WO2016031381A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2016031381A1
WO2016031381A1 PCT/JP2015/068737 JP2015068737W WO2016031381A1 WO 2016031381 A1 WO2016031381 A1 WO 2016031381A1 JP 2015068737 W JP2015068737 W JP 2015068737W WO 2016031381 A1 WO2016031381 A1 WO 2016031381A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding material
semiconductor chip
metal plate
intermediate member
semiconductor device
Prior art date
Application number
PCT/JP2015/068737
Other languages
French (fr)
Japanese (ja)
Inventor
卓矢 門口
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2016031381A1 publication Critical patent/WO2016031381A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the technology disclosed in this specification relates to a semiconductor device.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2010-258015 discloses a semiconductor device.
  • the semiconductor device of Patent Document 1 includes a metal electrode plate, a metal part formed on the surface of the metal electrode plate, and a semiconductor chip fixed to the metal part via solder.
  • an object of the present specification is to provide a technique capable of suppressing deformation of a semiconductor chip.
  • the semiconductor device disclosed in this specification includes a semiconductor chip, an intermediate member bonded to the semiconductor chip via a first bonding material, a metal plate bonded to the intermediate member via a second bonding material, It has.
  • a linear expansion coefficient of the intermediate member is larger than a linear expansion coefficient of the semiconductor chip and smaller than a linear expansion coefficient of the metal plate.
  • the rigidity of the first bonding material is greater than or equal to the rigidity of the second bonding material.
  • the semiconductor chip and the intermediate member are bonded by the first bonding material, and the intermediate member and the first metal plate are bonded by the second bonding material, the expansion amount of the semiconductor chip and the first metal plate The influence of the difference between the first bonding material and the second bonding material is dispersed through an intermediate member having an expansion amount intermediate between the two expansion amounts, and the strain is dispersed.
  • the rigidity of the 1st joining material which joins a semiconductor chip is more than the rigidity of a 2nd joining material, the restraining force by a 1st joining material becomes stronger than the restraining force by a 2nd joining material. Thereby, deformation of the semiconductor chip can be suppressed by the first bonding material.
  • the semiconductor device 1 includes a semiconductor chip 10, an intermediate member 30 bonded to the semiconductor chip 10 via a first bonding material 41, and a second bonding material 42 to the intermediate member 30.
  • the 1st metal plate 21 joined via this is provided.
  • the semiconductor device 1 includes a spacer 23 bonded to the semiconductor chip 10 via the third bonding material 43 and a second metal plate 22 bonded to the spacer 23 via the third bonding material 43.
  • the semiconductor device 1 includes a sealing resin 60 that seals the whole.
  • the semiconductor chip 10 is disposed between the first metal plate 21 and the second metal plate 22.
  • the back surface 102 of the semiconductor chip 10 is fixed to the first metal plate 21 via the first bonding material 41, the intermediate member 30, and the second bonding material 42.
  • the surface 101 of the semiconductor chip 10 is fixed to the second metal plate 22 via the third bonding material 43 and the spacer 23.
  • the semiconductor chip 10 has a configuration in which a semiconductor element is formed inside a semiconductor substrate.
  • a semiconductor element for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor) can be used.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor
  • the semiconductor chip 10 is, for example, an IGBT, a gate region, an emitter region, a collector region, and the like are formed inside the semiconductor substrate (not shown).
  • silicon (Si) or silicon carbide (SiC) can be used as the material of the semiconductor substrate.
  • silicon carbide (SiC) is used as the material of the semiconductor substrate.
  • the Young's modulus of silicon (Si) is about 169 GPa.
  • the Young's modulus of silicon carbide (SiC) is about 450 GPa.
  • Silicon (Si) has a linear expansion coefficient of about 3 ppm / ° C.
  • Silicon carbide (SiC) has a linear expansion coefficient of about 5 ppm / ° C.
  • the linear expansion coefficient of the semiconductor chip 10 is smaller than the linear expansion coefficients of the intermediate member 30, the first metal plate 21, and the second metal plate 22.
  • the semiconductor chip 10 expands / contracts due to temperature changes.
  • the semiconductor chip 10 expands when the temperature increases and contracts when the temperature decreases.
  • the semiconductor chip 10 generates heat during operation.
  • the intermediate member 30 is formed in a plate shape.
  • the intermediate member 30 is disposed between the semiconductor chip 10 and the first metal plate 21.
  • a surface 301 of the intermediate member 30 is fixed to the semiconductor chip 10 via the first bonding material 41.
  • the back surface 302 of the intermediate member 30 is fixed to the first metal plate 21 via the second bonding material 42.
  • the plane area of the intermediate member 30 is larger than the plane area of the semiconductor chip 10 and smaller than the plane area of the first metal plate 21.
  • the end 303 of the intermediate member 30 is located outside the position of the end 103 of the semiconductor chip 10.
  • the end part 303 of the intermediate member 30 is located inside the position of the end part 213 of the first metal plate 21.
  • the intermediate member 30 is made of metal.
  • the material of the intermediate member 30 is different from the material of the first metal plate 21 and the second metal plate 22.
  • a material of the intermediate member 30 for example, CuMo and 42 Alloy can be used.
  • CuMo is used as the material of the intermediate member 30.
  • the Young's modulus of CuMo is about 280 GPa for 85Mo15Cu and about 170 GPa for 40Mo60Cu.
  • the Young's modulus of 42 Alloy is about 150 GPa.
  • the coefficient of linear expansion of CuMo is about 9 ppm / ° C.
  • the linear expansion coefficient of 42 Alloy is about 6 ppm / ° C.
  • the linear expansion coefficient of the intermediate member 30 is larger than the linear expansion coefficient of the semiconductor chip 10.
  • the linear expansion coefficient of the intermediate member 30 is smaller than the linear expansion coefficients of the first metal plate 21 and the second metal plate 22.
  • the linear expansion coefficient of the intermediate member 30 is a value between the linear expansion coefficient of the semiconductor chip 10 and the linear expansion coefficient of the first metal plate 21.
  • the intermediate member 30 expands / contracts due to temperature changes. The intermediate member 30 expands when the temperature increases and contracts when the temperature decreases.
  • the first metal plate 21 is disposed below the intermediate member 30.
  • the surface 211 of the first metal plate 21 is fixed to the intermediate member 30 via the second bonding material 42.
  • the back surface 212 (the surface opposite to the second bonding material 42 side) of the first metal plate 21 is exposed from the sealing resin 60.
  • the first cooler 71 is in contact with the back surface 212 of the first metal plate 21.
  • the planar area of the first metal plate 21 is larger than the planar area of the semiconductor chip 10 and the planar area of the intermediate member 30.
  • the end 213 of the first metal plate 21 is located outside the positions of the end 103 of the semiconductor chip 10 and the end 303 of the intermediate member 30.
  • the second metal plate 22 is disposed above the spacer 23.
  • a back surface 222 of the second metal plate 22 is fixed to the spacer 23 via a third bonding material 43.
  • the surface 221 of the second metal plate 22 (the surface opposite to the third bonding material 43 side) is exposed from the sealing resin 60.
  • a second cooler 72 is in contact with the surface 221 of the second metal plate 22.
  • the plane area of the second metal plate 22 is larger than the plane area of the semiconductor chip 10 and the plane area of the intermediate member 30.
  • the end 223 of the second metal plate 22 is located outside the end 103 of the semiconductor chip 10 and the end 303 of the intermediate member 30.
  • copper (Cu) can be aluminum (Al).
  • copper (Cu) is used as the material of the first metal plate 21 and the second metal plate 22.
  • the Young's modulus of copper (Cu) is about 124 GPa.
  • the Young's modulus of aluminum (Al) is about 70 GPa.
  • the linear expansion coefficient of copper (Cu) is about 17 ppm / ° C.
  • the linear expansion coefficient of aluminum (Al) is about 23 ppm / ° C.
  • the linear expansion coefficients of the first metal plate 21 and the second metal plate 22 are larger than the linear expansion coefficients of the semiconductor chip 10 and the intermediate member 30.
  • the first metal plate 21 and the second metal plate 22 expand / contract due to temperature changes.
  • the first metal plate 21 and the second metal plate 22 expand when the temperature increases, and contract when the temperature decreases.
  • the first metal plate 21 and the second metal plate 22 have thermal conductivity and conductivity.
  • the first metal plate 21 and the second metal plate 22 have a function of radiating heat generated in the semiconductor chip 10.
  • the 1st metal plate 21 and the 2nd metal plate 22 have a function as an electrode.
  • the spacer 23 is disposed between the semiconductor chip 10 and the second metal plate 22.
  • the back surface 232 of the spacer 23 is fixed to the semiconductor chip 10 via the third bonding material 43.
  • the surface 231 of the spacer 23 is fixed to the second metal plate 22 via the third bonding material 43.
  • the spacer 23 is formed in a plate shape.
  • the spacer 23 is made of metal.
  • copper (Cu) can be aluminum (Al).
  • the first bonding material 41 is filled between the semiconductor chip 10 and the intermediate member 30.
  • the first bonding material 41 joins the semiconductor chip 10 and the intermediate member 30.
  • the first bonding material 41 is in close contact with the semiconductor chip 10 and the intermediate member 30.
  • the plane area on the intermediate member 30 side of the first bonding material 41 is larger than the plane area on the semiconductor chip 10 side.
  • the second bonding material 42 is filled between the intermediate member 30 and the first metal plate 21.
  • the second bonding material 42 joins the intermediate member 30 and the first metal plate 21.
  • the second bonding material 42 is in close contact with the intermediate member 30 and the first metal plate 21.
  • the plane area on the first metal plate 21 side of the second bonding material 42 is larger than the plane area on the intermediate member 30 side.
  • the third bonding material 43 is filled between the semiconductor chip 10 and the spacer 23 and between the spacer 23 and the second metal plate 22.
  • the third bonding material 43 bonds the semiconductor chip 10 and the spacer 23, and the spacer 23 and the second metal plate 22.
  • the third bonding material 43 is in close contact with the semiconductor chip 10, the spacer 23 and the second metal plate 22.
  • the material of the first bonding material 41 for example, a CuSn compound, a NiSn compound, an Ag sintered body, a Zn-based solder, or the like can be used.
  • Cu3Sn, Cu6Sn5, etc. can be used as the CuSn compound.
  • Ni3Sn4 or the like can be used as the NiSn compound.
  • Ni 3 Sn 4 is used as the material of the first bonding material 41.
  • the Young's modulus of Cu3Sn is about 108 GPa.
  • the Young's modulus of Cu6Sn5 is about 86 GPa.
  • the Young's modulus of Ni3Sn4 is about 133 GPa.
  • the Young's modulus of the Ag sintered body is about 9 to 80 GPa.
  • the material of the second bonding material 42 and the third bonding material 43 for example, Sn solder, SnCu solder, Zn solder, or the like can be used.
  • the Young's modulus of Sn-based solder is about 42 GPa.
  • the Young's modulus of SnCu solder is about 50 GPa.
  • the rigidity of the first bonding material 41 is larger than the rigidity of the second bonding material 42.
  • the Young's modulus of the first bonding material 41 is larger than the Young's modulus of the second bonding material 42.
  • the displacement of the first bonding material 41 is smaller than the displacement of the second bonding material 42. That is, when the same force is applied to the first bonding material 41 and the second bonding material 42, the strain of the first bonding material 41 is smaller than the strain of the second bonding material 42.
  • the Young's modulus of the first bonding material 41 and the second bonding material 42 is smaller than the Young's modulus of the semiconductor chip 10.
  • the sealing resin 60 is filled between the first metal plate 21 and the second metal plate 22.
  • the sealing resin 60 is a member between the first metal plate 21 and the second metal plate 22 (semiconductor chip 10, intermediate member 30, spacer 23, first bonding material 41, second bonding material 42, and third bonding material. 43) is sealed.
  • the sealing resin 60 is in close contact with a member between the first metal plate 21 and the second metal plate 22.
  • an epoxy resin can be used as a main component.
  • the sealing resin 60 may include a curing agent, a stress relaxation agent, a curing accelerator, a filler, and the like.
  • the first cooler 71 is disposed below the first metal plate 21.
  • the first cooler 71 cools the semiconductor chip 10 via the first metal plate 21.
  • the second cooler 72 is disposed above the second metal plate 22.
  • the second cooler 72 cools the semiconductor chip 10 via the second metal plate 22.
  • a water-cooled configuration can be used as the first cooler 71 and the second cooler 72.
  • the back surface 102 of the semiconductor chip 10 is metallized using nickel (Ni). Thereby, a Ni film is formed on the back surface 102 of the semiconductor chip 10. Further, the surface 301 of the intermediate member 30 is plated using nickel (Ni). Thereby, a Ni film is formed on the surface 301 of the intermediate member 30.
  • an Sn-based solder paste 91 is disposed on the surface 301 of the intermediate member 30 on which the Ni film is formed, and the semiconductor chip 10 on which the Ni film is formed is disposed on the solder paste 91.
  • the whole is heat-treated.
  • the Ni film formed on the intermediate member 30 and the semiconductor chip 10 reacts with the Sn-based solder paste 91 to form the first bonding material 41 of the NiSn compound (Ni3Sn4). Further, the semiconductor chip 10 and the intermediate member 30 are bonded by the first bonding material 41.
  • an Sn-based solder paste 91 is disposed on the first metal plate 21, and the intermediate member 30 to which the semiconductor chip 10 is bonded is disposed on the solder paste 91.
  • An Sn-based solder paste 91 is disposed on the semiconductor chip 10, and the spacer 23 is disposed on the solder paste 91. Further, an Sn-based solder paste 91 is disposed on the spacer 23, and the second metal plate 22 is disposed on the solder paste 91.
  • the whole is heat-treated. Thereby, the solder paste 91 is heated and the second bonding material 42 and the third bonding material 43 are formed. Further, the intermediate member 30 and the first metal plate 21 are joined by the second joining material 42. Further, the semiconductor chip 10 and the spacer 23, and the spacer 23 and the second metal plate 22 are bonded by the third bonding material 43.
  • preform solder may be used.
  • the material joined in the above process is placed inside the mold 100 and resin is injected into the mold 100.
  • resin is injected into the mold 100.
  • a sealing resin 60 is formed.
  • the semiconductor device 1 is manufactured as described above.
  • the semiconductor chip 10 when the semiconductor chip 10 is energized, the semiconductor chip 10 generates heat and the temperature of the semiconductor device 1 rises. If it does so, the temperature of the semiconductor chip 10, the intermediate member 30, and the 1st metal plate 21 will rise, and each will expand
  • the semiconductor chip 10, the intermediate member 30, and the first metal plate 21 have different linear expansion coefficients and therefore have different expansion amounts. Due to the difference in expansion amount, the first bonding material between the semiconductor chip 10 and the intermediate member 30. 41 and the second bonding material 42 between the intermediate member 30 and the first metal plate 21 are distorted.
  • the intermediate member 30 is disposed between the semiconductor chip 10 and the first metal plate 21, and the intermediate member 30 is bonded to the semiconductor chip 10 via the first bonding material 41, and via the second bonding material 42. Since the first metal plate 21 is bonded to the intermediate member 30, the strain can be distributed to the first bonding material 41 and the second bonding material 42. That is, if the intermediate member 30 is not disposed between the semiconductor chip 10 and the first metal plate 21 and the semiconductor chip 10 and the first metal plate 21 are bonded by one type of bonding material, the semiconductor chip 10 The difference in expansion amount between the first metal plate 21 and the first metal plate 21 all affect one type of bonding material, and the strain cannot be dispersed.
  • the semiconductor chip 10 and the intermediate member 30 are bonded by the first bonding material 41, and the intermediate member 30 and the first metal plate 21 are bonded by the second bonding material 42.
  • the influence of the difference in expansion amount of the first metal plate 21 are dispersed in the first bonding material 41 and the second bonding material 42 via the intermediate member 30, and the strain is dispersed.
  • the rigidity of the first bonding material 41 for bonding the semiconductor chip 10 is larger than the rigidity of the second bonding material 42, the restraining force by the first bonding material 41 is stronger than the restraining force by the second bonding material 42.
  • transformation of the semiconductor chip 10 can be suppressed by the 1st joining material 41, and the lifetime of the semiconductor device 1 can be improved.
  • the second bonding material 42 since the restraining force by the second bonding material 42 is weaker than the restraining force by the first bonding material 41, the second bonding material 42 can follow the expansion of the first metal plate 21. Thereby, the crack of the 2nd joining material 42 can be suppressed and the lifetime of the semiconductor device 1 can be improved.
  • the Young's modulus of the first bonding material 41 is smaller than the Young's modulus of the semiconductor chip 10, the first bonding material 41 is more easily deformed than the semiconductor chip 10, and the semiconductor chip 10 is excessively restrained by the first bonding material 41. There is nothing to do. Thereby, the semiconductor chip 10 can be held moderately and damage to the semiconductor chip 10 can be suppressed. Further, since the plane area of the intermediate member 30 is larger than the plane area of the semiconductor chip 10, the bonding area of the first bonding material 41 can be increased. Thereby, the semiconductor chip 10 can be reliably joined to the intermediate member 30, and the lifetime of the semiconductor device 1 can be increased.
  • a plurality of through holes 36 may be formed in the intermediate member 30.
  • the through hole 36 extends along the direction from the first metal plate 21 toward the semiconductor chip 10.
  • the through hole 36 is located below the semiconductor chip 10.
  • the plurality of through holes 36 are formed at positions inside the position of the end portion 103 of the semiconductor chip 10.
  • the plurality of through holes 36 may be formed at both an inner position and an outer position than the position of the end portion 103 of the semiconductor chip 10.
  • the through hole 36 is filled with the second bonding material 42.
  • the second bonding material 42 filled in the through hole 36 is in close contact with the first bonding material 41. According to such a configuration, since the through hole 36 is formed in the intermediate member 30, the intermediate member 30 is easily deformed, and the strain of the second bonding material 42 can be reduced.
  • the number of through holes 36 formed in the intermediate member 30 is not particularly limited, and at least one through hole 36 may be formed in the intermediate member 30.
  • the plane area of the intermediate member 30 in plan view is larger than the plane area of the semiconductor chip 10, but the present invention is not limited to this configuration. In another embodiment, the plane area of the intermediate member 30 in plan view may be the same size as the plane area of the semiconductor chip 10.
  • the rigidity of the 1st joining material 41 was a structure larger than the rigidity of the 2nd joining material 42, it is not limited to this structure. In other embodiments, the rigidity of the first bonding material 41 may be the same as the rigidity of the second bonding material 42.
  • the Young's modulus of the 1st joining material 41 was a structure larger than the Young's modulus of the 2nd joining material 42, in another embodiment, the Young's modulus of the 1st joining material 41 is 1st. 2 It may be the same as the Young's modulus of the bonding material 42. In this case, the material of the 1st joining material 41 and the material of the 2nd joining material 42 can use the same material.
  • the rigidity of the first bonding material may be greater than or equal to the rigidity of the second bonding material.
  • the Young's modulus of the first bonding material may be greater than or equal to the Young's modulus of the second bonding material.
  • At least one through hole extending along a direction from the metal plate toward the semiconductor chip is formed in the intermediate member at a position inside the position of the end portion of the semiconductor chip. May be.
  • the Young's modulus of the first bonding material may be smaller than the Young's modulus of the semiconductor chip.
  • the plane area of the intermediate member may be larger than the plane area of the semiconductor chip.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This semiconductor device 1 contains a semiconductor chip 10, an intermediate member 30 that is joined to said semiconductor chip 10 with a first joining material 41 interposed therebetween, and a first metal plate 21 that is joined to the intermediate member 30 with a second joining material 42 interposed therebetween. The coefficient of linear expansion of the intermediate member 30 is larger than that of the semiconductor chip 10 and smaller than that of the first metal plate 21. The stiffness of the first joining material 41 is greater than or equal to that of the second joining material 42.

Description

半導体装置Semiconductor device
 本明細書に開示の技術は、半導体装置に関する。 The technology disclosed in this specification relates to a semiconductor device.
 特許文献1(日本国特開2010-258015号公報)には半導体装置が開示されている。特許文献1の半導体装置は、金属電極板と、金属電極板の表面に形成された金属部と、金属部にはんだを介して固定された半導体チップとを備えている。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-258015) discloses a semiconductor device. The semiconductor device of Patent Document 1 includes a metal electrode plate, a metal part formed on the surface of the metal electrode plate, and a semiconductor chip fixed to the metal part via solder.
 特許文献1の半導体装置では、温度の変化により金属電極板や金属部が膨張/収縮する。これにより、半導体チップが変形することがある。そこで本明細書は、半導体チップの変形を抑制できる技術を提供することを目的とする。 In the semiconductor device of Patent Document 1, the metal electrode plate and the metal part expand / contract due to a change in temperature. As a result, the semiconductor chip may be deformed. Therefore, an object of the present specification is to provide a technique capable of suppressing deformation of a semiconductor chip.
 本明細書に開示する半導体装置は、半導体チップと、前記半導体チップに第1接合材を介して接合された中間部材と、前記中間部材に第2接合材を介して接合された金属板と、を備えている。前記中間部材の線膨張係数が、前記半導体チップの線膨張係数より大きく、かつ、前記金属板の線膨張係数より小さい。前記第1接合材の剛性が、前記第2接合材の剛性以上である。 The semiconductor device disclosed in this specification includes a semiconductor chip, an intermediate member bonded to the semiconductor chip via a first bonding material, a metal plate bonded to the intermediate member via a second bonding material, It has. A linear expansion coefficient of the intermediate member is larger than a linear expansion coefficient of the semiconductor chip and smaller than a linear expansion coefficient of the metal plate. The rigidity of the first bonding material is greater than or equal to the rigidity of the second bonding material.
 このような構成によれば、半導体チップと中間部材が第1接合材により接合され、中間部材と第1金属板が第2接合材により接合されるので、半導体チップと第1金属板の膨張量の相違の影響が両者の膨張量の中間の膨張量の中間部材を介して第1接合材と第2接合材に分散され、ひずみが分散される。また、半導体チップを接合する第1接合材の剛性が第2接合材の剛性以上であるので、第1接合材による拘束力が第2接合材による拘束力よりも強くなる。これにより、第1接合材によって半導体チップの変形を抑制できる。 According to such a configuration, since the semiconductor chip and the intermediate member are bonded by the first bonding material, and the intermediate member and the first metal plate are bonded by the second bonding material, the expansion amount of the semiconductor chip and the first metal plate The influence of the difference between the first bonding material and the second bonding material is dispersed through an intermediate member having an expansion amount intermediate between the two expansion amounts, and the strain is dispersed. Moreover, since the rigidity of the 1st joining material which joins a semiconductor chip is more than the rigidity of a 2nd joining material, the restraining force by a 1st joining material becomes stronger than the restraining force by a 2nd joining material. Thereby, deformation of the semiconductor chip can be suppressed by the first bonding material.
半導体装置の断面図である。It is sectional drawing of a semiconductor device. 半導体装置の製造方法を説明する図である(1)。It is a figure explaining the manufacturing method of a semiconductor device (1). 半導体装置の製造方法を説明する図である(2)。It is a figure explaining the manufacturing method of a semiconductor device (2). 半導体装置の製造方法を説明する図である(3)。It is a figure explaining the manufacturing method of a semiconductor device (3). 他の実施形態に係る半導体装置の断面図である。It is sectional drawing of the semiconductor device which concerns on other embodiment.
 以下、実施形態について添付図面を参照して説明する。実施形態に係る半導体装置1は、図1に示すように、半導体チップ10と、半導体チップ10に第1接合材41を介して接合された中間部材30と、中間部材30に第2接合材42を介して接合された第1金属板21とを備えている。また、半導体装置1は、半導体チップ10に第3接合材43を介して接合されたスペーサ23と、スペーサ23に第3接合材43を介して接合された第2金属板22とを備えている。また、半導体装置1は、全体を封止する封止樹脂60を備えている。 Hereinafter, embodiments will be described with reference to the accompanying drawings. As shown in FIG. 1, the semiconductor device 1 according to the embodiment includes a semiconductor chip 10, an intermediate member 30 bonded to the semiconductor chip 10 via a first bonding material 41, and a second bonding material 42 to the intermediate member 30. The 1st metal plate 21 joined via this is provided. In addition, the semiconductor device 1 includes a spacer 23 bonded to the semiconductor chip 10 via the third bonding material 43 and a second metal plate 22 bonded to the spacer 23 via the third bonding material 43. . In addition, the semiconductor device 1 includes a sealing resin 60 that seals the whole.
 半導体チップ10は、第1金属板21と第2金属板22の間に配置されている。半導体チップ10の裏面102が、第1接合材41、中間部材30、および第2接合材42を介して第1金属板21に固定されている。半導体チップ10の表面101が、第3接合材43およびスペーサ23を介して第2金属板22に固定されている。 The semiconductor chip 10 is disposed between the first metal plate 21 and the second metal plate 22. The back surface 102 of the semiconductor chip 10 is fixed to the first metal plate 21 via the first bonding material 41, the intermediate member 30, and the second bonding material 42. The surface 101 of the semiconductor chip 10 is fixed to the second metal plate 22 via the third bonding material 43 and the spacer 23.
 半導体チップ10は、半導体基板の内部に半導体素子が形成された構成である。半導体チップ10としては、例えばIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いることができる。半導体チップ10が例えばIGBTである場合、半導体基板の内部にはゲート領域、エミッタ領域、コレクタ領域などが形成されている(図示省略)。 The semiconductor chip 10 has a configuration in which a semiconductor element is formed inside a semiconductor substrate. As the semiconductor chip 10, for example, an IGBT (Insulated Gate Bipolar Transistor) or a MOSFET (Metal Oxide Semiconductor Semiconductor Field Field Effect Transistor) can be used. When the semiconductor chip 10 is, for example, an IGBT, a gate region, an emitter region, a collector region, and the like are formed inside the semiconductor substrate (not shown).
 半導体チップ10に用いる半導体基板の材質としては、例えばシリコン(Si)や炭化ケイ素(SiC)を用いることができる。本実施形態では、半導体基板の材質として炭化ケイ素(SiC)を用いている。シリコン(Si)のヤング率は、約169GPaである。また、炭化ケイ素(SiC)のヤング率は、約450GPaである。また、シリコン(Si)の線膨張係数は約3ppm/℃である。炭化ケイ素(SiC)の線膨張係数は約5ppm/℃である。半導体チップ10の線膨張係数は、中間部材30、第1金属板21、および第2金属板22の線膨張係数より小さい。半導体チップ10は、温度変化により膨張/収縮する。半導体チップ10は、温度が上がると膨張し、温度が下がると収縮する。半導体チップ10は、作動時に発熱する。 As the material of the semiconductor substrate used for the semiconductor chip 10, for example, silicon (Si) or silicon carbide (SiC) can be used. In the present embodiment, silicon carbide (SiC) is used as the material of the semiconductor substrate. The Young's modulus of silicon (Si) is about 169 GPa. Moreover, the Young's modulus of silicon carbide (SiC) is about 450 GPa. Silicon (Si) has a linear expansion coefficient of about 3 ppm / ° C. Silicon carbide (SiC) has a linear expansion coefficient of about 5 ppm / ° C. The linear expansion coefficient of the semiconductor chip 10 is smaller than the linear expansion coefficients of the intermediate member 30, the first metal plate 21, and the second metal plate 22. The semiconductor chip 10 expands / contracts due to temperature changes. The semiconductor chip 10 expands when the temperature increases and contracts when the temperature decreases. The semiconductor chip 10 generates heat during operation.
 中間部材30は、板状に形成されている。中間部材30は、半導体チップ10と第1金属板21の間に配置されている。中間部材30の表面301が、第1接合材41を介して半導体チップ10に固定されている。中間部材30の裏面302が、第2接合材42を介して第1金属板21に固定されている。各部材の積層方向に沿って平面視したときに、中間部材30の平面積は、半導体チップ10の平面積より大きく、第1金属板21の平面積より小さい。中間部材30の端部303は、半導体チップ10の端部103の位置より外側に位置している。中間部材30の端部303は、第1金属板21の端部213の位置より内側に位置している。 The intermediate member 30 is formed in a plate shape. The intermediate member 30 is disposed between the semiconductor chip 10 and the first metal plate 21. A surface 301 of the intermediate member 30 is fixed to the semiconductor chip 10 via the first bonding material 41. The back surface 302 of the intermediate member 30 is fixed to the first metal plate 21 via the second bonding material 42. When viewed in plan along the stacking direction of each member, the plane area of the intermediate member 30 is larger than the plane area of the semiconductor chip 10 and smaller than the plane area of the first metal plate 21. The end 303 of the intermediate member 30 is located outside the position of the end 103 of the semiconductor chip 10. The end part 303 of the intermediate member 30 is located inside the position of the end part 213 of the first metal plate 21.
 中間部材30は、金属により形成されている。中間部材30の材質は、第1金属板21および第2金属板22の材質と異なる。中間部材30の材質としては、例えばCuMo、42Alloyを用いることができる。本実施形態では、中間部材30の材質としてCuMoを用いている。CuMoのヤング率は、85Mo15Cuでは約280GPaであり、40Mo60Cuでは約170GPaである。42Alloyのヤング率は、約150GPaである。CuMoの線膨張係数は、約9ppm/℃である。また、42Alloyの線膨張係数は、約6ppm/℃である。中間部材30の線膨張係数は、半導体チップ10の線膨張係数より大きい。中間部材30の線膨張係数は、第1金属板21、および第2金属板22の線膨張係数より小さい。中間部材30の線膨張係数は、半導体チップ10の線膨張係数と第1金属板21の線膨張係数との間の値である。中間部材30は、温度変化により膨張/収縮する。中間部材30は、温度が上がると膨張し、温度が下がると収縮する。 The intermediate member 30 is made of metal. The material of the intermediate member 30 is different from the material of the first metal plate 21 and the second metal plate 22. As a material of the intermediate member 30, for example, CuMo and 42 Alloy can be used. In this embodiment, CuMo is used as the material of the intermediate member 30. The Young's modulus of CuMo is about 280 GPa for 85Mo15Cu and about 170 GPa for 40Mo60Cu. The Young's modulus of 42 Alloy is about 150 GPa. The coefficient of linear expansion of CuMo is about 9 ppm / ° C. Moreover, the linear expansion coefficient of 42 Alloy is about 6 ppm / ° C. The linear expansion coefficient of the intermediate member 30 is larger than the linear expansion coefficient of the semiconductor chip 10. The linear expansion coefficient of the intermediate member 30 is smaller than the linear expansion coefficients of the first metal plate 21 and the second metal plate 22. The linear expansion coefficient of the intermediate member 30 is a value between the linear expansion coefficient of the semiconductor chip 10 and the linear expansion coefficient of the first metal plate 21. The intermediate member 30 expands / contracts due to temperature changes. The intermediate member 30 expands when the temperature increases and contracts when the temperature decreases.
 第1金属板21は、中間部材30の下方に配置されている。第1金属板21の表面211が、第2接合材42を介して中間部材30に固定されている。第1金属板21の裏面212(第2接合材42側と反対側の面)は、封止樹脂60から露出している。第1金属板21の裏面212には、第1冷却器71が接している。各部材の積層方向に沿って平面視したときに、第1金属板21の平面積は、半導体チップ10の平面積および中間部材30の平面積より大きい。第1金属板21の端部213は、半導体チップ10の端部103および中間部材30の端部303の位置より外側に位置している。 The first metal plate 21 is disposed below the intermediate member 30. The surface 211 of the first metal plate 21 is fixed to the intermediate member 30 via the second bonding material 42. The back surface 212 (the surface opposite to the second bonding material 42 side) of the first metal plate 21 is exposed from the sealing resin 60. The first cooler 71 is in contact with the back surface 212 of the first metal plate 21. When viewed in plan along the stacking direction of each member, the planar area of the first metal plate 21 is larger than the planar area of the semiconductor chip 10 and the planar area of the intermediate member 30. The end 213 of the first metal plate 21 is located outside the positions of the end 103 of the semiconductor chip 10 and the end 303 of the intermediate member 30.
 第2金属板22は、スペーサ23の上方に配置されている。第2金属板22の裏面222が、第3接合材43を介してスペーサ23に固定されている。第2金属板22の表面221(第3接合材43側と反対側の面)は、封止樹脂60から露出している。第2金属板22の表面221には、第2冷却器72が接している。平面視したときに、第2金属板22の平面積は、半導体チップ10の平面積および中間部材30の平面積より大きい。第2金属板22の端部223は、半導体チップ10の端部103および中間部材30の端部303より外側に位置している。 The second metal plate 22 is disposed above the spacer 23. A back surface 222 of the second metal plate 22 is fixed to the spacer 23 via a third bonding material 43. The surface 221 of the second metal plate 22 (the surface opposite to the third bonding material 43 side) is exposed from the sealing resin 60. A second cooler 72 is in contact with the surface 221 of the second metal plate 22. When viewed in plan, the plane area of the second metal plate 22 is larger than the plane area of the semiconductor chip 10 and the plane area of the intermediate member 30. The end 223 of the second metal plate 22 is located outside the end 103 of the semiconductor chip 10 and the end 303 of the intermediate member 30.
 第1金属板21および第2金属板22の材質としては、例えば銅(Cu)はアルミニウム(Al)を用いることができる。本実施形態では、第1金属板21および第2金属板22の材質として銅(Cu)を用いている。銅(Cu)のヤング率は、約124GPaである。アルミニウム(Al)のヤング率は、約70GPaである。また、銅(Cu)の線膨張係数は、約17ppm/℃である。アルミニウム(Al)の線膨張係数は、約23ppm/℃である。第1金属板21および第2金属板22の線膨張係数は、半導体チップ10および中間部材30の線膨張係数より大きい。第1金属板21および第2金属板22は、温度変化により膨張/収縮する。第1金属板21および第2金属板22は、温度が上がると膨張し、温度が下がると収縮する。 As the material of the first metal plate 21 and the second metal plate 22, for example, copper (Cu) can be aluminum (Al). In the present embodiment, copper (Cu) is used as the material of the first metal plate 21 and the second metal plate 22. The Young's modulus of copper (Cu) is about 124 GPa. The Young's modulus of aluminum (Al) is about 70 GPa. Moreover, the linear expansion coefficient of copper (Cu) is about 17 ppm / ° C. The linear expansion coefficient of aluminum (Al) is about 23 ppm / ° C. The linear expansion coefficients of the first metal plate 21 and the second metal plate 22 are larger than the linear expansion coefficients of the semiconductor chip 10 and the intermediate member 30. The first metal plate 21 and the second metal plate 22 expand / contract due to temperature changes. The first metal plate 21 and the second metal plate 22 expand when the temperature increases, and contract when the temperature decreases.
 第1金属板21および第2金属板22は、熱伝導性および導電性を有している。第1金属板21および第2金属板22は、半導体チップ10において生じた熱を放散する機能を有している。また、第1金属板21および第2金属板22は、電極としての機能を有している。 The first metal plate 21 and the second metal plate 22 have thermal conductivity and conductivity. The first metal plate 21 and the second metal plate 22 have a function of radiating heat generated in the semiconductor chip 10. Moreover, the 1st metal plate 21 and the 2nd metal plate 22 have a function as an electrode.
 スペーサ23は、半導体チップ10と第2金属板22の間に配置されている。スペーサ23の裏面232が、第3接合材43を介して半導体チップ10に固定されている。スペーサ23の表面231が、第3接合材43を介して第2金属板22に固定されている。スペーサ23は、板状に形成されている。スペーサ23は、金属により形成されている。スペーサ23の材質としては、例えば銅(Cu)はアルミニウム(Al)を用いることができる。 The spacer 23 is disposed between the semiconductor chip 10 and the second metal plate 22. The back surface 232 of the spacer 23 is fixed to the semiconductor chip 10 via the third bonding material 43. The surface 231 of the spacer 23 is fixed to the second metal plate 22 via the third bonding material 43. The spacer 23 is formed in a plate shape. The spacer 23 is made of metal. As a material of the spacer 23, for example, copper (Cu) can be aluminum (Al).
 第1接合材41は、半導体チップ10と中間部材30の間に充填されている。第1接合材41は、半導体チップ10と中間部材30を接合している。第1接合材41は、半導体チップ10と中間部材30に密着している。第1接合材41の中間部材30側の平面積は、半導体チップ10側の平面積より大きい。 The first bonding material 41 is filled between the semiconductor chip 10 and the intermediate member 30. The first bonding material 41 joins the semiconductor chip 10 and the intermediate member 30. The first bonding material 41 is in close contact with the semiconductor chip 10 and the intermediate member 30. The plane area on the intermediate member 30 side of the first bonding material 41 is larger than the plane area on the semiconductor chip 10 side.
 第2接合材42は、中間部材30と第1金属板21の間に充填されている。第2接合材42は、中間部材30と第1金属板21を接合している。第2接合材42は、中間部材30と第1金属板21に密着している。第2接合材42の第1金属板21側の平面積は、中間部材30側の平面積より大きい。 The second bonding material 42 is filled between the intermediate member 30 and the first metal plate 21. The second bonding material 42 joins the intermediate member 30 and the first metal plate 21. The second bonding material 42 is in close contact with the intermediate member 30 and the first metal plate 21. The plane area on the first metal plate 21 side of the second bonding material 42 is larger than the plane area on the intermediate member 30 side.
 第3接合材43は、半導体チップ10とスペーサ23の間およびスペーサ23と第2金属板22の間に充填されている。第3接合材43は、半導体チップ10とスペーサ23、および、スペーサ23と第2金属板22を接合している。第3接合材43は、半導体チップ10、スペーサ23および第2金属板22に密着している。 The third bonding material 43 is filled between the semiconductor chip 10 and the spacer 23 and between the spacer 23 and the second metal plate 22. The third bonding material 43 bonds the semiconductor chip 10 and the spacer 23, and the spacer 23 and the second metal plate 22. The third bonding material 43 is in close contact with the semiconductor chip 10, the spacer 23 and the second metal plate 22.
 第1接合材41の材質としては、例えばCuSn化合物、NiSn化合物、Ag焼結体、Zn系はんだ等を用いることができる。CuSn化合物としては、Cu3Sn、Cu6Sn5等を用いることができる。NiSn化合物としては、Ni3Sn4等を用いることができる。本実施形態では、第1接合材41の材質としてNi3Sn4を用いている。Cu3Snのヤング率は、約108GPaである。Cu6Sn5のヤング率は、約86GPaである。Ni3Sn4のヤング率は、約133GPaである。Ag焼結体のヤング率は、約9~80GPaである。 As the material of the first bonding material 41, for example, a CuSn compound, a NiSn compound, an Ag sintered body, a Zn-based solder, or the like can be used. Cu3Sn, Cu6Sn5, etc. can be used as the CuSn compound. Ni3Sn4 or the like can be used as the NiSn compound. In the present embodiment, Ni 3 Sn 4 is used as the material of the first bonding material 41. The Young's modulus of Cu3Sn is about 108 GPa. The Young's modulus of Cu6Sn5 is about 86 GPa. The Young's modulus of Ni3Sn4 is about 133 GPa. The Young's modulus of the Ag sintered body is about 9 to 80 GPa.
 第2接合材42および第3接合材43の材質としては、例えばSn系はんだ、SnCu系はんだ、Zn系はんだ等を用いることができる。Sn系はんだのヤング率は、約42GPaである。SnCu系はんだのヤング率は、約50GPaである。 As the material of the second bonding material 42 and the third bonding material 43, for example, Sn solder, SnCu solder, Zn solder, or the like can be used. The Young's modulus of Sn-based solder is about 42 GPa. The Young's modulus of SnCu solder is about 50 GPa.
 第1接合材41の剛性は、第2接合材42の剛性より大きい。第1接合材41のヤング率は、第2接合材42のヤング率より大きい。第1接合材41と第2接合材42に同じ力が作用したときに、第1接合材41の変位は、第2接合材42の変位より小さい。すなわち、第1接合材41と第2接合材42に同じ力が作用したときに、第1接合材41のひずみは、第2接合材42のひずみより小さい。また、第1接合材41および第2接合材42のヤング率は、半導体チップ10のヤング率より小さい。 The rigidity of the first bonding material 41 is larger than the rigidity of the second bonding material 42. The Young's modulus of the first bonding material 41 is larger than the Young's modulus of the second bonding material 42. When the same force is applied to the first bonding material 41 and the second bonding material 42, the displacement of the first bonding material 41 is smaller than the displacement of the second bonding material 42. That is, when the same force is applied to the first bonding material 41 and the second bonding material 42, the strain of the first bonding material 41 is smaller than the strain of the second bonding material 42. The Young's modulus of the first bonding material 41 and the second bonding material 42 is smaller than the Young's modulus of the semiconductor chip 10.
 封止樹脂60は、第1金属板21と第2金属板22の間に充填されている。封止樹脂60は、第1金属板21と第2金属板22の間の部材(半導体チップ10、中間部材30、スペーサ23、第1接合材41、第2接合材42、および第3接合材43)を封止している。封止樹脂60は、第1金属板21と第2金属板22の間の部材に密着している。封止樹脂60の材料としては、エポキシ樹脂を主成分として用いることができる。その他に、封止樹脂60は、硬化剤、応力緩和剤、硬化促進剤、フィラー等を含んでいてもよい。 The sealing resin 60 is filled between the first metal plate 21 and the second metal plate 22. The sealing resin 60 is a member between the first metal plate 21 and the second metal plate 22 (semiconductor chip 10, intermediate member 30, spacer 23, first bonding material 41, second bonding material 42, and third bonding material. 43) is sealed. The sealing resin 60 is in close contact with a member between the first metal plate 21 and the second metal plate 22. As a material of the sealing resin 60, an epoxy resin can be used as a main component. In addition, the sealing resin 60 may include a curing agent, a stress relaxation agent, a curing accelerator, a filler, and the like.
 第1冷却器71は、第1金属板21の下方に配置されている。第1冷却器71は、第1金属板21を介して半導体チップ10を冷却する。第2冷却器72は、第2金属板22の上方に配置されている。第2冷却器72は、第2金属板22を介して半導体チップ10を冷却する。第1冷却器71および第2冷却器72としては、例えば水冷式の構成を用いることができる。 The first cooler 71 is disposed below the first metal plate 21. The first cooler 71 cools the semiconductor chip 10 via the first metal plate 21. The second cooler 72 is disposed above the second metal plate 22. The second cooler 72 cools the semiconductor chip 10 via the second metal plate 22. As the first cooler 71 and the second cooler 72, for example, a water-cooled configuration can be used.
 次に、半導体装置1の製造方法の一例について説明する。半導体装置1を製造するときは、まず、ニッケル(Ni)を用いて半導体チップ10の裏面102をメタライズ処理する。これにより、半導体チップ10の裏面102にNi膜が形成される。また、ニッケル(Ni)を用いて中間部材30の表面301をめっき処理する。これにより、中間部材30の表面301にNi膜が形成される。 Next, an example of a method for manufacturing the semiconductor device 1 will be described. When manufacturing the semiconductor device 1, first, the back surface 102 of the semiconductor chip 10 is metallized using nickel (Ni). Thereby, a Ni film is formed on the back surface 102 of the semiconductor chip 10. Further, the surface 301 of the intermediate member 30 is plated using nickel (Ni). Thereby, a Ni film is formed on the surface 301 of the intermediate member 30.
 次に、図2に示すように、Ni膜が形成された中間部材30の表面301にSn系のはんだペースト91を配置し、はんだペースト91の上にNi膜が形成された半導体チップ10を配置し、この状態で全体を加熱処理する。これにより、中間部材30および半導体チップ10に形成されたNi膜とSn系のはんだペースト91とが反応して、NiSn化合物(Ni3Sn4)の第1接合材41が形成される。また、半導体チップ10と中間部材30が、第1接合材41により接合される。 Next, as shown in FIG. 2, an Sn-based solder paste 91 is disposed on the surface 301 of the intermediate member 30 on which the Ni film is formed, and the semiconductor chip 10 on which the Ni film is formed is disposed on the solder paste 91. In this state, the whole is heat-treated. As a result, the Ni film formed on the intermediate member 30 and the semiconductor chip 10 reacts with the Sn-based solder paste 91 to form the first bonding material 41 of the NiSn compound (Ni3Sn4). Further, the semiconductor chip 10 and the intermediate member 30 are bonded by the first bonding material 41.
 次に、図3に示すように、第1金属板21の上にSn系のはんだペースト91を配置し、はんだペースト91の上に半導体チップ10が接合された中間部材30を配置する。また、半導体チップ10の上にSn系のはんだペースト91を配置し、はんだペースト91の上にスペーサ23を配置する。また、スペーサ23の上にSn系のはんだペースト91を配置し、はんだペースト91の上に第2金属板22を配置し、この状態で全体を加熱処理する。これにより、はんだペースト91が加熱されて第2接合材42および第3接合材43が形成される。また、中間部材30と第1金属板21が、第2接合材42により接合される。また、半導体チップ10とスペーサ23、および、スペーサ23と第2金属板22が、第3接合材43により接合される。なお、半導体装置1の製造方法においてはんだ付けを行うときには、プリフォームはんだを用いてもよい。 Next, as shown in FIG. 3, an Sn-based solder paste 91 is disposed on the first metal plate 21, and the intermediate member 30 to which the semiconductor chip 10 is bonded is disposed on the solder paste 91. An Sn-based solder paste 91 is disposed on the semiconductor chip 10, and the spacer 23 is disposed on the solder paste 91. Further, an Sn-based solder paste 91 is disposed on the spacer 23, and the second metal plate 22 is disposed on the solder paste 91. In this state, the whole is heat-treated. Thereby, the solder paste 91 is heated and the second bonding material 42 and the third bonding material 43 are formed. Further, the intermediate member 30 and the first metal plate 21 are joined by the second joining material 42. Further, the semiconductor chip 10 and the spacer 23, and the spacer 23 and the second metal plate 22 are bonded by the third bonding material 43. In addition, when performing soldering in the manufacturing method of the semiconductor device 1, preform solder may be used.
 次に、図4に示すように、上記の工程で接合されたものを金型100の内部に配置し、金型100の内部に樹脂を注入する。注入された樹脂が硬化すると、封止樹脂60が形成される。以上のようにして、半導体装置1が製造される。 Next, as shown in FIG. 4, the material joined in the above process is placed inside the mold 100 and resin is injected into the mold 100. When the injected resin is cured, a sealing resin 60 is formed. The semiconductor device 1 is manufactured as described above.
 上記の構成を備える半導体装置1によれば、半導体チップ10に通電すると半導体チップ10が発熱して半導体装置1の温度が上がる。そうすると、半導体チップ10、中間部材30および第1金属板21の温度が上がり、それぞれが膨張する。半導体チップ10、中間部材30および第1金属板21では、それぞれの線膨張係数が異なるので膨張量が相違し、この膨張量の相違により、半導体チップ10と中間部材30の間の第1接合材41および中間部材30と第1金属板21の間の第2接合材42にひずみが生じる。このとき、半導体チップ10と第1金属板21の間に中間部材30が配置され、第1接合材41を介して中間部材30が半導体チップ10に接合されており、第2接合材42を介して第1金属板21が中間部材30に接合されているため、第1接合材41と第2接合材42にひずみを分散できる。すなわち、もし半導体チップ10と第1金属板21の間に中間部材30が配置されておらず、1種類の接合材により半導体チップ10と第1金属板21が接合されていると、半導体チップ10と第1金属板21の膨張量の相違が1種類の接合材に全て影響し、ひずみを分散することができない。しかしながら、上記の構成によれば、半導体チップ10と中間部材30が第1接合材41により接合され、中間部材30と第1金属板21が第2接合材42により接合されるので、半導体チップ10と第1金属板21の膨張量の相違の影響が中間部材30を介して第1接合材41と第2接合材42に分散され、ひずみが分散される。また、半導体チップ10を接合する第1接合材41の剛性が第2接合材42の剛性より大きいので、第1接合材41による拘束力が第2接合材42による拘束力よりも強くなる。これにより、第1接合材41によって半導体チップ10の変形を抑制でき、半導体装置1の寿命を高めることができる。また、第2接合材42による拘束力が第1接合材41による拘束力よりも弱いので、第2接合材42が第1金属板21の膨張に追従できる。これにより、第2接合材42のクラックを抑制でき、半導体装置1の寿命を高めることができる。 According to the semiconductor device 1 having the above configuration, when the semiconductor chip 10 is energized, the semiconductor chip 10 generates heat and the temperature of the semiconductor device 1 rises. If it does so, the temperature of the semiconductor chip 10, the intermediate member 30, and the 1st metal plate 21 will rise, and each will expand | swell. The semiconductor chip 10, the intermediate member 30, and the first metal plate 21 have different linear expansion coefficients and therefore have different expansion amounts. Due to the difference in expansion amount, the first bonding material between the semiconductor chip 10 and the intermediate member 30. 41 and the second bonding material 42 between the intermediate member 30 and the first metal plate 21 are distorted. At this time, the intermediate member 30 is disposed between the semiconductor chip 10 and the first metal plate 21, and the intermediate member 30 is bonded to the semiconductor chip 10 via the first bonding material 41, and via the second bonding material 42. Since the first metal plate 21 is bonded to the intermediate member 30, the strain can be distributed to the first bonding material 41 and the second bonding material 42. That is, if the intermediate member 30 is not disposed between the semiconductor chip 10 and the first metal plate 21 and the semiconductor chip 10 and the first metal plate 21 are bonded by one type of bonding material, the semiconductor chip 10 The difference in expansion amount between the first metal plate 21 and the first metal plate 21 all affect one type of bonding material, and the strain cannot be dispersed. However, according to the above configuration, the semiconductor chip 10 and the intermediate member 30 are bonded by the first bonding material 41, and the intermediate member 30 and the first metal plate 21 are bonded by the second bonding material 42. And the influence of the difference in expansion amount of the first metal plate 21 are dispersed in the first bonding material 41 and the second bonding material 42 via the intermediate member 30, and the strain is dispersed. Further, since the rigidity of the first bonding material 41 for bonding the semiconductor chip 10 is larger than the rigidity of the second bonding material 42, the restraining force by the first bonding material 41 is stronger than the restraining force by the second bonding material 42. Thereby, the deformation | transformation of the semiconductor chip 10 can be suppressed by the 1st joining material 41, and the lifetime of the semiconductor device 1 can be improved. Further, since the restraining force by the second bonding material 42 is weaker than the restraining force by the first bonding material 41, the second bonding material 42 can follow the expansion of the first metal plate 21. Thereby, the crack of the 2nd joining material 42 can be suppressed and the lifetime of the semiconductor device 1 can be improved.
 また、第1接合材41のヤング率が半導体チップ10のヤング率より小さいので、第1接合材41が半導体チップ10よりも変形しやすく、半導体チップ10が第1接合材41により過度に拘束されることがない。これにより半導体チップ10を適度に保持でき、半導体チップ10の損傷を抑制できる。また、中間部材30の平面積が半導体チップ10の平面積より大きいので、第1接合材41の接合面積を広くすることができる。これにより、半導体チップ10を中間部材30に確実に接合でき、半導体装置1の寿命を高めることができる。 Further, since the Young's modulus of the first bonding material 41 is smaller than the Young's modulus of the semiconductor chip 10, the first bonding material 41 is more easily deformed than the semiconductor chip 10, and the semiconductor chip 10 is excessively restrained by the first bonding material 41. There is nothing to do. Thereby, the semiconductor chip 10 can be held moderately and damage to the semiconductor chip 10 can be suppressed. Further, since the plane area of the intermediate member 30 is larger than the plane area of the semiconductor chip 10, the bonding area of the first bonding material 41 can be increased. Thereby, the semiconductor chip 10 can be reliably joined to the intermediate member 30, and the lifetime of the semiconductor device 1 can be increased.
 以上、一実施形態について説明したが、具体的な態様は上記実施形態に限定されるものではない。例えば、他の実施形態では、図5に示すように、中間部材30に複数の貫通孔36が形成されていてもよい。図5において、図1と同様の構成については同一の符号を付して説明を省略する。各貫通孔36は、中間部材30を厚さ方向に貫通している。貫通孔36は、第1金属板21から半導体チップ10に向かう方向に沿って延びている。貫通孔36は、半導体チップ10の下方に位置している。複数の貫通孔36は、半導体チップ10の端部103の位置より内側の位置に形成されている。他の例では、複数の貫通孔36は、半導体チップ10の端部103の位置より内側の位置と外側の位置の両方に形成されていてもよい。貫通孔36には、第2接合材42が充填されている。貫通孔36に充填された第2接合材42は、第1接合材41に密着している。このような構成によれば、中間部材30に貫通孔36が形成されているので、中間部材30が変形しやすくなり、第2接合材42のひずみを緩和できる。中間部材30に形成される貫通孔36の数は特に限定されるものではなく、少なくとも1つの貫通孔36が中間部材30に形成されていればよい。 As mentioned above, although one embodiment was described, a specific mode is not limited to the above-mentioned embodiment. For example, in another embodiment, as shown in FIG. 5, a plurality of through holes 36 may be formed in the intermediate member 30. In FIG. 5, the same components as those in FIG. Each through hole 36 penetrates the intermediate member 30 in the thickness direction. The through hole 36 extends along the direction from the first metal plate 21 toward the semiconductor chip 10. The through hole 36 is located below the semiconductor chip 10. The plurality of through holes 36 are formed at positions inside the position of the end portion 103 of the semiconductor chip 10. In another example, the plurality of through holes 36 may be formed at both an inner position and an outer position than the position of the end portion 103 of the semiconductor chip 10. The through hole 36 is filled with the second bonding material 42. The second bonding material 42 filled in the through hole 36 is in close contact with the first bonding material 41. According to such a configuration, since the through hole 36 is formed in the intermediate member 30, the intermediate member 30 is easily deformed, and the strain of the second bonding material 42 can be reduced. The number of through holes 36 formed in the intermediate member 30 is not particularly limited, and at least one through hole 36 may be formed in the intermediate member 30.
 また、上記実施形態では、平面視における中間部材30の平面積が半導体チップ10の平面積より大きかったが、この構成に限定されるものではない。他の実施形態では、平面視における中間部材30の平面積が半導体チップ10の平面積と同じ大きさであってもよい。 In the above embodiment, the plane area of the intermediate member 30 in plan view is larger than the plane area of the semiconductor chip 10, but the present invention is not limited to this configuration. In another embodiment, the plane area of the intermediate member 30 in plan view may be the same size as the plane area of the semiconductor chip 10.
 また、上記実施形態では、第1接合材41の剛性が、第2接合材42の剛性より大きい構成であったが、この構成に限定されるものではない。他の実施形態では、第1接合材41の剛性が、第2接合材42の剛性と同じであってもよい。また、上記実施形態では、第1接合材41のヤング率が、第2接合材42のヤング率より大きい構成であったが、他の実施形態では、第1接合材41のヤング率が、第2接合材42のヤング率と同じであってもよい。この場合、第1接合材41の材質と第2接合材42の材質は、同様の材質を用いることができる。 Moreover, in the said embodiment, although the rigidity of the 1st joining material 41 was a structure larger than the rigidity of the 2nd joining material 42, it is not limited to this structure. In other embodiments, the rigidity of the first bonding material 41 may be the same as the rigidity of the second bonding material 42. Moreover, in the said embodiment, although the Young's modulus of the 1st joining material 41 was a structure larger than the Young's modulus of the 2nd joining material 42, in another embodiment, the Young's modulus of the 1st joining material 41 is 1st. 2 It may be the same as the Young's modulus of the bonding material 42. In this case, the material of the 1st joining material 41 and the material of the 2nd joining material 42 can use the same material.
 以下、本明細書が開示する半導体装置の技術要素について説明する。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものである。 Hereinafter, technical elements of the semiconductor device disclosed in this specification will be described. Note that the technical elements described below are independent technical elements, and exhibit technical usefulness alone or in various combinations.
 本明細書が一例として開示する半導体装置では、第1接合材の剛性が第2接合材の剛性以上であってもよい。 In the semiconductor device disclosed in this specification as an example, the rigidity of the first bonding material may be greater than or equal to the rigidity of the second bonding material.
 本明細書が一例として開示する半導体装置では、第1接合材のヤング率が第2接合材のヤング率以上であってもよい。 In the semiconductor device disclosed in this specification as an example, the Young's modulus of the first bonding material may be greater than or equal to the Young's modulus of the second bonding material.
 本明細書が一例として開示する半導体装置では、半導体チップの端部の位置より内側の位置において、中間部材に、金属板から半導体チップに向かう方向に沿って延びる少なくとも1つの貫通孔が形成されていてもよい。 In the semiconductor device disclosed in this specification as an example, at least one through hole extending along a direction from the metal plate toward the semiconductor chip is formed in the intermediate member at a position inside the position of the end portion of the semiconductor chip. May be.
 本明細書が一例として開示する半導体装置では、第1接合材のヤング率が半導体チップのヤング率より小さくてもよい。中間部材の平面積が半導体チップの平面積より大きくてもよい。 In the semiconductor device disclosed in this specification as an example, the Young's modulus of the first bonding material may be smaller than the Young's modulus of the semiconductor chip. The plane area of the intermediate member may be larger than the plane area of the semiconductor chip.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.
1  :半導体装置
10 :半導体チップ
21 :第1金属板
22 :第2金属板
23 :スペーサ
30 :中間部材
36 :貫通孔
41 :第1接合材
42 :第2接合材
43 :第3接合材
60 :封止樹脂
71 :第1冷却器
72 :第2冷却器
91 :はんだペースト
100:金型
1: Semiconductor device 10: Semiconductor chip 21: 1st metal plate 22: 2nd metal plate 23: Spacer 30: Intermediate member 36: Through hole 41: 1st joining material 42: 2nd joining material 43: 3rd joining material 60 : Sealing resin 71: First cooler 72: Second cooler 91: Solder paste 100: Mold

Claims (4)

  1.  半導体チップと、
     前記半導体チップに第1接合材を介して接合された中間部材と、
     前記中間部材に第2接合材を介して接合された金属板と、を備え、
     前記中間部材の線膨張係数が、前記半導体チップの線膨張係数より大きく、かつ、前記金属板の線膨張係数より小さく、
     前記第1接合材の剛性が前記第2接合材の剛性以上である、半導体装置。
    A semiconductor chip;
    An intermediate member bonded to the semiconductor chip via a first bonding material;
    A metal plate joined to the intermediate member via a second joining material,
    The linear expansion coefficient of the intermediate member is larger than the linear expansion coefficient of the semiconductor chip and smaller than the linear expansion coefficient of the metal plate;
    A semiconductor device, wherein the rigidity of the first bonding material is equal to or higher than the rigidity of the second bonding material.
  2.  前記第1接合材のヤング率が前記第2接合材のヤング率以上である、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein a Young's modulus of the first bonding material is equal to or higher than a Young's modulus of the second bonding material.
  3.  前記中間部材には、前記金属板から前記半導体チップに向かう方向に沿って延びる少なくとも1つの貫通孔が形成されている、請求項1又は2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the intermediate member is formed with at least one through hole extending along a direction from the metal plate toward the semiconductor chip.
  4.  前記第1接合材のヤング率が前記半導体チップのヤング率より小さい、請求項1から3のいずれかに記載の半導体装置。 4. The semiconductor device according to claim 1, wherein a Young's modulus of the first bonding material is smaller than a Young's modulus of the semiconductor chip.
PCT/JP2015/068737 2014-08-25 2015-06-29 Semiconductor device WO2016031381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-170210 2014-08-25
JP2014170210A JP2016046403A (en) 2014-08-25 2014-08-25 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2016031381A1 true WO2016031381A1 (en) 2016-03-03

Family

ID=55399285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068737 WO2016031381A1 (en) 2014-08-25 2015-06-29 Semiconductor device

Country Status (2)

Country Link
JP (1) JP2016046403A (en)
WO (1) WO2016031381A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478543A (en) * 2016-07-28 2019-03-15 三菱电机株式会社 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027878A (en) * 2018-08-10 2020-02-20 株式会社豊田中央研究所 Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059951A (en) * 2001-08-08 2003-02-28 Nissan Motor Co Ltd Semiconductor packaging structure
JP2003133337A (en) * 2001-10-23 2003-05-09 Nissan Motor Co Ltd Semiconductor-mounting structure and semiconductor mounting method
JP2008147469A (en) * 2006-12-12 2008-06-26 Hitachi Ltd Semiconductor device
JP2010016254A (en) * 2008-07-04 2010-01-21 Toyota Industries Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059951A (en) * 2001-08-08 2003-02-28 Nissan Motor Co Ltd Semiconductor packaging structure
JP2003133337A (en) * 2001-10-23 2003-05-09 Nissan Motor Co Ltd Semiconductor-mounting structure and semiconductor mounting method
JP2008147469A (en) * 2006-12-12 2008-06-26 Hitachi Ltd Semiconductor device
JP2010016254A (en) * 2008-07-04 2010-01-21 Toyota Industries Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478543A (en) * 2016-07-28 2019-03-15 三菱电机株式会社 Semiconductor device

Also Published As

Publication number Publication date
JP2016046403A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
CN107112316B (en) Semiconductor module
US10727152B2 (en) Semiconductor apparatus
US10522482B2 (en) Semiconductor device manufacturing method comprising bonding an electrode terminal to a conductive pattern on an insulating substrate using ultrasonic bonding
JP6424573B2 (en) Semiconductor device
US10658273B2 (en) Semiconductor device and manufacturing method thereof
US10658324B2 (en) Semiconductor device
WO2016031381A1 (en) Semiconductor device
JP6203307B2 (en) Semiconductor device and manufacturing method thereof
JP6834815B2 (en) Semiconductor module
JP6910553B2 (en) Semiconductor device
JP2015005571A (en) Semiconductor device
JP2018085366A (en) Method of manufacturing semiconductor device
JP6380076B2 (en) Semiconductor device
JP6011410B2 (en) Semiconductor device assembly, power module substrate and power module
JP2018129390A (en) Semiconductor device
JP2015015412A (en) Semiconductor device
WO2017077729A1 (en) Semiconductor module and method for manufacturing same
JP5987665B2 (en) Semiconductor device
JP6922674B2 (en) Semiconductor device
JP2018018932A (en) Semiconductor module
JP2016139658A (en) Semiconductor device
JP2017069431A (en) Semiconductor device
JP2015122429A (en) Electronic apparatus
JP2020102501A (en) Semiconductor device
JP6347203B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835366

Country of ref document: EP

Kind code of ref document: A1