WO2016035141A1 - 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置 - Google Patents

共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置 Download PDF

Info

Publication number
WO2016035141A1
WO2016035141A1 PCT/JP2014/073067 JP2014073067W WO2016035141A1 WO 2016035141 A1 WO2016035141 A1 WO 2016035141A1 JP 2014073067 W JP2014073067 W JP 2014073067W WO 2016035141 A1 WO2016035141 A1 WO 2016035141A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance
power
antenna
type
resonant
Prior art date
Application number
PCT/JP2014/073067
Other languages
English (en)
French (fr)
Inventor
阿久澤 好幸
酒井 清秀
俊裕 江副
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to KR1020177006025A priority Critical patent/KR102236047B1/ko
Priority to PCT/JP2014/073067 priority patent/WO2016035141A1/ja
Priority to US15/320,215 priority patent/US10158254B2/en
Priority to CN201480081667.7A priority patent/CN106797143B/zh
Priority to EP14901211.4A priority patent/EP3190684B1/en
Priority to JP2014555886A priority patent/JP5738497B1/ja
Priority to TW104112378A priority patent/TWI515994B/zh
Publication of WO2016035141A1 publication Critical patent/WO2016035141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Definitions

  • the present invention relates to a resonance coupled power transmission system, a resonance power transmission apparatus, and a resonance power reception apparatus that perform power transmission using the resonance characteristics of a resonance type transmitting / receiving antenna.
  • This apparatus is composed of a first resonator structure (resonance type transmission antenna) and a second resonator structure (resonance type reception antenna) located distal to the first resonator structure.
  • the first resonator structure receives energy from a power supply source (AC output type power supply) and transfers it non-radiatively to the second resonator structure by electromagnetic resonance (magnetic field resonance coupling).
  • the second resonator structure receives energy from the first resonator structure and supplies it to an external load (receiving circuit).
  • the resonance characteristic value Q1 of the first resonator structure and the resonance characteristic value Q2 of the second resonator structure are set so as to satisfy the following expression (1).
  • JP 2011-177018 A Special table 2012-502602 gazette Special table 2009-501510
  • the present invention has been made in order to solve the above-described problems.
  • the present invention performs setting in consideration of fluctuations in the resonance characteristic value due to the influence of the resonant power supply and the receiving circuit, and powers the entire system with respect to a conventional apparatus.
  • An object of the present invention is to provide a resonance coupled power transmission system, a resonance power transmission apparatus, and a resonance power reception apparatus that can increase the efficiency of transmission.
  • a resonant coupling type power transmission system includes a resonant power source that supplies power, a resonant power transmission device that has a resonant transmission antenna that transmits power supplied by the resonant power source, and a resonant transmission antenna.
  • a resonance-type receiving antenna that receives transmitted power
  • a resonance-type power receiving device that has a receiving circuit that supplies power received by the resonance-type receiving antenna to a load.
  • the characteristic impedance of each functional unit is set so as to correlate the resonance characteristic value of the transmitting antenna and the resonance characteristic value of the resonance type power receiving apparatus.
  • It is a circuit diagram which shows another structure of the resonance type power supply circuit in Embodiment 1 of this invention (a) It is a figure which shows a bridge type converter, (b) It is a figure which shows a D class converter, (c) It is a figure which shows DE class converter. It is a circuit diagram which shows another structure of the rectifier circuit in Embodiment 1 of this invention, (a) It is a figure which shows a class E rectifier circuit, (b) It is a figure which shows a double current rectifier circuit, (c) It is a figure which shows a half wave rectifier circuit, (d) It is a figure which shows a voltage doubler rectifier circuit. It is a figure which shows another structure of the resonance coupling type electric power transmission system which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a diagram showing a configuration of a resonant coupling type power transmission system according to Embodiment 1 of the present invention
  • FIG. 2 is a specific circuit diagram.
  • the resonance-coupled power transmission system includes a resonant power transmitter 1 and a resonant power receiver 2.
  • a resonance frequency of a resonance type power supply 11 described later is 2 MHz or more is shown, but a resonance frequency of less than 2 MHz may be used.
  • the resonance type power transmission apparatus 1 includes a resonance type power supply 11, a matching circuit 12, and a resonance type transmission antenna 13.
  • the resonance type power supply 11 controls the supply of power to the resonance type transmission antenna 13, and converts DC or AC input power into AC having a predetermined frequency and outputs it.
  • the resonance type power supply 11 is constituted by a power supply circuit using a resonance switching method, and has an output impedance Zo, a resonance frequency fo, and a resonance characteristic value Qo.
  • the matching circuit 12 performs impedance matching between the output impedance Zo of the resonant power supply 11 and the pass characteristic impedance Zt of the resonant transmission antenna 13.
  • the matching circuit 12 is composed of a ⁇ -type or L-type filter including an inductor L and a capacitor C, and has its pass characteristic impedance Zp.
  • the resonant transmission antenna 13 receives the AC power from the resonant power supply 11 via the matching circuit 12 and performs a resonance operation to generate a non-radiating electromagnetic field in the vicinity, thereby causing the resonant receiving antenna 21 to On the other hand, power transmission is performed.
  • the resonant transmission antenna 13 is a resonant antenna having a coil shape, and has a pass characteristic impedance Zt, a resonance frequency ft, and a resonance characteristic value Qt.
  • the resonance frequency fo and the resonance characteristic value Qo of the resonance type power supply 11 are determined from the output impedance Zo of the resonance type power supply 11 and the pass characteristic impedance Zp of the matching circuit 12.
  • the resonant power receiving apparatus 2 includes a resonant receiving antenna 21, a rectifier circuit 22, and a receiving circuit 23.
  • the resonance type power receiving apparatus 2 has a resonance frequency fr and a resonance characteristic value Qr.
  • the resonant receiving antenna 21 receives power by performing a resonant coupling operation with a non-radiating electromagnetic field from the resonant transmitting antenna 13, and outputs AC power.
  • the resonance receiving antenna 21 is a resonance antenna having a coil shape and has a pass characteristic impedance Zr.
  • the rectifying circuit 22 performs impedance matching between a rectifying function for converting AC power from the resonant receiving antenna 21 into DC power, and a pass characteristic impedance Zr of the resonant receiving antenna 21 and an input impedance ZRL of the receiving circuit 23.
  • This is a matching rectifier circuit having a matching function.
  • the matching function is configured by a ⁇ -type or L-type filter including an inductor L and a capacitor C.
  • the rectifier circuit 22 has a pass characteristic impedance Zs.
  • the rectifier circuit 22 is assumed to have a rectification function and a matching function.
  • the rectification circuit 22 is not limited to this, and may be configured with only the rectification function although the rectification efficiency is lowered.
  • the receiving circuit 23 receives the DC power from the rectifying circuit 22, converts it to a predetermined voltage, and supplies it to a load (not shown).
  • the receiving circuit 23 includes an LC filter (smoothing filter) for smoothing the high-frequency voltage ripple, a DC / DC converter for converting the high-frequency voltage ripple into a predetermined voltage, and the like, and has an input impedance ZRL.
  • the resonance characteristic value Qr and the resonance frequency fr of the resonance type power receiving device 2 are determined from the passage characteristic impedance Zr of the resonance type reception antenna 21, the passage characteristic impedance Zs of the rectifier circuit 22, and the input impedance ZRL of the reception circuit 23. .
  • the power transmission method based on the resonant coupling of the resonant transmission / reception antennas 13 and 21 is not particularly limited, and may be any one of the magnetic field resonance method, the electric field resonance method, the electromagnetic induction method, or the contact type resonance coupling method. May be.
  • each functional unit is correlated with the resonance characteristic value Qo of the resonance type power supply 11, the resonance characteristic value Qt of the resonance type transmission antenna 13, and the resonance characteristic value Qr of the resonance type power receiving device 2.
  • ⁇ (Qo ⁇ Qt) ⁇ Qr (2) 0.5Qr ⁇ ⁇ (Qo ⁇ Qt) ⁇ 1.5Qr (3)
  • the resonance type power It becomes possible to set the transmitter 1 and the resonant power receiver 2. As a result, highly efficient power transmission is possible as a whole system.
  • the relationship between the distance d between the resonant transmission / reception antennas 13 and 21 and the coupling coefficient k ( ⁇ magnetic flux linkage rate) will be described with reference to FIG.
  • the diameter ⁇ of the resonant transmission / reception antennas 13 and 21 is 18 [cm]
  • the relationship between the distance d and the coupling coefficient k is as shown in FIG. That is, the coupling coefficient k increases as the distance d decreases, and the coupling coefficient k decreases as the distance d increases.
  • the distance between the resonant transmission / reception antennas 13 and 21 can be reduced to a conventional electromagnetic induction without lowering the power transmission efficiency. It can be larger than the distance by.
  • the characteristic impedance of each functional unit is set so as to satisfy the following expression (4). Specifically, it may be within the range of the following formula (5). k ⁇ (Qo ⁇ Qt) ⁇ 1 (4) 0.5 ⁇ k ⁇ (Qo ⁇ Qt) ⁇ 1.5 (5) Further, in the resonant power receiving apparatus 2, the characteristic impedance of each functional unit is set so as to satisfy the following expression (6). Specifically, it may be within the range of the following formula (7). k ⁇ Qr ⁇ 1 (6) 0.5 ⁇ k ⁇ Qr ⁇ 1.5 (7) Thereby, as shown in FIG. 4, the electric power transmission efficiency as the whole system can be raised more.
  • the resonance frequencies ft and fr are shifted so that the intersection of the resonance characteristic values Qtx and Qr becomes the highest, and the intersection is made to coincide with the resonance frequency fo of the resonance type power supply 11.
  • the resonance characteristic values in the expressions (2) and (3) can be made close to the maximum, and the power transmission efficiency can be made close to the maximum at the resonance frequency (transmission frequency) fo. be able to.
  • the resonance characteristic value Q1 of the first resonator structure (resonance type transmission antenna) and the resonance characteristic value Q2 of the second resonator structure (resonance type reception antenna) are expressed by the equation (1). ) Is set high to satisfy.
  • the resonance characteristic value Qo of the resonance type power supply 11 the resonance characteristic value Qt of the resonance type transmission antenna 13, and the resonance characteristic value Qr of the resonance type power receiving device 2. It is a thing.
  • the distance d between the resonant transmission / reception antennas 13 and 21 can be made larger than the distance by conventional electromagnetic induction without lowering the power transmission efficiency. That is, in the present invention, even if the resonance characteristic values ⁇ (Qo ⁇ Qt) and Qr of the resonant transmission / reception antennas 13 and 21 corresponding to the resonance characteristic values Q1 and Q2 of the conventional device are lower than those of the conventional device, Highly efficient power transmission to the distance is possible. Specific examples are shown below.
  • the resonance characteristic value Qo of the resonance type power supply 11 is set to 4 and the resonance characteristic value Qt of the resonance type transmission antenna 13 is set to 6.
  • Qr is set to 5
  • the relationship of the following formula (8) is established. ⁇ (Qo ⁇ Qt) ⁇ Qr ⁇ 5 (8)
  • the resonance characteristic value Qo of the resonance type power supply 11 is set to 40
  • the resonance characteristic value Qt of the resonance type transmission antenna 13 is set to 60
  • the resonance characteristic of the resonance type power receiving apparatus 2 is set.
  • the value Qr is set to 50
  • the relationship of the following formula (11) is established. ⁇ (Qo ⁇ Qt) ⁇ Qr ⁇ 50 (11)
  • the resonance characteristic value Qo of the resonance type power supply 11 is set to 120
  • the resonance characteristic value Qt of the resonance type transmission antenna 13 is set to 80
  • the resonance characteristic of the resonance type power receiving apparatus 2 is set.
  • the value Qr is set to 100 is shown.
  • the relationship of the following formula (13) is established. ⁇ (Qo ⁇ Qt) ⁇ Qr ⁇ 100 (13)
  • the distance between the resonant transmission / reception antennas 13 and 21 may be made longer than the distance by the conventional electromagnetic induction without lowering the power transmission efficiency without depending on the resonance characteristic value of the resonant transmission / reception antennas 13 and 21. it can.
  • the resonant transmission / reception antennas 13 and 21 can be designed with a degree of freedom that is not limited by the resonance characteristic values. And cost reduction. Further, it is not necessary to use a special component such as a high voltage capacitor for the capacitor used as a part of the resonant transmission / reception antennas 13 and 21, so that the size, weight and cost can be reduced.
  • the resonant power supply 11 of the present invention is not limited to the circuit configuration shown in FIG. 2, and may have a circuit configuration as shown in FIG. 6, for example.
  • 6A shows a bridge type converter
  • FIG. 6B shows a class D converter
  • FIG. 6C shows a DE class converter
  • the rectifier circuit 22 of the present invention is not limited to the circuit configuration shown in FIG. 2, and may have a circuit configuration as shown in FIG. 7A shows a class E rectifier circuit
  • FIG. 7B shows a double current rectifier circuit
  • FIG. 7C shows a half-wave rectifier circuit
  • FIG. 7D shows a double voltage.
  • a rectifier circuit is shown.
  • FIG. 1 shows a case where the matching circuit 12 is provided in the resonant power transmission apparatus 1.
  • the present invention is not limited to this, and may be configured without the matching circuit 12 as shown in FIG.
  • the resonance frequency fo and the resonance characteristic value Qo of the resonance type power supply 11 are determined from the output impedance Zo of the resonance type power supply 11 and the pass characteristic impedance Zt of the resonance type transmission antenna 13.
  • the resonance frequency ft and the resonance characteristic value Qt of the resonant transmission antenna 13 are determined from the pass characteristic impedance Zt of the resonant transmission antenna 13 and the output impedance Zo of the resonant power supply 11.
  • the present invention can be modified with any component of the embodiment or omitted with any component of the embodiment.
  • the resonant coupling type power transmission system according to the present invention performs setting considering the variation of the resonance characteristic value due to the influence of the resonance type power supply and the receiving circuit, and achieves high efficiency of power transmission in the entire system with respect to the conventional apparatus. Therefore, the present invention is suitable for use in a resonance coupled power transmission system that performs power transmission using the resonance characteristics of a resonant transmission / reception antenna.
  • Resonant power transmitter 1 Resonant power transmitter, 2 Resonant power receiver, 11 Resonant power source, 12 Matching circuit, 13 Resonant transmitting antenna, 21 Resonant receiving antenna, 22 Rectifier circuit, 23 Receiving circuit.

Abstract

 電力を供給する共振型電源11、及び共振型電源11により供給された電力を伝送する共振型送信アンテナ13を有する共振型電力送信装置1と、共振型送信アンテナ13により伝送された電力を受信する共振型受信アンテナ21、及び共振型受信アンテナ21により受信された電力を負荷へ供給する受信回路23を有する共振型電力受信装置2とを備え、共振型電源11の共振特性値、共振型送信アンテナ13の共振特性値及び共振型電力受信装置2の共振特性値に相関関係を持たせるように、各機能部の特性インピーダンスを設定した。

Description

共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
 この発明は、共振型送受信アンテナの共振特性を利用して電力伝送を行う共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置に関するものである。
 従来から、エネルギーを無線で転送する装置が知られている(例えば特許文献1-3参照)。この装置は、第1の共振器構造(共振型送信アンテナ)と、この第1の共振器構造から遠位に位置する第2の共振器構造(共振型受信アンテナ)から構成されている。第1の共振器構造は、電力供給源(交流出力型電源)からエネルギーを受け取って、電磁共鳴(磁界共振結合)により第2の共振器構造へ非放射で転送するものである。また、第2の共振器構造は、第1の共振器構造からのエネルギーを受けて外部負荷(受信回路)へ供給するものである。また、第1の共振器構造の共振特性値Q1及び第2の共振器構造の共振特性値Q2が下式(1)を満たすように設定されている。
√(Q1・Q2)>100  (1)
 これにより、エネルギーの転送効率を下げることなく、第1,2の共振器構造間の距離を、その特徴的なサイズ(従来の電磁誘導による距離)よりも大きくすることができる。
特開2011-177018号公報 特表2012-502602号公報 特表2009-501510号公報
 しかしながら、特許文献1-3に開示された従来装置では、第1,2の共振器構造の共振特性値Q1,Q2のみを考慮しており、第1の共振器構造に繋がる電力供給源による共振特性値の変動、及び第2の共振器構造に繋がる外部負荷による共振特性値の変動が考慮されていないという課題がある。
 すなわち、高周波回路では、回路ブロック毎にインピーダンスの整合をとるインタフェースが必要となる。一方、従来装置では、第1,2の共振器構造の共振特性値Q1,Q2のみを考慮していることから、第1の共振器構造と電力供給源との間、及び第2の共振器構造と外部負荷との間に、上記インタフェースが設けられることになる。この構成の場合、第1,2の共振器構造間では、高効率に電力伝送を行うことができる。しかしながら、電力供給源及び外部負荷を含むシステム全体としてみた場合、上記のようなインタフェースがあることで、電力損失が非常に大きくなる。
 また、式(1)の条件では、第1,2の共振器構造間の結合度が適切でない場合、つまり、第1,2の共振器構造間の距離によっては、ロスエネルギーが大きく、効率的な電力伝送が行えないという課題がある。また、上記条件では、第1,2の共振器構造のアンテナ構成が制限されてしまい自由度がなく、小型化、軽量化、低コスト化が困難であるという課題がある。また、上記条件では、第1,2の共振器構造の一部として用いるキャパシタに高電圧が加わるため、高耐圧なキャパシタ等の特殊部品が必要となり、小型化、軽量化、低コスト化が困難であるという課題がある。
 この発明は、上記のような課題を解決するためになされたもので、共振型電源及び受信回路の影響による共振特性値の変動を考慮した設定を行い、従来装置に対してシステム全体での電力伝送の高効率化を図ることができる共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置を提供することを目的としている。
 この発明に係る共振結合型電力伝送システムは、電力を供給する共振型電源、及び共振型電源により供給された電力を伝送する共振型送信アンテナを有する共振型電力送信装置と、共振型送信アンテナにより伝送された電力を受信する共振型受信アンテナ、及び共振型受信アンテナにより受信された電力を負荷へ供給する受信回路を有する共振型電力受信装置とを備え、共振型電源の共振特性値、共振型送信アンテナの共振特性値及び共振型電力受信装置の共振特性値に相関関係を持たせるように、各機能部の特性インピーダンスを設定したものである。
 この発明によれば、上記のように構成したので、共振型電源及び受信回路の影響による共振特性値の変動を考慮した設定を行い、従来装置に対してシステム全体での電力伝送の高効率化を図ることができる。
この発明の実施の形態1に係る共振結合型電力伝送システムの構成を示す図である。 この発明の実施の形態1に係る共振結合型電力伝送システムの構成を示す回路図である。 この発明の実施の形態1における共振型送受信アンテナ間の距離と結合係数との関係を示す図である。 この発明の実施の形態1に係る共振結合型電力伝送システムの電力伝送効率を示す図であり、(a)k√(Qo・Qt)>1,k・Qr>1の場合を示す図であり、(b)k√(Qo・Qt)≒1,k・Qr≒1の場合を示す図であり、(c)k√(Qo・Qt)<1,k・Qr<1の場合を示す図である。 この発明の実施の形態1における共振型送受信アンテナの共振周波数の設定を説明する図であり、(a)共振型送受信アンテナの共振周波数を示す図であり、(b)共振型送受信アンテナの共振周波数の設定による電力伝送効率を示す図である。 この発明の実施の形態1における共振型電源回路の別の構成を示す回路図であり、(a)ブリッジ型コンバータを示す図であり、(b)D級コンバータを示す図であり、(c)DE級コンバータを示す図である。 この発明の実施の形態1における整流回路の別の構成を示す回路図であり、(a)E級整流回路を示す図であり、(b)倍電流整流回路を示す図であり、(c)半波整流回路を示す図であり、(d)倍電圧整流回路を示す図である。 この発明の実施の形態1に係る共振結合型電力伝送システムの別の構成を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る共振結合型電力伝送システムの構成を示す図であり、図2は具体的な回路図である。
 共振結合型電力伝送システムは、図1,2に示すように、共振型電力送信装置1及び共振型電力受信装置2から構成されている。なお図2に示す共振結合型電力伝送システムでは、後述する共振型電源11の共振周波数が2MHz以上である場合を示しているが、2MHz未満のものを用いてもよい。
 共振型電力送信装置1は、共振型電源11、整合回路12及び共振型送信アンテナ13から構成されている。
 共振型電源11は、共振型送信アンテナ13への電力の供給を制御するものであり、直流又は交流の入力電力を所定の周波数の交流に変換して出力するものである。この共振型電源11は、共振スイッチング方式による電源回路で構成され、出力インピーダンスZo、共振周波数fo及び共振特性値Qoを有する。
 整合回路12は、共振型電源11の出力インピーダンスZoと共振型送信アンテナ13の通過特性インピーダンスZtとの間のインピーダンス整合を行うものである。この整合回路12は、インダクタL及びキャパシタCによるπ型やL型のフィルタで構成され、その通過特性インピーダンスZpを有する。
 共振型送信アンテナ13は、整合回路12を介した共振型電源11からの交流電力を入力して共振動作を行い、非放射型の電磁界を近傍に発生させることで、共振型受信アンテナ21に対して電力伝送を行うものである。この共振型送信アンテナ13は、コイル形状による共振型のアンテナであり、その通過特性インピーダンスZt、共振周波数ft及び共振特性値Qtを有する。
 また、共振型電源11の共振周波数fo及び共振特性値Qoは、共振型電源11の出力インピーダンスZoと整合回路12の通過特性インピーダンスZpから決まる。共振型送信アンテナ13の共振周波数ft及び共振特性値Qtは、共振型送信アンテナ13の通過特性インピーダンスZtと整合回路12の通過特性インピーダンスZpから決まる。
 そして、この2つの共振特性値Qo,Qtから、共振型電力送信装置1は共振特性値Qtx=√(Qo・Qt)を有することになる。
 共振型電力受信装置2は、共振型受信アンテナ21、整流回路22及び受信回路23により構成されている。この共振型電力受信装置2は、共振周波数fr及び共振特性値Qrを有している。
 共振型受信アンテナ21は、共振型送信アンテナ13からの非放射型の電磁界と共振結合動作を行うことで電力を受信し、交流電力を出力するものである。この共振型受信アンテナ21は、コイル形状による共振型のアンテナであり、その通過特性インピーダンスZrを有する。
 整流回路22は、共振型受信アンテナ21からの交流電力を直流電力に変換する整流機能と、共振型受信アンテナ21の通過特性インピーダンスZrと受信回路23の入力インピーダンスZRLとの間のインピーダンス整合を行う整合機能を有する整合型整流回路である。整合機能は、インダクタL及びキャパシタCによるπ型やL型のフィルタで構成される。また、整流回路22は、通過特性インピーダンスZsを有する。なおここでは、整流回路22が整流機能及び整合機能を有するものとしたが、これに限るものではなく、整流効率は下がるが整流機能のみで構成してもよい。
 受信回路23は、整流回路22からの直流電力を入力し、所定の電圧へ変換して負荷(不図示)へ供給するものである。この受信回路23は、高周波電圧リップルを平滑するためのLCフィルタ(平滑フィルタ)と、所定の電圧へ変換するためのDC/DCコンバータ等で構成され、その入力インピーダンスZRLを有している。なお、DC/DCコンバータを設けず、平滑フィルタのみで構成してもよい。
 また、共振型電力受信装置2の共振特性値Qr及び共振周波数frは、共振型受信アンテナ21の通過特性インピーダンスZrと、整流回路22の通過特性インピーダンスZsと、受信回路23の入力インピーダンスZRLから決まる。
 なお、共振型送受信アンテナ13,21の共振結合による電力伝送方式は特に限定されるものではなく、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式、接触型の共振結合方式のいずれであってもよい。
 そして、本発明では、共振型電源11の共振特性値Qo、共振型送信アンテナ13の共振特性値Qt及び共振型電力受信装置2の共振特性値Qrに相関関係を持たせるように、各機能部の特性インピーダンスを設定する。すなわち、共振型電力送信装置1の共振特性値Qtx(=√(Qo・Qt))と共振型電力受信装置2の共振特性値Qrとを近づける(下式(2))。具体的には下式(3)の範囲内であればよい。
√(Qo・Qt)≒Qr           (2)
0.5Qr≦√(Qo・Qt)≦1.5Qr  (3)
 これにより、共振型送信アンテナ13に繋がる共振型電源11の影響による共振特性値の変動、及び共振型受信アンテナ21に繋がる受信回路23の影響による共振特性値の変動を考慮して、共振型電力送信装置1及び共振型電力受信装置2を設定することが可能となる。その結果、システム全体として高効率な電力伝送が可能となる。
 次に、図3を用いて、共振型送受信アンテナ13,21間の距離dと結合係数k(≒磁束鎖交率)との関係について説明する。ここで、共振型送受信アンテナ13,21(ヘリカル型アンテナ)の径Φを18[cm]とした場合、距離dと結合係数kとの関係は図3(b)のようになる。すなわち、距離dが近いほど結合係数kが大きくなり、距離dが遠くなるほど結合係数kが小さくなる。
 しかしながら、本発明のように3つの共振特性値Qo,Qt,Qrに相関関係を持たせることで、電力伝送効率を下げることなく、共振型送受信アンテナ13,21間の距離を、従来の電磁誘導による距離よりも大きくすることができる。
 また、共振型電力送信装置1において、下式(4)を満たすように、各機能部の特性インピーダンスを設定する。具体的には下式(5)の範囲内であればよい。
k√(Qo・Qt)≒1        (4)
0.5≦k√(Qo・Qt)≦1.5  (5)
 また、共振型電力受信装置2において、下式(6)を満たすように、各機能部の特性インピーダンスを設定する。具体的には下式(7)の範囲内であればよい。
k・Qr≒1             (6)
0.5≦k・Qr≦1.5       (7)
 これにより、図4に示すように、システム全体としての電力伝送効率をより高めることができる。
 更に、図5(a)に示すように、式(2),(3)の条件下において、共振型送信アンテナ13の共振周波数ft(実線)と共振型受信アンテナ21の共振周波数fr(破線)とを異なる値に設定する。この際、理想的には、共振特性値Qtx,Qrの交点が最も高くなるように共振周波数ft,frをずらし、且つ、当該交点を共振型電源11の共振周波数foに一致させる。これにより、図5(b)に示すように、式(2),(3)での共振特性値を最大に近づけることができ、共振周波数(伝送周波数)foにおいて、電力伝送効率を最大に近づけることができる。
 次に、従来装置と本発明との違いについて説明する。
 従来装置は、上述したように、第1の共振器構造(共振型送信アンテナ)の共振特性値Q1と、第2の共振器構造(共振型受信アンテナ)の共振特性値Q2とを式(1)を満たすように高く設定したものである。一方、本発明では、共振型電源11の共振特性値Qo、共振型送信アンテナ13の共振特性値Qt及び共振型電力受信装置2の共振特性値Qrという3つの共振特性値に相関関係を持たせたものである。その結果、電力伝送効率を下げることなく、共振型送受信アンテナ13,21間の距離dを、従来の電磁誘導による距離よりも大きくすることができる。つまり、本発明では、従来装置の共振特性値Q1,Q2に相当する共振型送受信アンテナ13,21の共振特性値√(Qo・Qt),Qrが従来装置よりも低い場合であっても、遠距離へ高効率な電力伝送が可能である。以下、具体例を示す。
 まず、共振型電源11の共振周波数foにおいて、共振型電源11の共振特性値Qoを4、共振型送信アンテナ13の共振特性値Qtを6に設定し、共振型電力受信装置2の共振特性値Qrを5に設定した場合を示す。
 この場合、下式(8)の関係が成立する。
√(Qo・Qt)≒Qr≒5   (8)
 このとき、式(4),(6)から、下式(9)を満たす結合係数kの条件において、最も高効率な電力伝送が可能となる。
k≒1/5=0.2       (9)
 ここで、共振型送受信アンテナ13,21の径Φが18[cm]の場合(図3)、上記結合係数k=0.2を満たすためには、共振型送受信アンテナ13,21の距離dを約7cmに設定すればよい。また、その共振型送受信アンテナ13,21間の銅損を除く伝送効率ηは下式(10)となる。
η≒k√(√(Qo・Qt)・Qr)=99%   (10)
 次に、共振型電源11の共振周波数foにおいて、共振型電源11の共振特性値Qoを40、共振型送信アンテナ13の共振特性値Qtを60に設定し、共振型電力受信装置2の共振特性値Qrを50に設定した場合を示す。
 この場合、下式(11)の関係が成立する。
√(Qo・Qt)≒Qr≒50   (11)
 このとき、式(4),(6)から、下式(12)を満たす結合係数kの条件において、最も高効率な電力伝送が可能となる。
k≒1/50=0.02   (12)
 ここで、共振型送受信アンテナ13,21の径Φが18[cm]の場合(図3)、上記結合係数k=0.02を満たすためには、共振型送受信アンテナ13,21の距離dを約20cmに設定すればよい。また、その共振型送受信アンテナ13,21間の銅損を除く伝送効率ηは式(10)となる。
 次に、共振型電源11の共振周波数foにおいて、共振型電源11の共振特性値Qoを120、共振型送信アンテナ13の共振特性値Qtを80に設定し、共振型電力受信装置2の共振特性値Qrを100に設定した場合を示す。
 この場合、下式(13)の関係が成立する。
√(Qo・Qt)≒Qr≒100   (13)
 このとき、式(4),(6)より、下式(14)を満たす結合係数kの条件において、最も高効率な電力伝送が可能となる。
k≒1/100=0.01   (14)
 ここで、共振型送受信アンテナ13,21の径Φが18[cm]の場合(図3)、上記結合係数k=0.01を満たすためには、共振型送受信アンテナ13,21の距離dを約30cmに設定すればよい。また、その共振型送受信アンテナ13,21間の銅損を除く伝送効率ηは式(10)となる。
 以上のように、この実施の形態1によれば、共振型電源11の共振特性値Qo、共振型送信アンテナ13の共振特性値Qt及び共振型電力受信装置2の共振特性値Qrに相関関係を持たせるように、各機能部の特性インピーダンスを設定したので、共振型電源11及び受信回路23の影響による共振特性値の変動を考慮して、共振型電力送信装置1及び共振型電力受信装置2を設定することが可能となり、従来装置に対してシステム全体として電力伝送の高効率化を図ることができる。また、共振型送受信アンテナ13,21の共振特性値に依らずに、電力伝送効率を下げることなく、共振型送受信アンテナ13,21間の距離を、従来の電磁誘導による距離よりも遠くすることができる。
 また、共振型送受信アンテナ13,21の共振特性値を高めなくてもよいため、共振型送受信アンテナ13,21は、共振特性値で制限されない自由度のあるアンテナ設計が可能となり、小型化、軽量化、低コスト化が可能となる。また、共振型送受信アンテナ13,21の一部として用いられるキャパシタに、高耐圧のキャパシタ等の特殊な部品を用いる必要はないため、小型化、軽量化、低コスト化が可能となる。
 なお、本発明の共振型電源11は、図2に示す回路構成に限るものではなく、例えば図6に示すような回路構成としてもよい。ここで、図6(a)はブリッジ型コンバータを示し、図6(b)はD級コンバータを示し、図6(c)はDE級コンバータを示している。
 また、本発明の整流回路22は、図2に示す回路構成に限るものではなく、例えば図7に示すような回路構成としてもよい。ここで、図7(a)はE級整流回路を示し、図7(b)は倍電流整流回路を示し、図7(c)は半波整流回路を示し、図7(d)は倍電圧整流回路を示している。
 また図1では、共振型電力送信装置1に整合回路12を設けた場合を示した。しかしながら、これに限るものではなく、図8に示すように、整合回路12を設けずに構成してもよい。この場合、共振型電源11の共振周波数fo及び共振特性値Qoは、共振型電源11の出力インピーダンスZoと共振型送信アンテナ13の通過特性インピーダンスZtから決まる。また、共振型送信アンテナ13の共振周波数ft及び共振特性値Qtは、共振型送信アンテナ13の通過特性インピーダンスZtと共振型電源11の出力インピーダンスZoから決まる。
 また、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 この発明に係る共振結合型電力伝送システムは、共振型電源及び受信回路の影響による共振特性値の変動を考慮した設定を行い、従来装置に対してシステム全体での電力伝送の高効率化を図ることができ、共振型送受信アンテナの共振特性を利用して電力伝送を行う共振結合型電力伝送システム等に用いるのに適している。
 1 共振型電力送信装置、2 共振型電力受信装置、11 共振型電源、12 整合回路、13 共振型送信アンテナ、21 共振型受信アンテナ、22 整流回路、23 受信回路。

Claims (10)

  1.  電力を供給する共振型電源、及び前記共振型電源により供給された電力を伝送する共振型送信アンテナを有する共振型電力送信装置と、
     前記共振型送信アンテナにより伝送された電力を受信する共振型受信アンテナ、及び前記共振型受信アンテナにより受信された電力を負荷へ供給する受信回路を有する共振型電力受信装置とを備え、
     前記共振型電源の共振特性値、前記共振型送信アンテナの共振特性値及び前記共振型電力受信装置の共振特性値に相関関係を持たせるように、各機能部の特性インピーダンスを設定した
     ことを特徴とする共振結合型電力伝送システム。
  2.  前記共振型電源の共振特性値をQoとし、前記共振型送信アンテナの共振特性値をQtとし、前記共振型電力受信装置の共振特性値をQrとしたとき、0.5Qr≦√(Qo・Qt)≦1.5Qrを満たす
     ことを特徴とする請求項1記載の共振結合型電力伝送システム。
  3.  前記共振型送信アンテナと前記共振型受信アンテナとの間の結合係数をkとしたとき、0.5≦k√(Qo・Qt)≦1.5を満たす
     ことを特徴とする請求項2記載の共振結合型電力伝送システム。
  4.  前記共振型送信アンテナと前記共振型受信アンテナとの間の結合係数をkとしたとき、0.5≦k・Qr≦1.5を満たす
     ことを特徴とする請求項2記載の共振結合型電力伝送システム。
  5.  前記共振型送信アンテナの共振周波数と前記共振型受信アンテナの共振周波数は異なる
     ことを特徴とする請求項1記載の共振結合型電力伝送システム。
  6.  前記共振型電源の共振周波数は2MHz以上である
     ことを特徴とする請求項1記載の共振結合型電力伝送システム。
  7.  前記共振型送信アンテナと前記共振型受信アンテナとの間の共振結合による電力伝送方式は、磁界、電界、電磁誘導のうちのいずれかである
     ことを特徴とする請求項1記載の共振結合型電力伝送システム。
  8.  電力を供給する共振型電源、及び前記共振型電源により供給された電力を伝送する共振型送信アンテナを有する共振型電力送信装置と、
     前記共振型送信アンテナにより伝送された電力を受信する共振型受信アンテナ、及び前記共振型受信アンテナにより受信された電力を負荷へ供給する受信回路を有する共振型電力受信装置とを備え、
     前記共振型電力送信装置の共振特性値と前記共振型電力受信装置の共振特性値とを近づけるように、各機能部の特性インピーダンスを設定した
     ことを特徴とする共振結合型電力伝送システム。
  9.  電力を供給する共振型電源と、
     前記共振型電源により供給された電力を伝送する共振型送信アンテナとを有し、
     前記共振型電源の共振特性値、前記共振型送信アンテナの共振特性値、及び、前記共振型送信アンテナにより伝送された電力を受信する共振型受信アンテナ、及び前記共振型受信アンテナにより受信された電力を負荷へ供給する受信回路を有する共振型電力受信装置の共振特性値に、相関関係を持たせるように、各機能部の特性インピーダンスを設定した
     ことを特徴とする共振型電力送信装置。
  10.  電力を供給する共振型電源、及び前記共振型電源により供給された電力を伝送する共振型送信アンテナを有する共振型電力送信装置により伝送された電力を受信する共振型受信アンテナと、
     前記共振型受信アンテナにより受信された電力を負荷へ供給する受信回路とを有し、
     前記共振型電源の共振特性値、前記共振型送信アンテナの共振特性値及び自身の共振特性値に相関関係を持たせるように、各機能部の特性インピーダンスを設定した
     ことを特徴とする共振型電力受信装置。
PCT/JP2014/073067 2014-09-02 2014-09-02 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置 WO2016035141A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177006025A KR102236047B1 (ko) 2014-09-02 2014-09-02 공진 결합형 전력 전송 시스템, 공진형 전력 송신 장치 및 공진형 전력 수신 장치
PCT/JP2014/073067 WO2016035141A1 (ja) 2014-09-02 2014-09-02 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
US15/320,215 US10158254B2 (en) 2014-09-02 2014-09-02 Resonant coupling power transmission system, resonance type power transmission device, and resonance type power reception device
CN201480081667.7A CN106797143B (zh) 2014-09-02 2014-09-02 谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置
EP14901211.4A EP3190684B1 (en) 2014-09-02 2014-09-02 Resonance coupling power transmission system, resonance coupling power transmission device, and resonance coupling power reception device
JP2014555886A JP5738497B1 (ja) 2014-09-02 2014-09-02 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
TW104112378A TWI515994B (zh) 2014-09-02 2015-04-17 共振結合型電力傳送系統、共振型電力送信裝置及共振型電力受信裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073067 WO2016035141A1 (ja) 2014-09-02 2014-09-02 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置

Publications (1)

Publication Number Publication Date
WO2016035141A1 true WO2016035141A1 (ja) 2016-03-10

Family

ID=53534096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073067 WO2016035141A1 (ja) 2014-09-02 2014-09-02 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置

Country Status (7)

Country Link
US (1) US10158254B2 (ja)
EP (1) EP3190684B1 (ja)
JP (1) JP5738497B1 (ja)
KR (1) KR102236047B1 (ja)
CN (1) CN106797143B (ja)
TW (1) TWI515994B (ja)
WO (1) WO2016035141A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037566A1 (ja) * 2016-08-26 2018-03-01 マクセル株式会社 非接触受電装置、非接触送電装置および非接触送受電装置
CN110546853A (zh) * 2017-04-24 2019-12-06 三菱电机工程技术株式会社 谐振型电力接收装置
JP2020184824A (ja) * 2019-05-07 2020-11-12 株式会社デンソー 無線給電装置
US11533790B2 (en) 2017-10-12 2022-12-20 Mitsubishi Electric Corporation Induction cooker

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126112A1 (ja) * 2016-01-22 2017-07-27 三菱電機エンジニアリング株式会社 電力伝送装置、高周波電源及び高周波整流回路
US10727697B2 (en) * 2016-09-14 2020-07-28 Witricity Corporation Power flow controller synchronization
CN110199570B (zh) 2017-01-27 2021-08-13 三菱电机株式会社 感应加热烹调器
US20190363589A1 (en) * 2017-03-10 2019-11-28 Mitsubishi Electric Engineering Company, Limited Resonance-type power transmission device and resonance-type power transfer system
CN110383631B (zh) * 2017-03-10 2023-06-09 三菱电机工程技术株式会社 谐振型电力接收装置
CN107508386A (zh) * 2017-07-31 2017-12-22 惠州硕贝德无线科技股份有限公司 一种低干扰的车载无线充电电路
JP7061548B2 (ja) * 2018-10-04 2022-04-28 株式会社日立産機システム 共振型電源装置
JP7401251B2 (ja) * 2019-10-10 2023-12-19 キヤノン株式会社 送電装置および無線電力伝送システム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177018A (ja) * 2005-07-12 2011-09-08 Massachusetts Inst Of Technology <Mit> 無線非放射型エネルギー転送

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
KR101288433B1 (ko) * 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 무선 에너지 전달
US9634730B2 (en) * 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
KR20100057632A (ko) * 2007-08-09 2010-05-31 퀄컴 인코포레이티드 공진기의 q 팩터 증가
CN101803224A (zh) * 2007-08-13 2010-08-11 高通股份有限公司 远程低频率谐振器和材料
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5645582B2 (ja) * 2010-10-07 2014-12-24 株式会社日立情報通信エンジニアリング 共振形充電装置及びそれを用いた車両
US9350193B2 (en) * 2011-06-01 2016-05-24 Samsung Electronics Co., Ltd. Method and apparatus for detecting load fluctuation of wireless power transmission
WO2013035188A1 (ja) * 2011-09-08 2013-03-14 富士通株式会社 送電装置、受電装置および非接触型充電方法
US9496731B2 (en) * 2012-01-20 2016-11-15 Samsung Electronics Co., Ltd Apparatus and method for transmitting wireless power by using resonant coupling and system for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177018A (ja) * 2005-07-12 2011-09-08 Massachusetts Inst Of Technology <Mit> 無線非放射型エネルギー転送

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037566A1 (ja) * 2016-08-26 2018-03-01 マクセル株式会社 非接触受電装置、非接触送電装置および非接触送受電装置
CN109643912A (zh) * 2016-08-26 2019-04-16 麦克赛尔株式会社 非接触受电装置、非接触输电装置和非接触输受电装置
JPWO2018037566A1 (ja) * 2016-08-26 2019-06-20 マクセル株式会社 非接触受電装置、非接触送電装置および非接触送受電装置
US10971953B2 (en) 2016-08-26 2021-04-06 Maxell, Ltd. Contactless power receiving device, contactless power transfer device, and contactless power transfer and receiving device
CN109643912B (zh) * 2016-08-26 2022-08-30 麦克赛尔株式会社 非接触受电装置、非接触输电装置和非接触输受电装置
CN110546853A (zh) * 2017-04-24 2019-12-06 三菱电机工程技术株式会社 谐振型电力接收装置
US11533790B2 (en) 2017-10-12 2022-12-20 Mitsubishi Electric Corporation Induction cooker
JP2020184824A (ja) * 2019-05-07 2020-11-12 株式会社デンソー 無線給電装置
JP7270212B2 (ja) 2019-05-07 2023-05-10 株式会社デンソー 無線給電装置

Also Published As

Publication number Publication date
KR102236047B1 (ko) 2021-04-02
CN106797143A (zh) 2017-05-31
TWI515994B (zh) 2016-01-01
EP3190684A4 (en) 2018-05-02
EP3190684A1 (en) 2017-07-12
TW201539928A (zh) 2015-10-16
US20170155283A1 (en) 2017-06-01
KR20170049510A (ko) 2017-05-10
EP3190684B1 (en) 2019-11-06
JP5738497B1 (ja) 2015-06-24
JPWO2016035141A1 (ja) 2017-04-27
US10158254B2 (en) 2018-12-18
CN106797143B (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
JP5738497B1 (ja) 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置
JP6266661B2 (ja) 寄生共振タンクを備える電子デバイスに対するワイヤレス電力送信
US10027377B2 (en) Wireless power supply apparatus
US9991748B2 (en) Wireless power transmission system and power transmission device
JP2012503959A5 (ja)
JP2011142724A (ja) 非接触電力伝送装置及びそのための近接場アンテナ
CN103959598A (zh) 无线电力发射器、无线电力中继器以及无线电力传输方法
JP5530497B2 (ja) 無線電力中継装置
WO2014174785A1 (ja) 無線電力伝送装置
US10511194B2 (en) Wireless power transfer system
KR20130033837A (ko) 무선 전력 전송 기기 및 그 방법
US10491043B2 (en) Resonant coil, wireless power transmitter using the same, wireless power receiver using the same
WO2018163408A1 (ja) 共振型電力送信装置及び共振型電力伝送システム
KR20160070540A (ko) 무선전력 송신부
KR101745043B1 (ko) 무선 전력 전송 기기 및 그 방법
JP6058222B1 (ja) 電力伝送装置、高周波電源及び高周波整流回路
KR102086859B1 (ko) 하이브리드형 무선 전력 수신 장치, 하이브리드형 무선 전력 수신 장치에서의 무선 전력 신호 제어 방법, 및 이와 관련된 자기 공명식 무선 전력 수신 장치
KR20160070539A (ko) 무선전력 송신부
TW201725829A (zh) 傳送系統、傳送裝置以及傳送方法
WO2014069147A1 (ja) 送電機器及び非接触電力伝送装置
WO2013125926A1 (ko) 자기 공명 전력전송 장치
KR101883684B1 (ko) 공진 결합을 이용한 무선 전력 전송 장치 및 방법 그리고 이를 위한 시스템
WO2013183701A1 (ja) 受電機器、送電機器及び非接触電力伝送装置
JP2014068413A (ja) 送電機器及び非接触電力伝送装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555886

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15320215

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014901211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014901211

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006025

Country of ref document: KR

Kind code of ref document: A