CN106797143B - 谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置 - Google Patents

谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置 Download PDF

Info

Publication number
CN106797143B
CN106797143B CN201480081667.7A CN201480081667A CN106797143B CN 106797143 B CN106797143 B CN 106797143B CN 201480081667 A CN201480081667 A CN 201480081667A CN 106797143 B CN106797143 B CN 106797143B
Authority
CN
China
Prior art keywords
resonance
mode
electric power
antenna
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201480081667.7A
Other languages
English (en)
Other versions
CN106797143A (zh
Inventor
阿久泽好幸
酒井清秀
江副俊裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Publication of CN106797143A publication Critical patent/CN106797143A/zh
Application granted granted Critical
Publication of CN106797143B publication Critical patent/CN106797143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks
    • H03H7/0115Frequency selective two-port networks comprising only inductors and capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

本发明包括:谐振型电力发送装置(1),该谐振型电力发送装置(1)具有提供电力的谐振型电源(11)、及对由谐振型电源(11)所提供的电力进行传输的谐振型发送天线(13);以及谐振型电力接收装置(2),该谐振型电力接收装置(2)具有接收由谐振型发送天线(13)所传输的电力的谐振型接收天线(21)、及将由谐振型接收天线(21)所接收到的电力提供给负载的接收电路(23),对各功能部的特性阻抗进行设定,使得谐振型电源(11)的谐振特性值、谐振型发送天线(13)的谐振特性值及谐振型电力接收装置(2)的谐振特性值具有相关关系。

Description

谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电 力接收装置
技术领域
本发明涉及利用谐振型收发天线的谐振特性来进行电力传输的谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置。
背景技术
以往以来,已知有通过无线方式来传输能量的装置(例如参照专利文献1-3)。该装置由第一谐振器构造(谐振型发送天线)、以及位于距离该第一谐振器构造较远的位置的第二谐振器构造(谐振型接收天线)构成。第一谐振器构造从电力提供源(交流输出型电源)获取能量,利用电磁共鸣(磁场谐振耦合)通过非辐射方式向第二谐振器构造进行输送。另外,第二谐振器构造接收来自第一谐振器构造的能量并向外部负载(接收电路)进行提供。另外,第一谐振器构造的谐振特性值Q1及第二谐振器构造的谐振特性值Q2设定为满足下式(1)。
由此,能将第一、二谐振器构造间的距离设得比其特征性尺寸(以往的电磁感应的距离)要大,而不会减低能量的输送效率。
现有技术文献
专利文献
专利文献1
日本专利特开2011-177018号公报
专利文献2
日本专利特表2012-502602号公报
专利文献3
日本专利特表2009-501510号公报
发明内容
发明所要解决的技术问题
然而,在专利文献1-3所公开的现有装置中,存在以下问题:仅考虑了第一、二谐振器构造的谐振特性值Q1、Q2,而未考虑由与第一谐振器构造相连接的电力提供源所引起的谐振特性值的变动、以及由与第二谐振器构造相连接的外部负载所引起的谐振特性值的变动。
即,在高频电路中,需要对每个电路模块进行阻抗匹配的接口。另一方面,在现有装置中,由于仅考虑了第一、二谐振器构造的谐振特性值Q1、Q2,因此,在第一谐振器构造与电力提供源之间、以及第二谐振器构造与外部负载之间,设置上述接口。在该结构的情况下,在第一、二谐振器构造间能高效地进行电力传输。然而,在作为包含电力提供源及外部负载的系统整体来看的情况下,存在如上所述的接口,从而电力损耗变得非常大。
另外,在式(1)的条件下,在第一、二谐振器构造间的耦合度不恰当的情况下,即,第一、二谐振器构造间的距离会导致能量损耗变大,存在无法有效地进行电力传输的问题。另外,在上述条件下,存在以下问题:第一、二谐振器构造的天线结构受到限制而没有自由度,从而小型化、轻量化、低成本化存在困难。另外,在上述条件下,存在以下问题:由于对作为第一、二谐振器构造的一部分来使用的电容器施加高电压,因此,需要高耐压的电容器等特殊元器件,从而小型化、轻量化、低成本化存在困难。
本发明是为了解决上述问题而完成的,其目的在于,提供一种能进行考虑了由谐振型电源及接收电路的影响所造成的谐振特性值的变动的设定、并能对现有装置力图实现系统整体的电力传输的高效化的谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置。
用于解决技术问题的技术手段
本发明所涉及的谐振耦合型电力传输系统包括:谐振型电力发送装置,该谐振型电力发送装置具有提供电力的谐振型电源、及对由谐振型电源所提供的电力进行传输的谐振型发送天线;以及谐振型电力接收装置,该谐振型电力接收装置具有接收由谐振型发送天线所传输的电力的谐振型接收天线、及将由谐振型接收天线所接收到的电力提供给负载的接收电路,对各功能部的特性阻抗进行设定,使得谐振型电源的谐振特性值、谐振型发送天线的谐振特性值及谐振型电力接收装置的谐振特性值具有相关关系。
发明效果
根据本发明,由于具有如上所述的结构,因此,能进行考虑了由谐振型电源及接收电路的影响所造成的谐振特性值的变动的设定,并能对现有装置力图实现系统整体的电力传输的高效化。
附图说明
图1是表示本发明的实施方式1所涉及的谐振耦合型电力传输系统的结构的图。
图2是表示本发明的实施方式1所涉及的谐振耦合型电力传输系统的结构的电路图。
图3是表示本发明实施方式1中的谐振型收发天线间的距离与耦合系数之间的关系的图。
图4是表示本发明实施方式1所涉及的谐振耦合型电力传输系统的电力传输效率的图,(a)是表示k·Qr>1的情况的图,(b)是表示k·Qr≒1的情况的图,(c)是表示k·Qr<1的情况的图。
图5是对本发明实施方式1中的谐振型收发天线的谐振频率的设定进行说明的图,(a)是表示谐振型收发天线的谐振频率的图,(b)是表示谐振型收发天线的谐振频率的设定的电力传输效率的图。
图6是表示本发明实施方式1中的谐振型电源电路的其它结构的电路图,(a)是表示桥式整流器的图,(b)是表示D级整流器的图,(c)是表示DE级整流器的图。
图7是表示本发明实施方式1中的整流电路的其它结构的电路图,(a)是表示E级整流电路的图,(b)是表示倍电流整流电路的图,(c)是表示半波整流电路的图,(d)是表示倍电压整流电路的图。
图8是表示本发明的实施方式1所涉及的谐振耦合型电力传输系统的其它结构的图。
具体实施方式
以下,参照附图对本发明实施方式进行详细说明。
实施方式1.
图1是表示本发明的实施方式1所涉及的谐振耦合型电力传输系统的结构的图,图2是具体的电路图。
如图1、2所示,谐振耦合型电力传输系统由谐振型电力发送装置1和谐振型电力接收装置2构成。此外,在图2所示的谐振耦合型电力传输系统中,示出了后述的谐振型电源11的谐振频率为2MHz以上的情况,但也可以使用小于2MHz的谐振型电源。
谐振型电力发送装置1由谐振型电源11、匹配电路12及谐振型发送天线13构成。
谐振型电源11对向谐振型发送天线13的电力的提供进行控制,将直流或交流的输入电力转换成规定频率的交流并输出。该谐振型电源11由谐振开关方式的电源电路构成,具有输出阻抗Zo、谐振频率fo和谐振特性值Qo。
匹配电路12对谐振型电源11的输出阻抗Zo与谐振型发送天线13的通过特性阻抗Zt之间进行阻抗匹配。该匹配电路12由电感器L和电容器C所形成的π型或L型的滤波器构成,具有其通过特性阻抗Zp。
谐振型发送天线13输入经由匹配电路12的来自谐振型电源11的交流电力并进行谐振动作,使附近产生非辐射型的电磁场,从而对谐振型接收天线21进行电力传输。该谐振型发送天线13是线圈状的谐振型天线,具有其通过特性阻抗Zt、谐振频率ft及谐振特性值Qt。
另外,谐振型电源11的谐振频率fo及谐振特性值Qo根据谐振型电源11的输出阻抗Zo和匹配电路12的通过特性阻抗Zp来决定。谐振型发送天线13的谐振频率ft及谐振特性值Qt根据谐振型发送天线13的通过特性阻抗Zt和匹配电路12的通过特性阻抗Zp来决定。
而且,由于这两个谐振特性值Qo、Qt,因此谐振型电力发送装置1具有谐振特性值
谐振型电力接收装置2由谐振型接收天线21、整流电路22及接收电路23构成。该谐振型电力接收装置2具有谐振频率fr和谐振特性值Qr。
谐振型接收天线21通过与来自谐振型发送天线13的非辐射型电磁场进行谐振耦合动作来接收电力,并输出交流电力。该谐振型接收天线21是线圈状的谐振型天线,具有其通过特性阻抗Zr。
整流电路22是具有将来自谐振型接收天线21的交流电力转化为直流电力的整流功能、以及对谐振型接收天线21的通过特性阻抗Zr与接收电路23的输入阻抗ZRL之间进行阻抗匹配的匹配功能的匹配型整流电路。匹配功能由电感器L和电容器C所形成的π型或L型的滤波器构成。另外,整流电路22具有通过特性阻抗Zs。此外,这里,设整流电路22具有整流功能和匹配功能,但并不局限于此,虽然整流效率降低但也可以仅由整流功能构成。
接收电路23输入来自整流电路22的直流电力,将其转化为规定的电压并提供给负载(未图示)。该接收电路23由用于对高频电压纹波进行平滑的LC滤波器(平滑滤波器)、以及用于转换为规定的电压的DC/DC转换器等构成,具有其输入阻抗ZRL。此外,也可以不设置DC/DC转换器,而仅由平滑滤波器构成。
另外,谐振型电力接收装置2的谐振特性值Qr及谐振频率fr根据谐振型接收天线21的通过特性阻抗Zr、整流电路22的通过特性阻抗Zs和接收电路23的输入阻抗ZRL来决定。
此外,谐振型收发天线13、21的谐振耦合的电力传输方式并无特别限定,可以是磁场共鸣的方式、电场共鸣的方式、电磁耦合的方式、接触型的谐振耦合方式中的任意一种。
然后,在本发明中,对各功能部的特性阻抗进行设定,使得谐振型电源11的谐振特性值Qo、谐振型发送天线13的谐振特性值Qt及谐振型电力接收装置2的谐振特性值Qr具有相关关系。即,使谐振型电力发送装置1的谐振特性值与谐振型电力接收装置2的谐振特性值Qr相接近(下式(2))。具体而言,在下式(3)的范围内即可。
由此,能考虑与谐振型发送天线13相连接的谐振型电源11的影响所造成的谐振特性值的变动、以及与谐振型接收天线21相连接的接收电路23的影响所造成的谐振特性值的变动,来对谐振型电力发送装置1及谐振型电力接收装置2进行设定。其结果是,整个系统能高效地进行电力传输。
接着,使用图3,对谐振型收发天线13、21间的距离d与耦合系数k(≒磁通交链率)之间的关系进行说明。这里,在将谐振型收发天线13、21(螺旋形天线)的直径Φ设为18[cm]的情况下,距离d与耦合系数k之间的关系如图3(b)所示。即,距离d越近耦合系数k越大,距离d越远耦合系数k越小。
但是,如本发明那样使三个谐振特性值Qo、Qt、Qr具有相关关系,从而能使谐振型收发天线13、21间的距离比现有的电磁感应的距离要大,而不会使电力传输效率降低。
另外,在谐振型电力发送装置1中,对各功能部的特性阻抗进行设定,使得满足下式(4)。具体而言,在下式(5)的范围内即可。
另外,在谐振型电力接收装置2中,对各功能部的特性阻抗进行设定,使得满足下式(6)。具体而言,在下式(7)的范围内即可。
k·Qr≒1 (6)
0.5≦k·Qr≦1.5 (7)
由此,如图4所示,能使整个系统的电力传输效率变得更高。
此外,如图5(a)所示,在式(2)、(3)的条件下,将谐振型发送天线13的谐振频率ft(实线)与谐振型接收天线21的谐振频率fr(虚线)设定为不同值。此时,在理想状态下,使谐振频率ft、fr发生偏移,使得谐振特性值Qtx、Qr的交点变得最高,并且,使该交点与谐振型电源11的谐振频率fo相一致。由此,如图5(b)所示,能使式(2)、(3)中的谐振特性值接近最大,在谐振频率(传输频率)fo下,能使电力传输效率接近最大。
接着,对现有装置与本发明的不同之处进行说明。
如上所述,现有装置将第一谐振器构造(谐振型发送天线)的谐振特性值Q1和第二谐振器构造(谐振型接收天线)的谐振特性值Q2设得较高,使得满足式(1)。另一方面,在本发明中,使谐振型电源11的谐振特性值Qo、谐振型发送天线13的谐振特性值Qt及谐振型电力接收装置2的谐振特性值Qr这三个谐振特性值具有相关关系。其结果是,能将谐振型收发天线13、21间的距离d设得比现有的电磁耦合的距离要大,而不使电力传输效率降低。即,在本发明中,即使在相当于现有装置的谐振特性值Q1、Q2的谐振型收发天线13、21的谐振特性值Qr比现有装置要低的情况下,也能高效地向远距离进行电力传输。以下示出具体示例。
首先,示出以下情况:在谐振型电源11的谐振频率fo下,将谐振型电源11的谐振特性值Qo设定为4,将谐振型发送天线13的谐振特性值Qt设定为6,将谐振型电力接收装置2的谐振特性值Qr设定为5。
在这种情况下,下式(8)的关系成立。
此时,根据式(4)、(6),在满足下式(9)的耦合系数k的条件下,能实现最高效率的电力传输。
k≒1/5=0.2 (9)
这里,在谐振型收发天线13、21的直径Φ为18[cm]的情况下(图3),为了满足上述耦合系数k=0.2,也可以将谐振型收发天线13、21的距离d设定为约7cm。另外,去除其谐振型收发天线13、21间的铜损的传输效率η满足下式(10)。
接着,示出以下情况:在谐振型电源11的谐振频率fo下,将谐振型电源11的谐振特性值Qo设定为40,将谐振型发送天线13的谐振特性值Qt设定为60,将谐振型电力接收装置2的谐振特性值Qr设定为50。
在这种情况下,下式(11)的关系成立。
此时,根据式(4)、(6),在满足下式(12)的耦合系数k的条件下,能实现最高效率的电力传输。
k≒1/50=0.02 (12)
这里,在谐振型收发天线13、21的直径Φ为18[cm]的情况下(图3),为了满足上述耦合系数k=0.02,将谐振型收发天线13、21的距离d设定为约20cm即可。另外,去除其谐振型收发天线13、21间的铜损后的传输效率η满足式(10)。
接着,示出以下情况:在谐振型电源11的谐振频率fo下,将谐振型电源11的谐振特性值Qo设定为120,将谐振型发送天线13的谐振特性值Qt设定为80,将谐振型电力接收装置2的谐振特性值Qr设定为100。
在这种情况下,下式(13)的关系成立。
此时,根据式(4)、(6),在满足下式(14)的耦合系数k的条件下,能实现最高效率的电力传输。
k≒1/100=0.01 (14)
这里,在谐振型收发天线13、21的直径Φ为18[cm]的情况下(图3),为了满足上述耦合系数k=0.01,也可以将谐振型收发天线13、21的距离d设定为约30cm。另外,去除其谐振型收发天线13、21间的铜损后的传输效率η满足式(10)。
如上所述,根据本实施方式1,对各功能部的特性阻抗进行设定,使得谐振型电源11的谐振特性值Qo、谐振型发送天线13的谐振特性值Qt及谐振型电力接收装置2的谐振特性值Qr具有相关关系,因此,能考虑由谐振型电源11及接收电路23的影响所造成的谐振特性值的变动,来设定谐振型电力发送装置1和谐振型电力接收装置2,并能对现有装置力图实现系统整体的电力传输的高效化。另外,无论谐振型收发天线13、21的谐振特性值如何,都能将谐振型收发天线13、21间的距离设得比现有的电磁感应的距离要远,而不使电力传输效率降低。
另外,由于也可以不提高谐振型收发天线13、21的谐振特性值,因此,谐振型收发天线13、21能进行具有不受谐振特性值限制的自由度的天线设计,能实现小型化、轻量化、低成本化。另外,对于作为谐振型收发天线13、21的一部分来使用的电容器,无需使用高耐压的电容器等特殊的元器件,因此,能实现小型化、轻量化、低成本化。
此外,本发明的谐振型电源11并不局限于图2所示的电路结构,例如也可以采用图6所示的电路结构。这里,图6(a)示出桥式整流器,图6(b)示出D级整流器,图6(c)示出DE级整流器。
另外,本发明的整流电路22并不局限于图2所示的电路结构,例如也可以采用图7所示的电路结构。这里,图7(a)示出E级整流电路,图7(b)示出倍电流整流电路,图7(c)示出半波整流电路,图7(d)示出倍电压整流电路。
另外,在图1中,示出了在谐振型电力发送装置1中设置匹配电路12的情况。然而,并不局限于此,如图8所示,也可以采用不设置匹配电路12的结构。在这种情况下,谐振型电源11的谐振频率fo及谐振特性值Qo根据谐振型电源11的输出阻抗Zo和谐振型发送天线13的通过特性阻抗Zt来决定。另外,谐振型发送天线13的谐振频率ft及谐振特性值Qt根据谐振型发送天线13的通过特性阻抗Zt和谐振型电源11的输出阻抗Zo来决定。
另外,本发明申请在其发明的范围内可以对实施方式的任意构成要素进行变形,或者省略实施方式的任意构成要素。
工业上的实用性
本发明所涉及的谐振耦合型电力传输系统能进行考虑了由谐振型电源及接收电路的影响所造成的谐振特性值的变动的设定,并能对现有装置力图实现系统整体的电力传输的高效化,适用于利用谐振型收发天线的谐振特性来进行电力传输的谐振耦合型电力传输系统等。
标号说明
1 谐振型电力发送装置
2 谐振型电力接收装置
11 谐振型电源
12 匹配电路
13 谐振型发送天线
21 谐振型接收天线
22 整流电路
23 接收电路

Claims (8)

1.一种谐振耦合型电力传输系统,其特征在于,包括:
谐振型电力发送装置,该谐振型电力发送装置具有提供电力的谐振型电源、及对由所述谐振型电源所提供的电力进行传输的谐振型发送天线;以及
谐振型电力接收装置,该谐振型电力接收装置具有接收由所述谐振型发送天线所传输的电力的谐振型接收天线、及将由所述谐振型接收天线所接收到的电力提供给负载的接收电路,
对各功能部的特性阻抗进行设定,使得在将所述谐振型电源的谐振特性值设为Qo、将所述谐振型发送天线的谐振特性值设为Qt、将所述谐振型电力接收装置的谐振特性值设为Qr时,满足
2.如权利要求1所述的谐振耦合型电力传输系统,其特征在于,
在将所述谐振型发送天线与所述谐振型接收天线之间的耦合系数设为k时,满足
3.如权利要求1所述的谐振耦合型电力传输系统,其特征在于,
在将所述谐振型发送天线与所述谐振型接收天线之间的耦合系数设为k时,满足0.5≦k·Qr≦1.5。
4.如权利要求1所述的谐振耦合型电力传输系统,其特征在于,
所述谐振型发送天线的谐振频率与所述谐振型接收天线的谐振频率不同。
5.如权利要求1所述的谐振耦合型电力传输系统,其特征在于,
所述谐振型电源的谐振频率为2MHz以上。
6.如权利要求1所述的谐振耦合型电力传输系统,其特征在于,
所述谐振型发送天线与所述谐振型接收天线之间的谐振耦合的电力传输方式是磁场、电场、电磁感应中的任意一种。
7.一种谐振型电力发送装置,其特征在于,包括:
谐振型电源,该谐振型电源提供电力;以及
谐振型发送天线,该谐振型发送天线对由所述谐振型电源所提供的电力进行传输,
对各功能部的特性阻抗进行设定,使得在将所述谐振型电源的谐振特性值设为Qo、将所述谐振型发送天线的谐振特性值设为Qt、以及将谐振型电力接收装置的谐振特性值设为Qr时,满足其中所述谐振型电力接收装置具有接收由所述谐振型发送天线所传输的电力的谐振型接收天线、以及将由所述谐振型接收天线所接收到的电力提供给负载的接收电路。
8.一种谐振型电力接收装置,其特征在于,包括:
谐振型接收天线,该谐振型接收天线接收由谐振型电力发送装置所传输的电力,所述谐振型电力发送装置具有提供电力的谐振型电源、及对由所述谐振型电源所提供的电力进行传输的谐振型发送天线;以及
接收电路,该接收电路将由所述谐振型接收天线所接收到的电力提供给负载,
对各功能部的特性阻抗进行设定,使得在将所述谐振型电源的谐振特性值设为Qo、将所述谐振型发送天线的谐振特性值设为Qt、将所述谐振型电力接收装置的谐振特性值设为Qr时,满足
CN201480081667.7A 2014-09-02 2014-09-02 谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置 Active CN106797143B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073067 WO2016035141A1 (ja) 2014-09-02 2014-09-02 共振結合型電力伝送システム、共振型電力送信装置及び共振型電力受信装置

Publications (2)

Publication Number Publication Date
CN106797143A CN106797143A (zh) 2017-05-31
CN106797143B true CN106797143B (zh) 2019-06-25

Family

ID=53534096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480081667.7A Active CN106797143B (zh) 2014-09-02 2014-09-02 谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置

Country Status (7)

Country Link
US (1) US10158254B2 (zh)
EP (1) EP3190684B1 (zh)
JP (1) JP5738497B1 (zh)
KR (1) KR102236047B1 (zh)
CN (1) CN106797143B (zh)
TW (1) TWI515994B (zh)
WO (1) WO2016035141A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126112A1 (ja) * 2016-01-22 2017-07-27 三菱電機エンジニアリング株式会社 電力伝送装置、高周波電源及び高周波整流回路
CN109643912B (zh) * 2016-08-26 2022-08-30 麦克赛尔株式会社 非接触受电装置、非接触输电装置和非接触输受电装置
US10727697B2 (en) * 2016-09-14 2020-07-28 Witricity Corporation Power flow controller synchronization
CN110199570B (zh) 2017-01-27 2021-08-13 三菱电机株式会社 感应加热烹调器
WO2018163406A1 (ja) * 2017-03-10 2018-09-13 三菱電機エンジニアリング株式会社 共振型電力受信装置
JP6370484B1 (ja) * 2017-03-10 2018-08-08 三菱電機エンジニアリング株式会社 共振型電力送信装置及び共振型電力伝送システム
CN110546853A (zh) * 2017-04-24 2019-12-06 三菱电机工程技术株式会社 谐振型电力接收装置
CN107508386A (zh) * 2017-07-31 2017-12-22 惠州硕贝德无线科技股份有限公司 一种低干扰的车载无线充电电路
CN111406439B (zh) * 2017-10-12 2022-03-22 三菱电机株式会社 感应加热烹调器
JP7061548B2 (ja) * 2018-10-04 2022-04-28 株式会社日立産機システム 共振型電源装置
JP7270212B2 (ja) * 2019-05-07 2023-05-10 株式会社デンソー 無線給電装置
JP7401251B2 (ja) * 2019-10-10 2023-12-19 キヤノン株式会社 送電装置および無線電力伝送システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177018A (ja) * 2005-07-12 2011-09-08 Massachusetts Inst Of Technology <Mit> 無線非放射型エネルギー転送
CN102447295A (zh) * 2010-10-07 2012-05-09 日立电脑机器股份有限公司 谐振型充电装置以及使用了该谐振型充电装置的车辆
CN103782484A (zh) * 2011-09-08 2014-05-07 富士通株式会社 送电装置、受电装置和非接触式充电方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
CN102361358B (zh) * 2007-03-27 2015-07-29 麻省理工学院 无线能量传输
US9634730B2 (en) * 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
CN101842962B (zh) * 2007-08-09 2014-10-08 高通股份有限公司 增加谐振器的q因数
US20090058189A1 (en) 2007-08-13 2009-03-05 Nigelpower, Llc Long range low frequency resonator and materials
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
US9350193B2 (en) * 2011-06-01 2016-05-24 Samsung Electronics Co., Ltd. Method and apparatus for detecting load fluctuation of wireless power transmission
US9496731B2 (en) * 2012-01-20 2016-11-15 Samsung Electronics Co., Ltd Apparatus and method for transmitting wireless power by using resonant coupling and system for the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011177018A (ja) * 2005-07-12 2011-09-08 Massachusetts Inst Of Technology <Mit> 無線非放射型エネルギー転送
CN102447295A (zh) * 2010-10-07 2012-05-09 日立电脑机器股份有限公司 谐振型充电装置以及使用了该谐振型充电装置的车辆
CN103782484A (zh) * 2011-09-08 2014-05-07 富士通株式会社 送电装置、受电装置和非接触式充电方法

Also Published As

Publication number Publication date
KR102236047B1 (ko) 2021-04-02
TWI515994B (zh) 2016-01-01
US20170155283A1 (en) 2017-06-01
CN106797143A (zh) 2017-05-31
JP5738497B1 (ja) 2015-06-24
US10158254B2 (en) 2018-12-18
JPWO2016035141A1 (ja) 2017-04-27
EP3190684A1 (en) 2017-07-12
TW201539928A (zh) 2015-10-16
KR20170049510A (ko) 2017-05-10
EP3190684A4 (en) 2018-05-02
WO2016035141A1 (ja) 2016-03-10
EP3190684B1 (en) 2019-11-06

Similar Documents

Publication Publication Date Title
CN106797143B (zh) 谐振耦合型电力传输系统、谐振型电力发送装置及谐振型电力接收装置
US10027377B2 (en) Wireless power supply apparatus
JP4258505B2 (ja) 給電システム
EP3032698B1 (en) Wireless power-transfer system and power-transmission device
US9923388B2 (en) Wireless power transmitter
US9543653B2 (en) Flexible printed circuit board for dual mode antennas, dual mode antenna and user device
KR101438910B1 (ko) 유선-무선 전력 전송 장치 및 그 방법
KR101349557B1 (ko) 무선전력 수신장치 및 무선전력 전달 방법
US10263467B2 (en) Antenna for wireless power, and dual mode antenna comprising same
JP6493526B2 (ja) ワイヤレス給電システムおよびワイヤレス給電方法
WO2014174785A1 (ja) 無線電力伝送装置
EP3200317B1 (en) Power transmission system
JP2011142763A (ja) 無線電力伝送装置
JP2013121230A (ja) 非接触電力伝送システム
EP3257137B1 (en) Wireless power transmission device
WO2020237549A1 (zh) 一种无线电力接收电路
Sukma et al. Design and simulation of 145 kHz wireless power transfer for low power application
JP2017005952A (ja) 非接触電力送電装置、非接触電力受電装置、及び、非接触電力伝送システム
CN105745829A (zh) 高频电源用整流电路
US9634731B2 (en) Wireless power transmitter
US20230124799A1 (en) Wireless power transfer system
WO2013125926A1 (ko) 자기 공명 전력전송 장치
CN110829626A (zh) 大功率无线充电或供电系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant