WO2016035226A1 - 静電容量式タッチパネル - Google Patents

静電容量式タッチパネル Download PDF

Info

Publication number
WO2016035226A1
WO2016035226A1 PCT/JP2015/001648 JP2015001648W WO2016035226A1 WO 2016035226 A1 WO2016035226 A1 WO 2016035226A1 JP 2015001648 W JP2015001648 W JP 2015001648W WO 2016035226 A1 WO2016035226 A1 WO 2016035226A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
input operation
drive
voltage
electrode
Prior art date
Application number
PCT/JP2015/001648
Other languages
English (en)
French (fr)
Inventor
吉川 治
貴夫 今井
Original Assignee
Smk株式会社
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smk株式会社, 株式会社東海理化電機製作所 filed Critical Smk株式会社
Priority to EP15794045.3A priority Critical patent/EP3190485B1/en
Priority to CN201580001864.8A priority patent/CN105579941B/zh
Priority to JP2015515339A priority patent/JP5926454B1/ja
Priority to US14/941,655 priority patent/US9696862B2/en
Publication of WO2016035226A1 publication Critical patent/WO2016035226A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention relates to a capacitive touch panel that detects an input operation position from an arrangement position on an insulating panel of a detection electrode whose capacitance changes as an input operation body approaches, and is not particularly affected by noise.
  • the present invention relates to a capacitive touch panel that reliably detects an input operation position.
  • a capacitive touch panel that detects an input position by an input operation body such as a finger detects a detection electrode whose stray capacitance increases when the input operation body approaches, and determines the input operation position from the arrangement position of the detection electrode.
  • Self-capacitance method (1-wire type) to detect and output an AC detection signal of a predetermined voltage level to the drive electrode, detect the detection electrode where the detection voltage of the detection signal decreases as the input operating body approaches, It is divided into a mutual capacitance method (two-wire type) that detects the input operation position from the arrangement position of the detection electrode.
  • the drive electrode is not wired, so the structure is simplified.
  • the stray capacitance to be detected is 10 to 20 pF, which is a minute level that is difficult to detect, the latter mutual capacitance method is generally adopted. Yes.
  • a plurality of drive electrodes that output detection signals and a plurality of detection electrodes that detect a detection voltage expressed by the detection signals are wired orthogonally to each other.
  • the voltage change level of the detection voltage is monitored at each crossing position where the input operation body approaches, and the input operation position is detected from the crossing position of the detection electrodes where the voltage change level becomes a predetermined set value or more when the input operation body approaches.
  • Such a capacitive touch panel detects the input operation position from a slight change in capacitance around the detection electrode, so that noise generated in a display device arranged around the detection electrode and surrounding floating capacitance are charged.
  • the input operation position may be erroneously detected due to these noises.
  • Patent Document 2 extracts an AC signal component as a noise signal from the analog signal detected by the sensor to detect the input operation position, and calculates the phase.
  • a touch panel has been proposed in which an input operation position is detected from an analog signal that has been inverted 180 degrees and added to an original analog signal to cancel a noise signal.
  • Patent Document 3 discloses a capacitive touch panel that includes a sub sensor unit for removing noise in addition to a main sensor unit for detecting an input operation position on the same input operation surface of the touch panel. Are listed.
  • various noise signals generated in the vicinity of the input operation surface are received by both the main sensor unit and the sub sensor unit.
  • the signal received by the sub sensor unit is subtracted from the signal to remove noise, and the input operation position is detected by the output from the subtraction unit consisting only of the signal by the input operation.
  • the capacitive touch panel described in Patent Document 3 needs to be provided with a sub sensor unit in addition to the main sensor unit for detecting the input operation position. Since the main sense lines (detection electrodes) and a large number of drive lines (drive electrodes) intersect in a matrix, wiring the sub sense lines of the sub sensor section on the same input operation surface with insulation from these lines The wiring becomes complicated, the structure is complicated, and the manufacturing process of the touch panel becomes complicated.
  • the sub sense line signals are subtracted from the signals detected for all the main sense lines, if the input operation surface is enlarged and the number of main sense lines to be wired becomes large, the above subtraction processing is performed for each sense line. Therefore, the input operation position detection time becomes longer, and the input operation position cannot be detected at high speed.
  • the generation time of general electrostatic noise is 5 ⁇ sec to 10 ⁇ sec, but by charging the stray capacitance, the potential of the whole of the detection electrodes rises for a few seconds, and base noise is added to this to add a plurality of positions.
  • the input operation position exceeding the input determination threshold may be erroneously detected, and a touch panel used as an input device such as an in-vehicle car navigation system may generate high-frequency noise of about 4 seconds when the engine is started.
  • Patent Document 2 and Patent Document 3 described above the influence of noise generated for a long time cannot be avoided.
  • the present invention has been made in consideration of such conventional problems, and can easily determine a noise signal and change an input operation position with high accuracy without significantly changing the structure of a conventional touch panel.
  • An object is to provide a capacitive touch panel for detection.
  • the capacitive touch panel according to claim 1 is provided at an equal interval in the first direction in an input operation area that is sufficiently wider than the width of the input operation body along the first direction of the insulating panel.
  • a plurality of drive regions DV (m) that are wired along the first direction and intersect each of the plurality of detection electrodes S (n) with an insulation interval, respectively, and are specified from the plurality of drive regions DV (m) Drive region DV (m), a drive control unit that outputs a detection signal to the selected drive region DV (m), and a specific detection electrode S (n) in order from a plurality of detection electrodes S (n)
  • a detection electrode S (n) whose capacitance changes and a voltage change level R (n, m) is equal to or higher than a predetermined input determination threshold and a drive region DV (m) that outputs a detection signal in the vicinity thereof are identified, From the wiring position (n) in the first direction on the insulating panel of the specified detection electrode S (n) and the wiring position (m) in the second direction on the insulating panel in the specified drive region DV (m) Position detection to detect input operation positions in the first and second directions A capacitive touch panel and means, Capacitance change determination means for comparing the voltage change level R (n, m) of the detection electrode S (n) detected by the capacitance detection means with a detection threshold value set to a predetermined value less than the input determination threshold value, and drive control While the unit outputs the detection signal to any selected drive region DV (m), the voltage change levels R (n, m) of all the detection electrodes S (n) selected by the electrode selection unit are If the voltage change level R (n,
  • the distance between the detection electrodes S (n) wired on both sides in the first direction of the input operation area is longer than that of the input operation body, even if the input operation body approaches the input operation area, either of the drive control units While the detection signal is output to the selected drive region DV (m), the voltage change levels R (n, m) of all the detection electrodes S (n) including both sides do not exceed the detection threshold. .
  • the electrode selection unit selects all the detection electrodes S (n)
  • the voltage change level R (n, m) of all the detection electrodes S (n) when noise continuously occurs during a time exceeding one scanning period in which the electrode selection unit selects all the detection electrodes S (n), the voltage change level R (n, m) of all the detection electrodes S (n).
  • this is equal to or greater than the detection threshold, it can be identified as noise generated in the detection electrode for a relatively long time by distinguishing from the input operation by the input operation body, and the position detection means can detect the input operation position where a detection error may occur Is not detected.
  • the capacitive touch panel according to claim 2 is characterized in that the detection threshold is set to a value higher than a voltage change level R (n, m) of a detection voltage generated at least in the detection electrode S (n) due to base noise. To do.
  • the capacity change determination means ignores the voltage change level R (n, m) of the base noise itself and determines only noise that occurs for a long time.
  • the capacitive touch panel according to claim 3 is characterized in that the input determination threshold value is set to at least twice the detection threshold value.
  • the input operation position without significantly changing the configuration of the conventional capacitive touch panel, without detecting an input operation position that may cause a detection error due to noise that occurs for a relatively long time,
  • the input operation position can be detected with high accuracy without being affected by noise.
  • the second aspect of the present invention it is possible to reliably respond to noise generated for a long time without being affected by base noise, and to prevent erroneous detection of an input operation position due to noise.
  • FIG. 1 is a circuit diagram of a capacitive touch panel 1.
  • FIG. It is explanatory drawing which shows the method of detecting an input operation position from voltage change level R (m, n). It is explanatory drawing which shows the voltage change level R (m, n) when long-term noise generate
  • a capacitive touch panel (hereinafter referred to as a touch panel) 1 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • the touch panel 1 has an entire surface of an insulating panel 2 that is much longer in the XY direction than an input operation body such as a finger, which will be described later, as an input operation area.
  • the 13 drive electrodes D1 to D13 with the rhombus pattern continuous along the 12 and the 12 detection electrodes S1 to S12 with the rhombus pattern continuous along the Y direction are wired with the crossing positions insulated from each other. ing.
  • the thirteen drive electrodes D1 to D13 are wired at equal pitches in the Y direction, and the twelve detection electrodes S1 to S12 are wired at equal pitches in the X direction, and the rhomboid pattern of one electrode is the rhombic pattern of the other electrode. Wiring is performed in a shape that complements the gaps of the patterns and appears as a staggered pattern as a whole.
  • the surface side of the drive electrodes D1 to D13 and the detection electrodes S1 to S12 wired in a grid pattern on the insulating panel 2 protects these electrodes, and an input operation body such as a finger directly touches these electrodes to cause an error. In order not to operate, it is covered with a transparent insulating sheet (not shown). That is, the touch panel 1 according to the present embodiment performs an input operation by touching or bringing the input operation body into contact with the transparent insulating sheet, and the drive electrode D and the input when the input operation body approaches through the transparent insulating sheet.
  • the increase in the capacitance between the operating bodies is read from the voltage change level R (m, n) of the detection voltage appearing on the detection electrode S (n) near the input operating body, and the input operation position is detected.
  • the pitch between the drive electrodes D1 to D13 and the detection electrodes S1 to S12 can be adjusted regardless of which of the input operation areas on the insulating panel 2 is the input operation body.
  • the pitch is such that the input operation position can be detected, and here, for example, all are wired at a pitch of 4 mm.
  • each of the drive electrodes D1 to D13 is supplied to a detection voltage generation circuit 3 that outputs a detection signal having a pulse height Vo as a rectangular wave AC signal via a damping resistor 6 that removes noise.
  • a detection voltage generation circuit 3 that outputs a detection signal having a pulse height Vo as a rectangular wave AC signal via a damping resistor 6 that removes noise.
  • input / output ports P1 to P13 of the microcomputer 4 are connected to connection points of the drive electrodes D1 to D13 and the damping resistor 6 corresponding to the drive electrodes D1 to D13.
  • the input / output port P When the input / output port P is in the OFF mode in which the input / output port P is in the output port state, the potential of the drive electrodes (D1, D5, D13 in the figure) to which the input / output port is connected is the output port.
  • the detection signal of the rectangular wave AC signal output from the detection voltage generating circuit 3 is stabilized at its input / output port P. Is not output to the drive electrode D (D1, D5, D13 in the figure) connected to the.
  • the input port P when the input / output port P is in the ON mode in which the input / output port P is in the input port state, the input port P is in a high impedance state.
  • the wave AC signal does not flow into the input / output port P (P2 to P4 in the figure), and a detection signal based on the rectangular wave AC signal is applied to the drive electrodes D (D2 to D4 in the figure) connected to the input / output port P. Is output. That is, the microcomputer 4 outputs the detection signal to the drive electrode D to which the input / output port P is connected only by setting any one or more input / output ports P to the output port or the input port state in any order. To control.
  • the three drive electrodes D adjacent in the Y direction are grouped into the drive region DV (m), and the drive region DV (m) adjacent in the Y direction and the drive region.
  • DV (n ′) overlaps in the drive electrode D wired between them, and the overlapped drive electrode D constitutes any drive region DV (m), DV (n ′).
  • six types of drive regions DV (m) (m is an integer from 1 to 6) are set from the 13 drive electrodes D wired to the insulating panel 2.
  • the microcomputer 4 sets the input / output port P corresponding to the drive region DV (m) in the order of the drive region DV (m) along the Y direction to 0N mode, and configures the three drive regions DV (m).
  • a rectangular wave AC signal synchronized with the drive electrode D is output, and a detection signal having a pulse height Vo is output.
  • the detection signal can be output to all the drive electrodes D wired in the input operation area of the insulating panel 2 by performing the drive control six times for outputting the detection signal for each drive area DV (m).
  • Twelve detection electrodes S (n) (n is an integer from 1 to 12) are connected to a multiplexer 7 whose connection with the voltage detection circuit 4a of the microcomputer 4 is switched under the control of the microcomputer 4.
  • the microcomputer 4 sequentially switches the connection with the twelve detection electrodes S (n) every drive control period (hereinafter referred to as one line scanning cycle TL) of each drive region DV (m), and switches the detection electrodes S that are switched and connected.
  • the detection voltage appearing in (n) is connected to the voltage detection circuit 4a of the microcomputer 4.
  • the voltage detection circuit 4a outputs a detection signal to the three drive electrodes D in the drive region DV (m), whereby a capacitance C 0 between the detection electrodes S (n) intersecting the drive region DV (m).
  • the pulse height (detection voltage) of the rectangular wave AC signal appearing on the detection electrode S (n) is read out via. Since the capacitance C 0 is a substantially constant value, the detection voltage is normally proportional to the output voltage of the detection signal unless the input operating body approaches and the stray capacitance in the drive region DV (m) does not change. It does not change in the voltage V 0.
  • the microcomputer 4 determines from the amount of change in the detection voltage.
  • the change amount of the detected voltage is represented by a voltage change level R (m, n) obtained by inverting the potential difference between the normal voltage V 0 and the detection voltage detected by the voltage detection circuit 4a. . Therefore, the voltage change level R (m, n) represents a difference in which the detection voltage decreases as the input operating body approaches the normal voltage V 0.
  • the drive region DV (m) and the detection electrode S When a dielectric material having a dielectric constant higher than that of air such as water droplets adheres during n), the detection voltage may be higher than the normal voltage V 0 set by calibration. Therefore, the voltage change level R (m, n) when the detected voltage is equal to the normal voltage V 0 is set to an intermediate value (128d for 8 bits). And the detected voltage change level R (m, n) is ignored.
  • the microcomputer 4 multiplexes all the detection electrodes S (n) crossing the drive region DV (m) that outputs the detection signal for each line scanning cycle TL for driving and controlling each drive region DV (m). 1 and repeats this from the drive area DV (1) to the DV direction (6) in the Y direction, and scans one frame of the entire input operation area to change the voltage in m rows and n columns as shown in FIG. Level R (m, n) is obtained.
  • the scanning cycle TL for one line is 4 msec
  • the scanning cycle Tf for one frame (one screen) is 24 msec for 4 msec * 6 lines.
  • the voltage change level R (m, n) is the amount of change in the detection voltage that appears in the detection electrode S (n) that intersects the drive region DV (m) while driving the drive region DV (m). Therefore, when the input operating body approaches the intersection position of the drive region DV (m) and the detection electrode S (n), the voltage change level R (m, n) increases. Therefore, the position detection unit of the microcomputer 4 compares the voltage change level R (m, n) of m rows and n columns, and determines the voltage change level R (m, n) that is the maximum value with respect to the surrounding intersection position. Compared with the input determination threshold value set to a predetermined value, when the input determination threshold value is greater than or equal to the input determination threshold value, it is detected that the input operation body has approached the vicinity of the intersection position as the input operation position.
  • the capacity change determination means of the microcomputer 4 compares the voltage change level R (m, n) of m rows and n columns with a detection threshold value set to a predetermined value less than the input determination threshold value, and any one of the drive regions DV (m When all voltage change levels R (m, n) detected for) are equal to or greater than the detection threshold, it is determined that long-term noise exceeding one line scanning period TL has occurred, and is equal to or greater than the input determination threshold in the same frame. Even if the voltage change level R (m, n) is detected, the position detector does not detect the input operation position.
  • the 12 detection electrodes S (n) are arranged from the left between the drive areas DV (m) that sequentially drive and control the six types of drive areas DV (m) from above the input operation area.
  • the voltage change level R (m, n) of 6 rows and 12 columns as illustrated in FIG. 3 and FIG. 4 is detected from the detection voltage of the selected detection electrode S (n) for one frame of the input operation region. To do.
  • the voltage change level R (m, n) binarized by the voltage detection circuit 4a is represented by a decimal value as shown in FIGS. 3 and 4, and the detection electrode S ( The case where the detected voltage read from n) is the normal voltage V 0 is “0”.
  • the detection voltage of the detection electrode S (n) varies depending on the base noise regardless of the approaching state of the input operation body.
  • Base noise is dark noise in which the detection voltage fluctuates due to uncertain factors such as circuit detection errors and changes in the surrounding environment.
  • the voltage change level R (m, n) of each detection electrode S (n) is 8 It fluctuates with a value less than. Accordingly, the detection threshold is set to “8” which is slightly higher than the maximum voltage change level R (m, n) of the base noise so that the capacity change determining means of the microcomputer 4 does not determine that the base noise is long-term noise. "Is set.
  • the input operation position is calculated based on the voltage change level R (m, n) having the maximum value and the surrounding voltage change level R (m, n).
  • the surrounding voltage change level R (m, n) is less than the input determination threshold.
  • the surrounding voltage change levels R (m, n) If n) is less than the input determination threshold but greater than or equal to the detection threshold, it is used to calculate the input operation position. That is, the detection threshold determines the minimum value of the voltage change level R (m, n) that may be used as data for calculating the input operation position.
  • the calculation of the input operation position is performed so that the ambient voltage change level R (m, n) slightly lower than the input determination threshold does not become less than the detection threshold due to the presence or absence of base noise, and conversely, it is originally less than the detection threshold.
  • the input determination threshold is set to the detection threshold “8”. “16”, which is obtained by adding “8” above the fluctuation value of the base noise.
  • FIG. 3 shows a normal state in which no long-term noise is generated, and an input operation is performed by bringing a finger, which is an input operation body, close to the intersection position of the drive region DV (4) and the detection electrode S (7).
  • 6 shows the voltage change level R (m, n) of 6 rows and 12 columns detected from the scanning of one frame.
  • the detection voltage read from the detection electrode S (n) is basically the normal voltage V 0 at the intersection position (m, n) far from the input operation position so that the capacitance with the input operation body can be ignored.
  • the voltage change level R (m, n) at the intersection (m, n) is “0”, but fluctuates by a value of about 0 to 7 due to the base noise.
  • the voltage change level R (4, 7) at the intersection position (4, 7) in the vicinity of the input operation position is a maximum value compared with the surrounding area, and is “90” exceeding the input determination threshold value “16”. Therefore, it is estimated that the vicinity of the intersection position (4, 7) where the maximum value is detected in the X direction and the Y direction in the figure is the input operation position.
  • the voltage change level R (m, n) at any of the crossing positions may be a maximum value due to common mode noise or detection error regardless of the input operation body. In order to discriminate occurrence, it is ignored when the maximum value is less than the input determination threshold “16”, and the following input operation position is not calculated.
  • the detection of the input operation position is repeatedly performed for each intersection position.
  • the maximum value exceeding the input determination threshold “16” is only “90” at the intersection position (4, 7) between the drive region DV (4) and the detection electrode S (7). 4 and 7), the voltage change level R (m, n) (indicated by hatching in the figure) at eight crossing positions adjacent to the detection threshold “8” is compared with the voltage change level R ( m, n) are valid data used for calculating the input operation position.
  • the detection of the input operation position x in the X direction is obtained from the weighted average value in the X direction of valid data. That is, for each wiring position on the insulating panel 2 of the twelve detection electrodes S (n), “16” is assigned to the initial value, and “32” is assigned to the pitch in the X direction and weighted. The reason why the weight of the detection electrode S (1) is set to “16” is that the influence of the input operation body is received only from one side in the X direction.
  • the effective data is summed in the Y direction for each detection electrode S (6-8) to calculate Sum (6) “110”, Sum (7) “177”, Sum (8) “88”, and The total “375” is calculated, and the total value Sum (6-8) for each detection electrode S (6-8) is multiplied by the weight assigned to the wiring position of the detection electrode S (6-8).
  • the sum “77296” is calculated.
  • the input operation position in the X direction obtained from the weighted average is 206.1 of “77296” / “375”, and the position of 206.1 weighted in the X direction (detection electrode S (6) and detection electrode S (7) Is detected as the input operation position.
  • the detection of the input operation position y in the Y direction is obtained from the weighted average value in the Y direction of valid data.
  • “16” is assigned to the interval between the six types of drive areas DV (m), and is incremented by “16” for each intermediate position of each drive area DV (m).
  • the effective data is summed in the X direction for each drive area DV (3-5) to calculate Sum (3) “80”, Sum (4) “194”, and Sum (5) “101”.
  • the total “375” is calculated, and the total value Sum (3-5) for each drive area DV (3-5) is multiplied by the weight assigned to the intermediate position in the Y direction of the drive area DV (3-5).
  • the input operation position in the Y direction obtained from the weighted average is 64.9 of “22436” / “375”, and the position of 64.9 weighted in the Y direction (drive area DV (4) and drive area DV (5)). Is detected as the input operation position.
  • FIG. 4 shows the driving region DV (3) during the scanning period Tf of one frame (one screen) for detecting the voltage change level R (m, n) at the intersection position (m, n) of the entire input operation region.
  • the touch panel 1 generates noise for about 5 msec from when the detection signal is output to the detection electrode S (10) and the detection signal S is output to the drive region DV (5) and the detection electrode S (4) is selected.
  • the voltage change level R (m, n) at each crossing position (m, n) is shown.
  • the voltage change level R (4, 7) at the crossing position (4, 7) is a maximum value of “100” exceeding the input determination threshold value “16”. Therefore, the vicinity thereof is estimated as the input operation position.
  • the capacitance change determination means of the microcomputer 4 detects all the detection electrodes S () in one line scanning cycle TL that outputs a detection signal to the drive region DV (4). Since all the voltage change levels R (4, n) detected for n) exceed the detection threshold value “8”, it is determined that noise has occurred for a time longer than one line scanning period TL, and input in this frame is performed. The operation position is not calculated. Accordingly, it is possible to avoid erroneous detection of an input operation or an input operation position due to generation of long-term noise.
  • the drive control is performed in the order of the drive areas DV (m) along the Y direction.
  • the drive areas DV (m) that are drive-controlled and the drive areas DV (m) are being driven and controlled.
  • the connection of each detection electrode S (n) can be in any order by the control by the microcomputer 4.
  • Each drive region DV (m) is composed of a plurality of drive electrodes D adjacent in the Y direction, but may be composed of a single drive electrode D.
  • the input determination threshold is set to twice the detection threshold, but any value can be set as long as the value is equal to or greater than the detection threshold.
  • the detection threshold is the lower limit of the voltage change level R (m, n) used for calculating the input operation position, but the voltage change level R (m, n) used for calculating the input operation position at another boundary value.
  • a range may be defined.
  • the present invention is suitable for a capacitive touch panel used in an environment where long-term noise of several milliseconds to several seconds is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

タッチパネルの構造を大幅に変更することなく、容易にノイズ信号を判別して、高精度に入力操作位置を検出する静電容量式タッチパネルを提供する。静電容量検出手段が検出した検出電極S(n)の電圧変化レベルR(n、m)を、検知閾値と比較する容量変化判定手段を備え、いずれかの駆動領域DV(m)に検出信号を出力している間に、全ての検出電極S(n)の電圧変化レベルR(n、m)が検知閾値以上である場合に、駆動領域DV(m)に検出信号を出力している長期間、ノイズが発生しているものとして、位置検出手段は入力操作位置を検出しない。

Description

静電容量式タッチパネル
 本発明は、入力操作体が接近することにより静電容量が変化する検出電極の絶縁パネル上の配置位置から、入力操作位置を検出する静電容量式タッチパネルに関し、特に、ノイズの影響を受けずに確実に入力操作位置を検出する静電容量式タッチパネルに関する。
 指などの入力操作体による入力位置を検出する静電容量式タッチパネルには、入力操作体が接近することにより浮遊容量が増大する検出電極を検出し、その検出電極の配置位置から入力操作位置を検出する自己容量方式(1線式)と、駆動電極へ所定電圧レベルの交流の検出信号を出力し、入力操作体が接近することにより検出信号の検出電圧が低下する検出電極を検出し、その検出電極の配置位置から入力操作位置を検出する相互容量方式(2線式)とに分けられる。前者の方式は、駆動電極を配線しないので、構造が簡略化されるが、検出する浮遊容量が10乃至20pFと検出が困難な微小レベルであるので、一般には後者の相互容量方式が採用されている。
 相互容量方式を採用する静電容量式タッチパネルでは、検出信号を出力する複数の駆動電極と、検出信号により表れる検出電圧を検出する複数の検出電極を互いに直交させて配線し、駆動電極と検出電極が交差する交差位置毎に検出電圧の電圧変化レベルを監視し、入力操作体が接近するとこにより電圧変化レベルが所定の設定値以上となる検出電極の交差位置から入力操作位置を検出している(例えば特許文献1)。
 このような静電容量式タッチパネルは、検出電極の周囲の微弱な静電容量の変化から入力操作位置を検出するので、その周囲に配置される表示装置に発生するノイズや周囲の浮遊容量に帯電する静電ノイズによる影響を受けやすく、これらのノイズが原因で入力操作位置を誤検出することがあった。
 このノイズを除去して入力操作位置の検出精度を向上させる方法として、特許文献2に、入力操作位置を検出するためにセンサーが検出したアナログ信号からAC信号成分をノイズ信号として抽出し、位相を180度反転させて原アナログ信号に加算し、ノイズ信号をキャンセルしたアナログ信号から入力操作位置を検出するタッチパネルが提案されている。
 また、特許文献3には、タッチパネルの同一入力操作面上に、入力操作位置を検出するための主センサ部の他に、ノイズを除去する為の副センサ部を備えた静電容量式タッチパネルが記載されている。特許文献3に記載の静電容量式タッチパネルでは、入力操作面付近に発生する種々のノイズ信号が主センサ部と副センサ部のいずれにも受信されるので、減算部において主センサ部が受信した信号から副センサ部が受信した信号を減算してノイズを除去し、入力操作による信号のみからなる減算部からの出力により入力操作位置を検出している。
特開2012-248035号公報 特開2001-125744号公報 特許第4955116号公報
 上述の特許文献2に開示されたタッチパネルでは、ノイズと定義する固有の周波数や振幅を予めフィルタに記憶させてノイズ信号を認識する必要があり、ノイズと定義されなかったノイズ信号を除去できない。また、フィードバックしてノイズ処理を行った後の原アナログ信号から入力操作位置を検出するので、ノイズ除去の為の処理時間が別に加わり、高速に入力操作位置を検出できない。
 また、特許文献3に記載された静電容量式タッチパネルは、入力操作位置を検出するための主センサ部の他に、副センサ部を設ける必要があり、特に静電容量式タッチパネルでは、多数の主センスライン(検出電極)と多数のドライブライン(駆動電極)をマトリックス状に交差させるので、同一の入力操作面上にこれらのラインと絶縁して副センサ部の副センスラインを配線するには複雑な配線となり、構造が複雑でタッチパネルの製造工程も煩雑となる。
 また、全ての主センスラインについて検出した信号から副センスラインの信号を減算処理するので、入力操作面が拡大して配線する主センスラインの数が多数となると、各センスラインについて上述の減算処理を行うこことなるので、入力操作位置の検出時間が長くなり、高速に入力操作位置を検出することができない。
 更に、一般の静電ノイズの発生時間は、5μsecから10μsecであるが、浮遊容量に帯電することによって多数の検出電極全体の電位が数秒間上昇し、これにベースノイズが加わって、複数の位置で入力判定閾値を超えた入力操作位置を誤検出することがあり、また、車載用のカーナビゲーションシステム等の入力装置として用いられるタッチパネルでは、エンジンの起動時に4秒程度の高周波ノイズが発生することがあり、上述の特許文献2や特許文献3に記載の方法では、これらの長時間発生するノイズによる影響を避けられない。
 本発明は、このような従来の問題点を考慮してなされたものであり、従来のタッチパネルの構造を大幅に変更することなく、容易にノイズ信号を判別して、高精度に入力操作位置を検出する静電容量式タッチパネルを提供することを目的とする。
 上述の目的を達成するため、請求項1の静電容量式タッチパネルは、絶縁パネルの第1方向に沿った入力操作体の幅より十分に幅広な入力操作領域に、第1方向に等間隔で第1方向と直交する第2方向に沿って配線される複数の検出電極S(n)と、一定電圧の交流の検出信号を発生する検出信号発生回路と、絶縁パネルの第2方向に等間隔で第1方向に沿って配線され、それぞれ前記複数の全ての検出電極S(n)と絶縁間隔を隔てて交差する複数の駆動領域DV(m)と、複数の駆動領域DV(m)から特定の駆動領域DV(m)を選択し、選択した駆動領域DV(m)へ検出信号を出力する駆動制御部と、複数の検出電極S(n)から順に特定の検出電極S(n)を選択する電極選択手段と、駆動制御部が選択した駆動領域DV(m)に検出信号を出力している間に、検出信号により電極選択手段が選択した検出電極S(n)に表れる検出電圧を検出し、入力操作体が接近しない状態からの検出電圧の電圧変化レベルR(n、m)を検出する静電容量検出手段と、入力操作体が接近することにより、選択した検出電極S(n)とその近傍で前記検出信号が出力される駆動領域DV(m)との静電容量が変化し、電圧変化レベルR(n、m)が所定の入力判定閾値以上となる検出電極S(n)とその近傍の検出信号を出力した駆動領域DV(m)を特定し、特定した検出電極S(n)の絶縁パネル上の第1方向の配線位置(n)と特定した駆動領域DV(m)の絶縁パネル上の第2方向の配線位置(m)から、入力操作体の第1方向と第2方向の入力操作位置を検出する位置検出手段とを備えた静電容量式タッチパネルであって、
 静電容量検出手段が検出した検出電極S(n)の電圧変化レベルR(n、m)を、入力判定閾値未満の所定値に設定する検知閾値と比較する容量変化判定手段を備え、駆動制御部がいずれかの選択した駆動領域DV(m)に検出信号を出力している間に、電極選択手段が選択した全ての検出電極S(n)の電圧変化レベルR(n、m)が、検知閾値以上である場合に、いずれかの検出電極S(n)の電圧変化レベルR(n、m)が入力判定閾値を超えても、位置検出手段は入力操作位置を検出しないことを特徴とする。
 入力操作領域の第1方向の両側に配線される検出電極S(n)間の距離は、入力操作体より長いので、入力操作体が入力操作領域に接近しても、駆動制御部がいずれかの選択した駆動領域DV(m)に検出信号を出力している間に、両側を含む全ての検出電極S(n)の電圧変化レベルR(n、m)が検知閾値以上となることはない。一方、電極選択手段が全ての検出電極S(n)を選択する一走査周期を超える時間に継続してノイズが発生すると、全ての検出電極S(n)の電圧変化レベルR(n、m)が、検知閾値以上となるので、入力操作体による入力操作と識別して比較的長時間検出電極に発生するノイズと判別でき、位置検出手段はノイズにより検出誤差の生じる可能性のある入力操作位置を検出しない。
 請求項2の静電容量式タッチパネルは、検知閾値を、少なくともベースノイズにより検出電極S(n)に発生する検出電圧の電圧変化レベルR(n、m)より高い値に設定することを特徴とする。
 容量変化判定手段は、ベースノイズ自体の電圧変化レベルR(n、m)を無視し、長時間発生するノイズのみを判別する。
 請求項3の静電容量式タッチパネルは、入力判定閾値を検知閾値の2倍以上に設定することを特徴とする。
 検知閾値以下の電圧変化レベルR(n、m)にベースノイズが加わっても、入力判定閾値を超えない。
 請求項1の発明によれば、従来の静電容量式タッチパネルの構成を大幅に変更することなく、比較的長時間発生するノイズにより検出誤差の生じる可能性のある入力操作位置を検出せず、ノイズの影響を受けずに高精度に入力操作位置を検出することができる。
 請求項2の発明によれば、ベースノイズによる影響を受けず、長時間発生するノイズに確実に応答し、ノイズによる入力操作位置の誤検出を防止できる。
 請求項3の発明よれば、検知閾値以下の電圧変化レベルR(n、m)にベースノイズが加わっても、入力判定閾値を超えて入力操作と判定されることがない。
本発明の一実施の形態に係る静電容量式タッチパネル1の駆動領域DV(m)と検出電極S(n)に表れる検出電極の電圧変化レベルR(m、n)との関係を示す説明図である。 静電容量式タッチパネル1の回路図である。 電圧変化レベルR(m、n)から入力操作位置を検出する方法を示す説明図である。 静電容量式タッチパネル1に長期ノイズが発生した場合の電圧変化レベルR(m、n)を示す説明図である。
 以下、本発明の一実施の形態に係る静電容量式タッチパネル(以下、タッチパネルという)1を、図1乃至図4を用いて説明する。図1に示すように、このタッチパネル1は、後述する指などの入力操作体よりXY方向の長さがはるかに長い絶縁パネル2の表面全体を入力操作領域として、入力操作領域に、X方向に沿って菱形のパターンを連続させた13本の駆動電極D1~D13と、Y方向に沿って菱形のパターンを連続させた12本の検出電極S1~S12がそれぞれ交差位置を互いに絶縁して配線されている。13本の駆動電極D1~D13は、Y方向に等ピッチで、12本の検出電極S1~S12は、X方向に等ピッチで配線され、一方の電極の菱形のパターンが他方の電極の菱形のパターンの隙間を相補し、全体で千鳥状のパターンとして表れる形状で配線されている。
 絶縁パネル2上に格子状に配線された駆動電極D1~D13及び検出電極S1~S12の表面側は、これらの電極を保護するとともに、指等の入力操作体が直接これらの電極に触れて誤作動しないように、図示しない透明絶縁シートで覆われている。すなわち、本実施の形態に係るタッチパネル1は、入力操作体を透明絶縁シートに触れ、若しくは近接させて入力操作を行い、透明絶縁シートを介して入力操作体が接近することによる駆動電極Dと入力操作体間の静電容量の増大を、入力操作体近傍の検出電極S(n)に表れる検出電圧の電圧変化レベルR(m、n)から読みとり、入力操作位置を検出するものである。この検出原理のもとに、駆動電極D1~D13間及び検出電極S1~S12間のピッチは、それぞれ絶縁パネル2上の入力操作領域のいずれに入力操作体を接近させる入力操作があっても、その入力操作位置が検出できるピッチとし、ここでは、例えばいずれも4mmのピッチで配線している。
 図2に示すように、各駆動電極D1~D13は、それぞれノイズを除去するダンピング抵抗6を介して、パルス高さがVoの検出信号を矩形波交流信号にして出力する検出電圧発生回路3に接続している。また、各駆動電極D1~D13とダンピング抵抗6の接続点には、マイコン4の入出力ポートP1~P13が各駆動電極D1~D13に対応して接続している。
 入出力ポートPが、その入出力ポートPを出力ポートの状態とするOFFモードである場合には、その入出力ポートが接続する駆動電極(図中のD1、D5、D13)の電位が出力ポートの電位(例えば「L」)レベルであれば0V、「H」レベルであればVCC)で安定し、検出電圧発生回路3から出力される矩形波交流信号の検出信号は、その入出力ポートPに接続する駆動電極D(図中のD1、D5、D13)に出力されない。また、入出力ポートPが、その入出力ポートPを入力ポートの状態とするONモードである場合には、その入力ポートPがハイインピーダンス状態であるので、検出電圧発生回路3から出力される矩形波交流信号は、入出力ポートP(図中のP2~P4)へ流れ込まず、その入出力ポートPに接続する駆動電極D(図中のD2~D4)に、矩形波交流信号による検出信号が出力される。つまり、マイコン4は、任意の順に任意の1又は2以上の入出力ポートPを出力ポートか入力ポートの状態とするだけで、その入出力ポートPが接続する駆動電極Dへの検出信号の出力を制御する。
 本実施の形態では、図1に示すように、Y方向で隣り合う3本の駆動電極D毎に駆動領域DV(m)にまとめられ、Y方向で隣り合う駆動領域DV(m)と駆動領域DV(n’)は、その間に配線される駆動電極Dにおいて重複し、重複する駆動電極Dがいずれの駆動領域DV(m)、DV(n’)をも構成している。このようにして、絶縁パネル2に配線される13本の駆動電極Dから、6種類の駆動領域DV(m)(mは1から6までの整数)が設定される。
 マイコン4は、Y方向に沿ったこの駆動領域DV(m)の順に、駆動領域DV(m)に対応する入出力ポートPを0Nモードとして、その駆動領域DV(m)を構成する3本の駆動電極Dに同期する矩形波交流信号を出力し、パルス高さがVoの検出信号を出力する。これにより、駆動領域DV(m)毎に検出信号を出力する6回の駆動制御で、絶縁パネル2の入力操作領域に配線された全ての駆動電極Dへ検出信号を出力することができる。
 12本の検出電極S(n)(nは1から12までの整数)は、マイコン4からの制御によりマイコン4の電圧検出回路4aとの接続が切り換えられるマルチプレクサ7に接続している。マイコン4は、各駆動領域DV(m)の駆動制御期間(以下、1ライン走査周期TLという)毎に、12本の検出電極S(n)との接続を順に切り換え、切り替え接続した検出電極S(n)に表れる検出電圧をマイコン4の電圧検出回路4aへ接続する。
 電圧検出回路4aは、駆動領域DV(m)の3本の駆動電極Dに検出信号を出力することにより、駆動領域DV(m)と交差する検出電極S(n)間の静電容量Cを介して検出電極S(n)に表れる矩形波交流信号のパルス高さ(検出電圧)を読みとる。この静電容量Cはほぼ一定値であるので、入力操作体が接近せずに駆動領域DV(m)の浮遊容量に変動がなければ、検出電圧は、検出信号の出力電圧に比例する通常電圧Vで変化しない。一方、入力操作体が検出信号を出力した駆動領域DV(m)若しくは検出電極S(n)に接近すると、駆動領域DV(m)若しくは検出電極S(n)と入力操作体間の静電容量が増大し、矩形波交流信号の一部が入力操作体へ流れ、検出電極S(n)に表れる検出電圧は低下する。入力操作体とこれらの駆動領域DV(m)若しくは検出電極S(n)との距離が接近するほど、検出電圧は通常電圧Vから低下するので、マイコン4は、この検出電圧の変化量から入力操作位置を算出するために、通常電圧Vと電圧検出回路4aが検出した検出電圧の電位差を反転させて二値化した電圧変化レベルR(m、n)で検出電圧の変化量を表す。従って、電圧変化レベルR(m、n)は、通常電圧Vに対して入力操作体が接近して検出電圧が低下する差分を表すが、例えば、駆動領域DV(m)と検出電極S(n)間に水滴など空気の誘電率より高い誘電体が付着すると、キャリブレーションで設定した通常電圧Vより検出電圧が高くなる場合がある。そこで、検出電圧が通常電圧Vに等しい場合の電圧変化レベルR(m、n)を、中間の値(8ビットであれば128d)とし、この値未満である場合には、水滴等の付着とみなし、検出した電圧変化レベルR(m、n)を無視する。
 マイコン4は、各駆動領域DV(m)を駆動制御する1ライン走査周期TL毎に、検出信号を出力する駆動領域DV(m)に交差する全ての検出電極S(n)の接続をマルチプレクサ7により切り替え制御し、駆動領域DV(1)からY方向のDV(6)までこれを繰り返し、入力操作領域の全体の1フレームを走査で、図1に示すように、m行n列の電圧変化レベルR(m、n)が得られる。本実施の形態では、1ライン走査周期TLが4msecであるので、1フレーム(1画面)の走査周期Tfは、4msec*6ラインの24msecとなる。
 ここで、電圧変化レベルR(m、n)は、駆動領域DV(m)を駆動制御している間に駆動領域DV(m)に交差する検出電極S(n)に表れる検出電圧の変化量を表すので、入力操作体が駆動領域DV(m)と検出電極S(n)の交差位置に接近すると、電圧変化レベルR(m、n)が増大する。従って、マイコン4の位置検出部は、m行n列の電圧変化レベルR(m、n)を比較し、周囲の交差位置に対して極大値となった電圧変化レベルR(m、n)を所定値に設定した入力判定閾値と比較し、入力判定閾値以上である場合にその交差位置の近傍に入力操作体が接近したものとして、入力操作位置と検出する。
 しかしながら、マイコン4の容量変化判定手段は、m行n列の電圧変化レベルR(m、n)を入力判定閾値未満の所定値に設定した検知閾値と比較し、いずれかの駆動領域DV(m)について検出した全ての電圧変化レベルR(m、n)が検知閾値以上である場合に、1ライン走査周期TLを超える長期ノイズが発生したものと判定し、同一フレームで、入力判定閾値以上となる電圧変化レベルR(m、n)が検出されても、位置検出部は入力操作位置を検出しない。
 上述のタッチパネル1では、6種類の駆動領域DV(m)を入力操作領域の上方から順に駆動制御する各駆動領域DV(m)の間に、12本の各検出電極S(n)を左から順に選択し、選択した検出電極S(n)の検出電圧から1フレームの入力操作領域について、図3、図4に例示するような6行12列の電圧変化レベルR(m、n)を検出する。以下の説明を容易にするために、電圧検出回路4aにより二値化された電圧変化レベルR(m、n)を、図3、図4に示すように10進値で示し、検出電極S(n)から読みとった検出電圧が通常電圧Vである場合を、「0」としている。
 検出電極S(n)の検出電圧は、入力操作体の接近状態にかかわらず、ベースノイズによって変動する。ベースノイズとは、回路の検出誤差や周辺環境の変化など不確定な要因によって検出電圧が変動する暗ノイズであり、各検出電極S(n)の電圧変化レベルR(m、n)は、8未満の値で変動する。従って、マイコン4の容量変化判定手段が、このベースノイズを長期ノイズの発生と判定しないように、ここでは検知閾値を、ベースノイズの最大電圧変化レベルR(m、n)よりわずかに高い「8」に設定している。
 後述するように、入力操作位置は、極大値となる電圧変化レベルR(m、n)とその周囲の電圧変化レベルR(m、n)を元に算出される。ここで、極大値となる電圧変化レベルR(m、n)が入力判定閾値をわずかに超えた低い値である場合には、その周囲の電圧変化レベルR(m、n)は入力判定閾値未満となることがあるが、より多くの周囲の電圧変化レベルR(m、n)を用いて精度良く入力操作位置を算出するために、本実施の形態では、周囲の電圧変化レベルR(m、n)が、入力判定閾値未満であっても上記検知閾値以上である場合には、入力操作位置の算出に用いる。つまり、検知閾値は、入力操作位置を算出するデータとして用いられることのある電圧変化レベルR(m、n)の最小値を定めるものである。
 従って、入力判定閾値よりわずかに低い周囲の電圧変化レベルR(m、n)がベースノイズの有無により検知閾値未満とならないように、また、逆に、もともと検知閾値未満である入力操作位置の算出に用いるべきでない低い電圧変化レベルR(m、n)が入力判定閾値を超えて、入力操作位置の算出に用いられたり、入力操作と判定されないように、入力判定閾値を、検知閾値の「8」に更にベースノイズの変動値以上の「8」を加えた「16」としている。
 以下、タッチパネル1のマイコン4による入力操作位置の算出と、長期ノイズが発生した場合の検出とを、図3、図4で具体的に説明する。図3は、長期ノイズが発生していない通常の状態で、駆動領域DV(4)と検出電極S(7)との交差位置の近傍に入力操作体である指を接近させて入力操作を行ったときの1フレームの走査から検出した6行12列の電圧変化レベルR(m、n)を示している。
 入力操作体との静電容量が無視できるほど入力操作位置から離れた交差位置(m、n)では、検出電極S(n)から読みとった検出電圧は、基本的に通常電圧Vであるので、その交差位置(m、n)での電圧変化レベルR(m、n)は「0」となるが、ベースノイズを受けて、0から7程度の値で変動している。一方、入力操作位置近傍の交差位置(4、7)での電圧変化レベルR(4、7)は、その周囲と比較して極大値となり、入力判定閾値「16」を超える「90」であるので、図中X方向とY方向で極大値が検出された交差位置(4、7)の近傍が入力操作位置であると推定する。
 しかしながら、入力操作体と無関係に、コモンモードノイズや検出誤差などにより、いずれかの交差位置での電圧変化レベルR(m、n)が極大値となる場合があるので、入力操作による極大値の発生と識別するため、極大値が入力判定閾値「16」未満である場合には無視し、以下の入力操作位置の算出を行わない。また、入力判定閾値以上の極大値が複数検出された場合には、それぞれの交差位置の近傍に同時に入力操作があったものと推定し、各交差位置について入力操作位置の検出を繰り返して行う。
 図3では、入力判定閾値「16」越える極大値は、駆動領域DV(4)と検出電極S(7)との交差位置(4,7)での「90」のみであるので、交差位置(4、7)に隣接する8カ所の交差位置での電圧変化レベルR(m、n)(図中斜線で表示)を、検知閾値「8」と比較し、検知閾値以上の電圧変化レベルR(m、n)を入力操作位置の算出に用いる有効データとする。
 X方向の入力操作位置xの検出は、有効データのX方向の加重平均値から求める。すなわち、12本の検出電極S(n)の絶縁パネル2上の配線位置毎に、初期値に「16」、X方向のピッチに「32」を割り当てて重み付けする。検出電極S(1)の重み付けを「16」とするのは、入力操作体の影響をX方向の片側からのみ受けるからである。続いて、有効データを検出電極S(6-8)毎にY方向に合計し、Sum(6)「110」、Sum(7)「177」、Sum(8)「88」を算出し、その総和「375」を算定すると共に、検出電極S(6-8)毎の合計値Sum(6-8)に、その検出電極S(6-8)の配線位置に付与された重み付けを乗じて、その総和「77296」を算出する。加重平均から求めるX方向の入力操作位置は、「77296」/「375」の206.1であり、X方向について重み付けした206.1の位置(検出電極S(6)と検出電極S(7)の間)が入力操作位置として検出される。
 同様に、Y方向の入力操作位置yの検出は、有効データのY方向の加重平均値から求める。Y方向の位置の重み付けは、6種類の各駆動領域DV(m)間の間隔に「16」を割り当て、各駆動領域DV(m)の中間位置毎に「16」づつ繰り上げる。続いて、有効データを駆動領域DV(3-5)毎にX方向に合計し、Sum(3)「80」、Sum(4)「194」、Sum(5)「101」を算出し、その総和「375」を算定すると共に、駆動領域DV(3-5)毎の合計値Sum(3-5)に、その駆動領域DV(3-5)のY方向中間位置に付与された重み付けを乗じて、その総和「24336」を算出する。加重平均から求めるY方向の入力操作位置は、「22436」/「375」の64.9であり、Y方向について重み付けした64.9の位置(駆動領域DV(4)と駆動領域DV(5)の間)が入力操作位置として検出される。
 図4は、入力操作領域全体の交差位置(m、n)について電圧変化レベルR(m、n)を検出する1フレーム(1画面)の走査周期Tfの期間中に、駆動領域DV(3)に検出信号を出力し検出電極S(10)を選択した時から、駆動領域DV(5)に検出信号を出力し検出電極S(4)を選択するまでの約5msec、タッチパネル1にノイズが発生した場合の各交差位置(m、n)での電圧変化レベルR(m、n)を示している。
 図4に示す各電圧変化レベルR(m、n)から、交差位置(4、7)での電圧変化レベルR(4、7)が入力判定閾値「16」を超える「100」の極大値であるので、その近傍が入力操作位置と推定されるが、マイコン4の容量変化判定手段は、駆動領域DV(4)に検出信号を出力する1ライン走査周期TLに、全ての各検出電極S(n)について検出した電圧変化レベルR(4、n)がいずれも検知閾値「8」を超えることから、1ライン走査周期TLより長い時間のノイズが発生したものと判定し、このフレームでの入力操作位置の算出を行わない。従って、長期ノイズの発生による入力操作や入力操作位置の誤検出を回避できる。
 上記実施の形態では、Y方向に沿った駆動領域DV(m)の順に駆動制御したが、駆動制御する駆動領域DV(m)と、各駆動領域DV(m)を駆動制御している間の各検出電極S(n)の接続は、マイコン4による制御で任意の順とすることができる。また、各駆動領域DV(m)は、Y方向で隣り合う複数の駆動電極Dから構成したが、1本の駆動電極Dで構成してもよい。
 また、上述のタッチパネル1では、6種類の各駆動領域DV(m)についてそれぞれ全て検出電極S(n)の検出電圧を検出する1フレーム(1画面)の走査で得られる電圧変化レベルR(m、n)から長期ノイズを検出しているが、入力操作位置の検出は、1フレーム(1画面)の走査を複数回の繰り返し、各交差位置(m、n)について得られる複数の電圧変化レベルR(m、n)を用いて入力操作位置を検出してもよい。
 また、上述実施の形態では、入力判定閾値を検知閾値の2倍としているが、検知閾値以上の値であれば、任意の値に設定できる。
 また、検知閾値を、入力操作位置の算出に用いる電圧変化レベルR(m、n)の下限としているが、他の境界値で入力操作位置の算出に用いる電圧変化レベルR(m、n)の範囲を定めてもよい。
 本発明は、数msecから数秒の長期ノイズが発生する環境で使用する静電容量式タッチパネルに適している。
 1     静電容量式タッチパネル
 2     絶縁パネル
 3     検出電圧発生回路
 4     マイコン(駆動制御部、電極選択手段)
 4a    電圧検出回路(静電容量検出手段)
 7     マルチプレクサ(電極選択手段)
 DV(m) 駆動領域
 S(n)  検出電極

Claims (3)

  1. 絶縁パネルの第1方向に沿った入力操作体の幅より十分に幅広な入力操作領域に、第1方向に等間隔で第1方向と直交する第2方向に沿って配線される複数の検出電極S(n)と、
     一定電圧の交流の検出信号を発生する検出信号発生回路と、
     絶縁パネルの第2方向に等間隔で第1方向に沿って配線され、それぞれ前記複数の全ての検出電極S(n)と絶縁間隔を隔てて交差する複数の駆動領域DV(m)と、
     複数の駆動領域DV(m)から特定の駆動領域DV(m)を選択し、選択した駆動領域DV(m)へ検出信号を出力する駆動制御部と、
     複数の検出電極S(n)から順に特定の検出電極S(n)を選択する電極選択手段と、
     駆動制御部が選択した駆動領域DV(m)に検出信号を出力している間に、検出信号により電極選択手段が選択した検出電極S(n)に表れる検出電圧を検出し、入力操作体が接近しない状態からの検出電圧の電圧変化レベルR(n、m)を検出する静電容量検出手段と、
     入力操作体が接近することにより、選択した検出電極S(n)とその近傍で前記検出信号が出力される駆動領域DV(m)との静電容量が変化し、電圧変化レベルR(n、m)が所定の入力判定閾値以上となる検出電極S(n)とその近傍の検出信号を出力した駆動領域DV(m)を特定し、特定した検出電極S(n)の絶縁パネル上の第1方向の配線位置(n)と特定した駆動領域DV(m)の絶縁パネル上の第2方向の配線位置(m)から、入力操作体の第1方向と第2方向の入力操作位置を検出する位置検出手段とを備えた静電容量式タッチパネルであって、
     静電容量検出手段が検出した検出電極S(n)の電圧変化レベルR(n、m)を、入力判定閾値未満の所定値に設定する検知閾値と比較する容量変化判定手段を備え、
     駆動制御部がいずれかの選択した駆動領域DV(m)に検出信号を出力している間に、電極選択手段が選択した全ての検出電極S(n)の電圧変化レベルR(n、m)が、検知閾値以上である場合に、いずれかの検出電極S(n)の電圧変化レベルR(n、m)が入力判定閾値を超えても、位置検出手段は入力操作位置を検出しないことを特徴とする静電容量式タッチパネル。
  2. 検知閾値は、少なくともベースノイズにより検出電極S(n)に発生する検出電圧の電圧変化レベルR(n、m)より高い値に設定することを特徴とする請求項1に記載の静電容量式タッチパネル。
  3. 入力判定閾値を検知閾値の2倍以上に設定することを特徴とする請求項2に記載の静電容量式タッチパネル。
PCT/JP2015/001648 2014-09-04 2015-03-24 静電容量式タッチパネル WO2016035226A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15794045.3A EP3190485B1 (en) 2014-09-04 2015-03-24 Capacitive touch panel
CN201580001864.8A CN105579941B (zh) 2014-09-04 2015-03-24 静电电容式触摸面板
JP2015515339A JP5926454B1 (ja) 2014-09-04 2015-03-24 静電容量式タッチパネル
US14/941,655 US9696862B2 (en) 2014-09-04 2015-11-15 Capacitance type touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180674 2014-09-04
JP2014180674 2014-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/941,655 Continuation US9696862B2 (en) 2014-09-04 2015-11-15 Capacitance type touch panel

Publications (1)

Publication Number Publication Date
WO2016035226A1 true WO2016035226A1 (ja) 2016-03-10

Family

ID=55439318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001648 WO2016035226A1 (ja) 2014-09-04 2015-03-24 静電容量式タッチパネル

Country Status (4)

Country Link
EP (1) EP3190485B1 (ja)
JP (1) JP5926454B1 (ja)
CN (1) CN105579941B (ja)
WO (1) WO2016035226A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930009A (zh) * 2016-05-11 2016-09-07 华勤通讯技术有限公司 电容式压力传感器及电子设备
WO2020021762A1 (ja) * 2018-07-26 2020-01-30 アルプスアルパイン株式会社 静電容量センサとその制御方法及びプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018090278A1 (zh) * 2016-11-17 2018-05-24 深圳市汇顶科技股份有限公司 确定电容屏触摸位置的方法及装置
CN110568502A (zh) * 2018-06-05 2019-12-13 义隆电子股份有限公司 电容式触控板上的液体检测方法及其控制器
CN111762023B (zh) * 2020-05-29 2022-04-12 法雷奥舒适驾驶辅助系统(广州)有限公司 触控装置及其方法和汽车方向盘辅助开关

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125744A (ja) 1999-10-29 2001-05-11 Seiko Instruments Inc 座標入力装置
JP2012003402A (ja) * 2010-06-15 2012-01-05 Shin Etsu Polymer Co Ltd センサシートおよび入力装置
JP4955116B1 (ja) 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
JP2012248035A (ja) 2011-05-27 2012-12-13 Sharp Corp タッチパネルシステムおよびそれを用いた電子機器
WO2014042128A1 (ja) * 2012-09-11 2014-03-20 シャープ株式会社 静電容量値分布検出装置、タッチパネルシステム、および静電容量値分布検出装置の検出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5055231B2 (ja) * 2008-09-08 2012-10-24 株式会社ジャパンディスプレイイースト タッチパネルのタッチ位置検出方法
JP5067763B2 (ja) * 2008-10-08 2012-11-07 株式会社ジャパンディスプレイウェスト 接触検出装置、表示装置および接触検出方法
JP2011170617A (ja) * 2010-02-18 2011-09-01 On Semiconductor Trading Ltd 静電容量型タッチセンサ
CN102799321B (zh) * 2011-05-25 2015-05-27 深圳市汇顶科技股份有限公司 电容式多点触摸屏基准数据更新的方法及系统
CN103116424A (zh) * 2011-11-16 2013-05-22 飞思卡尔半导体公司 触摸板电容式传感器电路
JP2013122625A (ja) * 2011-12-09 2013-06-20 Sony Corp 情報処理装置、入力装置、入力装置モジュール、プログラム、入力処理方法。
JP5876304B2 (ja) * 2012-01-25 2016-03-02 株式会社東海理化電機製作所 静電容量式タッチ入力装置
US8779780B1 (en) * 2012-02-23 2014-07-15 Cypress Semiconductor Corporation Methods and apparatus to detect presence of an input object
JP5817695B2 (ja) * 2012-10-01 2015-11-18 株式会社デンソー タッチ検出装置および車両用ナビゲーション装置
KR102007817B1 (ko) * 2012-12-21 2019-08-07 엘지디스플레이 주식회사 기준 데이터 보정방법과 이를 이용한 터치 스크린 장치
TW201433948A (zh) * 2013-02-20 2014-09-01 Novatek Microelectronics Corp 觸控感測裝置及觸控感測方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001125744A (ja) 1999-10-29 2001-05-11 Seiko Instruments Inc 座標入力装置
JP2012003402A (ja) * 2010-06-15 2012-01-05 Shin Etsu Polymer Co Ltd センサシートおよび入力装置
JP4955116B1 (ja) 2010-12-28 2012-06-20 シャープ株式会社 タッチパネルシステムおよび電子機器
JP2012248035A (ja) 2011-05-27 2012-12-13 Sharp Corp タッチパネルシステムおよびそれを用いた電子機器
WO2014042128A1 (ja) * 2012-09-11 2014-03-20 シャープ株式会社 静電容量値分布検出装置、タッチパネルシステム、および静電容量値分布検出装置の検出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930009A (zh) * 2016-05-11 2016-09-07 华勤通讯技术有限公司 电容式压力传感器及电子设备
CN105930009B (zh) * 2016-05-11 2019-04-09 华勤通讯技术有限公司 电容式压力传感器及电子设备
WO2020021762A1 (ja) * 2018-07-26 2020-01-30 アルプスアルパイン株式会社 静電容量センサとその制御方法及びプログラム
JPWO2020021762A1 (ja) * 2018-07-26 2021-06-10 アルプスアルパイン株式会社 静電容量センサとその制御方法及びプログラム
US11126304B2 (en) 2018-07-26 2021-09-21 Alps Alpine Co., Ltd. Capacitance sensor, method for controlling the same, and program

Also Published As

Publication number Publication date
EP3190485B1 (en) 2018-12-12
EP3190485A1 (en) 2017-07-12
JP5926454B1 (ja) 2016-05-25
CN105579941B (zh) 2019-04-12
EP3190485A4 (en) 2018-04-18
CN105579941A (zh) 2016-05-11
JPWO2016035226A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6199825B2 (ja) 静電容量式タッチパネルとその入力操作位置検出方法
EP2808769B1 (en) Capacitive touch input device
JP5926454B1 (ja) 静電容量式タッチパネル
KR101446221B1 (ko) 투사 정전용량식 터치 패널 스캐닝 방법, 기억 매체, 및 투사 정전용량식 터치 패널 스캐닝 장치
US10061433B2 (en) Touch-type input device
KR101466531B1 (ko) 다수의 터치 지점들의 실제 좌표들을 결정하기 위한 터치 디바이스 및 그 방법
KR20130108177A (ko) 위치 검출 장치
JP6284838B2 (ja) タッチ式入力装置
US9696862B2 (en) Capacitance type touch panel
JP2010061598A (ja) タッチパネルのタッチ位置検出方法
JP5982624B2 (ja) 静電容量式タッチパネル
US9218094B1 (en) Sense position prediction for touch sensing methods, circuits and systems
KR20110113035A (ko) 멀티터치 감지를 위한 접촉 감지 패널 및 접촉 감지 장치
JP2014182471A (ja) 静電容量式タッチパッド
JP7011159B2 (ja) 容量検出回路及び静電容量センサ装置
US20110096037A1 (en) Method for determining the position of a contact on a touch panel and corresponding system
JPWO2017134718A1 (ja) タッチセンサ及びそれを備えた入力装置
TWI507960B (zh) 觸控系統及其座標修正方法
CN112513796A (zh) 触控面板检测方法与触控面板
US10824273B2 (en) Method for correcting measurement threshold of capacitive sensing apparatus and capacitive sensing apparatus
JP2015001788A (ja) 検出装置及び検出方法
TW202107261A (zh) 觸控面板裝置
WO2017130831A1 (ja) 操作検出装置
JP2014032495A (ja) 操作装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001864.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015515339

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015794045

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015794045

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15794045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE