WO2016035431A1 - Discharge device - Google Patents

Discharge device Download PDF

Info

Publication number
WO2016035431A1
WO2016035431A1 PCT/JP2015/068483 JP2015068483W WO2016035431A1 WO 2016035431 A1 WO2016035431 A1 WO 2016035431A1 JP 2015068483 W JP2015068483 W JP 2015068483W WO 2016035431 A1 WO2016035431 A1 WO 2016035431A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
discharge
discharge electrode
positive electrode
positive
Prior art date
Application number
PCT/JP2015/068483
Other languages
French (fr)
Japanese (ja)
Inventor
大江 信之
西田 弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201590000267.9U priority Critical patent/CN206135206U/en
Priority to JP2016546364A priority patent/JP6444420B2/en
Publication of WO2016035431A1 publication Critical patent/WO2016035431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge
    • H01T19/04Devices providing for corona discharge having pointed electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/04Carrying-off electrostatic charges by means of spark gaps or other discharge devices

Definitions

  • the present invention relates to a discharge device, and more particularly, to a discharge device including a discharge electrode that discharges when a voltage is applied.
  • a discharge device which has a structure in which a substrate on which a discharge electrode is fixed or the discharge electrode itself is fixed to a structure such as a resin and the periphery thereof is covered with an insulator.
  • metal needles are mainly used for the discharge phenomenon, and discharge electrodes made of SUS, tungsten, or nickel alloy have been put into practical use. At least the body portion of the discharge electrode is processed with tin, nickel plating or the like on the surface for soldering to the substrate. A corona discharge is generated at the tip of the metal needle to generate ions.
  • a clean room ionizer disclosed in JP-A-5-21131 (Patent Document 1) is provided with a pair of positive and negative needle electrodes.
  • This electrode has a laminated structure in which a surface of a tungsten electrode is coated with nickel by plating.
  • the positive electrode discharge electrode to which a positive voltage is applied and the negative electrode discharge electrode to which a negative voltage is applied are made of the same material.
  • the plating material covering the metal material constituting the electrode is also the same.
  • the positive electrode discharge electrode to which a positive voltage is applied and the negative electrode discharge electrode to which a negative voltage is applied exhibit different behaviors during discharge.
  • the positive electrode discharge electrode and the negative electrode discharge electrode are made of the same material as in the prior art, the inventors have no resistance to either the positive electrode discharge electrode or the negative electrode discharge electrode in terms of the resistance to the phenomenon that occurs during discharge. I found a problem that would be sufficient.
  • the present invention has been made in view of the above-mentioned problems, and its main purpose is to provide a discharge device that can maintain the performance of both the positive electrode discharge electrode and the negative electrode discharge electrode over a long period of time.
  • the positive electrode discharge electrode and the negative electrode discharge electrode In the high humidity environment where condensation can occur, particularly in a harsh environment including salt, such as near the coast, when discharging using a metal discharge electrode, the positive electrode discharge electrode and the negative electrode discharge electrode It was found that different electrolysis occurred, and as a result, a part of the metal used for the positive electrode discharge electrode was eluted to the surroundings, while a compound containing sodium was deposited on the negative electrode discharge electrode.
  • the present inventors have found that a metal discharge electrode is consumed due to the occurrence of discharge, but of the positive electrode discharge electrode and the negative electrode discharge electrode, the positive electrode discharge electrode may be more consumed. .
  • the present inventors have found that if each of the positive electrode discharge electrode and the negative electrode discharge electrode is made of an optimum material, it is possible to cope with a harsh environment and to make the consumption of the electrode uniform. As a result, the present invention has been completed.
  • the discharge device includes a positive electrode discharge electrode that discharges by applying a positive voltage, and a negative electrode discharge electrode that discharges by applying a negative voltage.
  • the outer peripheral surface of the positive electrode discharge electrode and the outer peripheral surface of the negative electrode discharge electrode are made of different materials.
  • the positive electrode discharge electrode and the negative electrode discharge electrode are entirely made of different materials.
  • the positive electrode discharge electrode and the negative electrode discharge electrode have a conductive main body part and a coating layer covering the surface of the main body part.
  • the coating layer of the positive electrode discharge electrode and the coating layer of the negative electrode discharge electrode are made of different materials.
  • the outer peripheral surface of the positive electrode discharge electrode is made of a material resistant to chloride ions
  • the outer peripheral surface of the negative electrode discharge electrode is made of a material resistant to sodium ions.
  • the outer peripheral surface of the positive electrode discharge electrode is made of a material having better wear resistance than the outer peripheral surface of the negative electrode discharge electrode.
  • the discharge device of the present invention since the elution or consumption of the metal components constituting the positive electrode discharge electrode can be suppressed, the discharge performance of both the positive electrode discharge electrode and the negative electrode discharge electrode can be stably maintained over a long period of time. Can do.
  • FIG. 1 is a perspective view illustrating a configuration of a discharge device according to a first embodiment. It is sectional drawing which shows the positive electrode discharge electrode vicinity of the discharge device shown in FIG. It is sectional drawing which shows the negative electrode discharge electrode vicinity of the discharge device shown in FIG. It is sectional drawing which shows the positive electrode discharge electrode vicinity of the discharge device of Embodiment 2. It is sectional drawing which shows the negative electrode discharge electrode vicinity of the discharge device of Embodiment 2.
  • FIG. 6 is a cross-sectional view showing the vicinity of a positive electrode discharge electrode in a discharge device according to a third embodiment. FIG. 6 is a cross-sectional view showing the vicinity of a negative electrode discharge electrode in a discharge device according to a third embodiment.
  • FIG. 1 is a perspective view showing a configuration of a discharge device 100 according to the first embodiment.
  • the discharge device 100 includes a positive electrode discharge electrode 11, a negative electrode discharge electrode 21, and a main body case 2.
  • the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are formed in a needle shape.
  • the main body case 2 is provided as a casing that forms the appearance of the discharge device 100.
  • the main body case 2 has a rectangular container portion 1.
  • the container portion 1 defines a bottomed hollow space therein.
  • the internal space of the container part 1 is filled with an insulator 14 that is a resin material.
  • the body case 2 also has an electrode protection wall 3.
  • the electrode protection wall 3 is arranged around the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
  • the electrode protection wall 3 is provided to protect the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
  • FIG. 2 is a cross-sectional view showing the vicinity of the positive electrode 11 in the discharge device 100 shown in FIG.
  • positive electrode 11 has a root portion 11 a supported by substrate 15, a sharp tip 11 b, and a tapered portion 11 c that tapers from root portion 11 a toward point 11 b. ing.
  • the root portion 11a has the base end of the positive electrode 11 on the opposite side to the tip 11b.
  • a part of the root portion 11 a is embedded in the insulator 14.
  • a lower portion of the root portion 11a is sealed with an insulator 14.
  • the tip 11b protrudes from the surface 14s of the insulator 14.
  • An induction electrode (counter electrode) 12 and a substrate 15 are embedded in the insulator 14.
  • the positive electrode 11 is supported by the substrate 15.
  • the induction electrode 12 is disposed around the positive electrode discharge electrode 11 at a position away from the positive electrode discharge electrode 11.
  • the induction electrode 12 having a reference potential is formed of a conductive material such as metal.
  • the induction electrode 12 and the substrate 15 are all embedded in the insulator 14 and are sealed with the insulator 14.
  • the insulator 14 is preferably filled with a thermosetting resin such as an epoxy resin or a coating material obtained by dissolving a rubber-based polymer material in a solvent.
  • the insulator 14 preferably has a thickness that can sufficiently seal the induction electrode 12 and the substrate 15.
  • the substrate 15 has a flat plate shape and is arranged in parallel with the bottom surface of the container portion 1 of the main body case 2.
  • the substrate 15 has a main surface 15a that forms a surface on the discharge side, and a back surface 15b on the opposite side to the main surface 15a.
  • the main surface 15 a and the back surface 15 b of the substrate 15 are covered with an insulator 14.
  • the substrate 15 is formed with a through hole penetrating the substrate 15 in the thickness direction and extending from the main surface 15a to the back surface 15b.
  • the through hole formed in the substrate 15 may be a through hole via in which a conductor is formed on the inner wall surface.
  • the positive electrode 11 is inserted through a through hole formed in the substrate 15.
  • the base portion 11 a of the positive electrode discharge electrode 11 is fixed to the substrate 15 by soldering, for example, so that the positive electrode discharge electrode 11 is supported by the substrate 15.
  • the other end of the positive electrode 11 opposite to the tip 11 b protrudes from the back surface 15 b of the substrate 15.
  • the positive electrode 11 is supported on the substrate 15 while penetrating the substrate 15.
  • a wiring pattern is formed on the main surface 15 a and the back surface 15 b of the substrate 15.
  • the positive electrode 11 is electrically connected to a wiring pattern or lead formed on the substrate 15 by solder.
  • the positive electrode 11 is shown penetrating the substrate 15. However, the positive electrode 11 may be mounted on the main surface 15 a of the substrate 15.
  • the discharge device 100 applies a positive high voltage to the positive electrode discharge electrode 11 to generate a potential difference with the induction electrode 12, thereby generating corona discharge from the tip 11b of the positive electrode discharge electrode 11 and generating positive ions. . Since the tip 11b of the positive electrode 11 protrudes from the surface 14s of the insulator 14, ions generated at the tip 11b can be quickly conveyed.
  • a circuit that generates a high voltage to be applied to the positive electrode discharge electrode 11 exists in the main body case 2 of the discharge device, it is desirable that the circuit is covered with the main body case 2 or sealed with an insulator 14. By doing so, it is possible to prevent a circuit that generates a high voltage from coming into contact with a harsh environment, and to prevent leaks from occurring in areas other than the electrode portion. Further, a voltage may be applied to the positive electrode 11 via the substrate 15.
  • a high voltage applied to the positive electrode 11 may be supplied from the outside of the discharge device 100.
  • a path such as a substrate or a connector for supplying a high voltage to the positive electrode 11 with an insulator, a water-resistant gel, an insulating tube, or the like.
  • the high voltage applied to the positive electrode 11 is based on a pulse voltage, but may be a DC voltage.
  • the voltage may be any magnitude as long as discharge occurs.
  • FIG. 3 is a cross-sectional view showing the vicinity of the negative electrode discharge electrode 21 of the discharge device 100 shown in FIG.
  • the negative electrode discharge electrode 21 has the same shape as the positive electrode discharge electrode 11 shown in FIG. Referring to FIG. 3, negative electrode 21 has a root portion 21 a supported by substrate 15, a sharp tip 21 b, and a tapered portion 21 c that tapers from root 21 a toward tip 21 b. ing.
  • the root portion 21a has a base end of the negative electrode 21 that is opposite to the tip 21b.
  • a part of the root portion 21 a is embedded in the insulator 14.
  • a lower portion of the root portion 21 a is sealed with the insulator 14.
  • the tip 21b protrudes from the surface 14s of the insulator 14.
  • the discharge device 100 applies a negative high voltage to the negative electrode discharge electrode 21 to generate a potential difference with the induction electrode 12, thereby generating corona discharge from the tip 21b of the negative electrode discharge electrode 21 and generating negative ions.
  • the discharge device 100 includes both a positive electrode 11 and a negative electrode 21, a positive voltage is applied to the positive electrode 11, and a negative voltage is applied to the negative electrode 21. It is possible to generate both positive ions and negative ions at the same time.
  • the induction electrode 12 is located at two positions on the left and right sides with respect to the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
  • the induction electrode 12 is preferably substantially circular so as to be arranged at an equal distance from the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
  • the induction electrode 12 may be a metal object such as a sheet metal or a wire, or may be a pattern printed on the substrate 15, and the material of the induction electrode 12 is not limited as long as it serves as a potential reference.
  • the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are needle-shaped in the present embodiment, but may be fine wires or extra fine wires. Moreover, as long as it is a dischargeable shape, it may be a thin plate shape with a sharp point.
  • the whole of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 is made of a conductive material such as metal.
  • the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are entirely made of different materials. Therefore, the outer peripheral surface 11s of the positive electrode discharge electrode 11 and the outer peripheral surface 21s of the negative electrode discharge electrode 21 are made of different materials.
  • the positive electrode 11 is made of a material resistant to chloride ions. For this reason, the outer peripheral surface 11s of the positive electrode 11 is made of a material resistant to chloride ions.
  • the positive electrode 11 may be made of tungsten or a noble metal such as gold or platinum.
  • the negative electrode discharge electrode 21 is made of a material resistant to sodium ions. Therefore, the outer peripheral surface 21s of the negative electrode discharge electrode 21 is made of a material resistant to sodium ions. Negative electrode discharge electrode 21 may be made of a nickel alloy having a low iron content, such as Inconel.
  • Inconel is generally an alloy with excellent corrosion resistance and suitable for use in seawater, but when used as a discharge electrode, it is necessary to select a material in consideration of the chemical reaction associated with the discharge.
  • the material constituting the negative electrode discharge electrode 21 is Inconel, sufficient corrosion resistance can be obtained, while the material constituting the positive electrode discharge electrode 11 is insufficient even with Inconel. Therefore, a material such as tungsten that is more resistant to chloride ions needs to be a constituent material of the positive electrode discharge electrode 11.
  • the outer peripheral surface 11s of the positive electrode discharge electrode 11 is made of a material resistant to chloride ions
  • the outer peripheral surface 21s of the negative electrode discharge electrode 21 is made of sodium ions. Constructed of resistant material.
  • the positive electrode discharge electrode 11 tends to generate chloride ions
  • the negative electrode discharge electrode 21 tends to generate sodium ions. If a part of the metal used for the positive electrode 11 is eluted by the chloride ions, the induction electrode 12 having a polarity different from that of the positive electrode 11, or the main body case 2 of the discharge device 100, etc. The current flows through this part, and the discharge performance at the original discharge part is lowered.
  • the outer peripheral surface 11s of the positive electrode discharge electrode 11 and the outer peripheral surface 21s of the negative electrode discharge electrode 21 are made of different materials, and the outer peripheral surface 11s of the positive electrode discharge electrode 11 is made of a material resistant to chloride ions.
  • the metal constituting the outer peripheral surface 11s of the electrode 11 is difficult to elute. Therefore, the elution of the metal component which comprises the outer peripheral surface 11s of the positive electrode 11 can be suppressed. Since the occurrence of leakage due to the elution of the components of the positive electrode discharge electrode 11 can be suppressed, the discharge performance of the discharge device 100 can be stably maintained over a long period of time even in a high humidity environment or an atmospheric environment containing salt.
  • the outer peripheral surface 21 s of the negative electrode discharge electrode 21 By forming the outer peripheral surface 21 s of the negative electrode discharge electrode 21 with a material resistant to sodium ions, the generation of rust on the negative electrode discharge electrode 21 can be suppressed even if a compound containing sodium is deposited on the negative electrode discharge electrode 21. it can. Unlike the positive electrode discharge electrode 11, elution of the material constituting the negative electrode discharge electrode 21 does not occur. Therefore, it is necessary to configure the negative electrode discharge electrode 21 with the same material that is resistant to chloride ions as the positive electrode discharge electrode 11. Absent. By forming the negative electrode discharge electrode 21 with a material cheaper than the positive electrode discharge electrode 11 without making the negative electrode discharge electrode 21 excessive quality, it is possible to realize the discharge device 100 that is excellent in terms of cost.
  • FIG. 4 is a cross-sectional view showing the vicinity of the positive electrode 11 in the discharge device of the second embodiment.
  • FIG. 5 is a cross-sectional view showing the vicinity of the negative electrode discharge electrode 21 of the discharge device of the second embodiment.
  • the discharge device of the second embodiment and the discharge device 100 of the first embodiment described above basically have the same configuration. However, the discharge device of the second embodiment is different from the first embodiment in the configuration of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
  • the positive electrode 11 has a conductive main body 11m and a coating layer 13 that covers the surface of the main body 11m.
  • the outer peripheral surface 13 s of the coating layer 13 constitutes the outer peripheral surface of the positive electrode discharge electrode 11.
  • the covering layer 13 is formed by plating the surface of the main body 11m.
  • the covering layer 13 is made of a material resistant to chloride ions.
  • the covering layer 13 may be formed by gold plating.
  • the negative electrode 21 has a conductive main body 21m and a coating layer 23 that covers the surface of the main body 21m.
  • the outer peripheral surface 23 s of the coating layer 23 constitutes the outer peripheral surface of the negative electrode discharge electrode 21.
  • the covering layer 23 is formed by plating the surface of the main body portion 21m.
  • the covering layer 23 is made of a material resistant to sodium ions.
  • the covering layer 23 may be formed by nickel plating.
  • the coating layer 13 of the positive electrode 11 and the coating layer 23 of the negative electrode 21 are made of different materials. Therefore, the outer peripheral surface of the positive electrode discharge electrode 11 and the outer peripheral surface of the negative electrode discharge electrode 21 are made of different materials.
  • the outer peripheral surface 13s of the coating layer 13 constitutes the outer peripheral surface of the positive electrode discharge electrode 11.
  • the covering layer 13 is formed of a material resistant to chloride ions.
  • the outer peripheral surface 23 s of the coating layer 23 constitutes the outer peripheral surface of the negative electrode discharge electrode 21.
  • the covering layer 23 is made of a material resistant to sodium ions.
  • the covering layer 13 of the positive electrode 11 and the covering layer 23 of the negative electrode 21 are made of different materials, and the outer peripheral surface of the positive electrode 11 is made of a material resistant to chloride ions.
  • the metal which comprises 11 outer peripheral surfaces becomes difficult to elute. Therefore, the elution of the metal component which comprises the outer peripheral surface of the positive electrode discharge electrode 11 can be suppressed. Since the occurrence of leakage due to the elution of the components of the positive electrode discharge electrode 11 can be suppressed, the discharge performance of the discharge device can be stably maintained over a long period of time even in a high humidity environment or an atmospheric environment containing salt.
  • the outer peripheral surface of the negative electrode discharge electrode 21 By forming the outer peripheral surface of the negative electrode discharge electrode 21 with a material resistant to sodium ions, the generation of rust of the negative electrode discharge electrode 21 can be suppressed even if a compound containing sodium is deposited on the negative electrode discharge electrode 21. . Unlike the positive electrode 11, the elution of the material constituting the negative electrode 21 does not occur, so that the covering layer 23 of the negative electrode 21 is resistant to the same chloride ions as the covering layer 13 of the positive electrode 11. It is not necessary to be made of a certain material. By forming the coating layer 23 with a material cheaper than the coating layer 13 of the positive electrode discharge electrode 11 without making the coating layer 23 of the negative electrode discharge electrode 21 excessive quality, a discharge device that is excellent in terms of cost is realized. be able to.
  • the positive electrode 11 has the conductive main body 11m and the coating layer 13 that covers the surface of the main body 11m.
  • the tip 11b and the taper of the positive electrode 11 are described.
  • 11c may be coat
  • the part embedded inside the insulator 14 among the positive electrode discharge electrodes 11 may be coat
  • the negative electrode discharge electrode 21 has a conductive main body part 21m and a coating layer 23 covering the surface of the main body part 21m.
  • the sharp tip 21b and the tapered part 21c of the negative electrode discharge electrode 21 are the main body. You may coat
  • the part embedded in the insulator 14 among the negative electrode discharge electrodes 21 may be coat
  • FIG. 6 is a cross-sectional view showing the vicinity of the positive electrode 11 in the discharge device of the third embodiment.
  • FIG. 7 is a cross-sectional view showing the vicinity of the negative electrode discharge electrode 21 of the discharge device of the third embodiment.
  • the inner space of the container portion 1 is not filled with an insulator, and the root portions of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are not filled. 11a and 21a are not sealed with an insulator.
  • a pattern is formed on the main surface 15 a of the substrate 15, and this pattern functions as the induction electrode 12. Since the inner space of the container part 1 is not filled with an insulator, the induction electrode 12 and the substrate 15 are not sealed with the insulator.
  • a support portion (not shown) is provided on the inner surface of the container portion 1, and the substrate 15 is supported with respect to the container portion 1 by this support portion.
  • the whole of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 is made of a conductive material such as metal.
  • the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are entirely made of different materials. Therefore, the outer peripheral surface 11s of the positive electrode discharge electrode 11 and the outer peripheral surface 21s of the negative electrode discharge electrode 21 are made of different materials.
  • the positive electrode discharge electrode 11 is made of a material having better wear resistance than the negative electrode discharge electrode 21. Therefore, the outer peripheral surface 11 s of the positive electrode discharge electrode 11 is made of a material that is more excellent in wear resistance than the outer peripheral surface 21 s of the negative electrode discharge electrode 21.
  • the constituent material of the positive electrode discharge electrode 11 may be a material superior in heat resistance as compared with the constituent material of the negative electrode discharge electrode 21.
  • the constituent material of the positive electrode discharge electrode 11 may be a material having a higher melting point than the constituent material of the negative electrode discharge electrode 21 or a material having a low thermal conductivity.
  • the positive electrode discharge electrode 11 may be made of Inconel.
  • the outer peripheral surface 11s of the positive electrode discharge electrode 11 is made of a material that is more excellent in wear resistance than the outer peripheral surface 21s of the negative electrode discharge electrode 21.
  • the discharge device of the third embodiment is assumed to be used in a normal environment not containing salt. Since sodium chloride is not contained in the air or is contained in a trace amount, it is not necessary to consider the elution of the material constituting the positive electrode discharge electrode 11. On the other hand, exhaustion of the positive electrode 11 and the negative electrode 21 occurs with the discharge. Of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21, the positive electrode discharge electrode 11 may be consumed more violently.
  • the outer peripheral surface 11 s of the positive electrode 11 and the outer surface 21 s of the negative electrode 21 are made of different materials, and the outer surface 11 s of the positive electrode 11 is worn out more than the outer surface 21 s of the negative electrode 21. Consists of materials with excellent properties. Thereby, since the difference between the consumption amount of the positive electrode 11 and the consumption amount of the negative electrode 21 can be reduced, the uniformity of the discharge state in the positive electrode 11 and the negative electrode 21 can be improved. Therefore, the discharge performance of the discharge device can be stably maintained over a long period of time, and the balance between positive ions generated at the positive electrode discharge electrode 11 and negative ions generated at the negative electrode discharge electrode 21 can be improved.
  • the negative electrode discharge electrode 21 is made of a material that is less consumable than the positive electrode discharge electrode 11, so that the negative electrode discharge electrode 21 is made of an inexpensive material compared to the positive electrode discharge electrode 11 without making the negative electrode discharge electrode 21 excessive quality.
  • the electrode 21 can be configured. Therefore, it is possible to realize a discharge device that is excellent in terms of cost.
  • the present invention can be widely applied to various devices including a discharge device such as an ion generator, an ozone generator, and a static eliminator.
  • a discharge device such as an ion generator, an ozone generator, and a static eliminator.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Elimination Of Static Electricity (AREA)

Abstract

Provided is a discharge device capable of maintaining both performances of a positive discharge electrode and a negative discharge electrode for a long period of time. A discharge device (100) is provided with: a positive discharge electrode (11) that discharges electricity when a positive voltage is applied; and a negative discharge electrode (21) that discharges electricity when a negative voltage is applied. The outer circumferential surface of the positive discharge electrode (11), and the outer circumferential surface of the negative discharge electrode (21) are configured from different materials, respectively.

Description

放電装置Discharge device
 本発明は、放電装置に関し、特に、電圧が印加されて放電する放電電極を備える放電装置に関する。 The present invention relates to a discharge device, and more particularly, to a discharge device including a discharge electrode that discharges when a voltage is applied.
 放電現象を利用したイオン発生装置を搭載した機器は多種多様であり、その使用環境も様々である。現在、放電電極を固定した基板や放電電極そのものを樹脂などの構造物に固定し、その周辺を絶縁物で覆う構造を持った、放電装置が開発されている。 There are a wide variety of devices equipped with ion generators that use the discharge phenomenon, and the usage environment is also varied. Currently, a discharge device has been developed which has a structure in which a substrate on which a discharge electrode is fixed or the discharge electrode itself is fixed to a structure such as a resin and the periphery thereof is covered with an insulator.
 放電現象で使用している電極は現在、金属針が主流となっており、SUS、タングステン、またはニッケル合金製などの放電電極が実用化されている。放電電極の少なくとも胴体部分は、基板への半田付けのため、錫、ニッケルメッキなどが表面に加工されている。金属針の先端でコロナ放電を発生させて、イオンを生成している。 Currently, metal needles are mainly used for the discharge phenomenon, and discharge electrodes made of SUS, tungsten, or nickel alloy have been put into practical use. At least the body portion of the discharge electrode is processed with tin, nickel plating or the like on the surface for soldering to the substrate. A corona discharge is generated at the tip of the metal needle to generate ions.
 特開平5-21131号公報(特許文献1)に開示されているクリーンルーム用イオナイザには、一対の正負の針状電極が取り付けられている。この電極は、タングステン電極の表面にニッケルによる被覆がメッキにより設けられ、積層構造となっている。 A clean room ionizer disclosed in JP-A-5-21131 (Patent Document 1) is provided with a pair of positive and negative needle electrodes. This electrode has a laminated structure in which a surface of a tungsten electrode is coated with nickel by plating.
特開平5-21131号公報JP-A-5-21131
 従来の放電装置では、正電圧を印加される正極放電電極と、負電圧を印加される負極放電電極とは、同一の材料により構成されている。電極を構成している金属材料を被覆するメッキの材料も同一である。正極放電電極と負極放電電極とを同一の材料で構成すると、生産量が増加するためコストを低減でき、また正極と負極との取り違えが発生しないので、生産性において優れている。 In the conventional discharge device, the positive electrode discharge electrode to which a positive voltage is applied and the negative electrode discharge electrode to which a negative voltage is applied are made of the same material. The plating material covering the metal material constituting the electrode is also the same. When the positive electrode discharge electrode and the negative electrode discharge electrode are made of the same material, the production volume is increased, so that the cost can be reduced, and the positive electrode and the negative electrode are not mixed with each other, which is excellent in productivity.
 一方、放電現象を発生させる放電電極のうち、正電圧を印加される正極放電電極と、負電圧を印加される負極放電電極とは、放電時に異なる挙動を示す。本発明者らは、従来のように正極放電電極と負極放電電極とを同一材料で構成すると、放電時に発生する現象に対する耐性において、正極放電電極および負極放電電極のうちいずれか一方の耐性が不十分になる課題を見出した。 On the other hand, among the discharge electrodes that generate the discharge phenomenon, the positive electrode discharge electrode to which a positive voltage is applied and the negative electrode discharge electrode to which a negative voltage is applied exhibit different behaviors during discharge. When the positive electrode discharge electrode and the negative electrode discharge electrode are made of the same material as in the prior art, the inventors have no resistance to either the positive electrode discharge electrode or the negative electrode discharge electrode in terms of the resistance to the phenomenon that occurs during discharge. I found a problem that would be sufficient.
 本発明は上記の課題に鑑みてなされたものであり、その主たる目的は、正極放電電極と負極放電電極との両方の性能を長期間に亘って維持できる、放電装置を提供することである。 The present invention has been made in view of the above-mentioned problems, and its main purpose is to provide a discharge device that can maintain the performance of both the positive electrode discharge electrode and the negative electrode discharge electrode over a long period of time.
 本発明者らは、結露の発生し得る高湿度環境、特に海岸近辺などの塩分を含む過酷環境において、金属を部材とする放電電極を使用して放電すると、正極放電電極と負極放電電極とにおいて異なる電気分解が発生し、その結果、正極放電電極に使用している金属の一部が周囲に溶出し、一方、負極放電電極にはナトリウムを含む化合物が析出することを見出した。 In the high humidity environment where condensation can occur, particularly in a harsh environment including salt, such as near the coast, when discharging using a metal discharge electrode, the positive electrode discharge electrode and the negative electrode discharge electrode It was found that different electrolysis occurred, and as a result, a part of the metal used for the positive electrode discharge electrode was eluted to the surroundings, while a compound containing sodium was deposited on the negative electrode discharge electrode.
 また本発明者らは、金属を部材とする放電電極は放電の発生により消耗するが、正極放電電極および負極放電電極のうち、正極放電電極の方が消耗がより大きい場合があることを見出した。 In addition, the present inventors have found that a metal discharge electrode is consumed due to the occurrence of discharge, but of the positive electrode discharge electrode and the negative electrode discharge electrode, the positive electrode discharge electrode may be more consumed. .
 これらを踏まえて、本発明者らは、正極放電電極と負極放電電極との各々を最適な材質で構成すれば、過酷環境への対応、および電極の消耗の均一化が可能であるとの知見を得て、本発明を完成するに至った。 Based on these, the present inventors have found that if each of the positive electrode discharge electrode and the negative electrode discharge electrode is made of an optimum material, it is possible to cope with a harsh environment and to make the consumption of the electrode uniform. As a result, the present invention has been completed.
 すなわち、本発明に係る放電装置は、正電圧を印加されて放電する正極放電電極と、負電圧を印加されて放電する負極放電電極とを備えている。正極放電電極の外周面と、負極放電電極の外周面とが、異なる材質で構成されている。 That is, the discharge device according to the present invention includes a positive electrode discharge electrode that discharges by applying a positive voltage, and a negative electrode discharge electrode that discharges by applying a negative voltage. The outer peripheral surface of the positive electrode discharge electrode and the outer peripheral surface of the negative electrode discharge electrode are made of different materials.
 好ましくは、正極放電電極と負極放電電極との全体が異なる材質で構成されている。
 好ましくは、正極放電電極および負極放電電極は、導電性の本体部と、本体部の表面を被覆する被覆層とを有している。正極放電電極の被覆層と、負極放電電極の被覆層とが、異なる材質で構成されている。
Preferably, the positive electrode discharge electrode and the negative electrode discharge electrode are entirely made of different materials.
Preferably, the positive electrode discharge electrode and the negative electrode discharge electrode have a conductive main body part and a coating layer covering the surface of the main body part. The coating layer of the positive electrode discharge electrode and the coating layer of the negative electrode discharge electrode are made of different materials.
 好ましくは、正極放電電極の外周面は、塩化物イオンに耐性のある材料で構成されており、負極放電電極の外周面は、ナトリウムイオンに耐性のある材料で構成されている。 Preferably, the outer peripheral surface of the positive electrode discharge electrode is made of a material resistant to chloride ions, and the outer peripheral surface of the negative electrode discharge electrode is made of a material resistant to sodium ions.
 好ましくは、正極放電電極の外周面は、負極放電電極の外周面よりも、耐消耗性に優れる材料で構成されている。 Preferably, the outer peripheral surface of the positive electrode discharge electrode is made of a material having better wear resistance than the outer peripheral surface of the negative electrode discharge electrode.
 本発明の放電装置によれば、正極放電電極を構成する金属成分の溶出または消耗を抑制できるので、正極放電電極と負極放電電極との両方の放電性能を長期に亘って安定して維持することができる。 According to the discharge device of the present invention, since the elution or consumption of the metal components constituting the positive electrode discharge electrode can be suppressed, the discharge performance of both the positive electrode discharge electrode and the negative electrode discharge electrode can be stably maintained over a long period of time. Can do.
実施の形態1の放電装置の構成を示す斜視図である。1 is a perspective view illustrating a configuration of a discharge device according to a first embodiment. 図1に示す放電装置の、正極放電電極付近を示す断面図である。It is sectional drawing which shows the positive electrode discharge electrode vicinity of the discharge device shown in FIG. 図1に示す放電装置の、負極放電電極付近を示す断面図である。It is sectional drawing which shows the negative electrode discharge electrode vicinity of the discharge device shown in FIG. 実施の形態2の放電装置の、正極放電電極付近を示す断面図である。It is sectional drawing which shows the positive electrode discharge electrode vicinity of the discharge device of Embodiment 2. 実施の形態2の放電装置の、負極放電電極付近を示す断面図である。It is sectional drawing which shows the negative electrode discharge electrode vicinity of the discharge device of Embodiment 2. 実施の形態3の放電装置の、正極放電電極付近を示す断面図である。FIG. 6 is a cross-sectional view showing the vicinity of a positive electrode discharge electrode in a discharge device according to a third embodiment. 実施の形態3の放電装置の、負極放電電極付近を示す断面図である。FIG. 6 is a cross-sectional view showing the vicinity of a negative electrode discharge electrode in a discharge device according to a third embodiment.
 以下、図面に基づいてこの発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1の放電装置100の構成を示す斜視図である。図1を参照して、放電装置100は、正極放電電極11と、負極放電電極21と、本体ケース2とを備えている。正極放電電極11および負極放電電極21は、針状の形状に形成されている。
(Embodiment 1)
FIG. 1 is a perspective view showing a configuration of a discharge device 100 according to the first embodiment. With reference to FIG. 1, the discharge device 100 includes a positive electrode discharge electrode 11, a negative electrode discharge electrode 21, and a main body case 2. The positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are formed in a needle shape.
 本体ケース2は、放電装置100の外観をなす筺体として設けられている。本体ケース2は、矩形状の容器部1を有している。容器部1は、その内部に、有底の中空空間を規定している。容器部1の内部空間には、樹脂材料である絶縁物14が充填されている。本体ケース2はまた、電極保護壁3を有している。電極保護壁3は、正極放電電極11および負極放電電極21の周囲に配置されている。電極保護壁3は、正極放電電極11および負極放電電極21を保護するために設けられている。 The main body case 2 is provided as a casing that forms the appearance of the discharge device 100. The main body case 2 has a rectangular container portion 1. The container portion 1 defines a bottomed hollow space therein. The internal space of the container part 1 is filled with an insulator 14 that is a resin material. The body case 2 also has an electrode protection wall 3. The electrode protection wall 3 is arranged around the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21. The electrode protection wall 3 is provided to protect the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
 図2は、図1に示す放電装置100の、正極放電電極11付近を示す断面図である。図2を参照して、正極放電電極11は、基板15により支持された根元部11aと、尖鋭な形状の尖端11bと、根元部11aから尖端11bへ向けて先細るテーパ部11cとを有している。根元部11aは、尖端11bに対し反対側の正極放電電極11の基端を有している。根元部11aの一部は、絶縁物14の内部に埋め込まれている。根元部11aの下方部分は、絶縁物14により封止されている。尖端11bは、絶縁物14の表面14sから突出している。 FIG. 2 is a cross-sectional view showing the vicinity of the positive electrode 11 in the discharge device 100 shown in FIG. Referring to FIG. 2, positive electrode 11 has a root portion 11 a supported by substrate 15, a sharp tip 11 b, and a tapered portion 11 c that tapers from root portion 11 a toward point 11 b. ing. The root portion 11a has the base end of the positive electrode 11 on the opposite side to the tip 11b. A part of the root portion 11 a is embedded in the insulator 14. A lower portion of the root portion 11a is sealed with an insulator 14. The tip 11b protrudes from the surface 14s of the insulator 14.
 絶縁物14の内部には、誘導電極(対向電極)12および基板15が埋め込まれている。正極放電電極11は、基板15によって支持されている。誘導電極12は、正極放電電極11の周囲の、正極放電電極11から離れた位置に配置されている。基準電位をなす誘導電極12は、金属などの導体材料により形成されている。誘導電極12および基板15は、その全部が絶縁物14の内部に埋め込まれており、絶縁物14によって密閉されている。 An induction electrode (counter electrode) 12 and a substrate 15 are embedded in the insulator 14. The positive electrode 11 is supported by the substrate 15. The induction electrode 12 is disposed around the positive electrode discharge electrode 11 at a position away from the positive electrode discharge electrode 11. The induction electrode 12 having a reference potential is formed of a conductive material such as metal. The induction electrode 12 and the substrate 15 are all embedded in the insulator 14 and are sealed with the insulator 14.
 絶縁物14としては、エポキシ樹脂などの熱硬化性樹脂、または、ゴム系高分子材料を溶剤にとかしたコーティング材料を充填するのが好ましい。絶縁物14は、誘導電極12および基板15を十分に密閉できる程度の厚さを有していることが好ましい。 The insulator 14 is preferably filled with a thermosetting resin such as an epoxy resin or a coating material obtained by dissolving a rubber-based polymer material in a solvent. The insulator 14 preferably has a thickness that can sufficiently seal the induction electrode 12 and the substrate 15.
 基板15は、平板状の形状を有しており、本体ケース2の容器部1の底面と平行に配置されている。基板15は、放電側の表面をなす主表面15aと、主表面15aに対して反対側の裏面15bとを有している。基板15の主表面15aおよび裏面15bは、絶縁物14によって覆われている。基板15には、基板15を厚み方向に貫通して主表面15aから裏面15bに至る貫通孔が形成されている。基板15に形成されている貫通孔は、その内壁面に導体が形成されたスルーホールビアであってもよい。 The substrate 15 has a flat plate shape and is arranged in parallel with the bottom surface of the container portion 1 of the main body case 2. The substrate 15 has a main surface 15a that forms a surface on the discharge side, and a back surface 15b on the opposite side to the main surface 15a. The main surface 15 a and the back surface 15 b of the substrate 15 are covered with an insulator 14. The substrate 15 is formed with a through hole penetrating the substrate 15 in the thickness direction and extending from the main surface 15a to the back surface 15b. The through hole formed in the substrate 15 may be a through hole via in which a conductor is formed on the inner wall surface.
 正極放電電極11は、基板15に形成された貫通孔に挿通されている。正極放電電極11の根元部11aが、たとえば半田付けにより基板15に固定されることで、正極放電電極11は基板15により支持されている。正極放電電極11の、尖端11bと反対側の他方端は、基板15の裏面15bから突出している。正極放電電極11は、基板15を貫通した状態で基板15に支持されている。基板15の主表面15aおよび裏面15bには、配線パターンが形成されている。正極放電電極11は、半田により、基板15に形成された配線パターンまたはリード線に、電気的に接続されている。 The positive electrode 11 is inserted through a through hole formed in the substrate 15. The base portion 11 a of the positive electrode discharge electrode 11 is fixed to the substrate 15 by soldering, for example, so that the positive electrode discharge electrode 11 is supported by the substrate 15. The other end of the positive electrode 11 opposite to the tip 11 b protrudes from the back surface 15 b of the substrate 15. The positive electrode 11 is supported on the substrate 15 while penetrating the substrate 15. A wiring pattern is formed on the main surface 15 a and the back surface 15 b of the substrate 15. The positive electrode 11 is electrically connected to a wiring pattern or lead formed on the substrate 15 by solder.
 図2に示す例では、基板15を貫通する状態の正極放電電極11が図示されているが、基板15の主表面15a上に正極放電電極11が搭載されているような状態でも構わない。 In the example shown in FIG. 2, the positive electrode 11 is shown penetrating the substrate 15. However, the positive electrode 11 may be mounted on the main surface 15 a of the substrate 15.
 放電装置100は、正極放電電極11にプラスの高電圧を印加し誘導電極12との間に電位差を生じさせることで、正極放電電極11の尖端11bからコロナ放電を発生させ、正イオンを発生する。正極放電電極11の尖端11bが絶縁物14の表面14sから突出していることにより、尖端11bで発生したイオンを速やかに搬送できる構成とされている。 The discharge device 100 applies a positive high voltage to the positive electrode discharge electrode 11 to generate a potential difference with the induction electrode 12, thereby generating corona discharge from the tip 11b of the positive electrode discharge electrode 11 and generating positive ions. . Since the tip 11b of the positive electrode 11 protrudes from the surface 14s of the insulator 14, ions generated at the tip 11b can be quickly conveyed.
 正極放電電極11に印加する高電圧を生成する回路は、放電装置の本体ケース2内に存在するのであれば、本体ケース2で覆われるか、絶縁物14で密閉されているのが望ましい。そうすることで、高電圧を生成する回路が過酷環境に触れるのを防ぎ、電極部以外のところでリークが発生するのを抑制することができる。また、基板15を介して正極放電電極11に電圧を印加するようにしてもよい。 If a circuit that generates a high voltage to be applied to the positive electrode discharge electrode 11 exists in the main body case 2 of the discharge device, it is desirable that the circuit is covered with the main body case 2 or sealed with an insulator 14. By doing so, it is possible to prevent a circuit that generates a high voltage from coming into contact with a harsh environment, and to prevent leaks from occurring in areas other than the electrode portion. Further, a voltage may be applied to the positive electrode 11 via the substrate 15.
 また、正極放電電極11に印加する高電圧を、放電装置100の外部より供給しても構わない。その場合、正極放電電極11に高電圧を供給するための基板やコネクタなどの経路を、絶縁物、耐水性のゲル、または絶縁チューブ等で密閉させるとよい。そうすることで、当該経路周辺が過酷環境に触れるのを防ぎ、電極部以外のところでリークが発生するのを抑制することができる。 Further, a high voltage applied to the positive electrode 11 may be supplied from the outside of the discharge device 100. In that case, it is preferable to seal a path such as a substrate or a connector for supplying a high voltage to the positive electrode 11 with an insulator, a water-resistant gel, an insulating tube, or the like. By doing so, it is possible to prevent the periphery of the path from coming into contact with a harsh environment and to suppress the occurrence of leaks at locations other than the electrode portion.
 正極放電電極11に印加する高電圧はパルス電圧を基本としているが、直流電圧でも構わない。また、電圧は放電が起こる限り、どの大きさでも構わない。 The high voltage applied to the positive electrode 11 is based on a pulse voltage, but may be a DC voltage. The voltage may be any magnitude as long as discharge occurs.
 図3は、図1に示す放電装置100の、負極放電電極21付近を示す断面図である。負極放電電極21は、図2に示す正極放電電極11と同様の形状を有している。図3を参照して、負極放電電極21は、基板15により支持された根元部21aと、尖鋭な形状の尖端21bと、根元部21aから尖端21bへ向けて先細るテーパ部21cとを有している。根元部21aは、尖端21bに対し反対側の負極放電電極21の基端を有している。根元部21aの一部は、絶縁物14の内部に埋め込まれている。根元部21aの下方部分は、絶縁物14により封止されている。尖端21bは、絶縁物14の表面14sから突出している。 FIG. 3 is a cross-sectional view showing the vicinity of the negative electrode discharge electrode 21 of the discharge device 100 shown in FIG. The negative electrode discharge electrode 21 has the same shape as the positive electrode discharge electrode 11 shown in FIG. Referring to FIG. 3, negative electrode 21 has a root portion 21 a supported by substrate 15, a sharp tip 21 b, and a tapered portion 21 c that tapers from root 21 a toward tip 21 b. ing. The root portion 21a has a base end of the negative electrode 21 that is opposite to the tip 21b. A part of the root portion 21 a is embedded in the insulator 14. A lower portion of the root portion 21 a is sealed with the insulator 14. The tip 21b protrudes from the surface 14s of the insulator 14.
 放電装置100は、負極放電電極21にマイナスの高電圧を印加し誘導電極12との間に電位差を生じさせることで、負極放電電極21の尖端21bからコロナ放電を発生させ、負イオンを発生する。図1に示すように、放電装置100が正極放電電極11と負極放電電極21との両方を備えており、正極放電電極11にはプラスの電圧を印加し、負極放電電極21にはマイナスの電圧を印加することで、正イオンと負イオンとの両方を同時に発生させることが可能とされている。 The discharge device 100 applies a negative high voltage to the negative electrode discharge electrode 21 to generate a potential difference with the induction electrode 12, thereby generating corona discharge from the tip 21b of the negative electrode discharge electrode 21 and generating negative ions. . As shown in FIG. 1, the discharge device 100 includes both a positive electrode 11 and a negative electrode 21, a positive voltage is applied to the positive electrode 11, and a negative voltage is applied to the negative electrode 21. It is possible to generate both positive ions and negative ions at the same time.
 図2,3に示す例では、誘導電極12は、正極放電電極11および負極放電電極21に対し左右二か所に位置しているが、電位の基準になれば、形状、配置は問わない。なお、誘導電極12は、正極放電電極11および負極放電電極21から等距離で配置されるよう、略円形であれば好ましい。また、誘導電極12は、板金、針金などといった金属物であってもよいし、基板15上に印刷したパターンでもよく、電位の基準になるのであれば、誘導電極12の材質は問わない。 In the example shown in FIGS. 2 and 3, the induction electrode 12 is located at two positions on the left and right sides with respect to the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21. The induction electrode 12 is preferably substantially circular so as to be arranged at an equal distance from the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21. The induction electrode 12 may be a metal object such as a sheet metal or a wire, or may be a pattern printed on the substrate 15, and the material of the induction electrode 12 is not limited as long as it serves as a potential reference.
 正極放電電極11および負極放電電極21は、本実施例では針形状であるが、細線や極細線でも構わない。また、放電可能な形状であれば、細い板状で先がとがった形状でも構わない。 The positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are needle-shaped in the present embodiment, but may be fine wires or extra fine wires. Moreover, as long as it is a dischargeable shape, it may be a thin plate shape with a sharp point.
 正極放電電極11および負極放電電極21は、その全体が金属などの導体材料により形成されている。正極放電電極11と負極放電電極21とは、その全体が異なる材質で構成されている。そのため、正極放電電極11の外周面11sと、負極放電電極21の外周面21sとは、異なる材質で構成されている。 The whole of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 is made of a conductive material such as metal. The positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are entirely made of different materials. Therefore, the outer peripheral surface 11s of the positive electrode discharge electrode 11 and the outer peripheral surface 21s of the negative electrode discharge electrode 21 are made of different materials.
 正極放電電極11は、塩化物イオンに耐性のある材料で構成されている。そのため、正極放電電極11の外周面11sは、塩化物イオンに耐性のある材料で構成されている。正極放電電極11は、タングステン、または、金もしくは白金などの貴金属で構成されてもよい。 The positive electrode 11 is made of a material resistant to chloride ions. For this reason, the outer peripheral surface 11s of the positive electrode 11 is made of a material resistant to chloride ions. The positive electrode 11 may be made of tungsten or a noble metal such as gold or platinum.
 負極放電電極21は、ナトリウムイオンに耐性のある材料で構成されている。そのため、負極放電電極21の外周面21sは、ナトリウムイオンに耐性のある材料で構成されている。負極放電電極21は、たとえばインコネルなどの、鉄の含有量の少ないニッケル合金で構成されてもよい。 The negative electrode discharge electrode 21 is made of a material resistant to sodium ions. Therefore, the outer peripheral surface 21s of the negative electrode discharge electrode 21 is made of a material resistant to sodium ions. Negative electrode discharge electrode 21 may be made of a nickel alloy having a low iron content, such as Inconel.
 インコネルは一般的には耐食性に優れ海水中における使用に適した合金とされているが、放電電極として用いる場合には、放電に伴う化学反応を考慮して材料を選定する必要がある。塩分を含む環境において放電すると、正極放電電極11と負極放電電極21とにおいて異なる電気分解が発生する。負極放電電極21を構成する材料をインコネルとすれば十分な耐食性が得られ、一方、正極放電電極11を構成する材料はインコネルでも不十分である。そのため、塩化物イオンに対してさらなる耐性のあるタングステンなどの材料を、正極放電電極11の構成材料とする必要がある。 Inconel is generally an alloy with excellent corrosion resistance and suitable for use in seawater, but when used as a discharge electrode, it is necessary to select a material in consideration of the chemical reaction associated with the discharge. When discharging is performed in an environment containing salt, different electrolysis occurs between the positive electrode 11 and the negative electrode 21. If the material constituting the negative electrode discharge electrode 21 is Inconel, sufficient corrosion resistance can be obtained, while the material constituting the positive electrode discharge electrode 11 is insufficient even with Inconel. Therefore, a material such as tungsten that is more resistant to chloride ions needs to be a constituent material of the positive electrode discharge electrode 11.
 以上説明した、実施の形態1の放電装置100によると、正極放電電極11の外周面11sは塩化物イオンに耐性のある材料で構成されており、負極放電電極21の外周面21sはナトリウムイオンに耐性のある材料で構成されている。 According to the discharge device 100 of Embodiment 1 described above, the outer peripheral surface 11s of the positive electrode discharge electrode 11 is made of a material resistant to chloride ions, and the outer peripheral surface 21s of the negative electrode discharge electrode 21 is made of sodium ions. Constructed of resistant material.
 塩分を含む環境においては、空気中に塩化ナトリウムが含まれている。そのため、塩分を含む環境において放電すると、正極放電電極11では塩化物イオンが生成されやすく、負極放電電極21ではナトリウムイオンが生成されやすい。この塩化物イオンによって正極放電電極11に使用している金属の一部が周囲に溶出すると、正極放電電極11と異極性となる誘導電極12、または放電装置100の本体ケース2など、放電部以外の部分に電流が流れ、本来の放電部での放電性能を低下させることになる。 In an environment containing salt, sodium chloride is contained in the air. Therefore, when discharging in an environment containing salt, the positive electrode discharge electrode 11 tends to generate chloride ions, and the negative electrode discharge electrode 21 tends to generate sodium ions. If a part of the metal used for the positive electrode 11 is eluted by the chloride ions, the induction electrode 12 having a polarity different from that of the positive electrode 11, or the main body case 2 of the discharge device 100, etc. The current flows through this part, and the discharge performance at the original discharge part is lowered.
 正極放電電極11の外周面11sと負極放電電極21の外周面21sとを異なる材質で構成し、正極放電電極11の外周面11sを塩化物イオンに耐性のある材料で構成することにより、正極放電電極11の外周面11sを構成する金属が溶出しにくくなっている。したがって、正極放電電極11の外周面11sを構成する金属成分の溶出を抑制することができる。正極放電電極11の成分の溶出に伴うリークの発生を抑制できるので、高湿度環境や塩分を含む大気環境においても、放電装置100の放電性能を長期に亘って安定して維持することができる。 The outer peripheral surface 11s of the positive electrode discharge electrode 11 and the outer peripheral surface 21s of the negative electrode discharge electrode 21 are made of different materials, and the outer peripheral surface 11s of the positive electrode discharge electrode 11 is made of a material resistant to chloride ions. The metal constituting the outer peripheral surface 11s of the electrode 11 is difficult to elute. Therefore, the elution of the metal component which comprises the outer peripheral surface 11s of the positive electrode 11 can be suppressed. Since the occurrence of leakage due to the elution of the components of the positive electrode discharge electrode 11 can be suppressed, the discharge performance of the discharge device 100 can be stably maintained over a long period of time even in a high humidity environment or an atmospheric environment containing salt.
 負極放電電極21の外周面21sをナトリウムイオンに耐性のある材料で構成することにより、負極放電電極21にナトリウムを含む化合物が析出しても、負極放電電極21の錆の発生を抑制することができる。正極放電電極11とは異なり、負極放電電極21を構成する材料の溶出が発生することはないため、負極放電電極21を正極放電電極11と同じ塩化物イオンに耐性のある材料で構成する必要はない。負極放電電極21を過剰品質とせずに、正極放電電極11と比べて安価な材料で負極放電電極21を構成することにより、コスト面においても優れた放電装置100を実現することができる。 By forming the outer peripheral surface 21 s of the negative electrode discharge electrode 21 with a material resistant to sodium ions, the generation of rust on the negative electrode discharge electrode 21 can be suppressed even if a compound containing sodium is deposited on the negative electrode discharge electrode 21. it can. Unlike the positive electrode discharge electrode 11, elution of the material constituting the negative electrode discharge electrode 21 does not occur. Therefore, it is necessary to configure the negative electrode discharge electrode 21 with the same material that is resistant to chloride ions as the positive electrode discharge electrode 11. Absent. By forming the negative electrode discharge electrode 21 with a material cheaper than the positive electrode discharge electrode 11 without making the negative electrode discharge electrode 21 excessive quality, it is possible to realize the discharge device 100 that is excellent in terms of cost.
 (実施の形態2)
 図4は、実施の形態2の放電装置の、正極放電電極11付近を示す断面図である。図5は、実施の形態2の放電装置の、負極放電電極21付近を示す断面図である。実施の形態2の放電装置と、上述した実施の形態1の放電装置100とは、基本的に同様の構成を備えている。しかし、実施の形態2の放電装置は、正極放電電極11および負極放電電極21の構成において、実施の形態1とは異なっている。
(Embodiment 2)
FIG. 4 is a cross-sectional view showing the vicinity of the positive electrode 11 in the discharge device of the second embodiment. FIG. 5 is a cross-sectional view showing the vicinity of the negative electrode discharge electrode 21 of the discharge device of the second embodiment. The discharge device of the second embodiment and the discharge device 100 of the first embodiment described above basically have the same configuration. However, the discharge device of the second embodiment is different from the first embodiment in the configuration of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21.
 本実施の形態では、正極放電電極11は、導電性の本体部11mと、本体部11mの表面を被覆する被覆層13とを有している。実施の形態2の正極放電電極11では、被覆層13の外周面13sが、正極放電電極11の外周面を構成している。被覆層13は、本体部11mの表面にメッキ加工を施すことにより、形成されている。被覆層13は、塩化物イオンに耐性のある材料で構成されている。被覆層13は、金メッキにより形成されていてもよい。 In the present embodiment, the positive electrode 11 has a conductive main body 11m and a coating layer 13 that covers the surface of the main body 11m. In the positive electrode discharge electrode 11 of the second embodiment, the outer peripheral surface 13 s of the coating layer 13 constitutes the outer peripheral surface of the positive electrode discharge electrode 11. The covering layer 13 is formed by plating the surface of the main body 11m. The covering layer 13 is made of a material resistant to chloride ions. The covering layer 13 may be formed by gold plating.
 負極放電電極21は、導電性の本体部21mと、本体部21mの表面を被覆する被覆層23とを有している。実施の形態2の負極放電電極21では、被覆層23の外周面23sが、負極放電電極21の外周面を構成している。被覆層23は、本体部21mの表面にメッキ加工を施すことにより、形成されている。被覆層23は、ナトリウムイオンに耐性のある材料で構成されている。被覆層23は、ニッケルメッキにより形成されていてもよい。 The negative electrode 21 has a conductive main body 21m and a coating layer 23 that covers the surface of the main body 21m. In the negative electrode discharge electrode 21 of the second embodiment, the outer peripheral surface 23 s of the coating layer 23 constitutes the outer peripheral surface of the negative electrode discharge electrode 21. The covering layer 23 is formed by plating the surface of the main body portion 21m. The covering layer 23 is made of a material resistant to sodium ions. The covering layer 23 may be formed by nickel plating.
 正極放電電極11の被覆層13と、負極放電電極21の被覆層23とは、異なる材質で構成されている。そのため、正極放電電極11の外周面と、負極放電電極21の外周面とは、異なる材質で構成されている。 The coating layer 13 of the positive electrode 11 and the coating layer 23 of the negative electrode 21 are made of different materials. Therefore, the outer peripheral surface of the positive electrode discharge electrode 11 and the outer peripheral surface of the negative electrode discharge electrode 21 are made of different materials.
 以上説明した、実施の形態2の放電装置によると、被覆層13の外周面13sが正極放電電極11の外周面を構成している。被覆層13は、塩化物イオンに耐性のある材料で形成されている。被覆層23の外周面23sが負極放電電極21の外周面を構成している。被覆層23は、ナトリウムイオンに耐性のある材料で形成されている。 According to the discharge device of the second embodiment described above, the outer peripheral surface 13s of the coating layer 13 constitutes the outer peripheral surface of the positive electrode discharge electrode 11. The covering layer 13 is formed of a material resistant to chloride ions. The outer peripheral surface 23 s of the coating layer 23 constitutes the outer peripheral surface of the negative electrode discharge electrode 21. The covering layer 23 is made of a material resistant to sodium ions.
 正極放電電極11の被覆層13と負極放電電極21の被覆層23とを異なる材質で構成し、正極放電電極11の外周面を塩化物イオンに耐性のある材料で構成することにより、正極放電電極11の外周面を構成する金属が溶出しにくくなっている。したがって、正極放電電極11の外周面を構成する金属成分の溶出を抑制することができる。正極放電電極11の成分の溶出に伴うリークの発生を抑制できるので、高湿度環境や塩分を含む大気環境においても、放電装置の放電性能を長期に亘って安定して維持することができる。 The covering layer 13 of the positive electrode 11 and the covering layer 23 of the negative electrode 21 are made of different materials, and the outer peripheral surface of the positive electrode 11 is made of a material resistant to chloride ions. The metal which comprises 11 outer peripheral surfaces becomes difficult to elute. Therefore, the elution of the metal component which comprises the outer peripheral surface of the positive electrode discharge electrode 11 can be suppressed. Since the occurrence of leakage due to the elution of the components of the positive electrode discharge electrode 11 can be suppressed, the discharge performance of the discharge device can be stably maintained over a long period of time even in a high humidity environment or an atmospheric environment containing salt.
 負極放電電極21の外周面をナトリウムイオンに耐性のある材料で構成することにより、負極放電電極21にナトリウムを含む化合物が析出しても、負極放電電極21の錆の発生を抑制することができる。正極放電電極11とは異なり、負極放電電極21を構成する材料の溶出が発生することはないため、負極放電電極21の被覆層23を正極放電電極11の被覆層13と同じ塩化物イオンに耐性のある材料で構成する必要はない。負極放電電極21の被覆層23を過剰品質とせずに、正極放電電極11の被覆層13と比べて安価な材料で被覆層23を構成することにより、コスト面においても優れた放電装置を実現することができる。 By forming the outer peripheral surface of the negative electrode discharge electrode 21 with a material resistant to sodium ions, the generation of rust of the negative electrode discharge electrode 21 can be suppressed even if a compound containing sodium is deposited on the negative electrode discharge electrode 21. . Unlike the positive electrode 11, the elution of the material constituting the negative electrode 21 does not occur, so that the covering layer 23 of the negative electrode 21 is resistant to the same chloride ions as the covering layer 13 of the positive electrode 11. It is not necessary to be made of a certain material. By forming the coating layer 23 with a material cheaper than the coating layer 13 of the positive electrode discharge electrode 11 without making the coating layer 23 of the negative electrode discharge electrode 21 excessive quality, a discharge device that is excellent in terms of cost is realized. be able to.
 本実施の形態では、正極放電電極11が導電性の本体部11mと本体部11mの表面を被覆する被覆層13とを有していると記載したが、正極放電電極11の尖端11bおよびテーパ部11cが本体部11mと同一の被覆層13により被覆されていてもよい。また、正極放電電極11のうち、絶縁物14の内部に埋め込まれている部分が、本体部11mと同一の被覆層13により被覆されていてもよい。同様に、負極放電電極21が導電性の本体部21mと本体部21mの表面を被覆する被覆層23とを有していると記載したが、負極放電電極21の尖端21bおよびテーパ部21cが本体部21mと同一の被覆層23により被覆されていてもよい。また、負極放電電極21のうち、絶縁物14の内部に埋め込まれている部分が、本体部21mと同一の被覆層23により被覆されていてもよい。 In the present embodiment, it is described that the positive electrode 11 has the conductive main body 11m and the coating layer 13 that covers the surface of the main body 11m. However, the tip 11b and the taper of the positive electrode 11 are described. 11c may be coat | covered with the same coating layer 13 as the main-body part 11m. Moreover, the part embedded inside the insulator 14 among the positive electrode discharge electrodes 11 may be coat | covered with the same coating layer 13 as the main-body part 11m. Similarly, it has been described that the negative electrode discharge electrode 21 has a conductive main body part 21m and a coating layer 23 covering the surface of the main body part 21m. However, the sharp tip 21b and the tapered part 21c of the negative electrode discharge electrode 21 are the main body. You may coat | cover with the same coating layer 23 as the part 21m. Moreover, the part embedded in the insulator 14 among the negative electrode discharge electrodes 21 may be coat | covered with the same coating layer 23 as the main-body part 21m.
 (実施の形態3)
 図6は、実施の形態3の放電装置の、正極放電電極11付近を示す断面図である。図7は、実施の形態3の放電装置の、負極放電電極21付近を示す断面図である。実施の形態3の放電装置では、上述した実施の形態1の放電装置100と異なり、容器部1の内部空間に絶縁物は充填されておらず、正極放電電極11および負極放電電極21の根元部11a,21aは絶縁物により封止されていない。
(Embodiment 3)
FIG. 6 is a cross-sectional view showing the vicinity of the positive electrode 11 in the discharge device of the third embodiment. FIG. 7 is a cross-sectional view showing the vicinity of the negative electrode discharge electrode 21 of the discharge device of the third embodiment. In the discharge device of the third embodiment, unlike the discharge device 100 of the first embodiment described above, the inner space of the container portion 1 is not filled with an insulator, and the root portions of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are not filled. 11a and 21a are not sealed with an insulator.
 基板15の主表面15a上にパターンが形成されており、このパターンが誘導電極12として機能している。容器部1の内部空間に絶縁物が充填されていないため、誘導電極12および基板15は絶縁物によって密閉されていない。容器部1の内面には図示しない支持部が設けられており、この支持部によって基板15は容器部1に対して支持されている。 A pattern is formed on the main surface 15 a of the substrate 15, and this pattern functions as the induction electrode 12. Since the inner space of the container part 1 is not filled with an insulator, the induction electrode 12 and the substrate 15 are not sealed with the insulator. A support portion (not shown) is provided on the inner surface of the container portion 1, and the substrate 15 is supported with respect to the container portion 1 by this support portion.
 正極放電電極11および負極放電電極21は、その全体が金属などの導体材料により形成されている。正極放電電極11と負極放電電極21とは、その全体が異なる材質で構成されている。そのため、正極放電電極11の外周面11sと、負極放電電極21の外周面21sとは、異なる材質で構成されている。 The whole of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 is made of a conductive material such as metal. The positive electrode discharge electrode 11 and the negative electrode discharge electrode 21 are entirely made of different materials. Therefore, the outer peripheral surface 11s of the positive electrode discharge electrode 11 and the outer peripheral surface 21s of the negative electrode discharge electrode 21 are made of different materials.
 正極放電電極11は、負極放電電極21よりも、耐消耗性に優れる材料で構成されている。そのため、正極放電電極11の外周面11sは、負極放電電極21の外周面21sよりも、耐消耗性に優れる材料で構成されている。正極放電電極11の構成材料は、負極放電電極21の構成材料と比較して、耐熱性に優れる材料であってもよい。正極放電電極11の構成材料は、負極放電電極21の構成材料と比較して、融点が高い材料であってもよく、熱伝導率が低い材料であってもよい。負極放電電極21がステンレスで構成されている場合、正極放電電極11はインコネルで構成されていてもよい。 The positive electrode discharge electrode 11 is made of a material having better wear resistance than the negative electrode discharge electrode 21. Therefore, the outer peripheral surface 11 s of the positive electrode discharge electrode 11 is made of a material that is more excellent in wear resistance than the outer peripheral surface 21 s of the negative electrode discharge electrode 21. The constituent material of the positive electrode discharge electrode 11 may be a material superior in heat resistance as compared with the constituent material of the negative electrode discharge electrode 21. The constituent material of the positive electrode discharge electrode 11 may be a material having a higher melting point than the constituent material of the negative electrode discharge electrode 21 or a material having a low thermal conductivity. When the negative electrode discharge electrode 21 is made of stainless steel, the positive electrode discharge electrode 11 may be made of Inconel.
 以上説明した、実施の形態3の放電装置によると、正極放電電極11の外周面11sは、負極放電電極21の外周面21sよりも、耐消耗性に優れる材料で構成されている。 According to the discharge device of the third embodiment described above, the outer peripheral surface 11s of the positive electrode discharge electrode 11 is made of a material that is more excellent in wear resistance than the outer peripheral surface 21s of the negative electrode discharge electrode 21.
 実施の形態3の放電装置は、実施の形態1,2とは異なり、塩分を含まない通常の環境での使用が想定されている。空気中に塩化ナトリウムが含まれていないか、含まれていても微量であるため、正極放電電極11を構成する材料の溶出を考慮する必要はない。一方、放電に伴って、正極放電電極11および負極放電電極21の消耗が発生する。正極放電電極11および負極放電電極21のうち、正極放電電極11の方がより激しく消耗する場合がある。 Unlike the first and second embodiments, the discharge device of the third embodiment is assumed to be used in a normal environment not containing salt. Since sodium chloride is not contained in the air or is contained in a trace amount, it is not necessary to consider the elution of the material constituting the positive electrode discharge electrode 11. On the other hand, exhaustion of the positive electrode 11 and the negative electrode 21 occurs with the discharge. Of the positive electrode discharge electrode 11 and the negative electrode discharge electrode 21, the positive electrode discharge electrode 11 may be consumed more violently.
 正極放電電極11の外周面11sと負極放電電極21の外周面21sとを異なる材質で構成し、消耗の激しい正極放電電極11の外周面11sを、負極放電電極21の外周面21sよりも耐消耗性に優れる材料で構成する。これにより、正極放電電極11の消耗量と負極放電電極21の消耗量との差を小さくできるので、正極放電電極11および負極放電電極21における放電状態の均一性を向上できる。したがって、放電装置の放電性能を長期に亘って安定して維持することができ、正極放電電極11で発生する正イオンと負極放電電極21で発生する負イオンとのバランスを向上することができる。 The outer peripheral surface 11 s of the positive electrode 11 and the outer surface 21 s of the negative electrode 21 are made of different materials, and the outer surface 11 s of the positive electrode 11 is worn out more than the outer surface 21 s of the negative electrode 21. Consists of materials with excellent properties. Thereby, since the difference between the consumption amount of the positive electrode 11 and the consumption amount of the negative electrode 21 can be reduced, the uniformity of the discharge state in the positive electrode 11 and the negative electrode 21 can be improved. Therefore, the discharge performance of the discharge device can be stably maintained over a long period of time, and the balance between positive ions generated at the positive electrode discharge electrode 11 and negative ions generated at the negative electrode discharge electrode 21 can be improved.
 負極放電電極21を、正極放電電極11と比較して耐消耗性の小さい材料で構成することにより、負極放電電極21を過剰品質とせずに、正極放電電極11と比べて安価な材料で負極放電電極21を構成できる。したがって、コスト面においても優れた放電装置を実現することができる。 The negative electrode discharge electrode 21 is made of a material that is less consumable than the positive electrode discharge electrode 11, so that the negative electrode discharge electrode 21 is made of an inexpensive material compared to the positive electrode discharge electrode 11 without making the negative electrode discharge electrode 21 excessive quality. The electrode 21 can be configured. Therefore, it is possible to realize a discharge device that is excellent in terms of cost.
 以上のように本発明の実施の形態について説明を行なったが、各実施の形態の構成を適宜組み合わせてもよい。また、今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。この発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 Although the embodiments of the present invention have been described above, the configurations of the embodiments may be combined as appropriate. In addition, it should be considered that the embodiment disclosed this time is illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、イオン発生装置、オゾン発生装置、除電装置などの、放電装置を備える各種の装置に広く適用され得る。 The present invention can be widely applied to various devices including a discharge device such as an ion generator, an ozone generator, and a static eliminator.
 1 容器部、2 本体ケース、3 電極保護壁、11 正極放電電極、11a,21a 根元部、11b,21b 尖端、11c,21c テーパ部、11m,21m 本体部、11s,13s,21s,23s 外周面、12 誘導電極、13,23 被覆層、14 絶縁物、14s 表面、15 基板、15a 主表面、15b 裏面、21 負極放電電極、100 放電装置。 1 container part, 2 body case, 3 electrode protection wall, 11 positive electrode discharge electrode, 11a, 21a root part, 11b, 21b tip, 11c, 21c taper part, 11m, 21m body part, 11s, 13s, 21s, 23s outer peripheral surface , 12 induction electrode, 13, 23 coating layer, 14 insulator, 14s surface, 15 substrate, 15a main surface, 15b back surface, 21 negative electrode, 100 discharge device.

Claims (5)

  1.  正電圧を印加されて放電する正極放電電極と、
     負電圧を印加されて放電する負極放電電極とを備え、
     前記正極放電電極の外周面と、前記負極放電電極の外周面とが、異なる材質で構成されている、放電装置。
    A positive electrode for discharging a positive voltage to be discharged;
    A negative electrode for discharging by applying a negative voltage,
    The discharge device in which the outer peripheral surface of the positive electrode discharge electrode and the outer peripheral surface of the negative electrode discharge electrode are made of different materials.
  2.  前記正極放電電極と前記負極放電電極との全体が異なる材質で構成されている、請求項1に記載の放電装置。 The discharge device according to claim 1, wherein the positive electrode discharge electrode and the negative electrode discharge electrode are entirely made of different materials.
  3.  前記正極放電電極および前記負極放電電極は、導電性の本体部と、前記本体部の表面を被覆する被覆層とを有し、
     前記正極放電電極の前記被覆層と、前記負極放電電極の前記被覆層とが、異なる材質で構成されている、請求項1に記載の放電装置。
    The positive electrode discharge electrode and the negative electrode discharge electrode have a conductive main body part and a coating layer that covers the surface of the main body part,
    The discharge device according to claim 1, wherein the coating layer of the positive electrode discharge electrode and the coating layer of the negative electrode discharge electrode are made of different materials.
  4.  前記正極放電電極の前記外周面は、塩化物イオンに耐性のある材料で構成されており、
     前記負極放電電極の前記外周面は、ナトリウムイオンに耐性のある材料で構成されている、請求項1~3のいずれか1項に記載の放電装置。
    The outer peripheral surface of the positive electrode discharge electrode is made of a material resistant to chloride ions,
    The discharge device according to any one of claims 1 to 3, wherein the outer peripheral surface of the negative electrode discharge electrode is made of a material resistant to sodium ions.
  5.  前記正極放電電極の前記外周面は、前記負極放電電極の前記外周面よりも、耐消耗性に優れる材料で構成されている、請求項1~3のいずれか1項に記載の放電装置。 The discharge device according to any one of claims 1 to 3, wherein the outer peripheral surface of the positive electrode discharge electrode is made of a material having higher wear resistance than the outer peripheral surface of the negative electrode discharge electrode.
PCT/JP2015/068483 2014-09-02 2015-06-26 Discharge device WO2016035431A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201590000267.9U CN206135206U (en) 2014-09-02 2015-06-26 Electric discharge device
JP2016546364A JP6444420B2 (en) 2014-09-02 2015-06-26 Discharge device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014178141 2014-09-02
JP2014-178141 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035431A1 true WO2016035431A1 (en) 2016-03-10

Family

ID=55439502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068483 WO2016035431A1 (en) 2014-09-02 2015-06-26 Discharge device

Country Status (3)

Country Link
JP (1) JP6444420B2 (en)
CN (2) CN206135206U (en)
WO (1) WO2016035431A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109226917B (en) * 2018-09-05 2021-03-23 上海交通大学 Surface roughening method based on electric discharge machining

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269980A (en) * 1990-03-19 1991-12-02 Shishido Seidenki Kk Ion generating device
JPH07282953A (en) * 1994-04-07 1995-10-27 Toshiba Corp Corona discharging electrode and static electricity eliminating device
JP2002539591A (en) * 1999-03-12 2002-11-19 イオン システムズ,インコーポレイティド Ionized bar and method for producing the same
JP2008293801A (en) * 2007-05-24 2008-12-04 Sharp Corp Ion generating element,ion generating device, and electric equipment
JP2010055848A (en) * 2008-08-27 2010-03-11 Toto Ltd Static eliminator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725166B2 (en) * 1995-07-18 1998-03-09 春日電機株式会社 Static electricity removal method and device
JP2011025202A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Functional mist generator
JP4551977B1 (en) * 2010-01-26 2010-09-29 明夫 片野 Ion / ozone wind generator
JP5461736B1 (en) * 2013-05-13 2014-04-02 株式会社 片野工業 Ion / ozone wind generator and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269980A (en) * 1990-03-19 1991-12-02 Shishido Seidenki Kk Ion generating device
JPH07282953A (en) * 1994-04-07 1995-10-27 Toshiba Corp Corona discharging electrode and static electricity eliminating device
JP2002539591A (en) * 1999-03-12 2002-11-19 イオン システムズ,インコーポレイティド Ionized bar and method for producing the same
JP2008293801A (en) * 2007-05-24 2008-12-04 Sharp Corp Ion generating element,ion generating device, and electric equipment
JP2010055848A (en) * 2008-08-27 2010-03-11 Toto Ltd Static eliminator

Also Published As

Publication number Publication date
JPWO2016035431A1 (en) 2017-04-27
CN207052938U (en) 2018-02-27
CN206135206U (en) 2017-04-26
JP6444420B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6242477B2 (en) Discharge device
JP5738880B2 (en) Offset electrode
JP5094492B2 (en) Flat ion generating electrode
EP1780747A3 (en) A conductive electrode powder, a method for preparing the same, and uses thereof
EP2518117B1 (en) Electrical conductors having organic compound coatings
JP2013229464A5 (en)
JP5219167B2 (en) Gas sensor
JP6444420B2 (en) Discharge device
CN103178370A (en) Component
US9970121B2 (en) Composite material, method for forming the composite material, electrode plated with the composite material, and connection structure having the composite material
TW201035381A (en) Electrode for electrolysis
TW200719364A (en) Surface mount device having a cushioning layer therein and the method of making the same
JP2011227999A (en) Planar heating element
JP6775865B2 (en) A device that generates at least one of ions and ozone
CN204696450U (en) Sparking electrode and neutralizer
JP7315309B2 (en) Control method of ion wind generator
JP2011096555A (en) Ion generator
JP2008152948A (en) Surge absorber
JP4517153B2 (en) Fluid control method and fluid device using the same
JP2016071951A (en) Crimping terminal
JP5760466B2 (en) Barrel plating equipment
JP3114892U (en) Mini ceramic capacitors
JP2013054983A (en) Discharge electrode, active species generating unit using the same, and active species generating device
JP2013004860A (en) Semiconductor device
JP2006229000A (en) Circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546364

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838651

Country of ref document: EP

Kind code of ref document: A1