」レベルにされると、IGBT34がオフするとともにIGBT35がオンし、一方端子32からIGBT35およびダイオードD3を介して他方端子33に電流が流れる。 When the gates of the IGBTs 34 and 35 are set to the “L” level and the “H” level, respectively, the IGBT 34 is turned off and the IGBT 35 is turned on, and a current flows from one terminal 32 to the other terminal 33 via the IGBT 35 and the diode D3.
 IGBT34,35のゲートがそれぞれ「H」レベルおよび「L」レベルにされると、IGBT34がオンするとともにIGBT35がオフし、他方端子33からIGBT34およびダイオードD4を介して一方端子32に電流が流れる。この変更例でも、実施の形態4と同じ効果が得られる。 When the gates of the IGBTs 34 and 35 are set to the “H” level and the “L” level, respectively, the IGBT 34 is turned on and the IGBT 35 is turned off, and a current flows from the other terminal 33 to the one terminal 32 via the IGBT 34 and the diode D4. Also in this modification, the same effect as that of the fourth embodiment can be obtained.
 [実施の形態5]
 図10は、この発明の実施の形態5による無停電電源装置の構成を示す回路ブロック図であって、図6と対比される図である。図10を参照して、この無停電電源装置が図6の無停電電源装置と異なる点は、コンバータ1、コンデンサ12、インバータ25、制御装置26がそれぞれ3レベルのコンバータ31(図7)、コンデンサC1,C2(図7)、3レベルのインバータ40、および制御装置41で置換され、直流中性点母線L3が追加されている点である。
Fifth Embodiment
FIG. 10 is a circuit block diagram showing a configuration of an uninterruptible power supply according to a fifth embodiment of the present invention, which is to be compared with FIG. 10, this uninterruptible power supply differs from the uninterruptible power supply of FIG. 6 in that converter 1, capacitor 12, inverter 25 and control device 26 each have three levels of converter 31 (FIG. 7), capacitor C1, C2 (FIG. 7), a 3-level inverter 40, and a control device 41 are substituted, and a DC neutral point bus L3 is added.
 コンバータ31の構成は、図7および図8で示した通りである。コンバータ31の3つの入力ノードは交流入力端子T1~T3に接続され、インバータ40の3つの出力ノードは交流出力端子T11~T13に接続される。 The configuration of converter 31 is as shown in FIGS. 7 and 8. Three input nodes of converter 31 are connected to AC input terminals T1 to T3, and three output nodes of inverter 40 are connected to AC output terminals T11 to T13.
 直流正母線L1、直流負母線L2、および直流中性点母線L3は、コンバータ31とインバータ40の間に接続される。直流正母線L1および直流負母線L2は、バッテリ端子T21,T22にそれぞれ接続される。コンデンサC1は、直流正母線L1および直流中性点母線L3間に接続され、母線L1,L3間の直流電圧VDC/2を平滑化させる。コンデンサC2は、直流中性点母線L3および直流負母線L2および間に接続され、母線L3,L2間の直流電圧VDC/2を平滑化させる。 DC positive bus L 1, DC negative bus L 2, and DC neutral point bus L 3 are connected between converter 31 and inverter 40. DC positive bus L1 and DC negative bus L2 are connected to battery terminals T21 and T22, respectively. Capacitor C1 is connected between DC positive bus L1 and DC neutral point bus L3 to smooth DC voltage VDC / 2 between buses L1 and L3. Capacitor C2 is connected between DC neutral point bus L3 and DC negative bus L2 and smoothes DC voltage VDC / 2 between buses L3 and L2.
 コンバータ31は、制御装置41によって制御され、商用交流電源51の交流電圧V1~V3が正常である場合は、商用交流電源51からの三相交流電力を直流電力に変換して直流正母線L1、直流負母線L2、および直流中性点母線L3に出力する。コンバータ31によって生成された直流電力は、インバータ40に供給されるとともに、バッテリ54に蓄えられる。 Converter 31 is controlled by control device 41, and when AC voltages V1 to V3 of commercial AC power supply 51 are normal, three-phase AC power from commercial AC power supply 51 is converted to DC power to carry out DC positive bus L1, It outputs to DC negative bus L2 and DC neutral point bus L3. The DC power generated by converter 31 is supplied to inverter 40 and stored in battery 54.
 このとき、コンバータ31は、直流正母線L1および直流負母線L2間の直流電圧VDCが目標直流電圧VDCTになるように、コンデンサC1,C2を均等に充電する。直流正母線L1、直流負母線L2、および直流中性点母線L3の直流電圧をそれぞれVDC1~VDC3とすると、VDC1-VDC2=VDCT、VDC1-VDC3=VDC3-VDC2=VDCT/2となる。 At this time, converter 31 equally charges capacitors C1 and C2 such that DC voltage VDC between DC positive bus L1 and DC negative bus L2 becomes target DC voltage VDCT. Assuming that DC voltages of DC positive bus L1, DC negative bus L2, and DC neutral bus L3 are VDC1 to VDC3, respectively, VDC1-VDC2 = VDCT, VDC1-VDC3 = VDC3-VDC2 = VDCT / 2.
 また、直流中性点母線L3を接地してVDC3=0Vにすると、VDC1は正電圧となり、VDC2は負電圧となり、VDC1=-VDC2となる。商用交流電源51の交流電圧V1~V3が正常でない場合(たとえば、停電が発生した場合)には、コンバータ31の運転は停止される。 Further, when the DC neutral point bus L3 is grounded and VDC3 = 0 V, VDC1 becomes a positive voltage, VDC2 becomes a negative voltage, and VDC1 = -VDC2. When the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal (for example, when a power failure occurs), the operation of the converter 31 is stopped.
 インバータ40は、制御装置41によって制御され、商用交流電源51の交流電圧V1~V3が正常である場合は、コンバータ31によって生成された直流電力を商用周波数の三相交流電力に変換して負荷53に供給する。このとき、インバータ40は、コンバータ31からの3レベルの直流電圧VDC1~VDC3を用いて三相交流電圧VO1~VO3を生成する。 The inverter 40 is controlled by the control device 41, and when the AC voltages V1 to V3 of the commercial AC power supply 51 are normal, the DC power generated by the converter 31 is converted to three-phase AC power of commercial frequency and the load 53 Supply to At this time, inverter 40 generates three-phase AC voltages VO1 to VO3 using three levels of DC voltages VDC1 to VDC3 from converter 31.
 また、インバータ40は、商用交流電源51の交流電圧V1~V3が正常でない場合は、バッテリ54の直流電力を商用周波数の三相交流電力に変換して負荷53に供給する。インバータ40は、複数組のIGBTおよびダイオードを含む周知の回路である。 In addition, when the AC voltages V1 to V3 of the commercial AC power supply 51 are not normal, the inverter 40 converts DC power of the battery 54 into three-phase AC power of commercial frequency and supplies it to the load 53. Inverter 40 is a known circuit including a plurality of sets of IGBTs and diodes.
 制御装置41は、商用交流電源51の交流入力電圧V1~V3の瞬時値、母線L1,L2間の直流電圧VDCの瞬時値、およびインバータ40の交流出力電圧VO1~VO3の瞬時値を検出し、それらの検出値に基づいて無停電電源装置全体を制御する。 Control device 41 detects instantaneous values of AC input voltages V1 to V3 of commercial AC power supply 51, instantaneous values of DC voltage VDC between buses L1 and L2, and instantaneous values of AC output voltages VO1 to VO3 of inverter 40, The entire uninterruptible power supply is controlled based on the detected values.
 他の構成および動作は、図6の無停電電源装置と同じであるので、その説明は繰り返さない。この実施の形態5でも、実施の形態4と同じ効果が得られる。 The other configuration and operation are the same as in the uninterruptible power supply of FIG. 6, and thus the description thereof will not be repeated. Also in the fifth embodiment, the same effect as the fourth embodiment can be obtained.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be understood that the embodiments disclosed herein are illustrative and non-restrictive in every respect. The present invention is shown not by the above description but by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
 T1~T3 交流入力端子、T4,T5 直流出力端子、1,31 コンバータ、A1~A6,15,16 アーム、2 正側端子、3 負側端子、M1,M2 半導体モジュール、4,34,35 IGBT、D1~D4 ダイオード、5 コレクタ端子、6 エミッタ端子、7 ゲート端子、10 カソード端子、11 アノード端子、L1 直流正母線、L2 直流負母線、L3 直流中性点母線、12,C1,C2 コンデンサ、13,13A,26,41 制御装置、21~23 リアクトル、25,40 インバータ、T11~T13 交流出力端子、T21,T22 バッテリ端子、S1~S3,36 スイッチ、51 商用交流電源、52,53 負荷、54 バッテリ。 T1 to T3 AC input terminals, T4 and T5 DC output terminals, 1,31 converters, A1 to A6, 15, 16 arms, 2 positive terminals, 3 negative terminals, M1, M2 semiconductor modules, 4, 34, 35 IGBTs , D1 to D4 diodes, 5 collector terminals, 6 emitter terminals, 7 gate terminals, 10 cathode terminals, 11 anode terminals, L1 DC positive bus, L2 DC negative bus, L3 DC neutral bus, 12, C1, C2 capacitors, 13, 13 A, 26, 41 controller, 21 to 23 reactors, 25, 40 inverters, T11 to T13 AC output terminals, T21, T22 battery terminals, S1 to S3, 36 switches, 51 commercial AC power supplies, 52, 53 loads, 54 battery.

Claims (9)

  1.  複数の入力端子に与えられた交流電力を直流電力に変換して第1および第2の出力端子に出力するコンバータであって、
     各入力端子に対応して設けられ、前記第1の出力端子と対応する入力端子との間に接続された第1のアームと、
     各入力端子に対応して設けられ、対応する入力端子と前記第2の出力端子との間に接続された第2のアームとを備え、
     前記第1および第2のアームの各々は、
     互いに逆並列に接続された第1のトランジスタおよび第1のダイオードと、
     前記第1のダイオードに並列接続された第2のダイオードとを含み、
     前記第1のトランジスタおよび前記第1のダイオードは第1の半導体モジュールに搭載され、
     前記第2のダイオードは、前記第1の半導体モジュールと異なる種類の第2の半導体モジュールに搭載されている、コンバータ。
    A converter that converts AC power supplied to a plurality of input terminals into DC power and outputs the DC power to first and second output terminals,
    A first arm provided corresponding to each input terminal and connected between the first output terminal and the corresponding input terminal;
    A second arm provided corresponding to each input terminal and connected between the corresponding input terminal and the second output terminal;
    Each of the first and second arms is
    A first transistor and a first diode connected in antiparallel to each other;
    And a second diode connected in parallel to the first diode,
    The first transistor and the first diode are mounted on a first semiconductor module,
    The converter, wherein the second diode is mounted on a second semiconductor module of a type different from the first semiconductor module.
  2.  前記複数の入力端子は交流電源に接続され、
     前記第1および第2の出力端子は負荷に接続され、
     前記交流電源から前記コンバータを介して負荷に供給される力行電力は、前記負荷から前記コンバータを介して前記交流電源に供給される回生電力よりも大きい、請求項1に記載のコンバータ。
    The plurality of input terminals are connected to an AC power supply,
    The first and second output terminals are connected to a load,
    The converter according to claim 1, wherein the power running power supplied from the AC power supply to the load via the converter is larger than the regenerative power supplied from the load via the converter to the AC power supply.
  3.  前記第2のダイオードのオン電圧は、前記第1のダイオードのオン電圧よりも低い、請求項1に記載のコンバータ。 The converter according to claim 1, wherein the on voltage of the second diode is lower than the on voltage of the first diode.
  4.  前記第1のトランジスタは、絶縁ゲートバイポーラトランジスタである、請求項1に記載のコンバータ。 The converter according to claim 1, wherein the first transistor is an insulated gate bipolar transistor.
  5.  さらに、前記第1および第2の出力端子間に接続されたコンデンサを備える、請求項1に記載のコンバータ。 The converter according to claim 1, further comprising a capacitor connected between the first and second output terminals.
  6.  さらに、第3の出力端子と、
     各入力端子に対応して設けられ、対応する入力端子と前記第3の出力端子との間に接続された交流スイッチとを備え、
     前記交流スイッチは、
     それらの第1の電極が互いに接続され、それらの第2の電極がそれぞれ対応する入力端子および前記第3の出力端子に接続された第2および第3のトランジスタと、
     それぞれ前記第2および第3のトランジスタに逆並列に接続された第3および第4のダイオードとを含み、
     前記コンバータは、前記複数の入力端子に与えられた交流電圧に基づいて第1~第3のの直流電圧を生成し、前記第1~第3の直流電圧をそれぞれ前記第1~第3の出力端子に出力する、請求項1に記載のコンバータ。
    Furthermore, a third output terminal,
    An AC switch provided corresponding to each input terminal and connected between the corresponding input terminal and the third output terminal;
    The AC switch is
    Second and third transistors whose first electrodes are connected to each other and whose second electrodes are respectively connected to the corresponding input terminal and the third output terminal;
    And third and fourth diodes connected in anti-parallel to the second and third transistors, respectively,
    The converter generates first to third direct current voltages based on alternating current voltages applied to the plurality of input terminals, and outputs the first to third direct current voltages to the first to third outputs, respectively. The converter according to claim 1, which outputs to a terminal.
  7.  前記第1~第3のトランジスタの各々は、絶縁ゲートバイポーラトランジスタである、請求項6に記載のコンバータ。 The converter according to claim 6, wherein each of the first to third transistors is an insulated gate bipolar transistor.
  8.  さらに、前記第1および第3の出力端子間に接続された第1のコンデンサと、
     前記第3および第2の出力端子間に接続された第2のコンデンサとを備える、請求項6に記載のコンバータ。
    Furthermore, a first capacitor connected between the first and third output terminals;
    The converter according to claim 6, comprising a second capacitor connected between the third and second output terminals.
  9.  請求項1に記載のコンバータと、
     前記第1および第2の出力端子から受けた直流電力を交流電力に変換して負荷に供給するインバータとを備え、
     前記複数の入力端子は商用交流電源から交流電力を受け、
     前記商用交流電源からの交流電圧が正常である場合は、前記商用交流電源からの交流電力が前記コンバータによって直流電力に変換され、その直流電力が電力貯蔵装置に蓄えられるとともに前記インバータによって交流電力に変換されて前記負荷に供給され、
     前記商用交流電源からの交流電圧が正常でない場合は、前記コンバータの運転が停止され、前記電力貯蔵装置の直流電力が前記インバータによって交流電力に変換されて前記負荷に供給される、無停電電源装置。
    A converter according to claim 1;
    An inverter for converting DC power received from the first and second output terminals into AC power and supplying the AC power to the load;
    The plurality of input terminals receive AC power from a commercial AC power supply,
    When the AC voltage from the commercial AC power supply is normal, AC power from the commercial AC power supply is converted to DC power by the converter, and the DC power is stored in a power storage device and converted to AC power by the inverter. Converted and supplied to the load,
    When the alternating voltage from the commercial alternating current power supply is not normal, the operation of the converter is stopped, and the direct current power of the power storage device is converted into alternating current power by the inverter and supplied to the load .
PCT/JP2017/032409 2017-09-08 2017-09-08 Converter and uninterruptible power supply device using same WO2019049301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032409 WO2019049301A1 (en) 2017-09-08 2017-09-08 Converter and uninterruptible power supply device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032409 WO2019049301A1 (en) 2017-09-08 2017-09-08 Converter and uninterruptible power supply device using same

Publications (1)

Publication Number Publication Date
WO2019049301A1 true WO2019049301A1 (en) 2019-03-14

Family

ID=65634986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032409 WO2019049301A1 (en) 2017-09-08 2017-09-08 Converter and uninterruptible power supply device using same

Country Status (1)

Country Link
WO (1) WO2019049301A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289673A (en) * 2002-03-28 2003-10-10 Honda Motor Co Ltd Resonance inverter
JP2011223664A (en) * 2010-04-06 2011-11-04 Fuji Electric Co Ltd Power semiconductor module and power conversion device using the same
JP2012120379A (en) * 2010-12-02 2012-06-21 Panasonic Corp Synchronous rectification circuit, and dc/dc converter and ac/dc converter using the same
WO2016035434A1 (en) * 2014-09-03 2016-03-10 東芝キヤリア株式会社 Motor drive device
JP2017011910A (en) * 2015-06-24 2017-01-12 株式会社日立製作所 Uninterruptible power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289673A (en) * 2002-03-28 2003-10-10 Honda Motor Co Ltd Resonance inverter
JP2011223664A (en) * 2010-04-06 2011-11-04 Fuji Electric Co Ltd Power semiconductor module and power conversion device using the same
JP2012120379A (en) * 2010-12-02 2012-06-21 Panasonic Corp Synchronous rectification circuit, and dc/dc converter and ac/dc converter using the same
WO2016035434A1 (en) * 2014-09-03 2016-03-10 東芝キヤリア株式会社 Motor drive device
JP2017011910A (en) * 2015-06-24 2017-01-12 株式会社日立製作所 Uninterruptible power supply device

Similar Documents

Publication Publication Date Title
EP3657661B1 (en) Conversion circuit, control method, and power supply device
JP6227041B2 (en) Multi-level inverter
US8508957B2 (en) Power conversion device for converting DC power to AC power
US9325252B2 (en) Multilevel converter systems and sinusoidal pulse width modulation methods
WO2013105156A1 (en) Multilevel power conversion circuit
CN108702105B (en) Dual sub-module for modular multilevel converter and modular multilevel converter comprising same
US20130088901A1 (en) Multilevel inverter
US20090285005A1 (en) Space-saving inverter with reduced switching losses and increased life
US11005388B2 (en) Single-phase multi-level asymmetric inverter with AC-bypass and asymmetric modulation strategy
US9203323B2 (en) Very high efficiency uninterruptible power supply
CN107431378B (en) Uninterruptible power supply device and uninterruptible power supply system using same
JP2012044824A (en) Power conversion device
EP3633843B1 (en) Current converter and driving method therefor
CA2928611A1 (en) Dc/dc conversion device and load-drive control system
Bayat et al. A new cascaded multilevel inverter with reduced number of switches
US20170317607A1 (en) Three-level t-type npc power converter
JP2014099986A (en) Composite power storage system
JP5362657B2 (en) Power converter
Chokkalingam et al. A hexagonal hysteresis space vector current controller for single Z-source network multilevel inverter with capacitor balancing
WO2013151542A1 (en) Multilevel converter
CN109075719B (en) Converter and power conversion device using same
JP2012239309A (en) Electric power conversion apparatus
US10135353B2 (en) Unidirectional matrix converter with regeneration system
WO2019049301A1 (en) Converter and uninterruptible power supply device using same
JP2014161148A (en) Control system for multilevel power conversion circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP