WO2016034037A1 - 无线信号的自适应接收方法、装置及系统 - Google Patents

无线信号的自适应接收方法、装置及系统 Download PDF

Info

Publication number
WO2016034037A1
WO2016034037A1 PCT/CN2015/086853 CN2015086853W WO2016034037A1 WO 2016034037 A1 WO2016034037 A1 WO 2016034037A1 CN 2015086853 W CN2015086853 W CN 2015086853W WO 2016034037 A1 WO2016034037 A1 WO 2016034037A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
electrical signal
time interval
group
duration
Prior art date
Application number
PCT/CN2015/086853
Other languages
English (en)
French (fr)
Inventor
刘若鹏
范林勇
Original Assignee
深圳光启智能光子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启智能光子技术有限公司 filed Critical 深圳光启智能光子技术有限公司
Priority to KR1020177007739A priority Critical patent/KR101942991B1/ko
Priority to JP2017512721A priority patent/JP6329320B2/ja
Priority to EP15837818.2A priority patent/EP3190726B1/en
Publication of WO2016034037A1 publication Critical patent/WO2016034037A1/zh
Priority to US15/449,937 priority patent/US9859978B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/502LED transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • the present invention relates to the field of communications, and in particular, to an adaptive receiving method, apparatus, and system for a wireless signal.
  • Wireless optical communication is an emerging, short-range, high-speed wireless optical communication technology developed in light-emitting diode (LED) technology.
  • the basic principle of wireless optical communication is to use LED lights to switch faster than fluorescent and incandescent lamps, and to communicate by high-frequency flashing of LED light sources. In simple terms, there is light for binary 1, and no light for binary 0.
  • a high-speed optical signal containing digital information is photoelectrically converted to obtain information.
  • Wireless optical communication technology can be used to make wireless optical encryption keys because its data is not easily interfered and captured.
  • Optical communication equipment is simple and unsuitable for damage or degaussing.
  • wireless optical communication has a very rich spectrum of resources, which is unmatched by general microwave communication and wireless communication.
  • wireless optical communication can be applied to any communication protocol and is suitable for any environment.
  • wireless light Compared with traditional magnetic materials, communication does not need to worry about degaussing, and there is no need to worry about the communication content being stolen.
  • Wireless optical communication equipment is flexible and convenient to install, and low cost, suitable for large-scale popular applications.
  • the duration of the LED light switch on or off may vary randomly, but the duration may be controlled within a certain range. Therefore, the wireless light signal representing the data information can be transmitted by the LED light of the terminal through a specially set coding mode.
  • the light and dark durations of the optical signals emitted by the LED lights of the portable electronic device may change randomly, so that the recognition rate of the optical signals is low; on the other hand, the stroboscopic characteristics of the LED lights of different electronic devices It is different, and the receiving parameters set at the receiving end of the light are made larger in order to be able to adapt to the transmitting end.
  • the degree of relaxation makes some portable electronic devices with better strobo characteristics lower their performance in order to adapt to this receiving parameter. Even so, there are still portable electronic devices that do not match this parameter, and the signal recognition rate is still low.
  • the parameters of the optical signal sent by the LED light change, the receiving end needs to be upgraded, which makes the system upgrade and maintenance become complicated.
  • the receiving end of the light of the prior art has a low recognition rate of the optical signal emitted by the LED lamp of the portable electronic device, and the system for upgrading and maintaining the receiving end of the light is complicated.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide an adaptive receiving method for a wireless optical signal, which includes the following steps:
  • the electrical signal comprising a plurality of electrical signal groups, the duration of the level in each electrical signal group being a time interval within the group, and the interval between the adjacent electrical signal groups , the duration of the interval level is the inter-group time interval;
  • Another technical solution adopted by the present invention to solve the above technical problem is to provide an adaptive receiving device for a wireless signal, including:
  • a module for receiving a wireless signal and converting it into an electrical signal wherein the electrical signal comprises a plurality of electrical signal groups, and a duration of a level in each electrical signal group is a time interval within the group, and an adjacent electrical signal group There is an interval level, and the duration of the interval level is an inter-group time interval;
  • a module for determining a decision time interval according to a duration of each level, where the decision time interval is used Determining a position of an interval level between each of the electrical signal groups of the electrical signal;
  • a module for comparing the duration of each level with the decision time interval to identify each electrical signal group [0018] a module for converting each received electrical signal group into a data group;
  • a module for combining multiple data sets into data [0020]
  • a controlled terminal which is characterized in that it comprises an adaptive receiving device for a wireless signal as described above.
  • Another technical solution adopted by the present invention to solve the above technical problem is to provide an authentication system, which includes a controlled terminal as described above.
  • Another technical solution adopted by the present invention to solve the above technical problem is to provide an authentication system including the above-described adaptive receiving apparatus for a wireless signal.
  • the present invention also provides an adaptive receiving apparatus for a wireless signal, including:
  • a module for receiving a wireless signal and converting it into an electrical signal wherein the electrical signal comprises a plurality of electrical signal groups, and the duration of the level in each electrical signal group is a time interval within the group, and the adjacent electrical signal group There is an interval level, the duration of the interval level is an inter-group time interval, and the intra-group time interval is less than the inter-group time interval;
  • a module for combining multiple data sets into data [0030]
  • the present invention also proposes a controlled terminal comprising an adaptive receiving device for a wireless signal as described above.
  • the invention also proposes an authentication system comprising a controlled end as described above.
  • the present invention also provides an authentication system including an adaptive receiving apparatus for a wireless signal as described above Advantageous effects of the invention
  • the present invention adopts the above technical solution, and can adaptively set the decision time interval of the receiving end according to the received wireless signal to implement wireless signal reception.
  • adaptive reception of optical signals transmitted by most of the LEDs of the transmitting end can be realized.
  • the receiving end does not need to be upgraded.
  • the recognition rate of the optical signal can also be improved.
  • FIG. 1 shows a block diagram of a visible light communication system according to an embodiment of the present invention.
  • FIG. 2 shows a flow chart of optical signal transmission according to a first embodiment of the present invention.
  • FIG. 3 is a flow chart showing an optical signal adaptive receiving method according to a first embodiment of the present invention.
  • FIG. 4 shows an exemplary encoded electrical signal of optical communication in accordance with a first embodiment of the present invention.
  • FIG. 5 shows a transmission flow chart of optical communication according to a second embodiment of the present invention.
  • FIG. 6 is a flow chart showing an adaptive receiving method of optical communication according to a second embodiment of the present invention.
  • FIG. 7 shows an exemplary encoded electrical signal of optical communication in accordance with a second embodiment of the present invention.
  • FIG. 8 shows a transmission flow chart of optical communication according to a third embodiment of the present invention.
  • FIG. 9 is a flow chart showing an adaptive receiving method of optical communication according to a third embodiment of the present invention.
  • FIG. 10 shows an exemplary encoded electrical signal of optical communication in accordance with a third embodiment of the present invention.
  • embodiments of the present invention provide an adaptive receiving method for optical communication based on LED lamps.
  • the delay of the flicker control makes it difficult to synchronize between the transmitting end and the signal end.
  • communication is performed by flashing at a high frequency of the LED lamp, with light representing binary 1 and no light representing binary 0.
  • the binary 1 and 0 are respectively represented by light and no light, There will be an error bit reception. For example, when the duration of the matte state representing 1-bit binary 0 exceeds the set value, the additional duration is recognized as another 1-bit binary zero.
  • a method of packet coding is expected to solve the problem that, when encoding, data to be transmitted can be divided into a plurality of data groups, each data group containing one or more bits. These data sets are then converted into a plurality of electrical signal groups, each of which represents the bits of the corresponding data set by the number of levels of hops or the number of levels.
  • the interval between the adjacent electrical signal groups is represented by an interval level.
  • Level transitions can only contain low-to-high transitions, or low-to-high transitions, and low-to-high transitions and low-power A flat to high transition.
  • the level of one bit in the electrical signal group can be either high level or low level, and the level in the electrical signal group can be different.
  • the level duration (herein referred to as the intra-group time interval) within each electrical signal group and the level duration between adjacent groups of electrical signals (referred to herein as the inter-group time interval) may be preset.
  • the interval between groups will be greater than the interval within the group. This size relationship will be significant so that the receiving end can recognize it without errors.
  • the detected level duration is less than or equal to the inter-group time interval but within the unit group time interval, it is determined that the electrical signal group is still continuing; the detected level duration is greater than or equal to the inter-group time At the interval, it is judged that an electric signal group ends.
  • the inter-group time interval has its advantages, its setup consumes additional transmission time.
  • LED lamps also have random delays when controlling the time interval between groups (ie, emitting bright or dark signals), and the delay characteristics of different LED lamps are different.
  • the decision time interval of the receiving end has to be increased sufficiently, and the terminal with a short delay of the original LED light and dark has to extend the optical signal. The duration of time to satisfy this decision time interval makes the transmission time of the optical signal longer.
  • the decision interval of the receiving end is set, if the inter-group time interval of the optical signal sent by the transmitting end is changed, the receiving end needs to be upgraded, and the decision time interval of the receiving end is reset, which makes the later upgrade. Maintenance is less convenient.
  • the duration of the level of the electrical signal is recorded and stored when the received electrical signal is detected. Automatically determining a decision time interval according to the duration of each level, the decision time The position of the interval level between each of the electrical signal groups of the electrical signal is determined. Then comparing the duration of each level with the decision time interval to identify each electrical signal group, when the duration of the level is less than the decision time interval, determining that the level is the intra-group level and recording the data of the electrical signal group, When the duration of the level is greater than or equal to the decision time interval, it is determined that the level is the interval level and the end of the electrical signal group is confirmed.
  • the receiving end can already adapt well to various transmitting ends without having to set a fixed decision time interval, and it is no longer necessary to update the decision time interval.
  • the intra-group time interval is greater than the inter-group time interval, and when the duration of the level is greater than or equal to the decision time interval, determining that the intra-group time interval and recording the electrical signal group
  • the data when the duration of the level is less than or equal to the decision time interval, is determined as the inter-group time interval and confirms the end of the electrical signal group.
  • the transmitting and receiving processes of this embodiment can be implemented on various electronic devices.
  • 1 shows a block diagram of an optical communication system according to an embodiment of the present invention, which includes a transmitting end 101 and a receiving end 102.
  • the transmitting terminal 10 1 transmits an optical signal to the receiving end 102.
  • the transmitting end 101 can be implemented as a variety of portable electronic devices. Examples of portable electronic devices include, but are not limited to, cell phones, tablets, and dedicated communication terminals.
  • FIG. 2 is a flow chart of transmitting an optical signal according to the first embodiment of the present invention, and the encoding method includes
  • Step 201 Divide data to be sent into multiple data groups, each data group including one or more bits
  • bits can be text, pictures, audio and/or video.
  • Step 202 Convert the plurality of data sets into a plurality of electrical signal groups.
  • the set of electrical signals includes the one or more bits representing the corresponding data set by the number of hops of the level.
  • the data sets within each group are separated by a shorter level duration (named the intra-group time interval), separated by a longer level duration (named the inter-group time interval) between adjacent groups. , indicating the end of the signal transmission
  • the time interval is the end time interval.
  • the rising or falling edge of the level can be used as the start of the transition.
  • the duration of the high (or low) level in an electrical signal group is 2 ms.
  • Each electrical signal group has four levels of transitions, including low to high transitions.
  • a high-to-low transition each electrical signal group represents 2 bits of information, and four electrical signal groups form one byte.
  • the number of transitions from low level to high level and high level to low level in an electrical signal group is 1, it represents information 00; when from low level to high level and high level to low level When the number of transitions is 2, it represents information 01; when the number of transitions from low level to high level and high level to low level is 3, it represents information 10; when from low level to high level and high When the number of transitions from level to low is 4, it represents information 1 1.
  • Table 1 The correspondence between the number of transitions from low level to high level and high level to low level and the information it represents is shown in Table 1.
  • the level combination of the electrical signal groups corresponding to the information unit can be determined according to the above-described correspondence table set in advance.
  • each electrical signal group can represent 1 bit of information, which requires a maximum of 2 hops.
  • each electrical signal group can represent 3-bit information, which requires up to 8 hops.
  • the duration of the interval level between two adjacent electrical signal groups is greater than the duration of the level within the electrical signal group, and can be set to 30 ms.
  • the interval level includes a high level and a low level. Level. That is to say, a high level can be used as an interval between two adjacent electrical signal groups, and a low level can also be used as an interval. It can be seen that the interval level of the interval characterizing the electrical signal group is the same as the level class characterizing the data within the electrical signal group.
  • Step 203 Combine each electrical signal group to obtain an electrical signal.
  • 4 is an exemplary encoded electrical signal showing a relationship between bit values and levels, the four electrical signal groups in the figure having 2, 4, 1 and 3 times respectively.
  • Flat transitions representing 01, 11, 00, and 10, where the level transition is a low to high level and a high to low transition, between two adjacent electrical signal groups
  • the duration of the high or low level is 31 ms
  • the combined signal is one byte
  • the binary representation is 01110010
  • the corresponding hexadecimal signal is 0x72.
  • Step 204 Convert the electrical signal into an optical signal.
  • the light-emitting diode is controlled by an electrical signal to transmit information in the form of an optical signal.
  • FIG. 3 is a flowchart of a method for receiving an optical signal according to a first embodiment of the present invention, where the receiving method includes
  • Step 301 Receive an optical signal and convert it into an electrical signal.
  • the electrical signal is an electrical signal transmitted as described above.
  • the electrical signal includes a plurality of electrical signal groups, and the durations of the high level and the low level in each electrical signal group are time intervals within the group, and the adjacent electrical signal groups have a high level and a low level for a certain period of time.
  • the duration is the interval between groups, and the interval within the group is less than the interval between the groups.
  • step 302 an electrical signal is detected, and the duration of the high and low levels of the electrical signal is recorded and stored.
  • a decision time interval is determined based on the duration of each level, the decision time interval being used to determine the position of the interval level between the electrical signal groups of the electrical signal.
  • the method for determining a decision time interval according to the duration of each level is to read the N-1 longest duration of the level for the electrical signal having N electrical signal groups, and then the decision The time interval is set to be equal to or less than (usually slightly less than) the smallest of these, where N is a natural number greater than one.
  • the interval level between the electric signal groups is the same as the level in the electric signal group, in order to determine the decision time interval, it is necessary to compare the durations of all levels to find the level. N-1 longest durations, as N-1 durations of the interval level, thereby determining the decision time interval.
  • step 304 comparing the duration of each level with the decision time interval to identify each electrical signal group, when the duration of the level is less than the decision time interval, determining the intra-group time interval and recording the characterization data The number of transitions of the level, when the duration of the level is greater than or equal to the decision interval, For the inter-group time interval and confirm the end of the electrical signal group.
  • Step 305 When the detected level duration is greater than or equal to the end time interval, the determination signal is received.
  • the received electrical signal groups are converted into data sets.
  • step 307 a plurality of data sets are combined into data.
  • the decision time interval and the signal end time interval are set to 30 and 100 ms, respectively, and when a rising edge (or falling edge) is detected, timing is started, when the detected high level and low level duration When less than 30 ms, record the number of transitions from low to high and high to low; when the detected high and low durations are greater than or equal to 30 ms and less than 100 ms When it is considered to be the end of the electric signal group; when the detected high level and low level duration is greater than or equal to 100 ms, the signal reception is considered complete.
  • the duration of the high (or low) level being greater than or equal to the end time interval may also represent a signal reception interruption, restarting the detection signal.
  • the optical signal may include an infrared light signal, a visible light signal, and an ultraviolet light signal.
  • the method of the embodiment is used to adaptively set the decision time interval. On the one hand, it can avoid setting a common decision time interval on the transmitting end, and on the other hand, avoid setting a fixed decision time interval to the receiving end, and avoiding the upgrade. The risk of inconvenience.
  • the transmitting and receiving processes of this embodiment can be implemented on various electronic devices.
  • the sender can be implemented as a variety of portable electronic devices. Examples of portable electronic devices include, but are not limited to, mobile phones, tablets, and specialized communication terminals.
  • FIG. 5 it is a flowchart of sending an optical signal according to the first embodiment of the present invention, where the encoding method includes
  • Step 501 Divide the data to be sent into multiple data groups, each data group including one or more bits.
  • bits can be text, pictures, audio and/or video.
  • Step 502 Convert the plurality of data sets into a plurality of electrical signal groups.
  • the set of electrical signals includes the one or more bits representing the corresponding data set in a number of levels.
  • interval level there is an interval level between adjacent electrical signal groups, and the duration of the interval level is between time between groups Interval, the duration of the level within each electrical signal group, the intra-group time interval is less than the inter-group time interval.
  • each electrical signal group represents one or more bits in a high level, and an interval represented by a low level between adjacent electrical signal groups.
  • the duration of a level in an electrical signal group is 2 ms, and each electrical signal group has a maximum of four high levels, each electrical signal group represents 2 bits of information, and four electrical signal groups form a word. Section.
  • the number of high levels in an electrical signal group is 1, it represents information 00; when the number of high levels is 2, it represents information 01; when the number of high levels is 3, it represents information 10; When the number of high levels is 4, it represents information 1 1.
  • Table 2 The correspondence between the number of high levels and the information they represent is shown in Table 2.
  • each electrical signal group can represent 1 bit of information, which requires a maximum of 2 high levels.
  • each electrical signal group can represent 3 bits of information, which requires a maximum of 8 high levels.
  • the duration of the interval level between two adjacent electrical signal groups is greater than the duration of the level within the electrical signal group, which may be set to 30 ms.
  • the interval level includes low Level. That is to say, only the low level is used as the interval between two adjacent electrical signal groups. It can be seen that the interval level characterizing the interval of the electrical signal group is the same as one of the levels characterizing the data within the electrical signal group. This limits the detection of the level duration to a low level, reducing the range of detected levels.
  • Step 503 combining each electrical signal group to obtain an electrical signal.
  • Level 7 is an exemplary encoded electrical signal showing a relationship between bit values and levels, and the four electrical signal groups in the figure have 2, 4, 1 and 3 high, respectively.
  • Level, representing 01, 1 1, 00 and 10 the duration of the low level between two adjacent electrical signal groups is 30 ms, the combined signal is one byte, and its binary representation is 01 1 10010, The corresponding hexadecimal signal is 0x72.
  • Step 504 Convert the electrical signal into an optical signal.
  • FIG. 6 is a flowchart of a method for receiving an optical signal according to a second embodiment of the present invention, the receiving method including [0106] step 601, receiving an optical signal and converting it into an electrical signal.
  • the electrical signal is an electrical signal transmitted as described above.
  • the electrical signal includes a plurality of electrical signal groups, and the durations of the high level and the low level in each electrical signal group are time intervals within the group, and the adjacent electrical signal groups have a low level, and the duration of the low level is Inter-group time interval, the time interval within the group is less than the inter-group time interval.
  • step 602 an electrical signal is detected, and the duration of the high and low levels of the electrical signal is recorded and stored.
  • a decision time interval is determined based on the duration of each low level, the decision time interval being used to determine the position of the interval level between the electrical signal groups of the electrical signal.
  • a method for determining a decision time interval according to the duration of each level is that for an electrical signal having N electrical signal groups, the N-1 longest duration of the low level is read, and then The decision interval is set to be equal to or less than (usually slightly less than) the smallest duration thereof, where N is a natural number greater than one.
  • step 604 comparing the duration of each level with the decision time interval to identify each electrical signal group, when the duration of the level is less than the decision time interval, determining the intra-group time interval and recording the characterization data The number of transitions of the level, when the duration of the level is greater than the decision interval, it is determined as the inter-group time interval and the end of the electrical signal group is confirmed.
  • Step 605 When the detected low level duration is greater than the end time interval, the determination signal is received.
  • the received electrical signal groups are converted into data sets.
  • step 607 a plurality of data sets are combined into data.
  • the number of high levels is recorded; when the detected low level is greater than or equal to 30 ms and less than 100 ms, it is considered to be the end of the electric signal group; when the detected low level continues When the time is greater than or equal to 100 ms, the signal is considered to have been received.
  • the duration of the high (or low) level being greater than the end time interval may also represent a signal reception interruption, restarting the detection signal.
  • the optical signal may include an infrared light signal, a visible light signal, and an ultraviolet light signal.
  • the method of the embodiment is used to adaptively set the decision time interval.
  • the sender can be prevented from setting a common decision time interval, and on the other hand, the receiver can be prevented from setting a fixed decision interval and avoiding the upgrade. The risk of inconvenience.
  • the transmitting and receiving processes of this embodiment can be implemented on various electronic devices.
  • the sender can be implemented as a variety of portable electronic devices. Examples of portable electronic devices include, but are not limited to, mobile phones, tablets, and specialized communication terminals.
  • FIG. 8 is a flowchart of transmitting an optical signal according to a third embodiment of the present invention, where the encoding method includes
  • Step 801 Divide the data to be sent into multiple data groups, where each data group includes one or more bits.
  • bits can be text, pictures, audio and/or video.
  • Step 802 Convert the plurality of data groups into a plurality of electrical signal groups.
  • the set of electrical signals includes the one or more bits representing a corresponding data set in a combination of multiple levels.
  • the duration of the interval level is a time interval between groups
  • the duration of the level in each electrical signal group is a time interval within the group, within the group The time interval is less than the inter-group time interval.
  • these electrical signal groups are represented by three levels, such as 0, IV, and 2V.
  • setting a first level such as 0V as a reference level, is used to indicate an interval between adjacent electrical signal groups.
  • the other two levels, such as IV and 2V are used in combination with each other in the electrical signal group to represent 2 bits.
  • an electrical signal group when the level transitions from 0V to IV and from IV to 0V, it represents information 00; when the level jumps from 0 V to 2V, it jumps from 2V.
  • Each electrical signal represents 2 bits of information, and the information of the four electrical signal groups constitutes one byte.
  • the level combination of the electrical signal groups corresponding to the information unit can be determined according to the above-described correspondence table set in advance.
  • the above three levels can freely designate one of them as the first level; the specific values of the three levels can also be flexibly set, for example, set to IV, 2V, and 3V.
  • the specific information represented by the above level combination can also be flexibly set.
  • level combination 1 represents information 01
  • level combination 2 represents information 00
  • level combination 12 represents information 10
  • level combination 21 represents information 11, and the like.
  • the duration of the interval level between two adjacent electrical signal groups is greater than the duration of the level within the electrical signal group, which may be set to 30 ms.
  • the interval level includes a reference. Level. That is to say, only the reference level is used as the interval between two adjacent electrical signal groups. It can be seen that the interval level characterizing the interval of the electrical signal group is the same as one of the levels characterizing the data within the electrical signal group. However, it is to be understood that it is also possible to additionally set an interval level other than the level within the electrical signal group, which has the advantage of facilitating the identification of the interval level.
  • Step 803 combining each electrical signal group to obtain an electrical signal.
  • FIG. 10 is a schematic diagram showing the relationship between signals and levels.
  • the four groups of signals in the figure represent 01, 11, 00, and 10, respectively, and the adjacent two groups of signals are distinguished by 0V levels.
  • the signal is one byte and its binary representation is 01110010.
  • Step 804 converting the electrical signal into an optical signal.
  • the light-emitting diode is controlled by an electrical signal to transmit information in the form of an optical signal.
  • Step 901 Receive an optical signal and convert it into an electrical signal.
  • the electrical signal is an electrical signal transmitted as described above.
  • the electrical signal comprises a plurality of electrical signal groups, the duration of the high level and the low level in each electrical signal group being a time interval within the group, and the group of adjacent electrical signal groups having a low level for a certain period of time. Inter-time interval, the time interval within the group is less than the inter-group time interval.
  • step 902 an electrical signal is detected, and the durations of the various levels of the electrical signal are recorded and stored.
  • the receiving end 102 detects a transition of the level, timing is started, and the duration of each of the various levels is read, calculated, and stored.
  • a decision time interval is determined based on the duration of each reference level, the decision time interval being used to determine the position of the interval level between the electrical signal groups of the electrical signal.
  • a method for determining a decision time interval according to the duration of each level is: for an electrical signal having N electrical signal groups, reading the N-1 longest duration of the reference level, and then The decision time interval is set to be equal to or less than (usually slightly less than) the minimum duration, where N is a natural number greater than one.
  • the interval level between the electrical signal groups is only the same as the level in the electrical signal group, in order to determine the decision time interval, it is only necessary to compare the duration of the reference level. The N-1 longest duration of the reference level can be found to determine the decision interval.
  • the interval level is different from the level within the electrical signal group, it is only necessary to find N-1 interval levels, and then set the decision time interval to be equal to or less than (usually slightly less than) N- The smallest duration of one interval level.
  • step 604 comparing the duration of each level with the decision time interval to identify each electrical signal group, when the duration of the level is less than the decision time interval, determining the intra-group time interval and recording the characterization data The number of transitions of the level, when the duration of the level is greater than or equal to the decision interval, it is determined as the inter-group time interval and the end of the electrical signal group is confirmed.
  • Step 605 When the detected reference level duration is greater than the end time interval, the determination signal is received.
  • the received sets of electrical signals are converted into data sets.
  • a plurality of data sets are combined into data.
  • the decision time interval and the signal end time interval are set to 30 and 100 ms, respectively, and when a rising edge (or falling edge) is detected, timing is started, when the detected level has a duration of less than 30 ms. , recording combinations of various levels; when the detected reference level has a duration greater than or equal to 30
  • the duration of the reference level being greater than the end time interval may also represent a signal reception interruption, restarting the detection signal.
  • the method of the embodiment is used to adaptively set the decision time interval.
  • the sender can be prevented from setting a common decision time interval, and on the other hand, the receiver can be prevented from setting a fixed decision interval, which avoids the upgrade. The risk of inconvenience.
  • the optical signal may include an infrared light signal, a visible light signal, and an ultraviolet light signal.
  • the electrical signal group includes a combination of at least two of a number of levels, a combination of a plurality of levels, and a number of hop times of the levels to represent one or more bits. data.
  • the present invention also provides an adaptive receiving apparatus for an optical signal, including:
  • a module for receiving an optical signal and converting it into an electrical signal wherein the electrical signal comprises a plurality of electrical signal groups, and the duration of the level in each electrical signal group is a time interval within the group, and the adjacent electrical signal group There is an interval level, the duration of the interval level is an inter-group time interval, and the intra-group time interval is less than the inter-group time interval;
  • the electrical signal group includes data representing one or more bits in a number of levels.
  • the electrical signal group includes data representing one or more bits in a combination of two or more levels.
  • the electrical signal group includes data representing one or more bits in the number of hops of the level.
  • the interval level is different from the level within the electrical signal group.
  • the interval level is the same as at least one level in the electrical signal group.
  • the interval level includes a high level and a low level.
  • the above apparatus further includes means for determining the end of the electrical signal when the duration of the level is greater than or equal to the preset end time interval.
  • the means for determining a decision time interval according to the duration of each level is for the electrical signal having N electrical signal groups, and reading the N-1 longest of the levels
  • the duration, the decision interval is set to be equal to or less than (usually slightly less than) the minimum duration.
  • the present invention also proposes a controlled terminal comprising an adaptive receiving device for an optical signal as described above.
  • the present invention also provides an authentication system comprising a controlled end as described above.
  • the present invention also proposes an authentication system comprising an adaptive receiving device for an optical signal as described above.
  • the method, device and system for adaptively receiving an optical signal according to the present invention can adaptively set parameters of a receiving end according to the received optical signal to implement optical signal reception.
  • adaptive reception of optical signals transmitted by most of the LEDs of the transmitting end can be realized.
  • the parameters of the optical signal at the transmitting end are changed, the receiving end does not need to be upgraded, and the recognition rate of the visible light signal can also be improved.
  • acoustic signals which may be infrasound signals, audible wave signals, and ultrasonic signals.
  • embodiments of the invention may be implemented in a variety of wireless signals, such as the aforementioned optical and acoustic signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明涉及一种无线信号的自适应接收方法、装置及系统,该接收方法的特点是:检测该电信号,记录并存储该电信号的各电平的持续时间;根据各电平的持续时间确定一判决时间间隔,该判决时间间隔用以确定该电信号的各电信号组之间的间隔电平的位置;比较各电平的持续时间与该判决时间间隔以识别各电信号组,当电平的持续时间小于该判决时间间隔时,判断为该组内时间间隔并记录电信号组的数据,当电平的持续时间大于或等于该判决时间间隔时,判断为该组间时间间隔并确认电信号组结束。

Description

无线信号的自适应接收方法、 装置及系统 技术领域
[0001] 本发明涉及通信领域, 尤其是涉及一种无线信号的自适应接收方法、 装置及系 统。
背景技术
[0002] 无线光通信是一种在发光二极管 (LED) 技术上发展起来的新兴的、 短距离高 速无线光通信技术。 无线光通信的基本原理就是利用 LED灯比荧光灯和白炽灯切 换速度快的特点, 通过 LED光源的高频率闪烁来进 通信。 简单来说, 有光代表 二进制 1, 无光代表二进制 0。 包含了数字信息的高速光信号经过光电转换即可 获得信息。 无线光通信技术因为其数据不易被干扰和捕获, 光通信设备制作简 单且不宜损坏或消磁, 可以用来制作无线光加密钥匙。 与微波技术相比, 无线 光通信有相当丰富的频谱资源, 这是一般微波通信和无线通信无法比拟的; 同 时无线光通信可以适用任何通信协议、 适用于任何环境; 在安全性方面, 无线 光通信相比传统的磁性材料, 无需担心消磁问题, 更不必担心通信内容被人窃 取; 无线光通信的设备架设灵活便捷, 且成本低廉, 适合大规模普及应用。
[0003] 随着无线光通信的快速推广, 已经提出了利用便携式电子设备, 如手机的 LED 灯发送无线光信号的技术。 便携式电子设备中, LED灯开关时开或关的持续时间 会出现随机变化, 但该持续时间可以控制在一定范围内。 因此, 可以通过特别 设置的编码方式, 实现终端的 LED灯发送表征数据信息的无线光信号。
[0004] 无线光通信在各个领域都有广泛的应用前景。 目前较为成熟的应用为门禁系统 。 中国专利申请 CN102682505披露了一种将 LED无线光通信技术应用于门禁身份 认证的方法, 中国专利申请 CN102693567给出了这种门禁系统的通信的编解码方 法。
[0005] 但是一方面, 便携式电子设备 LED灯发出的光信号的亮、 暗持续时间会出现随 机变化, 使得光信号的识别率较低; 另一方面, 不同电子设备的 LED灯的频闪特 性是不同的, 而在光的接收端设置的接收参数为了能够适应发送端而做了较大 程度的放宽, 这使得一些频闪特性较佳的便携式电子设备为了适应这一接收参 数而降低其性能, 即便如此, 仍存在与这一参数不匹配的便携式电子设备, 其 信号识别率仍较低; 还有, 当 LED灯发送的光信号的参数发生变化时, 接收端需 要进 升级, 这使得系统升级维护变得很复杂。
发明概述
技术问题
[0006] 现有技术的光的接收端对于便携式电子设备的 LED灯发出的光信号的识别率较 低, 光的接收端的系统升级维护比较复杂。
问题的解决方案
技术解决方案
[0007] 本发明为解决上述技术问题而采用的技术方案是提出一种无线光信号的自适应 接收方法, 包括以下步骤:
[0008] 接收无线信号并转换为电信号, 该电信号包括多个电信号组, 各电信号组内的 电平的持续时间为组内时间间隔, 相邻电信号组之间具有间隔电平, 该间隔电 平的持续时间为组间时间间隔;
[0009] 检测该电信号, 记录并存储该电信号的各电平的持续时间;
[0010] 根据各电平的持续时间确定一判决时间间隔, 该判决时间间隔用以确定该电信 号的各电信号组之间的间隔电平的位置;
[0011] 比较各电平的持续时间与该判决时间间隔以识别各电信号组;
[0012] 将接收到的各电信号组转换为数据组; 以及
[0013] 将多个数据组组合成数据。
[0014] 本发明为解决上述技术问题而采用的另一技术方案是提出一种无线信号的自适 应接收装置, 包括:
[0015] 用于接收无线信号并转换为电信号的模块, 其中该电信号包括多个电信号组, 各电信号组内的电平的持续时间为组内时间间隔, 相邻电信号组之间具有间隔 电平, 该间隔电平的持续时间为组间时间间隔;
[0016] 用于检测该电信号, 记录并存储该电信号的各电平的持续时间的模块;
[0017] 用于根据各电平的持续时间确定一判决时间间隔的模块, 该判决时间间隔用以 确定该电信号的各电信号组之间的间隔电平的位置;
[0018] 用于比较各电平的持续时间与该判决时间间隔以识别各电信号组的模块; [0019] 用于将接收到的各电信号组转换为数据组的模块; 以及
[0020] 用于将多个数据组组合成数据的模块。
[0021] 本发明为解决上述技术问题而采用的另一技术方案是提出一种受控端, 其特征 在于, 包括如上所述的一种无线信号的自适应接收装置。
[0022] 本发明为解决上述技术问题而采用的另一技术方案是提出一种鉴权系统, 所述 鉴权系统包括如上所述的一种受控端。
[0023] 本发明为解决上述技术问题而采用的另一技术方案是提出一种鉴权系统, 包括 如上所述的一种无线信号的自适应接收装置。
[0024] 本发明还提出一种无线信号的自适应接收装置, 包括:
[0025] 用于接收无线信号并转换为电信号的模块, 其中该电信号包括多个电信号组, 各电信号组内的电平的持续时间为组内时间间隔, 相邻电信号组之间具有间隔 电平, 该间隔电平的持续时间为组间时间间隔, 该组内时间间隔小于该组间时 间间隔;
[0026] 用于检测该电信号, 记录并存储该电信号的各电平的持续时间的模块;
[0027] 用于根据各电平的持续时间确定一判决时间间隔的模块, 该判决时间间隔用以 确定该电信号的各电信号组之间的组间时间间隔的位置;
[0028] 用于比较各电平的持续时间与该判决时间间隔以识别各电信号组的模块, 其中 当电平的持续时间小于该判决时间间隔时, 判断为该组内时间间隔并记录电信 号组的数据, 当电平的持续时间大于或等于该判决时间间隔时, 判断为该组间 时间间隔并确认电信号组结束;
[0029] 用于将接收到的各电信号组转换为数据组的模块; 以及
[0030] 用于将多个数据组组合成数据的模块。
[0031] 本发明还提出一种受控端, 包括如上所述的一种无线信号的自适应接收装置。
[0032] 本发明还提出一种鉴权系统, 包括如上述的一种受控端。
[0033] 本发明还提出一种鉴权系统, 包括如上所述的一种无线信号的自适应接收装置 发明的有益效果
有益效果
[0034] 本发明由于采用以上技术方案, 可以根据接收到的无线信号, 自适应设置接收 端的判决时间间隔, 实现无线信号的接收。 通过该方法可以实现大部分发送端 的 LED灯发送的光信号的自适应接收。 而且当发送端的光信号的参数改变时, 接 收端不需要进 升级。 此外, 还可以提高光信号的识别率。
对附图的简要说明
附图说明
[0035] 为让本发明的上述目的、 特征和优点能更明显易懂, 以下结合附图对本发明的 具体实施方式作详细说明, 其中:
[0036] 图 1示出本发明一实施例的可见光通信系统框图。
[0037] 图 2示出根据本发明第一实施例的光信号发送流程图。
[0038] 图 3示出本发明第一实施例的光信号自适应接收方法流程图。
[0039] 图 4示出本发明第一实施例的光通信的示例性编码电信号。
[0040] 图 5示出根据本发明第二实施例的光通信的发送流程图。
[0041] 图 6示出本发明第二实施例的光通信的自适应接收方法流程图。
[0042] 图 7示出本发明第二实施例的光通信的示例性编码电信号。
[0043] 图 8示出根据本发明第三实施例的光通信的发送流程图。
[0044] 图 9示出本发明第三实施例的光通信的自适应接收方法流程图。
[0045] 图 10示出本发明第三实施例的光通信的示例性编码电信号。
实施该发明的最佳实施例
本发明的最佳实施方式
[0046] 概要地说, 本发明的实施例提供基于 LED灯的光通信的自适应接收方法。
[0047] 通过对便携式电子设备的 LED灯的试验发现, LED灯的闪烁控制存在随机延迟。
闪烁控制的延迟使得发送端和信号端之间的同步存在困难。 按照常规的技术, 以 LED灯的高频率闪烁来进 通信, 有光代表二进制 1, 无光代表二进制 0。 然而 由于缺乏准确的同步, 导致如果分别以有光、 无光分别来代表二进制的 1和 0, 会存在错误位接收。 举例来说, 当代表 1位二进制 0的无光状态的持续时间超出 设定值后, 额外的持续时间会被识别为另外 1位二进制 0。
[0048] 一种分组编码的方式可望解决这一问题, 即在编码时, 可以将待发送的数据分 成多个数据组, 每一数据组包含一个或多个比特。 然后将这些数据组转换为多 个电信号组, 每一电信号组以电平的跳变次数或电平个数来代表对应数据组的 比特。 相邻电信号组之间则以间隔电平表示间隔。 电平的跳变可以仅包含低电 平到高电平的跳变, 或者仅包含低电平到高电平的跳变, 还可以同时包含低电 平到高电平的跳变和低电平到高电平的跳变。 电信号组内表示一个比特的电平 可以都是高电平, 也可以都是低电平, 而电信号组内的电平可以与之不同。
[0049] 可预先设置各电信号组内的电平持续时间 (在此称为组内时间间隔) 及相邻电 信号组间的电平持续时间 (在此称为组间时间间隔) 。 组间时间间隔会大于组 内时间间隔。 这种大小关系会显著到让接收端能够无误地识别。
[0050] 在接收端, 当检测到的电平持续时间小于等于组间时间间隔但单元组内时间间 隔时, 判断电信号组还在持续; 检测到的电平持续时间大于或等于组间时间间 隔时, 判断一个电信号组结束。
[0051] 在这一方式中, 各电信号组之间的隔开可以让连续比特位的识别仅发生在单个 电信号组内, 而在这较短的时间内, 因随机延迟造成信号识别错误的几率将大 为降低, 因此这一方式提高了通信的可靠性。
[0052] 需要注意的是, 组间时间间隔尽管有其优点, 但其设置耗费了额外的传输时间 。 尤其是, LED灯在控制组间时间间隔 (即发出亮或暗信号) 时也存在随机延迟 , 且不同 LED灯的延迟特性不同。 为了能够识别 LED灯亮和暗的延时较长的终端 发送的光信号, 接收端的判决时间间隔就得增大到足够大, 而原本 LED亮和暗的 延时较短的终端就得延长光信号的持续时间来满足这个判决时间间隔, 使得光 信号的发送时间变长。 另一方面, 当接收端的判决时间间隔设置好之后, 若发 送端发送的光信号的组间时间间隔改变了, 就需要对接收端进 升级, 重新设 置接收端的判决时间间隔, 这使得后期的升级维护较不方便。
[0053] 根据本发明的实施例, 在检测所接收的电信号时, 记录并存储该电信号的电平 的持续时间。 根据各电平的持续时间自动确定一判决时间间隔, 该判决时间间 隔用以确定该电信号的各电信号组之间的间隔电平的位置。 然后比较各电平的 持续时间与该判决时间间隔以识别各电信号组, 当电平的持续时间小于该判决 时间间隔时, 判断为电平为组内电平并记录电信号组的数据, 当电平的持续时 间大于或等于该判决时间间隔时, 判断为电平为间隔电平并确认电信号组结束
[0054] 由此通过对判决时间间隔的自适应设置, 接收端已经能够很好地适应各种发送 端, 而不必再设置固定的判决时间间隔, 也不必再对判决时间间隔进 更新。
[0055] 当然, 在另一实施方式中, 该组内时间间隔大于该组间时间间隔, 当电平的持 续时间大于等于该判决时间间隔时, 判断为该组内时间间隔并记录电信号组的 数据, 当电平的持续时间小于或等于该判决时间间隔时, 判断为该组间时间间 隔并确认电信号组结束。
[0056] 现在参考附图描述所要求保护的发明, 在全部附图中使用相同的参考标号来指 相同的部件或步骤。 在以下描述中, 为解释起见, 披露了众多具体细节以提供 对所要求保护的主题的全面理解。 然而, 显而易见的是, 这些发明也可以不采 用这些具体细节来实施。
[0057] 第一实施例
[0058] 本实施例的发送和接收过程可以在各种电子设备上实施。 图 1示出本发明一实 施例的光通信系统框图, 该通信系统 100包括发送端 101和接收端 102。 发送端 10 1发送光信号至接收端 102。 发送端 101可以实施为各种便携式电子设备。 便携式 电子设备的例子包括但不限于手机、 平板电脑、 专用的通信终端。
[0059] 参见图 2, 是本发明根据第一实施例的光信号的发送流程图, 该编码方法包括
[0060] 步骤 201, 将待发送的数据分成多个数据组, 每一数据组包含一个或多个比特
(bit ) 。 这些待发送的数据可以是文本、 图片、 音频和 /或视频。
[0061] 步骤 202, 将该多个数据组转换为多个电信号组。 该电信号组包括以电平的跳 变次数来代表对应数据组的该一个或多个比特。
[0062] 每组内的数据组以较短的电平持续时间(命名为组内时间间隔)分开, 相邻两组 之间以较长的电平持续时间 (命名为组间时间间隔)分开, 表示信号发送结束的 时间间隔为结束时间间隔。 分别设置组内时间间隔、 组间时间间隔和结束时间 间隔。 例如, 分别设置组内时间间隔为 2 ms, 组间时间间隔为 30 ms o
[0063] 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始。
[0064] 例如, 一个电信号组内高 (或低)电平的持续时间为 2 ms o 每个电信号组有四个 电平的跳变, 包括低电平到高电平的跳变和高电平到低电平的跳变, 每个电信 号组表示 2 比特信息, 四个电信号组组成一个字节。 当一个电信号组中的从低 电平到高电平和高电平到低电平的跳变次数为 1时, 代表信息 00 ; 当从低电平到 高电平和高电平到低电平的跳变次数为 2时, 代表信息 01 ; 当从低电平到高电平 和高电平到低电平的跳变次数为 3时, 代表信息 10 ; 当从低电平到高电平和高电 平到低电平的跳变次数为 4时, 代表信息 1 1。 从低电平到高电平和高电平到低电 平的跳变次数与其代表的信息之间的对应关系如表 1所示。
[0065] 表 1
[] [表 1 ]
Figure imgf000009_0001
[0066] 因此可以根据预先设置的上述对应关系表, 确定信息单元所对应的电信号组的 电平组合。
[0067] 当然, 每个电信号组可以表示 1比特信息, 这需要最多 2次跳变。 以此类推, 每 个电信号组可以表示 3比特信息, 这需要最多 8次跳变。
[0068] 从上表也可以看出, 即使是比特值 00, 也会有一次电平跳变。
[0069] 另外, 相邻两个电信号组之间的间隔电平的持续时间大于电信号组内电平的持 续时间, 可设定为 30 ms o 在此, 间隔电平包括高电平和低电平。 也就是说, 相 邻两个电信号组之间可以用高电平作为间隔, 也可以用低电平作为间隔。 可以 看出, 表征电信号组的间隔的间隔电平与表征电信号组内的数据的电平种类是 相同的。
[0070] 步骤 203, 对各个电信号组进 组合, 获得一个电信号。 [0071] 图 4为一个示例性的编码电信号, 其中示出比特值与电平之间的关系示意图, 图中的四个电信号组分别有 2次、 4次、 1次和 3次电平的跳变, 代表 01、 11、 00 和 10, 其中电平的跳变是指低电平到高电平和从高电平到低电平的跳变, 相邻 两个电信号组之间的高电平或低电平的持续时间是 31 ms , 组合后的信号为一个 字节, 其二进制表示为 01110010, 对应的十六进制信号为 0x72。
[0072] 步骤 204, 将电信号转换为光信号形式发送。
[0073] 在此, 是以电信号控制发光二极管以光信号形式发送信息。
[0074] 参见图 3, 是本发明第一实施例的光信号的接收方法流程图, 该接收方法包括
[0075] 步骤 301, 接收光信号并转换为电信号。
[0076] 在此, 电信号是如前述发送的电信号。 此电信号包括多个电信号组, 各电信号 组内的高电平和低电平的持续时间为组内时间间隔, 相邻电信号组之间具有持 续一定时间的高电平和低电平, 其持续时间为组间时间间隔, 该组内时间间隔 小于该组间时间间隔。
[0077] 在步骤 302, 检测电信号, 记录并存储电信号的高电平和低电平的持续时间。
[0078] 具体地说, 当接收端 102检测到从低电平到高电平和高电平到低电平的跳变时 , 开始计时, 读取、 计算、 存储每段高电平和低电平的持续时间。
[0079] 在步骤 303, 根据各电平的持续时间确定一判决时间间隔, 该判决时间间隔用 以确定该电信号的各电信号组之间的间隔电平的位置。
[0080] 根据各电平的持续时间确定一判决时间间隔的方法是, 对于具有 N个电信号组 的电信号, 读取出电平的 N-1个最长的持续时间, 再将该判决时间间隔设置为等 于或小于 (通常略小于即可) 其中最小的持续时间, 其中 N为大于 1的自然数。
[0081] 在本实施例中, 由于电信号组之间的间隔电平与电信号组内的电平相同, 因此 为了确定判决时间间隔, 需要比较所有电平的持续时间, 找出电平的 N-1个最长 的持续时间, 作为间隔电平的 N-1个持续时间, 从而确定判决时间间隔。
[0082] 在步骤 304, 比较各电平的持续时间与该判决时间间隔以识别各电信号组, 当 电平的持续时间小于该判决时间间隔时, 判断为该组内时间间隔并记录表征数 据的电平的跳变次数, 当电平的持续时间大于或等于该判决时间间隔时, 判断 为组间时间间隔并确认电信号组结束。
[0083] 步骤 305, 当检测到的电平持续时间大于或等于结束时间间隔时, 判断信号接 收完毕。
[0084] 在步骤 306, 将接收到的各电信号组转换为数据组。
[0085] 在步骤 307, 将多个数据组组合成数据。
[0086] 例如, 将判决时间间隔和信号结束时间间隔分别设置为 30和 100 ms , 当检测到 上升沿 (或下降沿)时, 开始计时, 当检测到的高电平和低电平的持续时间小于 3 0 ms时, 记录从低电平到高电平和高电平到低电平的跳变次数; 当检测到的高 电平和低电平的持续时间大于或等于 30 ms , 且小于 100 ms时, 认为是电信号组 的结束; 当检测到的高电平和低电平的持续时间大于或等于 100 ms时, 认为信 号接收完毕。
[0087] 在另一情形下, 高 (或低)电平的持续时间大于或等于结束时间间隔也可能代表 信号接收中断, 重新开始检测信号。
[0088] 在本实施例中, 光信号可包括红外光信号、 可见光信号和紫外光信号。
[0089] 因此使用本实施例的方法来自适应设置判决时间间隔, 一方面可以避免发送端 设置一个通用的判决时间间隔, 另一方面可以避免给接收端设置一个固定的判 决时间间隔, 规避了升级不便的风险。
[0090] 第二实施例
[0091] 本实施例的发送和接收过程可以在各种电子设备上实施。 发送端可以实施为各 种便携式电子设备。 便携式电子设备的例子包括但不限于手机、 平板电脑、 专 用的通信终端。
[0092] 参见图 5, 是本发明根据第一实施例的光信号的发送流程图, 该编码方法包括
[0093] 步骤 501, 将待发送的数据分成多个数据组, 每一数据组包含一个或多个比特
(bit ) 。 这些待发送的数据可以是文本、 图片、 音频和 /或视频。
[0094] 步骤 502, 将该多个数据组转换为多个电信号组。 该电信号组包括以一种电平 的个数来代表对应数据组的该一个或多个比特。
[0095] 在此, 相邻电信号组之间具有间隔电平, 该间隔电平的持续时间为组间时间间 隔, 各电信号组内的电平的持续时间组内时间间隔, 组内时间间隔小于组间时 间间隔。
[0096] 例如, 每一电信号组以高电平的个数来代表一个或多个比特, 相邻电信号组之 间具有以低电平表示的间隔。
[0097] 例如, 一个电信号组内电平的持续时间为 2 ms , 每个电信号组最多有四个高电 平, 每个电信号组表示 2 b i t信息, 四个电信号组组成一个字节。 当一个电信号 组中的高电平个数为 1时, 代表信息 00 ; 当高电平的个数为 2时, 代表信息 01 ; 当高电平的个数为 3时, 代表信息 10 ; 当高电平的个数为 4时, 代表信息 1 1。 高 电平个数与其代表的信息之间的对应关系如表 2所示。
[0098] 表 2
[] [表 2]
Figure imgf000012_0001
[0099] 当然, 每个电信号组可以表示 1比特信息, 这需要最多 2个高电平。 以此类推, 每个电信号组可以表示 3比特信息, 这需要最多 8个高电平。
[0100] 另外, 相邻两个电信号组之间的间隔电平的持续时间大于电信号组内的电平的 持续时间, 可设定为 30 ms o 在实施例中, 间隔电平包括低电平。 也就是说, 相 邻两个电信号组之间仅用低电平作为间隔。 可以看出, 表征电信号组的间隔的 间隔电平与表征电信号组内的数据的其中一种电平是相同的。 这使得对电平持 续时间的检测仅限于低电平, 减少检测的电平的范围。
[0101 ] 步骤 503, 对各个电信号组进 组合, 获得一个电信号。
[0102] 图 7为一个示例性的编码电信号, 其中示出比特值与电平之间的关系示意图, 图中的四个电信号组分别有 2个、 4个、 1个和 3个高电平, 代表 01、 1 1、 00和 10 , 相邻两个电信号组之间的低电平的持续时间是 30 ms , 组合后的信号为一个字 节, 其二进制表示为 01 1 10010, 对应的十六进制信号为 0x72。
[0103] 步骤 504, 将电信号转换为光信号形式发送。
[0104] 在此, 是以电信号控制发光二极管以光信号形式发送信息。 [0105] 参见图 6, 是本发明第二实施例的光信号的接收方法流程图, 该接收方法包括 [0106] 步骤 601, 接收光信号并转换为电信号。
[0107] 在此, 电信号是如前述发送的电信号。 此电信号包括多个电信号组, 各电信号 组内的高电平和低电平的持续时间为组内时间间隔, 相邻电信号组之间具有低 电平, 低电平的持续时间为组间时间间隔, 该组内时间间隔小于该组间时间间 隔。
[0108] 在步骤 602, 检测电信号, 记录并存储电信号的高电平和低电平的持续时间。
[0109] 具体地说, 当接收端 102检测到从低电平到高电平的跳变时, 开始计时, 读取
、 计算、 存储每段高电平和低电平的持续时间。
[0110] 在步骤 603, 根据各低电平的持续时间确定一判决时间间隔, 该判决时间间隔 用以确定该电信号的各电信号组之间的间隔电平的位置。
[0111] 根据各电平的持续时间确定一判决时间间隔的方法是, 对于具有 N个电信号组 的电信号, 读取出低电平的 N-1个最长的持续时间, 再以再将该判决时间间隔设 置为等于或小于 (通常略小于即可) 其中最小的持续时间, 其中 N为大于 1的自 然数。
[0112] 在本实施例中, 由于电信号组之间的间隔电平与电信号组内的电平只有一种相 同, 因此为了确定判决时间间隔, 只需要比较低电平的持续时间, 就能找出低 电平的 N-1个最长的持续时间, 从而确定判决时间间隔。
[0113] 在步骤 604, 比较各电平的持续时间与该判决时间间隔以识别各电信号组, 当 电平的持续时间小于该判决时间间隔时, 判断为该组内时间间隔并记录表征数 据的电平的跳变次数, 当电平的持续时间大于该判决时间间隔时, 判断为组间 时间间隔并确认电信号组结束。
[0114] 步骤 605, 当检测到的低电平持续时间大于结束时间间隔时, 判断信号接收完 毕。
[0115] 在步骤 606, 将接收到的各电信号组转换为数据组。
[0116] 在步骤 607, 将多个数据组组合成数据。
[0117] 例如, 将判决时间间隔和信号结束时间间隔分别设置为 30和 100 ms , 当检测到 上升沿 (或下降沿)时, 开始计时, 当检测到的高电平和低电平的持续时间小于 3
0 ms时, 记录高电平的个数; 当检测到的低电平的持续时间大于等于 30 ms, 且 小于 100 ms时, 认为是电信号组的结束; 当检测到的低电平的持续时间大于等 于 100 ms时, 认为信号接收完毕。
[0118] 在另一情形下, 高 (或低)电平的持续时间大于结束时间间隔也可能代表信号接 收中断, 重新开始检测信号。
[0119] 在本实施例中, 光信号可包括红外光信号、 可见光信号和紫外光信号。
[0120] 因此使用本实施例的方法来自适应设置判决时间间隔, 一方面可以避免发送端 设置一个通用的判决时间间隔, 另一方面可以避免给接收端设置一个固定的判 决时间间隔, 规避了升级不便的风险。
[0121] 第三实施例
[0122] 本实施例的发送和接收过程可以在各种电子设备上实施。 发送端可以实施为各 种便携式电子设备。 便携式电子设备的例子包括但不限于手机、 平板电脑、 专 用的通信终端。
[0123] 参见图 8, 是本发明根据第三实施例的光信号的发送流程图, 该编码方法包括
[0124] 步骤 801, 将待发送的数据分成多个数据组, 每一数据组包含一个或多个比特
(bit ) 。 这些待发送的数据可以是文本、 图片、 音频和 /或视频。
[0125] 步骤 802, 将该多个数据组转换为多个电信号组。 该电信号组包括以多种电平 的组合来代表对应数据组的该一个或多个比特。
[0126] 在此, 相邻电信号组之间具有间隔电平, 该间隔电平的持续时间为组间时间间 隔, 各电信号组内的电平的持续时间为组内时间间隔, 组内时间间隔小于组间 时间间隔。
[0127] 在本实施例中, 这些电信号组以三个电平, 例如 0、 IV和 2V表示。 其中, 设置 第一电平, 如 0V为基准电平, 用来表示相邻电信号组之间的间隔。 其它两个电 平, 如 IV和 2V用以在电信号组中相互组合来代表 2个比特。 具体地说, 在一个电 信号组中, 当电平从 0V跳变到 IV, 又从 IV跳变到 0V时, 代表信息 00; 当电平从 0 V跳变到 2V, 又从 2V跳变到 0V时, 代表信息 01 ; 当电平从 0V跳变到 IV, 又从 IV跳 变到 2V, 再从 2V跳变到 0时, 代表信息 10; 当电平从 0V跳变到 2V, 又从 2V跳变到 IV, 再从 IV跳变到 0V时, 代表信息 11。 不同电平的组合与其代表的信息之间的 对应关系如表 3所示。
[0128] 表 3
[] [表 3]
Figure imgf000015_0001
[0129] 每个电信号表示 2 bit信息, 四个电信号组的信息组成一个字节。
[0130] 因此可以根据预先设置的上述对应关系表, 确定信息单元所对应的电信号组的 电平组合。
[0131] 上述三个电平可以自由指定其中之一为第一电平; 三个电平的具体值也可以灵 活设定, 例如设定为 IV、 2V和 3V等。 上述电平组合代表的具体信息也可以灵活 设定, 例如电平组合 1表示信息 01, 电平组合 2表示信息 00, 电平组合 12表示信 息 10, 电平组合 21表示信息 11等。
[0132] 另外, 相邻两个电信号组之间的间隔电平的持续时间大于电信号组内的电平的 持续时间, 可设定为 30 ms o 在实施例中, 间隔电平包括基准电平。 也就是说, 相邻两个电信号组之间仅用基准电平作为间隔。 可以看出, 表征电信号组的间 隔的间隔电平与表征电信号组内的数据的其中一种电平是相同的。 但是可以理 解, 也可以额外为间隔电平设置一种不同于电信号组内的电平的其它电平, 其 好处是便于识别该间隔电平。
[0133] 步骤 803, 对各个电信号组进 组合, 获得一个电信号。
[0134] 如图 10所示为信号与电平之间的关系示意图, 图中的四组信号分别代表 01、 11 、 00和 10, 相邻两组信号之间以 0V电平区分, 组合后的信号为一个字节, 其二 进制表示为 01110010。
[0135] 步骤 804, 将电信号转换为光信号形式发送。
[0136] 在此, 是以电信号控制发光二极管以光信号形式发送信息。
[0137] 参见图 9, 是本发明第三实施例的光信号的接收方法流程图, 该接收方法包括 [0138] 步骤 901, 接收光信号并转换为电信号。
[0139] 在此, 电信号是如前述发送的电信号。 此电信号包括多个电信号组, 各电信号 组内的高电平和低电平的持续时间为组内时间间隔, 相邻电信号组之间具有以 持续一定时间的低电平表示的组间时间间隔, 该组内时间间隔小于该组间时间 间隔。
[0140] 在步骤 902, 检测电信号, 记录并存储电信号的各种电平的持续时间。
[0141] 具体地说, 当接收端 102检测到电平的跳变时, 开始计时, 读取、 计算、 存储 每段各种电平的持续时间。
[0142] 在步骤 603, 根据各基准电平的持续时间确定一判决时间间隔, 该判决时间间 隔用以确定该电信号的各电信号组之间的间隔电平的位置。
[0143] 根据各电平的持续时间确定一判决时间间隔的方法是, 对于具有 N个电信号组 的电信号, 读取出基准电平的 N-1个最长的持续时间, 再以再将该判决时间间隔 该判决时间间隔设置为等于或小于 (通常略小于即可) 其中最小的持续时间, 其中 N为大于 1的自然数。
[0144] 在本实施例中, 由于电信号组之间的间隔电平与电信号组内的电平只有一种相 同, 因此为了确定判决时间间隔, 只需要比较基准电平的持续时间, 就能找出 基准电平的 N-1个最长的持续时间, 从而确定判决时间间隔。
[0145] 如果间隔电平与电信号组内的电平都不同, 只需要找出 N-1个间隔电平, 再将 该判决时间间隔设置为等于或小于 (通常略小于即可) N-1个间隔电平中最小的 持续时间。
[0146] 在步骤 604, 比较各电平的持续时间与该判决时间间隔以识别各电信号组, 当 电平的持续时间小于该判决时间间隔时, 判断为该组内时间间隔并记录表征数 据的电平的跳变次数, 当电平的持续时间大于或等于该判决时间间隔时, 判断 为组间时间间隔并确认电信号组结束。
[0147] 步骤 605, 当检测到的基准电平持续时间大于结束时间间隔时, 判断信号接收 完毕。
[0148] 在步骤 606, 将接收到的各电信号组转换为数据组。 [0149] 在步骤 607, 将多个数据组组合成数据。
[0150] 例如, 将判决时间间隔和信号结束时间间隔分别设置为 30和 100 ms , 当检测到 上升沿 (或下降沿)时, 开始计时, 当检测到的电平的持续时间小于 30 ms时, 记 录各种电平的组合; 当检测到的基准电平的持续时间大于等于 30
ms , 且小于 100 ms时, 认为是电信号组的结束; 当检测到的基准电平的持续时 间大于等于 100 ms时, 认为信号接收完毕。
[0151] 在另一情形下, 基准电平的持续时间大于结束时间间隔也可能代表信号接收中 断, 重新开始检测信号。
[0152] 因此使用本实施例的方法来自适应设置判决时间间隔, 一方面可以避免发送端 设置一个通用的判决时间间隔, 另一方面可以避免给接收端设置一个固定的判 决时间间隔, 规避了升级不便的风险。
[0153] 在本实施例中, 光信号可包括红外光信号、 可见光信号和紫外光信号。
[0154] 在本发明其他实施方式中, 该电信号组包括以电平的个数、 多种电平的组合和 电平的跳变次数中的至少两种的组合代表一个或多个比特的数据。
[0155] 本发明还提出一种光信号的自适应接收装置, 包括:
[0156] 用于接收光信号并转换为电信号的模块, 其中该电信号包括多个电信号组, 各 电信号组内的电平的持续时间为组内时间间隔, 相邻电信号组之间具有间隔电 平, 该间隔电平的持续时间为组间时间间隔, 该组内时间间隔小于该组间时间 间隔;
[0157] 用于检测该电信号, 记录并存储该电信号的各电平的持续时间的模块;
[0158] 用于根据各电平的持续时间确定一判决时间间隔的模块, 该判决时间间隔用以 确定该电信号的各电信号组之间的间隔电平的位置;
[0159] 用于比较各电平的持续时间与该判决时间间隔以识别各电信号组的模块, 其中 当电平的持续时间小于该判决时间间隔时, 判断为该组内时间间隔并记录电信 号组的数据, 当电平的持续时间大于或等于该判决时间间隔时, 判断为该组间 时间间隔并确认电信号组结束;
[0160] 用于将接收到的各电信号组转换为数据组的模块; 以及
[0161] 用于将多个数据组组合成数据的模块。 [0162] 在上述装置中: 该电信号组包括以一种电平的个数来代表一个或多个比特的数 据。
[0163] 在上述装置中: 该电信号组包括以两种以上电平的组合来代表一个或多个比特 的数据。
[0164] 在上述装置中: 该电信号组包括以电平的跳变次数来代表一个或多个比特的数 据。
[0165] 在上述装置中: 该间隔电平与该电信号组内的电平不同。
[0166] 在上述装置中: 该间隔电平与该电信号组内的至少一种电平相同。
[0167] 在上述装置中: 该间隔电平包括高电平、 低电平。
[0168] 上述装置还包括用于当电平的持续时间大于或等于预设的结束时间间隔时, 判 断电信号结束的模块。
[0169] 在上述装置中, 该用于根据各电平的持续时间确定一判决时间间隔的模块是对 于具有 N个电信号组的电信号, 读取出电平的 N-1个最长的持续时间, 再将该判 决时间间隔该判决时间间隔设置为等于或小于 (通常略小于即可) 其中最小的 持续时间。
[0170] 本发明还提出一种受控端, 包括如上所述的一种光信号的自适应接收装置。
[0171] 本发明还提出一种鉴权系统, 包括如上述的一种受控端。
[0172] 本发明还提出一种鉴权系统, 包括如上所述的一种光信号的自适应接收装置。
[0173] 本发明所提出的一种光信号的自适应接收方法、 装置和系统, 可以根据接收到 的光信号, 自适应设置接收端的参数, 实现光信号的接收。 通过该方法可以实 现大部分发送端的 LED灯发送的光信号的自适应接收。 当发送端的光信号的参数 改变时, 接收端不需要进 升级, 此外还可以提高可见光信号的识别率。
[0174] 虽然上面的实施例是以光信号为描述本发明, 但是可以理解, 本发明还可以用 声波信号实施, 声波信号可以是次声波信号、 可听波信号和超声波信号。 因此 , 本发明的实施例可以实施于各种无线信号, 例如前述的光信号和声波信号。
[0175] 虽然本发明已参照当前的具体实施例来描述, 但是本技术领域中的普通技术人 员应当认识到, 以上的实施例仅是用来说明本发明, 在没有脱离本发明精神的 情况下还可作出各种等效的变化或替换, 因此, 只要在本发明的实质精神范围 内对上述实施例的变化、 变型都将落在本申请的权利要求书的范围内。

Claims

权利要求书
[权利要求 1] 一种无线信号的自适应接收方法, 包括以下步骤:
接收无线信号并转换为电信号, 该电信号包括多个电信号组, 各电信 号组内的电平的持续时间为组内时间间隔, 相邻电信号组之间具有间 隔电平, 该间隔电平的持续时间为组间时间间隔; 检测该电信号, 记录并存储该电信号的各电平的持续时间; 根据各电平的持续时间确定一判决时间间隔, 该判决时间间隔用以确 定该电信号的各电信号组之间的间隔电平的位置; 比较各电平的持续时间与该判决时间间隔以识别各电信号组; 将接收到的各电信号组转换为数据组; 以及
将多个数据组组合成数据。
2. 如权利要求 1所述的方法, 其特征在于, 该组内时间间隔小于该组 间时间间隔, 当电平的持续时间小于等于该判决时间间隔时, 判断为 该组内时间间隔并记录电信号组的数据, 当电平的持续时间大于或等 于该判决时间间隔时, 判断为该组间时间间隔并确认电信号组结束, 其中, 根据各电平的持续时间确定一判决时间间隔的步骤包括: 对于具有 N个电信号组的电信号, 读取出各电平的 N-1个最长的持续时 间, 再将判决时间间隔设置为等于或小于该 N-1个最长持续时间中最 小的持续时间, N为大于 1的自然数。
3. 如权利要求 1所述的方法, 其特征在于, 该组内时间间隔大于该组 间时间间隔, 当电平的持续时间大于等于该判决时间间隔时, 判断为 该组内时间间隔并记录电信号组的数据, 当电平的持续时间小于或等 于该判决时间间隔时, 判断为该组间时间间隔并确认电信号组结束, 根据各电平的持续时间确定一判决时间间隔的步骤包括:
对于具有 N个电信号组的电信号, 读取出各电平的 N-1个最短的持续时 间, 再将判决时间间隔设置为等于或大于该 N-1个最短持续时间中最 大的持续时间, N为大于 1的自然数。
4. 如权利要求 1所述的方法, 其特征在于, 该电信号组包括不同状态 的电平代表的比特数据。
5. 如权利要求 4所述的方法, 其特征在于, 该电信号组包括一种以电 平的个数来代表一个或多个比特的数据, 或者该电信号组包括以多种 电平的组合来代表一个或多个比特的数据, 或者该电信号组包括以电 平的跳变次数来代表一个或多个比特的数据, 或者该电信号组包括以 电平的个数、 多种电平的组合和电平的跳变次数中的至少两种的组合 代表一个或多个比特的数据。
6. 如权利要求 1所述的方法, 其特征在于, 该间隔电平与该电信号组 内的至少一种电平相同。
7. 如权利要求 1所述的方法, 其特征在于, 该间隔电平包括高电平、 低电平。
8. 如权利要求 1所述的方法, 其特征在于, 还包括当电平的持续时间 大于或等于预设的结束时间间隔时, 判断电信号结束。
9. 如权利要求 1所述的方法, 其特征在于, 该无线信号为光信号或声 波信号, 该光信号包括红外光信号、 可见光信号和紫外光信号, 该声 波信号包括次声波信号、 可听波信号和超声波信号。
10. 一种无线信号的自适应接收装置, 包括:
用于接收无线信号并转换为电信号的模块, 其中该电信号包括多个电 信号组, 各电信号组内的电平的持续时间为组内时间间隔, 相邻电信 号组之间具有间隔电平, 该间隔电平的持续时间为组间时间间隔; 用于检测该电信号, 记录并存储该电信号的各电平的持续时间的模块 用于根据各电平的持续时间确定一判决时间间隔的模块, 该判决时间 间隔用以确定该电信号的各电信号组之间的间隔电平的位置; 用于比较各电平的持续时间与该判决时间间隔以识别各电信号组的模 块;
用于将接收到的各电信号组转换为数据组的模块; 以及
用于将多个数据组组合成数据的模块。
11. 如权利要求 10所述的装置, 其特征在于, 当电平的持续时间小于 该判决时间间隔时, 判断为该组内时间间隔并记录电信号组的数据, 当电平的持续时间大于或等于该判决时间间隔时, 判断为该组间时间 间隔并确认电信号组结束, 该用于根据各电平的持续时间确定一判决 时间间隔的模块是对于具有 N个电信号组的电信号, 读取出间隔电平 的 N-1个最长的持续时间, 再将判决时间间隔设置为等于或小于其中 最小的持续时间。
12. 如权利要求 10所述的装置, 其特征在于, 当电平的持续时间大于 该判决时间间隔时, 判断为该组内时间间隔并记录电信号组的数据, 当电平的持续时间小于或等于该判决时间间隔时, 判断为该组间时间 间隔并确认电信号组结束, 该用于根据各电平的持续时间确定一判决 时间间隔的模块是对于具有 N个电信号组的电信号, 读取出间隔电平 的 N-1个最短的持续时间, 再将判决时间间隔设置为等于或大于其中 最大的持续时间。
13. 如权利要求 10所述的方法, 其特征在于, 该电信号组包括不同状 态的电平代表的比特数据。
14. 如权利要求 13所述的装置, 其特征在于, 该电信号组包括以一种 电平的个数来代表一个或多个比特的数据, 或者该电信号组包括以两 种以上电平的组合来代表一个或多个比特的数据, 或者该电信号组包 括以电平的跳变次数来代表一个或多个比特的数据, 或者该电信号组 包括以电平的个数、 多种电平的组合和电平的跳变次数中的至少两种 的组合代表一个或多个比特的数据。
15. 如权利要求 10所述的装置, 其特征在于, 该间隔电平与该电信号 组内的电平不同, 或者该间隔电平与该电信号组内的至少一种电平相 同。
16. 如权利要求 10所述的装置, 其特征在于, 该间隔电平包括高电平 、 低电平至少其中之一。
17. 一种受控端, 其特征在于, 包括如权利要求 10至 16任一项所述的 一种无线信号的自适应接收装置。
18. 一种鉴权系统, 其特征在于, 所述鉴权系统包括如权利要求 17所 述的一种受控端。
19. 一种鉴权系统, 其特征在于, 包括如权利要求 10-16任一项所述 的一种无线信号的自适应接收装置。
PCT/CN2015/086853 2014-09-05 2015-08-13 无线信号的自适应接收方法、装置及系统 WO2016034037A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177007739A KR101942991B1 (ko) 2014-09-05 2015-08-13 무선신호의 반응형 접수방법, 장치 및 시스템
JP2017512721A JP6329320B2 (ja) 2014-09-05 2015-08-13 無線信号の自己適応型受信方法、装置及びシステム
EP15837818.2A EP3190726B1 (en) 2014-09-05 2015-08-13 Self-adaptive receiving method, device, and system for radio signal
US15/449,937 US9859978B2 (en) 2014-09-05 2017-03-04 Self-adaptive receiving method, device, and system for radio signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410452730.5A CN105471513B (zh) 2014-09-05 2014-09-05 无线信号的自适应接收方法、装置及系统
CN201410452730.5 2014-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/449,937 Continuation US9859978B2 (en) 2014-09-05 2017-03-04 Self-adaptive receiving method, device, and system for radio signal

Publications (1)

Publication Number Publication Date
WO2016034037A1 true WO2016034037A1 (zh) 2016-03-10

Family

ID=55439109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086853 WO2016034037A1 (zh) 2014-09-05 2015-08-13 无线信号的自适应接收方法、装置及系统

Country Status (6)

Country Link
US (1) US9859978B2 (zh)
EP (1) EP3190726B1 (zh)
JP (1) JP6329320B2 (zh)
KR (1) KR101942991B1 (zh)
CN (1) CN105471513B (zh)
WO (1) WO2016034037A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172113B2 (en) 2016-03-25 2021-11-09 Purelifi Limited Camera system including a proximity sensor and related methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734944B (zh) * 2017-04-18 2021-07-13 陕西万方汽车零部件有限公司 一种无线遥控解码方法及其装置
US20190098731A1 (en) * 2017-09-04 2019-03-28 Shiu-Fai Stephen MAN Programmable flashlight with automatic light intensity adjustment means
CN113298033A (zh) * 2021-06-17 2021-08-24 麦克方程(北京)科技有限责任公司 信号处理方法、装置、电子设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481676A (en) * 1981-08-21 1984-11-06 Thomson-Csf Transmitter-receiver system for variable-rate digital data transmission via optical-fiber links
CN102694597A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的解码方法和控制方法
CN102694598A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的编码方法和发送方法
CN103812557A (zh) * 2013-07-31 2014-05-21 深圳光启创新技术有限公司 可见光信号的编码和解码方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462051A (en) * 1982-04-02 1984-07-24 Ampex Corporation Demodulator for an asynchronous binary signal
US4535297A (en) * 1984-01-09 1985-08-13 General Electric Company Binary signal demodulator with comparative value decision circuitry
WO2007007409A1 (ja) * 2005-07-14 2007-01-18 Fujitsu Limited データ復号方法及び,これを適用するデータ復号装置
KR20070048898A (ko) * 2005-11-07 2007-05-10 삼성전자주식회사 액정 표시 장치의 구동 장치에서의 디코더 및 상기디코더를 포함하는 액정 표시 장치의 구동 장치
CN102799840A (zh) * 2011-05-23 2012-11-28 中兴通讯股份有限公司 数据传输方法及装置
JP5664606B2 (ja) * 2012-07-31 2015-02-04 株式会社デンソー 復号化回路
CN103795464B (zh) * 2013-07-31 2015-04-15 深圳光启创新技术有限公司 具有错误重发机制的可见光信号的发送方法和接收方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4481676A (en) * 1981-08-21 1984-11-06 Thomson-Csf Transmitter-receiver system for variable-rate digital data transmission via optical-fiber links
CN102694597A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的解码方法和控制方法
CN102694598A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的编码方法和发送方法
CN103812557A (zh) * 2013-07-31 2014-05-21 深圳光启创新技术有限公司 可见光信号的编码和解码方法、装置及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172113B2 (en) 2016-03-25 2021-11-09 Purelifi Limited Camera system including a proximity sensor and related methods
US11778311B2 (en) 2016-03-25 2023-10-03 Purelifi Limited Camera system including a proximity sensor and related methods

Also Published As

Publication number Publication date
CN105471513B (zh) 2018-10-02
KR20170057287A (ko) 2017-05-24
EP3190726A4 (en) 2018-05-23
US9859978B2 (en) 2018-01-02
KR101942991B1 (ko) 2019-01-28
CN105471513A (zh) 2016-04-06
JP6329320B2 (ja) 2018-05-23
JP2017533617A (ja) 2017-11-09
EP3190726A1 (en) 2017-07-12
US20170180044A1 (en) 2017-06-22
EP3190726B1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
WO2015014160A1 (zh) 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统
WO2015014238A1 (zh) 可见光信号的编码和解码方法、装置及系统
US10200120B2 (en) Signal encoding and decoding method, device and system
WO2016034037A1 (zh) 无线信号的自适应接收方法、装置及系统
US20180376370A1 (en) Wakeup packet preamble
WO2018057518A1 (en) Systems and methods for transmitting a wake-up radio signal to low power devices in a wireless communication system
US8774016B2 (en) Ethernet communication device with reduced EMI
WO2017050234A1 (zh) 数据传输方法及数据处理设备
CN105471499B (zh) 提高可见光信号传输速率的编解码方法及移动终端和系统
WO2015014168A1 (zh) 具有错误重发机制的可见光信号的发送方法和接收方法、装置及系统
WO2016034034A1 (zh) 一种光驱动芯片控制发光器件的方法及其光驱动芯片
CN108632245B (zh) 低功率高清晰度无线媒体传送
US11158187B2 (en) Remote-control device and user device using an identification signal
CN114301565A (zh) 玩具模块之间的无线通信方法和系统
JP2012054839A (ja) 送信装置及び受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015837818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015837818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177007739

Country of ref document: KR

Kind code of ref document: A