JP5094492B2 - Flat ion generating electrode - Google Patents

Flat ion generating electrode Download PDF

Info

Publication number
JP5094492B2
JP5094492B2 JP2008075792A JP2008075792A JP5094492B2 JP 5094492 B2 JP5094492 B2 JP 5094492B2 JP 2008075792 A JP2008075792 A JP 2008075792A JP 2008075792 A JP2008075792 A JP 2008075792A JP 5094492 B2 JP5094492 B2 JP 5094492B2
Authority
JP
Japan
Prior art keywords
electrode
plate
dielectric substrate
thin plate
ion generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008075792A
Other languages
Japanese (ja)
Other versions
JP2009231087A (en
Inventor
信雄 野村
和朗 中島
善次 岡村
智子 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP2008075792A priority Critical patent/JP5094492B2/en
Publication of JP2009231087A publication Critical patent/JP2009231087A/en
Application granted granted Critical
Publication of JP5094492B2 publication Critical patent/JP5094492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放電によりイオンを発生する平板状のイオン発生電極に関する。   The present invention relates to a plate-like ion generating electrode that generates ions by discharge.

この種のイオン発生電極として、例えば、特許文献1(特開2004−363088号公報)に記載のもの(以下、「従来例1」と記す)や、本出願人の提供に係る特許文献2(特許第2622821号公報)に記載のもの(以下、「従来例2」と記す)がある。   Examples of this type of ion generating electrode include those described in Patent Document 1 (Japanese Patent Laid-Open No. 2004-363088) (hereinafter referred to as “Conventional Example 1”) and Patent Document 2 (provided by the present applicant) ( Japanese Patent No. 2622821) (hereinafter referred to as “conventional example 2”).

従来例1では、1枚の板状誘電体上に、プラスイオンを発生するための第1放電部と、マイナスイオンを発生するための第2放電部とを少なくとも1つずつ、互いに分離独立して設けている。これら第1及び第2放電部は、板状誘電体の内部に埋設された第1及び第2の誘導電極と、板状誘電体の表面に設けられた第1及び第2の放電電極とを各々一対として各個に形成されている。これら第1及び第2の放電電極は、板状誘電体の表面に印刷により形成され、複数の尖鋭部を一体に突出形成している。   In Conventional Example 1, at least one first discharge part for generating positive ions and second discharge part for generating negative ions are separated and independent from each other on a single plate-like dielectric. Provided. The first and second discharge parts include first and second induction electrodes embedded in the plate-shaped dielectric, and first and second discharge electrodes provided on the surface of the plate-shaped dielectric. Each pair is formed as a pair. These first and second discharge electrodes are formed on the surface of the plate-like dielectric by printing, and a plurality of sharp portions are integrally projected.

従来例2では、複数の尖端部を有する板状又は箔状のアース電極を、導電パターンにより絶縁体であるプリント基板上に形成する一方、ワイヤ状又は板状の高電圧電極をプリント基板に埋設して、アース電極の尖端部のみとプリント基板の一部分を介して平行に対向させている。   In Conventional Example 2, a plate-shaped or foil-shaped ground electrode having a plurality of pointed portions is formed on a printed circuit board that is an insulator by a conductive pattern, while a wire-shaped or plate-shaped high voltage electrode is embedded in the printed circuit board. Then, only the tip of the ground electrode is opposed in parallel through a part of the printed circuit board.

ところで、放電によりイオンを発生させる電極では、電界の影響で、電極の金属成分が、電極を支持している絶縁物(非金属)の上や中を移動するマイグレーション現象が生じ、長時間放電させると、マイグレーションが成長して絶縁不良や金属の腐食などにより電極が劣化するとともに、電極の金属成分が絶縁物の内部にまで浸透して静電容量が増加し、放電性能(イオン生成性能)が低下するばかりでなく、電極の破損や剥離に至る。   By the way, in an electrode that generates ions by electric discharge, a migration phenomenon occurs in which the metal component of the electrode moves on or in the insulator (nonmetal) that supports the electrode due to the influence of an electric field, and is discharged for a long time. As the migration grows and the electrode deteriorates due to poor insulation or metal corrosion, the metal component of the electrode penetrates into the insulator, increasing the capacitance, and increasing the discharge performance (ion generation performance). Not only does it decrease, it also leads to electrode breakage and peeling.

上記の従来例1では、プラス・マイナスのイオンをそれぞれ発生する第1及び第2の放電部の第1及び第2の放電電極を板状誘電体の表面に印刷により形成し、また、従来例2では、アース電極を、導電パターンによりプリント基板上に形成しているが、印刷したとしても、マイグレーション現象は避けられず、長時間放電させると、やはり、表面の電極が劣化するとともに、電極の金属成分が板状誘電体の内部に浸透し、放電性能(イオン生成性能)が低下するばかりでなく、電極の破損や剥離に至る。特に、従来例1では、高電圧を印加される第1及び第2の放電電極が、板状誘電体の表面に印刷されて露出しており、その露出した第1及び第2の放電電極から内部の誘導電極へ向かって放電するため、第1及び第2の放電電極が、それ自体の電撃や外的要因によりマイグレーションを起こしやすい。   In the above-described conventional example 1, the first and second discharge electrodes of the first and second discharge portions that generate plus and minus ions are formed on the surface of the plate dielectric by printing, and the conventional example In Fig. 2, the ground electrode is formed on the printed circuit board with a conductive pattern. However, even if printing is performed, the migration phenomenon is unavoidable. The metal component penetrates into the inside of the plate-like dielectric and not only the discharge performance (ion generation performance) is lowered, but also the electrode is damaged or peeled off. In particular, in Conventional Example 1, the first and second discharge electrodes to which a high voltage is applied are printed and exposed on the surface of the plate-like dielectric, and the exposed first and second discharge electrodes are exposed. Since the discharge is directed toward the internal induction electrode, the first and second discharge electrodes are liable to migrate due to their own electric shock or external factors.

さらに、従来例1では、プラス・マイナスのイオンをそれぞれ別々に発生するため、第1及び第2の放電部を互いに離して板状誘電体に設け、そのそれぞれについて、放電電極と誘導電極とを板状誘電体の内外に設けているため、電極構造が複雑になるとともに、全体の平面積が大きくなる問題がある。
特開2004−363088号公報 特許第2622821号公報
Furthermore, in Conventional Example 1, since positive and negative ions are generated separately, the first and second discharge portions are provided on the plate-like dielectric material apart from each other, and a discharge electrode and an induction electrode are provided for each of them. Since it is provided inside and outside the plate-like dielectric, there is a problem that the electrode structure becomes complicated and the entire plane area becomes large.
JP 2004-363088 A Japanese Patent No. 2622821

本発明の第1の課題は、誘電体基板表面に形成された薄板状表面電極のマイグレーションを少なくして、長時間放電させても電極の劣化が少なく、耐久性が高いとともに、放電性能(イオン生成性能)の経時的低下が小さい平板状イオン発生電極を提供することにある。   The first problem of the present invention is that the migration of the thin plate-like surface electrode formed on the surface of the dielectric substrate is reduced, the electrode is less deteriorated even when discharged for a long time, the durability is high, and the discharge performance (ion It is an object of the present invention to provide a plate-like ion generating electrode in which a decrease in the generation performance over time is small.

本発明の第2の課題は、誘電体基板表面に形成された薄板状表面電極と誘電体基板内部に埋設された内部電極とを対にする場合、薄板状表面電極を接地電極、内部電極を放電電極とすることにより、薄板状表面電極のマイグレーションを極力少なくできるとともに、全体の平面積を小さくできる平板状イオン発生電極を提供することにある。   A second problem of the present invention is that when a thin plate-like surface electrode formed on the surface of a dielectric substrate and an internal electrode embedded in the dielectric substrate are paired, the thin plate-like surface electrode is a ground electrode, and the internal electrode is An object of the present invention is to provide a flat plate ion generating electrode that can minimize migration of a thin plate surface electrode as much as possible by using the discharge electrode, and can reduce the entire plane area.

本発明の第3の課題は、薄板状表面電極を接地電極、内部電極を放電電極とした場合、放電指向性及び放電効率を高い平板状イオン発生電極として提供できるようにすることにある。   The third object of the present invention is to provide a flat ion generating electrode with high discharge directivity and discharge efficiency when a thin plate-like surface electrode is a ground electrode and an internal electrode is a discharge electrode.

上記第1の課題を達成するため、請求項1に係る本発明は、導電性繊維をシート厚さ方向に配向させてシート厚さ方向にのみ導電性を有する異方性導電接着シートにより薄板状表面電極を誘電体基板の表面に接着したことを特徴とする。   In order to achieve the first object, the present invention according to claim 1 is characterized in that the conductive fiber is oriented in the sheet thickness direction and is formed into a thin plate shape by an anisotropic conductive adhesive sheet having conductivity only in the sheet thickness direction. The surface electrode is adhered to the surface of the dielectric substrate.

その実施形態である請求項2に係る発明は、異方性導電接着シートの導電性繊維がニッケルファイバーである。
同じく請求項3に係る発明は、薄板状表面電極の材質がチタン、誘電体基板の材質がセラミックスである。
請求項4に係る発明は、薄板状表面電極と対向する内部電極が誘電体基板の内部に埋設されている。
In the invention according to claim 2, which is an embodiment thereof, the conductive fibers of the anisotropic conductive adhesive sheet are nickel fibers.
Similarly, in the invention according to claim 3, the material of the thin plate-like surface electrode is titanium, and the material of the dielectric substrate is ceramic.
In the invention according to claim 4, the internal electrode facing the thin plate-like surface electrode is embedded in the dielectric substrate.

上記第2の課題も達成するため、請求項に係る発明は、薄板状表面電極を接地される接地電極とし、内部電極を、高電圧を印加されて薄板状表面電極へ向かって誘電体バリア放電を生ずる放電電極とする。 In order to achieve the second object, the invention according to claim 5 is characterized in that the thin plate-like surface electrode is a ground electrode to be grounded, and the internal electrode is directed to the thin plate-like surface electrode by applying a high voltage. A discharge electrode that generates discharge is used.

その実施形態である請求項に係る発明は、上記第3の課題も達成するため、薄板状表面電極に複数の尖鋭部を一体に突出形成し、これら尖鋭部を内部電極と対向させる。 In order to achieve the third problem, the invention according to claim 6 as an embodiment thereof forms a plurality of sharpened portions integrally projecting on the thin plate-like surface electrode, and these sharpened portions are opposed to the internal electrodes.

同じく請求項に係る発明は、誘電体基板の表面に長溝を形成し、薄板状表面電極の複数の尖鋭部の尖端を、この長溝の側縁に沿わせる。
同じく請求項に係る発明は、薄板状表面電極に、誘電体基板の長溝を挟んで平行な両側の長板状側部を設け、両側の長板状側部から長溝に向かって複数の尖鋭部を突出形成する。
同じく請求項に係る発明は、誘電体基板の裏面に、薄板状表面電極及び内部電極を外部接続する端子部を設ける。
Similarly, in the invention according to claim 7 , long grooves are formed on the surface of the dielectric substrate, and the sharp edges of the plurality of sharp portions of the thin plate-like surface electrode are arranged along the side edges of the long grooves.
Similarly, in the invention according to claim 8 , the thin plate-like surface electrode is provided with long plate-like side portions on both sides parallel to each other across the long groove of the dielectric substrate, and a plurality of sharp edges are formed from the long plate-like side portions on both sides toward the long groove. Protrusions are formed.
Similarly, in the invention according to claim 9 , a terminal portion for externally connecting the thin plate-like surface electrode and the internal electrode is provided on the back surface of the dielectric substrate.

本発明による平板状イオン発生電極は、薄板状表面電極が、導電性繊維をシート厚さ方向に配向させてシート厚さ方向にのみ導電性を有する異方性導電接着シートにより、誘電体基板の表面に接着されているので、薄板状表面電極と誘電体基板表面との間におけるマイグレーションが、誘電体基板表面に拡散し、さらに誘電体基板内部へ浸透して行くのを、異方性導電接着シートの導電性繊維により抑制することができ、長時間放電させても電極の劣化や静電容量の増加が少なく、耐久性が高いとともに、放電性能(イオン生成性能)の経時的低下も小さい。   The plate-like ion generating electrode according to the present invention has a thin plate-like surface electrode which is made of an anisotropic conductive adhesive sheet having a conductive fiber oriented in the sheet thickness direction and having conductivity only in the sheet thickness direction. Since it is bonded to the surface, the migration between the thin plate-like surface electrode and the surface of the dielectric substrate diffuses to the surface of the dielectric substrate and further penetrates into the dielectric substrate. It can be suppressed by the conductive fibers of the sheet, and even if it is discharged for a long time, there is little deterioration of the electrode and increase in capacitance, high durability, and a decrease in discharge performance (ion generation performance) with time.

請求項2に係る発明は、異方性導電接着シートの導電性繊維がニッケルファイバーであるので、低圧力で接合が可能であるとともに、経路に切れ目なく導通が可能であるため、はんだ同様の導電性を得ることができる。
請求項3に係る発明は、薄板状表面電極の材質が、耐腐食性の高い金属であるチタン、誘電体基板の材質が、オゾンや紫外線への耐性が高い誘電体であるセラミックスであるので、材質の面でも、耐久性の向上が図れる。
In the invention according to claim 2, since the conductive fiber of the anisotropic conductive adhesive sheet is a nickel fiber, it can be joined at a low pressure and can be continuously connected to the path. Sex can be obtained.
In the invention according to claim 3, since the material of the thin plate-like surface electrode is titanium which is a metal having high corrosion resistance, and the material of the dielectric substrate is ceramic which is a dielectric having high resistance to ozone and ultraviolet rays, Durability can also be improved in terms of material.

請求項4に係る発明は、薄板状表面電極と対向する内部電極が誘電体基板の内部に埋設されているので、薄板状表面電極によるマイグレーションを上記のように抑制する一方、内部電極は誘電体基板で保護し、これら電極間での誘電体バリア放電を安定して生成できる。 In the invention according to claim 4, since the internal electrode facing the thin plate-like surface electrode is embedded in the dielectric substrate, the migration by the thin plate-like surface electrode is suppressed as described above, while the internal electrode is made of a dielectric material. It is protected with a substrate, and a dielectric barrier discharge between these electrodes can be stably generated.

請求項に係る発明は、薄板状表面電極を接地される接地電極とし、内部電極を、高電圧を印加されて薄板状表面電極へ向かって誘電体バリア放電を生ずる放電電極としたので、高電圧を印加される放電電極を誘電体基板表面に形成して露出させた従来に比べ、安全であるとともに、電極の劣化もはるかに少ない。 In the invention according to claim 5 , since the thin plate surface electrode is a ground electrode to be grounded, and the internal electrode is a discharge electrode that generates a dielectric barrier discharge toward the thin plate surface electrode when a high voltage is applied. Compared to the conventional case where a discharge electrode to which a voltage is applied is formed and exposed on the surface of the dielectric substrate, the discharge electrode is safe and the deterioration of the electrode is much less.

本発明による平板状イオン発生電極は、高電圧電源に接続したときにコンデンサ負荷となることから、電源への負荷を軽くするために、誘電体基板内部に埋設された内部電極は、誘電体基板表面の薄板状表面電極との対向面積ができるだけ少ない方が良い。そこで、請求項に係る発明は、この点を考慮して、薄板状表面電極に複数の尖鋭部を一体に突出形成し、これら尖鋭部を内部電極と対向させたので、内部電極からの放電が、接地電極となる薄板状表面電極の複数の尖鋭部の尖端に向かい、小さいコンデンサ負荷で放電するので、放電特性が良い。 Since the plate-like ion generating electrode according to the present invention becomes a capacitor load when connected to a high-voltage power supply, in order to reduce the load on the power supply, the internal electrode embedded in the dielectric substrate is a dielectric substrate. It is better that the area facing the thin plate-like surface electrode is as small as possible. In view of this, the invention according to claim 6 takes this point into consideration and integrally forms a plurality of sharpened portions on the thin plate-like surface electrode, and these sharpened portions are opposed to the internal electrodes. However, since it discharges with the small capacitor | condenser load toward the point of several sharp parts of the thin plate-like surface electrode used as a ground electrode, it has a favorable discharge characteristic.

請求項に係る発明は、誘電体基板の表面に長溝を形成し、薄板状表面電極の複数の尖鋭部の尖端を、この長溝の側縁に沿わせたので、尖端の周りに充分なイオン生成空間を確保しながら、放電の指向性を良くすることができるので、イオン生成効率が向上する。 In the invention according to claim 7 , since the long groove is formed on the surface of the dielectric substrate, and the sharp edges of the plurality of sharp portions of the thin plate-like surface electrode are along the side edges of the long groove, sufficient ions are formed around the sharp edges. Since the directivity of discharge can be improved while securing the generation space, the ion generation efficiency is improved.

請求項に係る発明は、薄板状表面電極に、誘電体基板の長溝を挟んで平行な両側の長板状側部を設け、両側の長板状側部から長溝に向かって複数の尖鋭部を突出形成したので、単位面積当たりの放電箇所数を多くして、イオン発生量を増やすことができる。 According to an eighth aspect of the present invention, a thin plate-like surface electrode is provided with long plate-like side portions on both sides parallel to each other across the long groove of the dielectric substrate, and a plurality of sharp portions are formed from the long plate-like side portions on both sides toward the long groove. Thus, the number of discharge points per unit area can be increased, and the amount of generated ions can be increased.

請求項に係る発明は、誘電体基板の裏面に、内部電極を外部接続する端子部を設けたので、誘電体基板の裏側から高電圧を印加でき、安全である。 In the invention according to claim 9 , since the terminal portion for externally connecting the internal electrode is provided on the back surface of the dielectric substrate, a high voltage can be applied from the back side of the dielectric substrate, which is safe.

次に、本発明の実施例を図面に基づいて詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例の平板状イオン発生電極は、図1〜図6に示すように、セラミックス製長板である表側誘電体基板1と同じくセラミックス製長板である裏側誘電体基板2との間に、ステンレスや銅などの金属薄板である内部電極3を挟んで積層一体化し、表側誘電体基板1の表面に、チタン製薄板である薄板状表面電極4を異方性導電接着シート5により接着したものである。   As shown in FIGS. 1 to 6, the plate-like ion generating electrode of this example is between the front dielectric substrate 1 that is a ceramic long plate and the back dielectric substrate 2 that is a ceramic long plate, Laminated and integrated with an internal electrode 3 which is a metal thin plate such as stainless steel or copper, and a thin plate-like surface electrode 4 which is a titanium thin plate is bonded to the surface of the front dielectric substrate 1 by an anisotropic conductive adhesive sheet 5 It is.

異方性導電接着シート5は、図7に示すように、導電性繊維6をシート厚さ方向に配向させてシート厚さ方向にのみ導電性を有する組織となっている。このような異方性導電接着シート5としては、例えば、米国Btech社が提供している異方性導電接着フィルム(ACF)が好適である。このフィルムは、ニッケルファイバーを厚さ方向に容積比最大40%まで配向させ、上下両面から軽く圧力をかけることにより、ファイバーの上下の先端同士を、薄板状表面電極4と表側誘電体基板1とに接触させることができる。また、通常の異方性導電接着フィルムと比較して、低圧力で接合が可能であるとともに、導電性フィラーが粒子ではなく繊維状に充填させてあるため、経路に切れ目なく導通が可能で、はんだ同様の導電性(Z方向:<150μオーム,1.5cm2,100μm厚にて)を有している。   As shown in FIG. 7, the anisotropic conductive adhesive sheet 5 has a structure having conductivity only in the sheet thickness direction by orienting the conductive fibers 6 in the sheet thickness direction. As such an anisotropic conductive adhesive sheet 5, for example, an anisotropic conductive adhesive film (ACF) provided by Btech, USA is suitable. In this film, nickel fibers are oriented in the thickness direction up to a maximum volume ratio of 40%, and light pressure is applied from both the upper and lower surfaces, so that the upper and lower ends of the fibers are placed between the thin plate-like surface electrode 4 and the front-side dielectric substrate 1. Can be contacted. In addition, it is possible to join at a low pressure compared to a normal anisotropic conductive adhesive film, and since the conductive filler is filled not in particles but in a fibrous form, it is possible to conduct without a break in the path, Conductivity similar to that of solder (Z direction: <150 μohm, 1.5 cm2, 100 μm thickness).

表側誘電体基板1の表面中央には、その裏面までは達しない長溝7が形成されている。
薄板状表面電極4は、この長溝7を挟んで平行な両側の長板状側部4a・4bを連続端部4cで連続させて一体に形成している。そして、両側の長板状側部4a・4bから長溝7に向かって突出する両側の尖鋭部4d・4eを、長手方向に間隔をおいて複数箇所に、しかも、各尖鋭部4d・4eの尖端を長溝7の側縁に沿わせて一体に形成している。連続端部4cには、表裏の誘電体基板1・2の端子孔8に嵌め込まれた接地用端子9が接続されている。この接地用端子9の先端面は、裏側の誘電体基板2の裏面に露出している。薄板状表面電極4の表面全体はシリコン膜でコーティングされている
A long groove 7 that does not reach the back surface is formed in the center of the front surface of the front dielectric substrate 1.
The thin plate-like surface electrode 4 is integrally formed by connecting the long plate-like side portions 4a and 4b on both sides parallel to each other with the long groove 7 therebetween at the continuous end portion 4c. Further, the sharp portions 4d and 4e on both sides protruding from the long plate-like side portions 4a and 4b on both sides toward the long groove 7 are provided at a plurality of positions at intervals in the longitudinal direction, and the sharp ends of the sharp portions 4d and 4e. Are integrally formed along the side edge of the long groove 7. Connected to the continuous end 4c is a grounding terminal 9 fitted in the terminal hole 8 of the front and back dielectric substrates 1 and 2. The front end surface of the ground terminal 9 is exposed on the back surface of the dielectric substrate 2 on the back side. The entire surface of the thin plate-like surface electrode 4 is coated with a silicon film.

内部電極3は、全体としては長板状であるが、薄板状表面電極4の複数箇所の尖鋭部4d・4eと対向させるため、円形に面積を大きくした対向電極部3aを複数箇所に形成しているとともに、これよりも小さい円形で面積を大きくした端子接続部3bを形成している。各対向電極部3aは、各箇所の尖鋭部4d・4eの尖端を含む所要面積と対向している。端子接続部3bには、裏側誘電体基板2の端子孔10に嵌め込まれた高電圧印加用端子11が接続されている。この高電圧印加用端子11の先端面も、裏側の誘電体基板2の裏面に露出している。   The internal electrode 3 has a long plate shape as a whole, but in order to oppose the sharp portions 4d and 4e at a plurality of locations on the thin plate-like surface electrode 4, a counter electrode portion 3a having a circular area is formed at a plurality of locations. In addition, a terminal connection portion 3b having a smaller circle and a larger area is formed. Each counter electrode portion 3a is opposed to a required area including the sharp ends of the sharp portions 4d and 4e at each location. A high voltage applying terminal 11 fitted in the terminal hole 10 of the back side dielectric substrate 2 is connected to the terminal connecting portion 3b. The front end surface of the high voltage application terminal 11 is also exposed on the back surface of the dielectric substrate 2 on the back side.

このように構成された平板状イオン発生電極は、高電圧印加用端子11を高電圧電源に接続して内部電極3にプラス・マイナスの高電圧を印加することにより、内部電極3を放電電極として使用し、また、接地用端子9をアースに接続して薄板状表面電極4を接地電極として使用する。   The plate-like ion generating electrode configured as described above has the internal electrode 3 as a discharge electrode by connecting the high voltage applying terminal 11 to a high voltage power source and applying a positive or negative high voltage to the internal electrode 3. In addition, the ground terminal 9 is connected to the ground, and the thin plate surface electrode 4 is used as the ground electrode.

内部電極3にプラス・マイナスの高電圧を印加すると、その各対向電極部3aから、接地されている薄板状表面電極4の両側の尖鋭部4d・4eの尖端へ向かい、表側誘電体基板1を介した誘電体バリア放電が生じ、尖鋭部4d・4eの尖端の周りにプラス・マイナスのイオンが生成される。表側誘電体基板1は、長溝7を形成した部分の厚さが薄くなっているとともに、両側の尖鋭部4d・4eが長溝7の側縁まで延びているので、両側の尖鋭部4d・4eの尖端へ向かう放電の指向性が良いとともに、その尖端周りに充分なイオン生成空間を確保できる。   When a plus / minus high voltage is applied to the internal electrode 3, the facing dielectric substrate 1 is moved from each counter electrode portion 3 a toward the tip of the sharp portions 4 d and 4 e on both sides of the thin plate-like surface electrode 4 that is grounded. A dielectric barrier discharge is generated, and positive and negative ions are generated around the tips of the sharp portions 4d and 4e. In the front-side dielectric substrate 1, the thickness of the portion where the long groove 7 is formed is thin, and the sharp portions 4d and 4e on both sides extend to the side edges of the long groove 7, so that the sharp portions 4d and 4e on both sides are formed. The directivity of the discharge toward the tip is good, and a sufficient ion generation space can be secured around the tip.

薄板状表面電極4は、シート厚さ方向にのみ導電性を有する異方性導電接着シート5により誘電体基板の表面に接着されているので、薄板状表面電極4と誘電体基板1表面との間におけるマイグレーションが、誘電体基板1表面に拡散し、さらに誘電体基板1内部へ浸透して行くのを、異方性導電接着シート5の導電性繊維6により抑制することができる。   Since the thin plate-like surface electrode 4 is adhered to the surface of the dielectric substrate by the anisotropic conductive adhesive sheet 5 having conductivity only in the sheet thickness direction, the thin plate-like surface electrode 4 and the surface of the dielectric substrate 1 are The conductive fibers 6 of the anisotropic conductive adhesive sheet 5 can suppress the migration between them from diffusing to the surface of the dielectric substrate 1 and further penetrating into the dielectric substrate 1.

比較のために、薄板状表面電極4を銀ペーストによりセラミックスの誘電体基板1表面に接着したものを試作し、高電圧を1ケ月間連続して印加する放電試験をしたところ、放電開始直後から銀が誘電体基板1の表面に拡散するとともに、内部に浸透し、顕著なマイグレーションが確認された。静電容量の変化を測定したところ、時間の経過に従い静電容量が増加した。銀ペースト以外に、マイグレーションが比較的少ないと言われているニッケル粒子を主剤とした接着剤で接着したものについて、同様に放電試験をしたが、銀ペーストほどではないにしても、マイグレーションが確認された。   For comparison, a thin plate-like surface electrode 4 bonded to the surface of a ceramic dielectric substrate 1 with a silver paste was prototyped and subjected to a discharge test in which a high voltage was continuously applied for one month. As silver diffused on the surface of the dielectric substrate 1 and penetrated into the interior, significant migration was confirmed. When the change in capacitance was measured, the capacitance increased with time. In addition to the silver paste, a discharge test was conducted in the same manner on an adhesive bonded with nickel particles, which are said to have relatively little migration, but migration was confirmed even if not as much as the silver paste. It was.

これに対して、異方性導電接着シート5として、前述の米国Btech社製異方性導電接着フィルムを使用して接着した試作品について、同様に放電試験したところ、マイグレーションの進展は1ケ月経過後も確認されなかった。静電容量の変化を測定したところ、静電容量の増加は銀ペースト及びニッケル粒子接着剤の場合に比べ、ごく僅かであった。また、プラス・マイナスのイオン電流を測定したところ、プラス・マイナスのイオンバランスも良好であった。   On the other hand, as a result of conducting a discharge test in the same manner as the anisotropic conductive adhesive sheet 5 using the above-mentioned anisotropic conductive adhesive film manufactured by Btech in the United States, the progress of migration has elapsed for one month. It was not confirmed later. When the change in capacitance was measured, the increase in capacitance was negligible compared to the case of silver paste and nickel particle adhesive. Further, when the plus / minus ion current was measured, the plus / minus ion balance was also good.

本発明による平板状イオン発生電極は、除電器や帯電器やイオン発生器などの電極として広範囲に使用できる。   The flat plate ion generating electrode according to the present invention can be widely used as an electrode for a static eliminator, a charger, an ion generator or the like.

本発明の実施例である平板状イオン発生電極の平面図である。It is a top view of the flat ion generating electrode which is an Example of this invention. その側面図である。It is the side view. その分解斜視図である。FIG. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 同じくB−B線断面図である。It is a BB line sectional view similarly. 同じくC−C線断面図である。It is a CC sectional view similarly. 異方性導電接着シートの模式図である。It is a schematic diagram of an anisotropic conductive adhesive sheet.

符号の説明Explanation of symbols

1 表側誘電体基板
2 裏側誘電体基板
3 内部電極
4 薄板状表面電極
4a・4b 長板状側部
4c 連続端部
4d・4e 尖鋭部
5 異方性導電接着シート
6 導電性繊維
7 長溝
8 端子孔
9 接地用端子
10 端子孔
11 高電圧印加用端子
DESCRIPTION OF SYMBOLS 1 Front side dielectric substrate 2 Back side dielectric substrate 3 Internal electrode 4 Thin plate-like surface electrode 4a * 4b Long plate-like side part 4c Continuous edge part 4d * 4e Sharp part 5 Anisotropic conductive adhesive sheet 6 Conductive fiber 7 Long groove 8 Terminal Hole 9 Ground terminal 10 Terminal hole 11 High voltage application terminal

Claims (9)

導電性繊維をシート厚さ方向に配向させてシート厚さ方向にのみ導電性を有する異方性導電接着シートにより薄板状表面電極を誘電体基板の表面に接着したことを特徴とする平板状イオン発生電極。   A plate-like ion characterized in that conductive fibers are oriented in the sheet thickness direction and a thin plate-like surface electrode is adhered to the surface of the dielectric substrate by an anisotropic conductive adhesive sheet having conductivity only in the sheet thickness direction. Generating electrode. 異方性導電接着シートの導電性繊維がニッケルファイバーであることを特徴とする請求項1に記載の平板状イオン発生電極。   The plate-like ion generating electrode according to claim 1, wherein the conductive fibers of the anisotropic conductive adhesive sheet are nickel fibers. 薄板状表面電極の材質がチタン、誘電体基板の材質がセラミックスであることを特徴とする請求項1又は2に記載の平板状イオン発生電極。   3. The flat plate ion generating electrode according to claim 1, wherein the material of the thin plate surface electrode is titanium and the material of the dielectric substrate is ceramic. 薄板状表面電極と対向する内部電極が誘電体基板の内部に埋設されていることを特徴とする請求項1ないしのいずれかに記載の平板状イオン発生電極。 Tabular ion generating electrode according to any of claims 1 to 3 internal electrode facing the thin plate surface electrode is characterized in that it is embedded in the dielectric substrate. 薄板状表面電極を接地される接地電極とし、内部電極を、高電圧を印加されて薄板状表面電極へ向かって誘電体バリア放電を生ずる放電電極としたことを特徴とする請求項に記載の平板状イオン発生電極。 A ground electrode which is grounded lamellar surface electrodes, the internal electrodes, according to claim 4, characterized in that the application of a high voltage to the discharge electrode toward the laminar surfaces electrodes produce a dielectric barrier discharge Flat ion generating electrode. 薄板状表面電極に複数の尖鋭部を一体に突出形成し、これら尖鋭部を内部電極と対向させたことを特徴とする請求項又はに記載の平板状イオン発生電極。 6. The flat plate ion generating electrode according to claim 4 or 5 , wherein a plurality of sharpened portions are integrally formed on the thin plate-like surface electrode so as to face the internal electrode. 誘電体基板の表面に長溝を形成し、薄板状表面電極の複数の尖鋭部の尖端を、この長溝の側縁に沿わせたことを特徴とする請求項ないしのいずれかに記載の平板状イオン発生電極。 Forming a long groove into the surface of the dielectric substrate, flat plate according to a plurality of tip of the pointed portion of the thin plate surface electrodes, in any one of claims 4 to 6, characterized in that along a side edge of the long groove Ion generating electrode. 薄板状表面電極に、誘電体基板の長溝を挟んで平行な両側の長板状側部を設け、両側の長板状側部から長溝に向かって複数の尖鋭部を突出形成したことを特徴とする請求項に記載の平板状イオン発生電極。 The thin plate-like surface electrode is provided with long plate-like side portions on both sides parallel to each other across the long groove of the dielectric substrate, and a plurality of sharp portions project from the long plate-like side portions on both sides toward the long groove. The flat ion generating electrode according to claim 7 . 誘電体基板の裏面に、薄板状表面電極及び内部電極を外部接続する端子部を設けたことを特徴とする請求項ないしのいずれかに記載の平板状イオン発生電極。 The back surface of the dielectric substrate, tabular ion generating electrode according to any one of claims 4 to 8, characterized in that a terminal portion for external connection lamellar surface electrode and the internal electrode.
JP2008075792A 2008-03-24 2008-03-24 Flat ion generating electrode Active JP5094492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075792A JP5094492B2 (en) 2008-03-24 2008-03-24 Flat ion generating electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075792A JP5094492B2 (en) 2008-03-24 2008-03-24 Flat ion generating electrode

Publications (2)

Publication Number Publication Date
JP2009231087A JP2009231087A (en) 2009-10-08
JP5094492B2 true JP5094492B2 (en) 2012-12-12

Family

ID=41246253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075792A Active JP5094492B2 (en) 2008-03-24 2008-03-24 Flat ion generating electrode

Country Status (1)

Country Link
JP (1) JP5094492B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091668B1 (en) * 2018-09-14 2020-03-20 주식회사 유니솔렉 Ion generating apparatus
US10980911B2 (en) 2016-01-21 2021-04-20 Global Plasma Solutions, Inc. Flexible ion generator device
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
US11344922B2 (en) 2018-02-12 2022-05-31 Global Plasma Solutions, Inc. Self cleaning ion generator device
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721561B2 (en) * 2011-06-29 2015-05-20 春日電機株式会社 Ion emitter
KR101904939B1 (en) * 2011-12-15 2018-10-08 엘지전자 주식회사 Electrode structure for ion generation, method for production same and ion generator using same
KR102076660B1 (en) * 2012-06-21 2020-02-12 엘지전자 주식회사 An air conditioner and a control method the same
CN105445359A (en) * 2014-08-29 2016-03-30 国家电网公司 Air ion mobility sensor
KR101995298B1 (en) * 2017-12-21 2019-10-17 (주)이림전자 Cluster Ionizer For Vehicle using needle-shaped electrodes
CN111589670B (en) * 2020-06-29 2022-05-24 深圳至峰精密制造有限公司 Glue spraying method for assembling ion generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093320B2 (en) * 1991-05-31 2000-10-03 株式会社東芝 Ion generator
JP2987030B2 (en) * 1993-08-30 1999-12-06 シャープ株式会社 Corona discharger and method of manufacturing the same
JP2000348847A (en) * 1999-06-02 2000-12-15 Ricoh Co Ltd Ion generating device, electrifying device, transferring device, static eliminating device and image forming device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10980911B2 (en) 2016-01-21 2021-04-20 Global Plasma Solutions, Inc. Flexible ion generator device
US11283245B2 (en) 2016-08-08 2022-03-22 Global Plasma Solutions, Inc. Modular ion generator device
US11695259B2 (en) 2016-08-08 2023-07-04 Global Plasma Solutions, Inc. Modular ion generator device
US11344922B2 (en) 2018-02-12 2022-05-31 Global Plasma Solutions, Inc. Self cleaning ion generator device
KR102091668B1 (en) * 2018-09-14 2020-03-20 주식회사 유니솔렉 Ion generating apparatus
US11581709B2 (en) 2019-06-07 2023-02-14 Global Plasma Solutions, Inc. Self-cleaning ion generator device

Also Published As

Publication number Publication date
JP2009231087A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5094492B2 (en) Flat ion generating electrode
TWI229879B (en) Electronic device
WO2014080894A1 (en) Photovoltaic apparatus
JP5470733B2 (en) Airflow generator
EP2803637B1 (en) Discharge device
CN106299098B (en) The manufacturing method of the outer electrode of COMMB-LED light sources
JP5552337B2 (en) Ion generator
JP5227281B2 (en) Electrostatic atomizer
JP2002126576A (en) Electrode for electric precipitator and air cleaner using the electrode
JP2000216001A (en) Rectangular chip resistor
WO2015133340A1 (en) Electrochemical device
KR101156604B1 (en) Ion cluster generating apparatus
JP2011028968A (en) Overvoltage protection component
JP2005338589A (en) Flexible circuit board connection structure of display panel
US11070034B2 (en) Method for controlling an ionic wind generator with an AC power source and a DC power source
JP2007012489A (en) Ion generating element and ion generating device equipped with this
US20120164521A1 (en) Galvanic Cell
JP6153768B2 (en) Ion generator and ion generator
JP2011096555A (en) Ion generator
CN113196877A (en) Organic EL panel
JP2019117687A (en) Cooler
KR101934580B1 (en) Flat-typed device
JP2010049857A (en) Ion generator
JP4132041B2 (en) Discharge element
JP5406671B2 (en) Static eliminator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250