WO2016031366A1 - 装置及び方法 - Google Patents

装置及び方法 Download PDF

Info

Publication number
WO2016031366A1
WO2016031366A1 PCT/JP2015/067912 JP2015067912W WO2016031366A1 WO 2016031366 A1 WO2016031366 A1 WO 2016031366A1 JP 2015067912 W JP2015067912 W JP 2015067912W WO 2016031366 A1 WO2016031366 A1 WO 2016031366A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
band
wireless communication
frequency band
cellular system
Prior art date
Application number
PCT/JP2015/067912
Other languages
English (en)
French (fr)
Inventor
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/327,479 priority Critical patent/US10694391B2/en
Priority to EP15836977.7A priority patent/EP3188526B1/en
Publication of WO2016031366A1 publication Critical patent/WO2016031366A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to an apparatus and a method.
  • CA Carrier Aggregation
  • Patent Document 1 discloses a registered frequency band that can be used by a registered operator, and an unlicensed license that can be used when a predetermined condition is satisfied, in addition to a dedicated frequency band that is dedicated to each operator. A technique that enables the use of bands is disclosed.
  • a frequency band (for example, a wireless LAN channel included in the 5 GHz band) is shared between a cellular system and a wireless LAN (Local Area Network).
  • a node for example, a base station
  • the cellular system also performs carrier sense for the frequency band and uses the frequency band.
  • the node of the cellular system detects not only signals transmitted by wireless LAN nodes (for example, access points or stations) but also signals transmitted by other nodes of the cellular system in carrier sense. Can do. As a result, contention between nodes of the cellular system may occur, thereby limiting the use of the frequency band in the cellular system.
  • a carrier sense unit that performs carrier sense for a predetermined radio resource among radio resources in a frequency band shared between a cellular system and a wireless LAN (Local Area Network), and the frequency The radio of the base station of the cellular system in the frequency band so that the signal is not transmitted with a predetermined radio resource of the radio resources in the band and the signal is transmitted with another radio resource other than the predetermined radio resource.
  • a first control unit that controls communication.
  • the processor performs carrier sense for a predetermined radio resource among radio resources in a frequency band shared between the cellular system and the wireless LAN, Radio communication of the base station of the cellular system in the frequency band is performed so that a signal is not transmitted using a predetermined radio resource among the radio resources and a signal is transmitted using another radio resource other than the predetermined radio resource. Controlling. Is provided.
  • the frequency band shared between the cellular system and the wireless LAN can be used more flexibly in the cellular system.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification or other effects that can be grasped from the present specification are exhibited together with or in place of the above effects. May be.
  • elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
  • a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as base stations 100A, 100B, and 100C.
  • base stations 100A, 100B, and 100C when there is no need to particularly distinguish each of a plurality of elements having substantially the same functional configuration, only the same reference numerals are given.
  • the base stations 100A, 100B, and 100C they are simply referred to as the base station 100.
  • the 5 GHz band is also used in wireless LAN. Therefore, when the 5 GHz band is used in the cellular system, for example, the 5 GHz band is shared between the cellular system and the wireless LAN. Specifically, for example, a frequency band of 5 GHz band (for example, a wireless LAN channel) is used in a wireless LAN at a certain time and used in a cellular system at another time. Thereby, the frequency utilization efficiency of 5 GHz band improves.
  • the wireless LAN standards include IEEE802.11a, 11b, 11g, 11n, 11ac, and 11ad. These standards are characterized by adopting IEEE802.11 as a MAC layer.
  • C Use as a Component Carrier
  • the shared band will be used as a component carrier (CC), for example.
  • CC component carrier
  • the frequency band for the cellular system is used as PCC and the shared band is used as SCC.
  • the control signal and the data signal can be transmitted / received using the frequency band for the cellular system, and the data signal can be transmitted / received using the shared band.
  • fair sharing may be defined as “an opportunity to use a shared band in a wireless LAN and an opportunity to use the shared band in a cellular system are given as well”. That is, it can be regarded as fair sharing that the actual communication amount is not the same between the cellular system and the wireless LAN, but the communication opportunity is the same between the cellular system and the wireless LAN.
  • a shared band is used for a certain period in a cellular system, then the shared band is released from use of the cellular system for a similar period.
  • FIG. 1 is an explanatory diagram for explaining a frame format of IEEE 802.11.
  • DATA frames and ACK frames are basic frames.
  • the ACK frame is a frame for notifying the transmission side of the successful reception of the DATA frame when the DATA frame is correctly received.
  • wireless communication can be performed using only a DATA frame and an ACK frame.
  • two frames that is, an RTS (Request To Send) frame and a CTS (Clear To Send) frame are used.
  • the wireless LAN node confirms that the signal is not transmitted for a period of DIFS (DCF (Distributed Coordination Function) InterFrame Space) before transmitting the RTS frame. This is called carrier sense. If the nodes start transmitting signals at the same time when DIFS has passed, the signals will collide. Therefore, each node waits for a back-off time that is randomly set for each node, and transmits a signal if no signal is transmitted during the back-off time.
  • DIFS Distributed Coordination Function
  • a node cannot transmit a signal while detecting any signal.
  • an RTS frame and a CTS frame including a duration field for setting a value called NAV have been added.
  • a NAV is set based on the value included in the duration field. The node that has set the NAV refrains from transmitting signals over the period of the NAV.
  • the first node that transmits the DATA frame transmits the RTS frame.
  • other nodes located around the first node receive the RTS frame and acquire the value included in the duration field in the RTS frame.
  • the other node sets its own NAV to the acquired value, and refrains from transmitting signals over the period of the NAV.
  • the NAV period is a period from the end of the RTS frame to the end of the ACK frame.
  • the second node that receives the DATA frame transmits a CTS frame only SIFS (Short InterFrame Space) after the end of the RTS frame in response to the reception of the RTS frame.
  • SIFS Short InterFrame Space
  • other nodes located around the second node receive the CTS frame and acquire the value included in the duration field in the CTS frame.
  • the other node sets its own NAV to the acquired value, and refrains from transmitting signals over the period of the NAV.
  • the NAV period is a period from the end of the CTS frame to the end of the ACK frame.
  • another node that is not close to the first node but is close to the second node ie, a hidden node for the first node It is possible to prevent a signal from being transmitted during communication between one node and the second node.
  • the RTS frame includes a frame control field, a reception address field, a transmission address field, and an FCS (Frame Check Sequence) in addition to the duration field.
  • the CTS frame includes a frame control field, a reception address field, and an FCS.
  • DIFS and SIFS in the IEEE 802.11 series standard have the following lengths, for example.
  • FIG. 2 is an explanatory diagram for explaining an LTE frame format.
  • radio frame a unit of time called a radio frame is used.
  • One radio frame is 10 ms.
  • Each radio frame is identified by an SFN (System Frame Number) which is any one of 0 to 1023.
  • the radio frame includes 10 subframes identified by # 0 to # 9. Each subframe is 1 ms. Further, each subframe includes two slots, and each slot includes, for example, seven OFDM (Orthogonal Frequency Division Multiplexing) symbols. That is, each subframe includes 14 OFDM symbols.
  • the frame format shown in FIG. 2 is a downlink frame format, and the uplink frame format includes SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols instead of OFDM symbols.
  • CC component carriers
  • UE user equipment
  • Each CC is a band having a maximum width of 20 MHz.
  • carrier aggregation there are cases where CCs that are continuous in the frequency direction are used and CCs that are separated in the frequency direction are used.
  • carrier aggregation it is possible to set the CC to be used for each UE.
  • one of a plurality of CCs used by the UE is a special CC.
  • the one special CC is called a PCC (Primary Component Carrier).
  • the remainder of the plurality of CCs is called SCC (Secondary Component Carrier).
  • the PCC may vary from UE to UE.
  • the PCC is the most important CC among a plurality of CCs, it is desirable that the communication quality is the most stable CC. Note that which CC is used as a PCC actually depends on how it is mounted.
  • SCC is added to PCC. Further, the added existing SCC can be deleted.
  • the SCC is changed by deleting an existing SCC and adding a new SCC.
  • the CC used by the UE when establishing the connection Becomes the PCC for the UE. More specifically, the connection is established through a connection establishment procedure. In that case, the state of UE changes from RRC Idle to RRC Connected. Moreover, CC used for the said procedure turns into PCC for the said UE.
  • the above procedure is a procedure started from the UE side.
  • the PCC is changed by inter-frequency handover. More specifically, when a handover is instructed in the connection reconfiguration procedure, the PCC is handed over and the PCC is changed.
  • the above procedure is a procedure started from the network side.
  • the SCC is added to the PCC.
  • the SCC is attached to the PCC.
  • the SCC is subordinate to the PCC.
  • the addition of the SCC can be performed through a connection reconfiguration procedure. This procedure is a procedure started from the network side.
  • the SCC can be deleted.
  • the deletion of the SCC can be performed through a connection reconfiguration procedure. Specifically, a specific SCC specified in the message is deleted.
  • the above procedure is a procedure started from the network side.
  • deletion of all SCCs can be performed through a connection re-establishment procedure.
  • PCC Connection establishment procedure transmission / reception of non-access stratum (NAS) signaling, and transmission / reception of uplink control signal on physical uplink control channel (PUCCH) are not performed in SCC. This is done only by PCC.
  • NAS non-access stratum
  • PUCCH physical uplink control channel
  • radio link failure RLF
  • the subsequent connection re-establishment procedure are not performed by the SCC, but only by the PCC.
  • an ACK (Acknowledgement) for an SCC downlink signal is transmitted on the PUCCH of the PCC. Since the ACK is used for retransmission of data by an eNB (evolved Node B), the delay of the ACK is not allowed. Therefore, when the first eNB that uses the CC that is the PCC for the UE is different from the second eNB that uses the CC that is the SCC for the UE, the first eNB and the second eNB It is desirable that the delay in the backhaul between and is about 10 ms at most.
  • a frequency band for example, a wireless LAN channel included in a 5 GHz band
  • a wireless LAN Local Area Network
  • a node for example, a base station
  • a frequency band also performs carrier sense for the frequency band and uses the frequency band.
  • the node of the cellular system detects not only signals transmitted by wireless LAN nodes (for example, access points or stations) but also signals transmitted by other nodes of the cellular system in carrier sense. Can do. As a result, contention between nodes of the cellular system may occur, thereby limiting the use of the frequency band in the cellular system.
  • wireless LAN nodes for example, access points or stations
  • FIGS. 1-10 specific examples of this point will be described with reference to FIGS.
  • 3 to 5 are explanatory diagrams for explaining an example of contention between nodes of the cellular system.
  • base stations 10A and 10B and wireless LAN nodes 20A, 20B and 20C of a cellular system are shown.
  • the base station 10A can receive signals transmitted by the wireless LAN nodes 20A and 20C and the base station 10B, but does not receive signals transmitted by the wireless LAN node 20B.
  • the base station 10B can receive signals transmitted by the wireless LAN nodes 20B and 20C and the base station 10A, but does not receive signals transmitted by the wireless LAN node 20A.
  • the base station 10A when the transmission of the signal in the shared band by the wireless LAN node 20A is completed, the base station 10A performs carrier sense for the shared band, and then performs the carrier sense in the shared band. Perform wireless communication.
  • the base station 10B when the transmission of the signal in the shared band by the wireless LAN node 20B is completed, the base station 10B performs carrier sense for the shared band. However, the base station 10B detects a signal transmitted by the base station 10A in carrier sense. As a result, the base station 10B cannot perform wireless communication in the shared band due to the use of the shared band by the base station 10A.
  • the base station 10 and the wireless LAN node 20 transmit signals over the entire shared band 30 (wireless LAN channel). That is, the base station 10 transmits signals using all resource blocks arranged in the frequency direction over the shared band 30. Further, the base station 10 and the wireless LAN node 20 perform carrier sense for the entire shared band 30.
  • the occurrence of contention between nodes of the cellular system can limit the use of the frequency band (that is, the shared band) in the cellular system. Therefore, it is desirable to provide a mechanism that allows a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN to be used more flexibly in the cellular system.
  • the base station performs carrier sense for a predetermined radio resource among radio resources in a frequency band shared between the cellular system and the wireless LAN. Further, the base station in the frequency band is configured such that a signal is not transmitted using a predetermined radio resource among the radio resources in the frequency band, and a signal is transmitted using a radio resource other than the predetermined radio resource. Wireless communication is controlled.
  • the frequency band shared between the cellular system and the wireless LAN (that is, the shared band) can be used more flexibly in the cellular system.
  • FIG. 6 is an explanatory diagram illustrating an example of a schematic configuration of the communication system 1 according to the first embodiment.
  • the communication system 1 includes a base station 100 and a wireless LAN node 20.
  • Base station 100 is a base station of a cellular system.
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
  • the base station 100 performs radio communication in the frequency band for the cellular system.
  • the frequency band is a component carrier for the cellular system.
  • the base station 100 further performs wireless communication in a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN.
  • a frequency band that is, a shared band
  • the shared band is a wireless LAN channel. More specifically, for example, the shared band is a channel of 5 GHz band (or 2.4 GHz band) and has a bandwidth of 20 MHz.
  • the frequency band for the cellular system is a licensed band or a frequency band included in the license band.
  • the shared band can be said to be an unlicensed band or a frequency band included in the unlicensed band.
  • the base station 100 performs wireless communication with the terminal device.
  • the base station 100 performs wireless communication with a terminal device located in the cell 101 of the base station 100.
  • the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the wireless LAN node 20 is a wireless LAN access point or station.
  • the wireless LAN node 20 operates according to any of the IEEE 802.11 standards (for example, IEEE 802.11a, 11b, 11g, 11n, 11ac, and 11ad).
  • the wireless LAN node 20 performs wireless communication on a wireless LAN channel (that is, the shared band). For example, the wireless LAN node 20 performs wireless communication according to CSMA. More specifically, for example, the wireless LAN node 20 performs carrier sense for the channel. Further, when the channel is usable as a result of the carrier sense (for example, when no signal is transmitted by another node in the channel as a result of the carrier sense for a predetermined time), the wireless LAN node 20 Performs wireless communication on the channel.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the base station 100 according to the first embodiment.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • the antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the wireless communication unit 120 transmits and receives signals in a frequency band for the cellular system and / or a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • the storage unit 140 temporarily or permanently stores programs and data for the operation of the base station 100.
  • the processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes a carrier sense unit 151, an information acquisition unit 153, a first control unit 155, and a second control unit 157.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • the carrier sense unit 151 performs carrier sense. That is, the carrier sense unit 151 checks whether a signal is transmitted by another node in the frequency band or the radio resource.
  • the information acquisition unit 153 acquires information. For example, the information acquisition unit 153 acquires information for the first control unit 155 or the second control unit 157.
  • the first control unit 155 controls the radio communication of the base station 100.
  • the first control unit 155 controls the radio communication of the base station 100 in a frequency band shared between the cellular system and the wireless LAN (that is, a shared band). Further, for example, the first control unit 155 controls the radio communication of the base station 100 in the cellular system frequency band.
  • the second control unit 157 notifies other nodes.
  • the other node includes another base station.
  • the other node may include a core network.
  • the carrier sense unit 151 uses a predetermined radio resource among radio resources in a shared band (that is, a frequency band shared between the cellular system and the wireless LAN). Carry out the target carrier sense. That is, the carrier sense unit 151 checks whether a signal is transmitted by another node using the predetermined radio resource. Note that the predetermined radio resource is a part rather than all of the radio resources in the shared band.
  • the first control unit 155 does not transmit a signal using a predetermined radio resource among the radio resources in the shared band, and the other than the predetermined radio resource.
  • Radio communication of the base station 100 in the shared band is controlled so that signals are transmitted using other radio resources.
  • the predetermined radio resource is a part rather than all of the radio resources in the shared band.
  • the other radio resources are also part of the radio resources in the shared band.
  • the first control unit 155 allocates radio resources for the shared band. In this case, for example, the first control unit 155 does not allocate the predetermined radio resource to the terminal device, but allocates the other radio resource to the terminal device. Thereby, for example, the base station 100 and the terminal device do not transmit a signal using the predetermined radio resource.
  • the first control unit 155 may map a signal to the radio resource in the shared band. In this case, for example, the first control unit 155 may map the signal to the other radio resource without mapping the signal to the predetermined radio resource. Thereby, for example, the base station 100 does not transmit a signal using the predetermined radio resource.
  • the first control unit 155 controls the radio communication of the base station 100 in the shared band according to the result of the carrier sense. For example, the first control unit 155 may transmit a signal using the other radio resource when a signal is not transmitted by another node using the predetermined radio resource for a predetermined time as a result of the carrier sense. The wireless communication of the base station 100 in the shared band is controlled.
  • the predetermined radio resource is a radio resource of a partial band that is a part of the shared band. That is, the carrier sense unit 151 performs carrier sense for radio resources in the partial band. In other words, the carrier sense unit 151 performs carrier sense for the partial band.
  • the predetermined radio resource is a radio resource of two or more partial bands, each of which is a part of the shared band. That is, carrier sense is performed in two or more partial bands of the shared band. In addition, signals are not transmitted by the base station 100 and the terminal device using radio resources of two or more partial bands of the shared band.
  • the predetermined radio resource may be a radio resource of one partial band that is a part of the shared band.
  • the partial band is a fixed band that does not vary with time.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 8 is an explanatory diagram for describing a first example of a predetermined radio resource according to the first embodiment.
  • the base station 100 performs carrier sense for resource blocks such as partial bands 31, 33, and 35 that are part of the shared band 30. That is, the base station 100 performs carrier sense for the partial bands 31, 33, and 35 that are part of the shared band 30.
  • the base station 100 when a signal is not transmitted by another node over a predetermined time in resource blocks such as the partial bands 31, 33, and 35, for example, the base station 100 (and / or the terminal device) Signals are transmitted in resource blocks such as other partial bands 32, 34, and 36. Note that the base station 100 (and / or the terminal device) does not transmit signals in resource blocks such as the partial bands 31, 33, and 35, for example.
  • the base station 100A performs carrier sense for resource blocks such as the partial bands 31, 33, and 35, and the base station 100B uses resource blocks such as the other partial bands 32, 34, and 36. Send a signal.
  • base station 100A does not detect a signal transmitted by base station 100B in carrier sense.
  • the partial band may be a band that varies depending on the period.
  • the partial band may be a band that varies according to a period according to a predetermined pattern.
  • a specific example of this point will be described with reference to FIG.
  • FIG. 9 is an explanatory diagram for explaining a second example of the predetermined radio resource according to the first embodiment.
  • the base station 100 performs carrier sense for radio resources in a partial band that varies according to a period according to a predetermined pattern.
  • the base station 100 performs carrier sense for resource blocks such as the partial bands 31, 34, and 35. That is, in the subframe 41, the base station 100 performs carrier sense for the partial bands 31, 34, 35, and the like.
  • the base station 100 performs carrier sense for the partial bands 32, 35, and 36 in the subframe 42, and performs carrier sense for the partial bands 33, 34, and 35 in the subframe 43.
  • carrier sense for the partial bands 31, 32, 33, etc. is performed. Further, as a result of the carrier sense, when a signal is not transmitted by another node over a predetermined time in the partial band that varies depending on the period according to the predetermined pattern, the base station 100 (and / or the terminal device) For example, a signal is transmitted using radio resources in other partial bands. In this example, the base station 100 (and / or the terminal device) transmits signals in resource blocks such as the partial bands 32, 33, and 36 in the subframe 41.
  • the base station 100 (and / or the terminal device) transmits a signal in a resource block such as the partial bands 31, 33, and 34 in the subframe 42, and a resource block such as the partial bands 31, 32, and 36 in the subframe 43.
  • the signal is transmitted using resource blocks such as partial bands 34, 35, and 36.
  • the base station 100A performs carrier sense for the partial bands 31, 34, and 35, and the base station 100B uses other resources such as the partial bands 32, 33, and 36. Send signal in block.
  • base station 100A does not detect a signal transmitted by base station 100B in carrier sense.
  • the partial band may be a band that varies depending on the subframe as shown in FIG. 9, or may be a band that varies depending on another period.
  • the partial band may be a band that varies depending on a predetermined number of subframes, or may be a band that varies depending on a predetermined number of radio frames.
  • the predetermined pattern may be a pattern that is repeated every predetermined period (for example, a predetermined number of radio frames).
  • control area and a data area may exist for the shared band.
  • the predetermined radio resource does not include the radio resource in the control area and may be a radio resource in the data area.
  • carrier sense for the radio resource in the data area among the radio resources in the partial band may be performed, and a signal may not be transmitted using the radio resource.
  • the other radio resources may include the radio resources in the control area and the radio resources in the data area.
  • the signal may be transmitted using radio resources in the control area of the shared band and radio resources in a data area of another partial band that is a part of the shared band.
  • the control area may be an area where a physical control channel is arranged.
  • the predetermined radio resource may not include the radio resource of the physical control channel.
  • the physical control channel may include a PDCCH (Physical Downlink Control Channel).
  • the data area may be an area other than the control area.
  • the control region may be a region over a predetermined number of symbols in a subframe, and the data region may be a region over other symbols in the subframe.
  • the predetermined radio resource may be a radio resource within a predetermined period. For example, carrier sense for the radio resources in the partial band may be performed in the predetermined period, and a signal may not be transmitted using the radio resources in the predetermined period.
  • the other radio resource may include a radio resource within the predetermined period and a radio resource in another period.
  • a signal may be transmitted with a radio resource of another partial band that is a part of the shared band, and in another period, a signal is transmitted with a radio resource of the entire shared band. Also good.
  • the predetermined radio resource may be another radio resource instead of the partial band radio resource.
  • the predetermined radio resource may be a radio resource (for example, a resource element) of one or more discrete subcarriers.
  • the other radio resources other than the predetermined radio resource include radio resources of other partial bands that are part of the shared band. That is, the base station 100 (and / or the terminal device) does not transmit a signal in the partial band (at least in any period) but transmits a signal in the other partial band. This point is as described with reference to FIGS.
  • wireless communication of the wireless LAN node can be suppressed while avoiding detection of a signal by carrier sense by another base station.
  • FIG. 10 is an explanatory diagram for describing a first example of carrier sense and signal transmission according to the first embodiment.
  • the base station 100A performs carrier sense for a predetermined radio resource among the radio resources in the shared band. Thereafter, the base station 100A (and / or the terminal device) transmits a signal using a radio resource other than the predetermined radio resource.
  • the base station 100B performs carrier sense for the predetermined wireless resource.
  • the base station 100A (and / or the terminal device) transmits a signal using a radio resource other than the predetermined radio resource
  • the base station 100B uses the base station 100A (and / or / Or a signal transmitted by the terminal device) is not detected.
  • the base station 100B (and / or the terminal device) transmits a signal using a radio resource other than the predetermined radio resource.
  • carrier sense for a predetermined radio resource among the radio resources in the shared band is performed, and a signal is transmitted using a radio resource other than the predetermined radio resource.
  • a frequency band shared between the cellular system and the wireless LAN that is, a shared band
  • a shared band can be used more flexibly in the cellular system.
  • contention between nodes of the cellular system is avoided in the shared band. Therefore, the node of the cellular system can use the shared band regardless of the usage status of the shared band by other nodes. That is, the use of the shared band in the cellular system can be more flexible.
  • the signal transmitted in the shared band is a signal transmitted by the wireless LAN node or a signal transmitted by the node of the cellular system based on the content of the signal. Further, there is no need to decode the signal. Therefore, an increase in complexity can be avoided.
  • the information acquisition unit 153 includes information indicating the timing at which the base station 100 ends wireless communication in a shared band (that is, a frequency band shared between the cellular system and the wireless LAN) (hereinafter referred to as “first” Called timing information). Then, the second control unit 157 notifies the timing to one or more other base stations.
  • a shared band that is, a frequency band shared between the cellular system and the wireless LAN
  • the first timing information is generated by the processing unit 150.
  • the first timing information may be information indicating a time at which the base station 100 ends the wireless communication in the shared band, and may include a radio frame in which the base station 100 ends the wireless communication in the shared band and / or Alternatively, it may be information indicating a subframe. Note that the first timing information is not limited to these examples, and may be other information.
  • each of the one or more other base stations is a base station in the vicinity of the base station 100.
  • the one or more other base stations include cellular system base stations including base station 100.
  • the one or more other base stations may include base stations of other cellular systems different from the cellular system. Thereby, contention can be avoided even between cellular systems.
  • the cellular system may be a system of a first operator
  • the other cellular system may be a system of a second operator different from the first operator. This avoids contention between cellular systems of different operators.
  • the second control unit 157 notifies the timing to the one or more other base stations by transmitting the first timing information.
  • the second control unit 157 transmits the first timing information to the one or more other base stations via the network communication unit 130.
  • the base station 100 notifies the timing to the one or more other base stations. Thereby, for example, the end timing of the wireless communication in the shared band can be matched between the base stations. As a result, it can be avoided that a specific wireless LAN node cannot perform wireless communication for a long time.
  • the wireless LAN node 20A receives a signal transmitted by the base station 100A, but does not receive a signal transmitted by the base station 100B. Therefore, for example, the wireless LAN node 20A cannot perform wireless communication in the shared band while the base station 100A is transmitting a signal.
  • the wireless LAN node 20B receives a signal transmitted from the base station 100B, but does not receive a signal transmitted from the base station 100A. Therefore, the wireless LAN node 20B cannot perform wireless communication in the shared band while the base station 100B is transmitting a signal.
  • the wireless LAN node 20C receives a signal transmitted by the base station 100A and a signal transmitted by the base station 100B.
  • the wireless LAN node 20C cannot perform wireless communication in the shared band while at least one of the base station 100A and the base station 100B transmits a signal in the shared band.
  • the wireless LAN node 20C may not be able to perform wireless communication for a longer time than the wireless LAN node 20A and the wireless LAN node 20B. Therefore, as described above, the time at which the wireless LAN node 20C cannot perform wireless communication in the shared band by matching the timing of termination of wireless communication in the shared band between the base station 100A and the base station 100B. Can be shorter. That is, it is possible to suppress a decrease in opportunities for wireless communication of the wireless LAN node 20C in the shared band.
  • the information acquisition unit 153 acquires information (hereinafter referred to as “second timing information”) indicating the timing at which another base station ends wireless communication in the shared band. Then, the first control unit 155 ends the wireless communication of the base station 100 in the shared band according to the timing.
  • second timing information information indicating the timing at which another base station ends wireless communication in the shared band.
  • the second timing information is information transmitted to the base station 100 by the other base station, and is stored in the storage unit 140, for example.
  • the information acquisition unit 153 acquires the second timing information from the storage unit 140.
  • the second timing information may be information indicating a time at which the other base station ends wireless communication in the shared band, and a radio frame in which the base station 100 ends wireless communication in the shared band. And / or information indicating a subframe. Note that the first timing information is not limited to these examples, and may be other information.
  • the other base station is a base station in the vicinity of the base station 100.
  • the other base station is a base station of a cellular system including the base station 100.
  • the other base station may be a base station of another cellular system different from the cellular system.
  • the cellular system may be a system of a first operator
  • the other cellular system may be a system of a second operator different from the first operator. This avoids contention between cellular systems of different operators.
  • (C) End of Wireless Communication in Shared Band For example, the first control unit 155 ends the wireless communication of the base station 100 in the shared band at the above timing.
  • the first control unit 155 ends the wireless communication of the base station 100 in the shared band at the above timing.
  • FIG. 11 is an explanatory diagram for explaining a second example of carrier sense and signal transmission according to the first embodiment.
  • base station 100 ⁇ / b> A starts wireless communication in the shared band after carrier sense. Then, the base station 100A notifies the base station 100B of the timing when the base station 100A ends the wireless communication in the shared band.
  • the base station 100B also starts wireless communication in the shared band after carrier sense. Thereafter, the base station 100A and the base station 100B end the wireless communication in the shared band at the timing described above.
  • the first control unit 155 does not allocate the shared band radio resources after the timing to the terminal device. As another example, the first control unit 155 does not map a signal to the radio resource in the shared band after the timing.
  • the wireless communication of the base station 100 in the shared band ends according to the timing when the other base station ends the wireless communication in the shared band.
  • the end timing of the wireless communication in the shared band can be matched between the base stations.
  • FIG. 12 is a flowchart illustrating an example of a schematic flow of the first process according to the first embodiment.
  • the first processing is processing related to carrier sense and signal transmission / reception.
  • the base station 100 (carrier sense unit 151) performs carrier sense for a predetermined radio resource among the radio resources in the shared band (S1001).
  • step S1003 If, as a result of carrier sense, a signal is transmitted by another node using the predetermined radio resource (S1003: YES), the process returns to step S1001. As a result of the carrier sense, when a signal is not transmitted by another node for a predetermined time using the predetermined radio resource (S1003: NO), the process proceeds to step S1005.
  • the base station 100 does not transmit (or does not receive) a signal using a predetermined radio resource among the radio resources in the shared band, and transmits a signal using another radio resource among the radio resources in the shared band ( (S1005).
  • the first control unit 155 of the base station 100 performs wireless communication of the base station 100 in the shared band so that a signal is not transmitted using the predetermined radio resource but a signal is transmitted using the other radio resource. Control.
  • step S1007 If the wireless communication in the shared band is terminated (S1007: YES), the process is terminated. If the wireless communication in the shared band is not terminated (S1007: NO), the process returns to step S1005.
  • FIG. 13 is a sequence diagram illustrating an example of a schematic flow of the second process according to the first embodiment.
  • the second process is a process related to the end of wireless communication in the shared band.
  • the base station 100A notifies the base station 100B of the timing (end timing) when the base station 100A ends the wireless communication in the shared band (S1011).
  • the base station 100B transmits an acknowledgment to the notification to the base station 100A.
  • the base station 100A ends the wireless communication in the shared band at the end timing (S1015).
  • the base station 100B ends the wireless communication in the shared band according to the end timing (S1017). For example, the base station 100B ends the wireless communication in the shared band at the end timing.
  • a frequency band for example, a wireless LAN channel included in a 5 GHz band
  • a wireless LAN Local Area Network
  • a specific wireless LAN node may not be able to perform wireless communication for a long time.
  • the wireless LAN node 20A receives a signal transmitted by the base station 10A, but does not receive a signal transmitted by the base station 10B.
  • the wireless LAN node 20B receives a signal transmitted from the base station 10B, but does not receive a signal transmitted from the base station 10A.
  • the wireless LAN node 20C receives a signal transmitted by the base station 10A and a signal transmitted by the base station 10B. Therefore, for example, the wireless LAN node 20A cannot perform wireless communication in the shared band while the base station 10A is transmitting a signal. In addition, the wireless LAN node 20B cannot perform wireless communication in the shared band while the base station 10B is transmitting a signal.
  • the wireless LAN node 20C cannot perform wireless communication in the shared band while at least one of the base station 10A and the base station 10B transmits a signal in the shared band. Therefore, the wireless LAN node 20C may not be able to perform wireless communication for a longer time than the wireless LAN node 20A and the wireless LAN node 20B.
  • the base station 100 notifies one or more other base stations of the timing when the base station 100 ends wireless communication in a frequency band shared between the cellular system and the wireless LAN. To do.
  • the base station 100 ends the wireless communication in the frequency band according to the timing when the other base station ends the wireless communication in the frequency band shared between the cellular system and the wireless LAN. To do.
  • FIG. 14 is an explanatory diagram illustrating an example of a schematic configuration of the communication system 2 according to the second embodiment.
  • the communication system 2 includes a base station 200 and a wireless LAN node 20.
  • the description of the schematic configuration of the communication system 2 is the same as the description of the schematic configuration of the communication system 1 according to the first embodiment, except for the difference in reference numerals. Therefore, the overlapping description is omitted here.
  • base station 100 and “base station 100” in the description of the schematic configuration of the communication system 1 according to the first embodiment.
  • Cell 101” is replaced with “base station 200” and “cell 201”, respectively.
  • FIG. 15 is a block diagram illustrating an example of a configuration of the base station 200 according to the second embodiment.
  • the base station 200 includes an antenna unit 210, a radio communication unit 220, a network communication unit 230, a storage unit 240, and a processing unit 250.
  • the description of the configuration of the base station 200 is the same as the description of the configuration of the base station 100 according to the first embodiment, except for the difference in reference numerals. Therefore, the overlapping description is omitted here.
  • the “control unit 157” includes “base station 200”, “antenna unit 210”, “wireless communication unit 220”, “network communication unit 230”, “storage unit 240”, “processing unit 250”, “carrier sense unit”, respectively. 251 ”,“ information acquisition unit 253 ”,“ first control unit 255 ”, and“ second control unit 257 ”.
  • the information acquisition unit 253 includes information indicating the timing at which the base station 200 ends wireless communication in a shared band (that is, a frequency band shared between the cellular system and the wireless LAN) (hereinafter referred to as “first” Called timing information). Then, the second control unit 257 notifies the timing to one or more other base stations.
  • a shared band that is, a frequency band shared between the cellular system and the wireless LAN
  • the information acquisition unit 253 acquires information (hereinafter referred to as “second timing information”) indicating the timing at which another base station ends wireless communication in the shared band. Then, the first control unit 255 ends the wireless communication of the base station 200 in the shared band according to the timing.
  • second timing information information indicating the timing at which another base station ends wireless communication in the shared band.
  • base station 100A and base station 100B in the description of the second processing according to the first embodiment are respectively referred to as “base station”. 200A "and" base station 200B ".
  • the representative base station of the cellular system performs carrier sense for a frequency band shared between the cellular system and the wireless LAN.
  • the representative base station notifies one or more other base stations corresponding to the representative base station when the frequency band is available as a result of the carrier sense.
  • the base station performs the carrier sense for the frequency band shared between the cellular system and the wireless LAN, and the representative base station of the cellular system performs the carrier sense as a result of the carrier sense. Radio communication in the frequency band is performed in response to the notification to the base station, which is performed when the frequency band is usable.
  • the frequency band shared between the cellular system and the wireless LAN (that is, the shared band) can be used more flexibly in the cellular system.
  • FIG. 16 is an explanatory diagram illustrating an example of a schematic configuration of the communication system 3 according to the third embodiment.
  • the communication system 3 includes a base station 300, a base station 400, and a wireless LAN node 20.
  • Base station 300 Each of base station 300 and base station 400 is a base station of a cellular system.
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these.
  • the base station 300 is a representative base station of a cellular system.
  • the base station 400 is a base station corresponding to the base station 300 (that is, the representative base station).
  • the base station 300 (representative base station) is a base station that is a cluster head of a small cell cluster.
  • the base station 400 is another base station that forms the small cell cluster.
  • the base station 300 may be a macro cell base station.
  • the base station 400 may be a small cell base station that overlaps the macro cell.
  • Frequency band Each of the base station 300 and the base station 400 performs wireless communication in the frequency band for the cellular system.
  • the frequency band is a component carrier for the cellular system.
  • each of the base station 300 and the base station 400 further performs wireless communication in a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN.
  • a frequency band that is, a shared band
  • the shared band is a wireless LAN channel. More specifically, for example, the shared band is a channel of 5 GHz band (or 2.4 GHz band) and has a bandwidth of 20 MHz.
  • the frequency band for the cellular system is a license band or a frequency band included in the license band.
  • the shared band can be said to be an unlicensed band or a frequency band included in the unlicensed band.
  • Each of the base station 300 and the base station 400 performs wireless communication with the terminal device. For example, each of the base station 300 and the base station 400 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the wireless LAN node 20 is a wireless LAN access point or station.
  • the wireless LAN node 20 operates according to any of the IEEE 802.11 standards (for example, IEEE 802.11a, 11b, 11g, 11n, 11ac, and 11ad).
  • the wireless LAN node 20 performs wireless communication on a wireless LAN channel (that is, the shared band). For example, the wireless LAN node 20 performs wireless communication according to CSMA. More specifically, for example, the wireless LAN node 20 performs carrier sense for the channel. Further, when the channel is usable as a result of the carrier sense (for example, when no signal is transmitted by another node in the channel as a result of the carrier sense for a predetermined time), the wireless LAN node 20 Performs wireless communication on the channel.
  • FIG. 17 is a block diagram illustrating an example of a configuration of the base station 300 according to the third embodiment.
  • the base station 300 includes an antenna unit 310, a wireless communication unit 320, a network communication unit 330, a storage unit 340, and a processing unit 350.
  • the antenna unit 310 radiates a signal output from the wireless communication unit 320 as a radio wave to space. Further, the antenna unit 310 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 320.
  • the wireless communication unit 320 transmits and receives signals.
  • the wireless communication unit 320 transmits and receives signals in a frequency band for the cellular system and / or a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the network communication unit 330 transmits and receives information.
  • the network communication unit 330 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • the storage unit 340 temporarily or permanently stores programs and data for the operation of the base station 300.
  • the processing unit 350 provides various functions of the base station 300.
  • the processing unit 350 includes a carrier sense unit 351, a first control unit 353, and a second control unit 355. Note that the processing unit 350 may further include other components other than these components. That is, the processing unit 350 can perform operations other than the operations of these components.
  • the carrier sense unit 351 performs carrier sense. For example, the carrier sense unit 351 performs carrier sense for a frequency band (that is, a shared band) shared between the cellular system and the wireless LAN. That is, the carrier sense unit 351 checks whether a signal is transmitted from another node in the shared band.
  • a frequency band that is, a shared band
  • the first control unit 353 notifies other nodes.
  • the other node includes another base station.
  • the first control unit 353 notifies the other node by transmitting information (for example, a message) to the other node via the network communication unit 330.
  • the second control unit 355 controls the radio communication of the base station 300.
  • the second control unit 355 controls wireless communication of the base station 300 in a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the 2nd control part 355 controls the radio
  • FIG. 18 is a block diagram illustrating an example of a configuration of the base station 400 according to the third embodiment.
  • the base station 400 includes an antenna unit 410, a wireless communication unit 420, a network communication unit 430, a storage unit 440, and a processing unit 450.
  • the antenna unit 410 radiates a signal output from the wireless communication unit 420 to the space as a radio wave.
  • the antenna unit 410 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 420.
  • the wireless communication unit 420 transmits and receives signals.
  • the wireless communication unit 420 transmits and receives signals in a frequency band for the cellular system and / or a frequency band shared between the cellular system and the wireless LAN (that is, a shared band).
  • the network communication unit 430 transmits and receives information.
  • the network communication unit 430 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • the storage unit 440 temporarily or permanently stores a program and data for the operation of the base station 400.
  • the processing unit 450 provides various functions of the base station 400.
  • the processing unit 450 includes a reception unit 451 and a control unit 453.
  • the processing unit 450 may further include other components other than these components. That is, the processing unit 450 can perform operations other than the operations of these components.
  • the accepting unit 451 accepts notifications made by other nodes.
  • the other nodes include other base stations.
  • the reception unit 451 receives information (for example, a message) transmitted by another node via the network communication unit 430, thereby receiving a notification performed by the other node.
  • the control unit 453 controls the wireless communication of the base station 400.
  • the control unit 453 controls the radio communication of the base station 400 so that the base station 400 performs radio communication in the cellular system frequency band or the shared band.
  • the control unit 453 starts or ends the wireless communication of the base station 400 in the shared band.
  • Carrier sense and notification (A) Carrier sense for the shared band
  • the base station 300 (carrier sense unit 351) performs carrier sense for the shared band (that is, the frequency band shared between the cellular system and the wireless LAN). . That is, the base station 300 (carrier sense unit 351) checks whether a signal is transmitted from another node in the shared band.
  • the base station 300 may, when the shared band is usable as a result of the carrier sense (for example, other than a predetermined time on the channel as a result of the carrier sense). Notification to one or more base stations 400). As an example, the base station 300 performs the notification by transmitting information (message).
  • the frequency band shared between the cellular system and the wireless LAN (that is, the shared band) can be used more flexibly in the cellular system.
  • one or more base stations 400 may perform wireless communication in a shared band in response to a notification from the base station 300 that is a representative base station, and thus do not perform carrier sense by themselves. Also good. Therefore, the base station 400 detects a signal transmitted by another base station (the base station 300 or the base station 400) in carrier sense for the shared band, and cannot use the shared band. Absent. That is, contention between base stations in the shared band can be avoided. Therefore, the shared band can be used more flexibly in the cellular system (for example, by interference control).
  • the notification includes notification of start timing of wireless communication in the shared band. That is, the base station 300 (first control unit 353) sets the start timing of wireless communication in the shared band to one or more base stations 400 when the shared band is usable as a result of the carrier sense. Notice.
  • the base station 300 (first control unit 353) notifies the start timing by transmitting information (for example, a message) indicating the time of the start timing.
  • the base station 300 (first control unit 353) may notify the start timing by transmitting information indicating the adjustment time until the start timing. Note that the third embodiment is not limited to these examples, and the base station 300 (the first control unit 353) notifies the start timing by transmitting other information that allows the start timing to be specified. May be.
  • the start of wireless communication in the shared band can be coordinated between base stations. Therefore, for example, interference control between base stations becomes easier. Further, it can be avoided that a specific wireless LAN node cannot perform wireless communication for a long time.
  • the notification includes notification of the end timing of wireless communication in the shared band. That is, when the shared band is usable as a result of the carrier sense, the base station 300 (first control unit 353) sets the end timing of wireless communication in the shared band to one or more base stations 400. Notice.
  • the base station 300 (first control unit 353) notifies the end timing by transmitting information (for example, a message) indicating the time of the end timing.
  • the base station 300 (the first control unit 353) transmits the information indicating the period from the start timing to the end timing (that is, the period during which wireless communication in the shared band is performed). The end timing may be notified.
  • the third embodiment is not limited to these examples, and the base station 300 (the first control unit 353) notifies the end timing by transmitting other information that enables the end timing to be specified. May be.
  • each base station notifies the end timing to another base station.
  • the representative base station (base station 300) includes one or more other base stations. (Base station 400) is collectively notified of the end timing. Therefore, in the third embodiment, even when there are a large number of base stations (for example, in the case of a small cell cluster), the procedure is not complicated.
  • the base station 300 transmits a busy tone in the shared band until wireless communication start timing in the shared band.
  • the second controller 355 controls the base station 300 to transmit the busy tone in the shared band so that the base station 300 transmits the busy tone in the shared band until the start timing.
  • the second control unit 355 maps the busy tone signal to the radio resource in the shared band until the start timing. Thereby, the base station 300 transmits a busy tone in the shared band until the start timing.
  • wireless communication of the wireless LAN node in the shared band can be suppressed until the start timing.
  • Base station 400 (accepting unit 451) accepts a notification to the base station 400 performed by the base station 300 when the shared band is usable as a result of the carrier sense. Then, the base station 400 performs wireless communication in the shared band in response to the notification. In response to the notification, the control unit 453 controls the wireless communication of the base station 400 so that the base station 400 performs wireless communication in the shared band.
  • the reception unit 451 receives information (for example, a message) transmitted by the base station 300 via the network communication unit 430, thereby receiving a notification performed by the other node.
  • information for example, a message
  • control unit 453 performs radio resource allocation of the shared band, transmission processing for transmission in the shared band, and / or reception processing for reception in the shared band, and the like.
  • the base station 400 controls wireless communication.
  • the notification includes notification of the start timing of wireless communication in the shared band.
  • the base station 400 starts wireless communication in the shared band according to the start timing.
  • the control unit 453 starts wireless communication of the base station 400 in the shared band according to the start timing.
  • the control unit 453 starts wireless communication of the base station 400 in the shared band at the start timing.
  • control unit 453 sets a first timer based on the start timing and starts the first timer. And the control part 453 starts the radio
  • the notification includes notification of the end timing of wireless communication in the shared band.
  • the base station 400 ends the wireless communication in the shared band according to the end timing.
  • the control unit 453 ends the wireless communication of the base station 400 in the shared band according to the end timing.
  • the control unit 453 ends the wireless communication of the base station 400 in the shared band at the end timing.
  • control unit 453 sets a second timer based on the end timing, and starts the second timer. Then, the control unit 453 terminates the wireless communication of the base station 400 in the shared band after the second timer expires.
  • (B) Base station 300 For example, when the shared band is usable as a result of the carrier sense, the base station 300 performs radio communication in the shared band. When the shared band is usable as a result of the carrier sense, the second control unit 355 controls the wireless communication of the base station 300 so that the base station 300 performs wireless communication in the shared band.
  • the second control unit 355 performs radio resource allocation of the shared band, transmission processing for transmission in the shared band, and / or reception processing for reception in the shared band, and the like.
  • the wireless communication of the base station 300 is controlled.
  • (B-1) Start Timing For example, the base station 300 starts wireless communication in the shared band according to the start timing.
  • the second control unit 355 starts wireless communication of the base station 300 in the shared band according to the start timing.
  • the second control unit 355 starts wireless communication of the base station 300 in the shared band at the start timing.
  • the second control unit 355 sets a first timer based on the start timing and starts the first timer. Then, the second control unit 355 starts wireless communication of the base station 300 in the shared band after the first timer expires.
  • (B-2) End Timing For example, the base station 300 ends the wireless communication in the shared band according to the end timing.
  • the second control unit 355 ends the radio communication of the base station 300 in the shared band according to the end timing.
  • the second control unit 355 ends the wireless communication of the base station 300 in the shared band at the end timing.
  • the second control unit 355 sets a second timer based on the end timing and starts the second timer. Then, the second control unit 355 ends the wireless communication of the base station 300 in the shared band after the second timer expires.
  • FIG. 19 is an explanatory diagram for explaining an example of operations of the base station 300 and the base station 400 according to the third embodiment.
  • the base station 300 performs carrier sense for the shared band.
  • the base station 300 determines the start timing of the wireless communication in the shared band and the end timing of the wireless communication in the shared band as one or more Notify the base station 400.
  • the base station 300 transmits a busy tone (BT) in the shared band until the start timing.
  • BT busy tone
  • the base station 300 and the one or more base stations 400 start wireless communication in the shared band at the start timing.
  • the base station 300 and the one or more base stations 400 end wireless communication in the shared band at the end timing.
  • FIG. 20 is a sequence diagram illustrating an example of a schematic flow of the first process according to the third embodiment.
  • the first processing is processing of the entire base station 300 and base station 400.
  • the base station 300 notifies the base station 400 that a signal is detected in a shared band (frequency band shared between the cellular system and the wireless LAN) (S1031).
  • a shared band frequency band shared between the cellular system and the wireless LAN
  • the base station 300 notifies the base station 400 of the start of carrier sense for the shared band (S1033). That is, the base station 300 notifies the base station 400 that the base station 300 has started the carrier sense.
  • the base station 300 sets one start timing of wireless communication in the shared band and one end timing of wireless communication in the shared band.
  • the above base station 400 is notified (S1035).
  • the base station 300 and the one or more base stations 400 start wireless communication in the shared band at the start timing (S1037, S1039). Note that the base station 300 transmits a busy tone in the shared band until the start timing.
  • the base station 300 and the one or more base stations 400 end the wireless communication in the shared band at the end timing (S1041, S1043).
  • FIG. 21 is a flowchart illustrating an example of a schematic flow of the second process according to the third embodiment.
  • the second process is a process for starting or ending wireless communication in the shared band.
  • the subject that executes the second process is the base station 400 (the control unit 453) will be described, but the second process is also performed by the base station 300 (the second control unit 355). Can be executed.
  • the control unit 453 sets the first timer based on the start timing of the wireless communication in the shared band notified from the base station 300 to the base station 400, and starts the first timer (S1051). In addition, the control unit 453 sets the second timer based on the end timing of the wireless communication in the shared band notified from the base station 300 to the base station 400, and starts the second timer (S1053). ).
  • the base station 400 starts wireless communication in the shared band (S1057). That is, the control unit 453 starts wireless communication of the base station 400 in the shared band.
  • the base station 400 ends the wireless communication in the shared band (S1061). That is, the control unit 453 ends the wireless communication of the base station 400 in the shared band. Then, the process ends.
  • the base station (base station 100, base station 200, base station 300, or base station 400) may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • the base station may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body.
  • a main body also referred to as a base station apparatus
  • RRHs Remote Radio Heads
  • Various types of terminals to be described later may operate as the base station by temporarily or semi-permanently executing the base station function.
  • at least some of the constituent elements of the base station may be realized in a base station apparatus or a module for the base station apparatus.
  • FIG. 22 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 22, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 22 shows an example in which the eNB 800 includes a plurality of antennas 810, but the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 22, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 22, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 22 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • one or more components included in the processing unit 150 described with reference to FIG. Unit 157) may be implemented in the wireless communication interface 825.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • one or more components included in the processing unit 250 described with reference to FIG.
  • One or more components included in the processing unit 350 described with reference to FIG. 17, and FIG.
  • One or more components included in the processing unit 450 described are also the same as the one or more components included in the processing unit 150.
  • the wireless communication unit 120 described with reference to FIG. 7 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823. Regarding these points, the antenna unit 210, the wireless communication unit 220, and the network communication unit 230 described with reference to FIG. 15, the antenna unit 310, the wireless communication unit 320, and the network communication unit 330 described with reference to FIG. In addition, the antenna unit 410, the wireless communication unit 420, and the network communication unit 430 described with reference to FIG. 18 are the same as the antenna unit 110, the wireless communication unit 120, and the network communication unit 130.
  • FIG. 23 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 23, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 23 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 22 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 23, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 23 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 23, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 23 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components included in the processing unit 150 described with reference to FIG. Unit 157) may be implemented in the wireless communication interface 855 and / or the wireless communication interface 863. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • one or more components carrier sense unit 251, information acquisition unit 253, first control unit 255, and / or second control unit 257) included in the processing unit 250 described with reference to FIG.
  • One or more components carrier sense unit 351, first control unit 353 and / or second control unit 355) included in the processing unit 350 described with reference to FIG. 17, and FIG.
  • One or more components receiving unit 451 and / or control unit 453 included in the processing unit 450 described are also the same as the one or more components included in the processing unit 150.
  • the wireless communication unit 120 described with reference to FIG. 7 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the antenna unit 210, the wireless communication unit 220, and the network communication unit 230 described with reference to FIG. 15 the antenna unit 310, the wireless communication unit 320, and the network communication unit 330 described with reference to FIG.
  • the antenna unit 410, the wireless communication unit 420, and the network communication unit 430 described with reference to FIG. 18 are the same as the antenna unit 110, the wireless communication unit 120, and the network communication unit 130.
  • the base station 100 performs a carrier sense for a predetermined radio resource among radio resources in a frequency band shared between the cellular system and the wireless LAN.
  • the base station 100 in the frequency band so that a signal is not transmitted using a predetermined radio resource among the radio resources of the frequency band, and a signal is transmitted using a radio resource other than the predetermined radio resource.
  • a first control unit 155 that controls wireless communication.
  • the frequency band shared between the cellular system and the wireless LAN (that is, the shared band) can be used more flexibly in the cellular system.
  • the base station 200 acquires the information indicating the timing at which the base station 200 ends wireless communication in the frequency band shared between the cellular system and the wireless LAN. And a second control unit 257 that notifies the timing to one or more other base stations.
  • the base station 200 includes the first control unit 255 that controls the radio communication of the base station 200 in the frequency band shared between the cellular system and the wireless LAN, and the frequency band. And an information acquisition unit 253 that acquires information indicating the timing at which another base station terminates wireless communication.
  • the first control unit 255 ends the radio communication of the base station 200 in the frequency band according to the timing.
  • the base station 300 (representative base station) includes a carrier sense unit 351 that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN, and the carrier sense.
  • a carrier sense unit 351 that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN, and the carrier sense.
  • a first control unit 353 that performs notification to one or more other base stations corresponding to the base station 300 is provided.
  • the base station 400 (base station corresponding to the representative base station) performs the above cellular sensing that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN.
  • the base station 400 receives a notification to the base station 400 when the representative base station of the system can use the frequency band as a result of the carrier sense, and the base station 400 receives the frequency in response to the notification.
  • a control unit 453 that controls the wireless communication of the base station 400 so as to perform wireless communication in the band.
  • the frequency band shared between the cellular system and the wireless LAN (that is, the shared band) can be used more flexibly in the cellular system.
  • the cellular system is a system that complies with LTE, LTE-Advanced, or a communication standard based on these has been described, the present disclosure is not limited to such an example.
  • the cellular system may be compliant with other communication standards.
  • processing steps in the processing of the present specification do not necessarily have to be executed in time series according to the order described in the flowchart or the sequence diagram.
  • the processing steps in the processing may be executed in an order different from the order described as a flowchart or a sequence diagram, or may be executed in parallel.
  • a computer program in other words, a computer program for causing a processor (for example, a CPU, a DSP, or the like) included in a device (for example, a base station, a base station device, or a module for the base station device) of this specification to function as the above device. Then, a computer program for causing the processor to execute the operation of the constituent elements of the device can also be created. Moreover, a recording medium on which the computer program is recorded may be provided. Also provided is an apparatus (for example, a base station, a base station apparatus, or a module for the base station apparatus) comprising a memory for storing the computer program and one or more processors capable of executing the computer program. Also good. Further, a method including the operation of the components of the device (for example, the carrier sense unit, the information acquisition unit, the first control unit, and / or the second control unit) is also included in the technology according to the present disclosure.
  • a processor for example, a CPU, a DSP, or the like
  • a carrier sense unit for performing carrier sense on a predetermined radio resource among radio resources in a frequency band shared between a cellular system and a wireless LAN (Local Area Network); The base station of the cellular system in the frequency band so that a signal is not transmitted using a predetermined radio resource among the radio resources of the frequency band, and a signal is transmitted using a radio resource other than the predetermined radio resource.
  • a device comprising: (2) The device according to (1), wherein the predetermined radio resource is a radio resource of a partial band that is a part of the frequency band.
  • the partial band is a fixed band that does not vary depending on a period.
  • the partial band is a band that varies depending on a period.
  • the partial band is a band that varies according to a period according to a predetermined pattern.
  • the other radio resource includes a radio resource of another partial band that is a part of the frequency band.
  • the predetermined radio resource is a radio resource of two or more partial bands, each of which is a part of the frequency band.
  • the first control unit controls radio communication of the base station in the frequency band in accordance with a result of the carrier sense.
  • the apparatus according to item 1. (14) The apparatus according to any one of (1) to (13), wherein the frequency band is a wireless LAN channel. (15) The apparatus according to any one of (1) to (14), wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus. (16) Depending on the processor Performing carrier sense for a predetermined radio resource among radio resources in a frequency band shared between the cellular system and the wireless LAN; The base station of the cellular system in the frequency band so that a signal is not transmitted using a predetermined radio resource among the radio resources of the frequency band, and a signal is transmitted using a radio resource other than the predetermined radio resource. Controlling the wireless communication of Including methods.
  • Controlling the wireless communication of A readable recording medium on which a program for causing a processor to execute is recorded.
  • a device comprising: (20) The apparatus according to (19), wherein each of the one or more other base stations is a base station in the vicinity of the base station.
  • the apparatus according to (19) or (20), wherein the one or more other base stations include base stations of another cellular system different from the cellular system.
  • the cellular system is a first operator system;
  • the other cellular system is a second operator system different from the first operator.
  • the device according to (21).
  • the apparatus according to any one of (19) to (22), wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus.
  • a control unit for controlling wireless communication of the base station of the cellular system in a frequency band shared between the cellular system and the wireless LAN;
  • An acquisition unit for acquiring information indicating a timing at which another base station ends wireless communication in the frequency band; With The control unit terminates wireless communication of the base station in the frequency band according to the timing. apparatus.
  • Controlling wireless communication of the base station in the frequency band includes terminating wireless communication of the base station in the frequency band according to the timing, recoding media.
  • a carrier sense unit that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN; A first control unit for notifying one or more other base stations corresponding to a representative base station of the cellular system when the frequency band is usable as a result of the carrier sense; A device comprising: (32) The device according to (31), wherein the notification includes a notification of a start timing of wireless communication in the frequency band. (33) The device according to (32), wherein the first control unit notifies the start timing by transmitting information indicating an adjustment time until the start timing. (34) A second control unit for controlling radio communication of the representative base station; Further comprising The second control unit starts radio communication of the representative base station in the frequency band according to the start timing.
  • the apparatus according to (32) or (33).
  • a second control unit that controls transmission of the busy tone in the frequency band by the representative base station so that the busy tone is transmitted in the frequency band until the start timing of wireless communication in the frequency band;
  • the representative base station is a base station that is a cluster head of a small cell cluster, Each of the one or more other base stations is another base station that forms the small cell cluster.
  • the representative base station is a macro cell base station, Each of the one or more other base stations is a small cell base station that overlaps the macro cell.
  • the apparatus according to any one of (31) to (37). (40) The apparatus according to any one of (31) to (39), wherein the apparatus is the representative base station, a base station apparatus for the representative base station, or a module for the base station apparatus.
  • the representative base station of the cellular system that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN is performed when the frequency band is usable as a result of the carrier sense,
  • a reception unit that receives a notification to the base station corresponding to the representative base station;
  • a control unit that controls wireless communication of the base station so that the base station performs wireless communication in the frequency band;
  • a device comprising: (42)
  • the notification includes notification of start timing of wireless communication in the frequency band, The control unit starts wireless communication of the base station in the frequency band according to the start timing.
  • the notification includes notification of the end timing of wireless communication in the frequency band, The control unit terminates wireless communication of the base station in the frequency band according to the termination timing.
  • the device according to (41) or (42).
  • (44) The apparatus according to any one of (41) to (43), wherein the apparatus is the base station, a base station apparatus for the base station, or a module for the base station apparatus.
  • (45) Depending on the processor Performing carrier sense for a frequency band shared between the cellular system and the wireless LAN; Notifying one or more other base stations corresponding to the representative base station of the cellular system when the frequency band is available as a result of the carrier sense; Including methods.
  • (46) Performing carrier sense for a frequency band shared between the cellular system and the wireless LAN; Notifying one or more other base stations corresponding to the representative base station of the cellular system when the frequency band is available as a result of the carrier sense;
  • a program that causes a processor to execute.
  • the representative base station of the cellular system that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN is performed when the frequency band is usable as a result of the carrier sense, Receiving a notification to the base station corresponding to the representative base station; In response to the notification, controlling the radio communication of the base station so that the base station performs radio communication in the frequency band; A program that causes a processor to execute.
  • the representative base station of the cellular system that performs carrier sense for a frequency band shared between the cellular system and the wireless LAN is performed when the frequency band is usable as a result of the carrier sense, Receiving a notification to the base station corresponding to the representative base station; In response to the notification, controlling the radio communication of the base station so that the base station performs radio communication in the frequency band;
  • a readable recording medium on which a program for causing a processor to execute is recorded.
  • Base station 20 Wireless LAN node 30 Shared band 31, 32, 33, 34, 35, 36 Partial band 41, 42, 43, 44 Subframe 100, 200, 300, 400
  • Base station 151, 251 and 351 Carrier sense unit 153, 253 Information acquisition unit 155, 255, 353 First control unit 157, 257, 355 Second control unit 451 Reception unit 453 Control unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】セルラーシステムと無線LANとの間で共用される周波数帯域をセルラーシステムにおいてより柔軟に使用することを可能にする。 【解決手段】セルラーシステムと無線LAN(Local Area Network)との間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うキャリアセンス部と、上記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、上記周波数帯域における上記セルラーシステムの基地局の無線通信を制御する第1制御部と、を備える装置が提供される。

Description

装置及び方法
 本開示は、装置及び方法に関する。
 3GPP(3rd Generation Partnership Project)において、システムスループットを向上させる様々な技術が議論されている。システムスループットを向上するためには、使用する周波数を増やすことが一番の近道と言える。3GPPでは、リリース10及びリリース11において、キャリアアグリゲーション(Carrier Aggregation:CA)という技術が検討された。CAは、20MHzの帯域幅を有するコンポーネントキャリアを束ねて使用することにより、システムスループット及び最大のデータレートを向上させる技術である。このCAの技術を採用するためには、CCとして使用可能な周波数帯域が必要である。そのため、セルラーシステムの無線通信に使用可能なさらなる周波数帯域が求められている。
 例えば、特許文献1には、事業者ごとに専用に割り当てられる専用周波数帯域に加えて、登録した事業者が使用可能な登録制周波数帯域と、所定の条件が満たされる場合に使用可能なアンライセンスバンドとを使用することを可能にする技術が開示されている。
特開2006-094001号公報
 例えば、セルラーシステムと無線LAN(Local Area Network)との間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。この場合に、例えば、セルラーシステムのノード(例えば、基地局)も、上記周波数帯域を対象とするキャリアセンスを行い、当該周波数帯域を使用する。
 しかし、この場合に、セルラーシステムのノードは、キャリアセンスにおいて、無線LANのノード(例えば、アクセスポイント又はステーション)により送信される信号のみではなく、セルラーシステムの他のノードにより送信される信号も検出し得る。その結果、セルラーシステムのノード間での競合が発生することにより、セルラーシステムにおける上記周波数帯域の使用が制限され得る。
 そこで、セルラーシステムと無線LANとの間で共用される周波数帯域をセルラーシステムにおいてより柔軟に使用することを可能にする仕組みが提供されることが望ましい。
 本開示によれば、セルラーシステムと無線LAN(Local Area Network)との間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うキャリアセンス部と、上記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、上記周波数帯域における上記セルラーシステムの基地局の無線通信を制御する第1制御部と、を備える装置が提供される。
 また、本開示によれば、プロセッサにより、セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うことと、上記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、上記周波数帯域における上記セルラーシステムの基地局の無線通信を制御することと、を含む方法が提供される。
 以上説明したように本開示によれば、セルラーシステムと無線LANとの間で共用される周波数帯域をセルラーシステムにおいてより柔軟に使用することが可能になる。なお、上記の効果は必ずしも限定的なものではなく、上記効果とともに、又は上記効果に代えて、本明細書に示されたいずれかの効果、又は本明細書から把握され得る他の効果が奏されてもよい。
IEEE 802.11のフレームフォーマットを説明するための説明図である。 LTEのフレームフォーマットを説明するための説明図である。 セルラーシステムのノード間での競合の例を説明するための第1の説明図である。 セルラーシステムのノード間での競合の例を説明するための第2の説明図である。 セルラーシステムのノード間での競合の例を説明するための第3の説明図である。 第1の実施形態に係る通信システムの概略的な構成の一例を示す説明図である。 第1の実施形態に係る基地局の構成の一例を示すブロック図である。 第1の実施形態に係る所定の無線リソースの第1の例を説明するための説明図である。 第1の実施形態に係る所定の無線リソースの第2の例を説明するための説明図である。 第1の実施形態に係るキャリアセンス及び信号送信の第1の例を説明するための説明図である。 第1の実施形態に係るキャリアセンス及び信号送信の第2の例を説明するための説明図である。 第1の実施形態に係る第1の処理の概略的な流れの一例を示すフローチャートである。 第1の実施形態に係る第2の処理の概略的な流れの一例を示すシーケンス図である。 第2の実施形態に係る通信システムの概略的な構成の一例を示す説明図である。 第2の実施形態に係る基地局の構成の一例を示すブロック図である。 第3の実施形態に係る通信システムの概略的な構成の一例を示す説明図である。 第3の実施形態に係る基地局の構成の一例を示すブロック図である。 第3の実施形態に係る基地局の構成の一例を示すブロック図である。 第3の実施形態に係る基地局の動作の例を説明するための説明図である。 第3の実施形態に係る第1の処理の概略的な流れの一例を示すシーケンス図である。 第3の実施形態に係る第2の処理の概略的な流れの一例を示すフローチャートである。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。
 以下に添付の図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて基地局100A、100B及び100Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局100A、100B及び100Cを特に区別する必要が無い場合には、単に基地局100と称する。
 なお、説明は以下の順序で行うものとする。
 1.はじめに
 2.第1の実施形態
  2.1.概要
  2.2.通信システムの概略的な構成
  2.3.基地局の構成
  2.4.第1の実施形態に係る技術的特徴
  2.5.処理の流れ
 3.第2の実施形態
  3.1.概要
  3.2.通信システムの概略的な構成
  3.3.基地局の構成
  3.4.第2の実施形態に係る技術的特徴
  3.5.処理の流れ
 4.第3の実施形態
  4.1.概要
  4.2.通信システムの概略的な構成
  4.3.基地局の構成
  4.4.基地局の構成
  4.5.第3の実施形態に係る技術的特徴
  4.6.処理の流れ
 5.応用例
 6.まとめ
 <<1.はじめに>>
 まず、図1及び図2を参照して、周波数帯域の共用、無線LANに関する技術、及びセルラーシステムに関する技術を説明する。
 (周波数帯域の共用)
 (a)周波数共用の背景
 セルラーシステムにおいて使用可能なさらなる周波数帯域が求められている。例えば、セルラーシステムにおいて使用可能なさらなる周波数帯域として、5GHz帯が考えられる。
 しかし、5GHz帯は、無線LANでも使用されている。そのため、セルラーシステムにおいて5GHz帯が使用される場合には、例えば、5GHz帯は、セルラーシステムと無線LANとの間で共用(share)される。具体的には、例えば、5GHz帯の周波数帯域(例えば、無線LANのチャネル)が、ある時間には無線LANにおいて使用され、別の時間にはセルラーシステムにおいて使用される。これにより、5GHz帯の周波数利用効率が向上する。なお、無線LAN規格には、IEEE802.11a、11b、11g、11n、11ac及び11adなどがあり、これらの規格は、MAC層としてIEEE802.11を採用することを特徴とする。
 (b)共用の手法
 無線LANのノード(アクセスポイント及びステーション)は、世の中に既に広く普及している。そのため、後方互換性(Backward Compatibility)の観点から、無線LANのノードの動作が変更されるのではなく、セルラーシステムと無線LANとの間で周波数帯域を共用するための仕組みが、LTE(Long Term Evolution)の技術として検討され、LTEの新たな規格として定められることが望ましい。なお、上記新たな規格に準拠した端末装置は、セルラーシステムと無線LANとの間で共用される周波数帯域(以下、「共用帯域」と呼ぶ)を使用するが、上記新たな規格に準拠しない端末装置は、共用帯域を使用しないと考えられる。
 (c)コンポーネントキャリアとしての使用
 LTE、LTE-Advanced又はこれらに準ずる通信規格に準拠したセルラーシステムでは、共用帯域は、例えば、コンポーネントキャリア(CC:Component Carrier)として使用されるであろう。さらに、セルラーシステム用の周波数帯域がPCCとして使用され、共用帯域はSCCとして使用されることが、想定される。また、セルラーシステム用の周波数帯域を使用して制御信号及びデータ信号が送受信され、共用帯域を使用してデータ信号が送受信され得る。
 (d)フェアな共用
 共用帯域はセルラーシステムと無線LANとの間でフェアに共用されることが望ましい。無線LANでは、CSMA(Carrier Sense Multiple Access)に従ってチャネル(共用帯域)がフェアに共用されているので、例えば、セルラーシステムと無線LANとの間でも、CSMAを考慮した手法で、チャネル(共用帯域)がフェアに共用されることが望ましい。
 フェアな共用として、様々な共用が考え得る。例えば、フェアな共用は、「無線LANで共用帯域を使用する機会と、セルラーシステムで当該共用帯域を使用する機会とが、同様に与えられること」と定義され得る。即ち、実際の通信量がセルラーシステムと無線LANとの間で同じであることではなく、通信の機会がセルラーシステムと無線LANとの間で同じであることが、フェアな共用とみなされ得る。
 一例として、共用帯域が、セルラーシステムにおいて一定期間使用されると、その後、当該共用帯域は、同程度の期間当該セルラーシステムの使用から解放される。
 (無線LANに関する技術)
 図1を参照して、無線LANに関する技術として、IEEE 802.11のフレームフォーマットを説明する。図1は、IEEE 802.11のフレームフォーマットを説明するための説明図である。
 IEEE 802.11では、DATAフレーム及びACKフレームが基本のフレームである。ACKフレームは、DATAフレームが正しく受信された時に、DATAフレームの受信の成功を送信側に知らせるためのフレームである。無線LANでは、DATAフレーム及びACKフレームのみにより無線通信が行われ得るが、一般的に、さらにRTS(Request To Send)フレーム及びCTS(Clear To Send)フレームという2つのフレームが使用される。
 無線LANのノードは、RTSフレームを送信する前に、DIFS(DCF (Distributed Coordination Function) InterFrame Space)という期間の間、信号が送信されていないことを確認する。これは、キャリアセンスと呼ばれる。DIFSが経過した時点で各ノードが同時に信号を送信し始めると、信号が衝突してしまう。そのため、各ノードは、ノードごとにランダムに設定されるバックオフ時間だけ待機し、バックオフ時間の間にも信号が送信されていなければ信号を送信する。
 基本的には、ノードは、いずれかの信号を検出している間は、信号を送信できない。しかし、隠れ端末問題(hidden node problem)というものが存在するので、NAV(Network Allocation Vector)という値の設定のための持続時間(Duration)フィールドを含むRTSフレーム及びCTSフレームが追加された。当該持続時間フィールドに含まれる値に基づいて、NAVが設定される。NAVを設定したノードは、当該NAVの期間にわたって信号の送信を控える。
 まず、DATAフレームを送信する第1のノードがRTSフレームを送信する。すると、当該第1のノードの周囲に位置する他のノードは、RTSフレームを受信し、RTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他のノードは、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。例えば、当該NAVの期間は、RTSフレームの終了からACKフレームの終了までの期間である。
 また、DATAフレームを受信する第2のノードが、RTSフレームの受信に応じて、RTSフレームの終了からSIFS(Short InterFrame Space)だけ後に、CTSフレームを送信する。すると、上記第2のノードの周囲に位置する他のノードは、CTSフレームを受信し、CTSフレームの中の持続時間フィールドに含まれる値を取得する。そして、当該他のノードは、例えば、自身のNAVを、取得された上記値に設定し、当該NAVの期間にわたって信号の送信を控える。当該NAVの期間は、CTSフレームの終了からACKフレームの終了までの期間である。これにより、例えば、上記第1のノードの近くにはいないが、上記第2のノードの近くにいる他のノード(即ち、上記第1のノードにとっての隠れ端末(hidden node))が、上記第1のノードと上記第2のノードとの通信の間に信号を送信することを、防ぐことができる。
 なお、RTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド、送信アドレスフィールド及びFCS(Frame Check Sequence)を含む。また、CTSフレームは、持続時間フィールドの他に、フレーム制御フィールド、受信アドレスフィールド及びFCSを含む。
 また、IEEE802.11シリーズの規格におけるDIFS及びSIFSは、例えば以下のような長さを有する。
Figure JPOXMLDOC01-appb-T000001
 (セルラーシステムに関する技術)
 (a)フレームフォーマット
 図2を参照して、LTEのフレームフォーマットを説明する。図2は、LTEのフレームフォーマットを説明するための説明図である。
 まず、LTEでは、無線フレーム(Radio Frame)という時間の単位が用いられる。1無線フレームは、10msである。個々の無線フレームは、0~1023のいずれかであるSFN(System Frame Number)により識別される。
 無線フレームは、#0~#9により各々識別される10個のサブフレームを含む。各サブフレームは、1msである。さらに、各サブフレームは、2個のスロットを含み、各スロットは、例えば7個のOFDM(Orthogonal Frequency Division Multiplexing)シンボルを含む。即ち、各サブフレームは、14個のOFDMシンボルを含む。なお、図2に示されるフレームフォーマットは、ダウンリンクのフレームフォーマットであり、アップリンクのフレームフォーマットは、OFDMシンボルの代わりに、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルを含む。
 (b)キャリアアグリゲーション
 -コンポーネントキャリア
 リリース10のキャリアアグリゲーションでは、最大で5つのコンポーネントキャリア(CC)が束ねられて、UE(User Equipment)により使用される。各CCは、最大20MHz幅の帯域である。キャリアアグリゲーションでは、周波数方向で連続するCCが使用される場合と、周波数方向で離れたCCが使用される場合とがある。キャリアアグリゲーションでは、使用されるCCをUE毎に設定することが可能である。
 -PCCとSCC
 キャリアアグリゲーションでは、UEにより使用される複数のCCのうちの1つが特別なCCである。当該1つの特別なCCは、PCC(Primary Component Carrier)と呼ばれる。また、上記複数のCCのうちの残りは、SCC(Secondary Component Carrier)と呼ばれる。PCCは、UEによって異なり得る。
 PCCは、複数のCCの中で最も重要なCCであるので、通信品質が最も安定しているCCであることが望ましい。なお、どのCCをPCCとするかは、実際には、どのように実装するかに依存する。
 SCCは、PCCに追加される。また、追加された既存のSCCは、削除されることが可能である。なお、SCCの変更は、既存のSCCの削除と新たなSCCの追加により行われる。
 -PCCの決定手法及び変更手法
 UEの接続が最初に確立され、UEの状態が、RRC(Radio Resource Control) IdleからRRC Connectedに遷移する場合には、UEが接続の確立の際に使用するCCが、当該UEにとってのPCCとなる。より具体的には、接続確立(Connection Establishment)の手続きを通じて接続が確立される。その際に、UEの状態は、RRC IdleからRRC Connectedに遷移する。また、上記手続きに使用されるCCが、上記UEにとってのPCCとなる。なお、上記手続きは、UE側から開始される手続きである。
 また、PCCの変更は、周波数間ハンドオーバにより行われる。より具体的には、接続再構成(Connection Reconfiguration)の手続きにおいてハンドオーバが指示されると、PCCのハンドオーバが行われ、PCCが変更される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 -SCCの追加
 上述したように、SCCは、PCCに追加される。その結果、SCCは、PCCに付随する。換言すると、SCCは、PCCに従属する。SCCの追加は、接続再構成の手続きを通じて行われることが可能である。なお、当該手続きは、ネットワーク側から開始される手続きである。
 -SCCの削除
 上述したように、SCCは、削除されることができる。SCCの削除は、接続再構成の手続きを通じて行われることが可能である。具体的には、メッセージの中で指定される特定のSCCが削除される。なお、上記手続きは、ネットワーク側から開始される手続きである。
 また、全てのSCCの削除は、接続再確立(Connection Re-establishment)の手続きを通じて行われることが可能である。
 -PCCの特別な役割
 接続確立の手続き、NAS(Non-Access Stratum)シグナリングの送受信、及び物理アップリンク制御チャネル(PUCCH:Physical Uplink Control Channel)でのアップリンク制御信号の送受信は、SCCでは行われず、PCCのみで行われる。
 また、無線リンク障害(RLF:Radio Link Failure)の検出及びその後の接続再確立の手続きも、SCCでは行われず、PCCのみで行われる。
 -キャリアアグリゲーションのためのバックホールの条件
 例えば、SCCのダウンリンク信号に対するACK(Acknowledgement)は、PCCのPUCCHで送信される。上記ACKは、eNB(evolved Node B)によるデータの再送に使用されるので、上記ACKの遅延は許容されない。したがって、UEにとってのPCCであるCCを使用する第1のeNBと、UEにとってのSCCであるCCを使用する第2のeNBとが異なる場合には、当該第1のeNBと当該第2のeNBとの間のバックホールでの遅延はせいぜい10ms程度であることが望まれる。
 <<2.第1の実施形態>>
 続いて、図3~図13を参照して、第1の実施形態を説明する。
 <2.1.概要>
 (技術的課題)
 例えば、セルラーシステムと無線LAN(Local Area Network)との間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。この場合に、例えば、セルラーシステムのノード(例えば、基地局)も、上記周波数帯域を対象とするキャリアセンスを行い、当該周波数帯域を使用する。
 しかし、この場合に、セルラーシステムのノードは、キャリアセンスにおいて、無線LANのノード(例えば、アクセスポイント又はステーション)により送信される信号のみではなく、セルラーシステムの他のノードにより送信される信号も検出し得る。その結果、セルラーシステムのノード間での競合が発生することにより、セルラーシステムにおける上記周波数帯域の使用が制限され得る。以下、この点について図3~図5を参照して具体例を説明する。
 図3~図5は、セルラーシステムのノード間での競合の例を説明するための説明図である。図3を参照すると、セルラーシステムの基地局10A、10B、及び無線LANノード20A、20B、20Cが示されている。この例では、基地局10Aは、無線LANノード20A、20C及び基地局10Bにより送信される信号を受信し得るが、無線LANノード20Bにより送信される信号を受信しない。また、基地局10Bは、無線LANノード20B、20C及び基地局10Aにより送信される信号を受信し得るが、無線LANノード20Aにより送信される信号を受信しない。
 例えば、図4に示されるように、基地局10Aは、無線LANノード20Aによる共用帯域での信号の送信が終了すると、当該共用帯域を対象とするキャリアセンスを行い、その後、当該共用帯域での無線通信を行う。一方、基地局10Bは、無線LANノード20Bによる上記共用帯域での信号の送信が終了すると、当該共用帯域を対象とするキャリアセンスを行う。しかし、基地局10Bは、キャリアセンスにおいて、基地局10Aにより送信される信号を検出する。その結果、基地局10Bは、基地局10Aによる上記共用帯域の使用に起因して、上記共用帯域での無線通信を行うことができなくなる。
 なお、図5に示されるように、基地局10及び無線LANノード20は、共用帯域30(無線LANのチャネル)全体で信号を送信する。即ち、基地局10は、共用帯域30にわたって周波数方向に並ぶ全てのリソースブロックで信号を送信する。また、基地局10及び無線LANノード20は、共用帯域30全体を対象とするキャリアセンスを行う。
 以上のように、セルラーシステムのノード間での競合が発生することにより、セルラーシステムにおける上記周波数帯域(即ち、共用帯域)の使用が制限され得る。そこで、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおいてより柔軟に使用することを可能にする仕組みが提供されることが望ましい。
 (手段)
 第1の実施形態では、基地局は、セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行う。また、上記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、上記周波数帯域における上記基地局の無線通信が制御される。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおいてより柔軟に使用することが可能になる。
 <2.2.通信システムの概略的な構成>
 次に、図6を参照して、第1の実施形態に係る通信システム1の概略的な構成を説明する。図6は、第1の実施形態に係る通信システム1の概略的な構成の一例を示す説明図である。図6を参照すると、通信システム1は、基地局100及び無線LANノード20を含む。
 (基地局100)
 基地局100は、セルラーシステムの基地局である。例えば、当該セルラーシステムは、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
 (a)周波数帯域
 基地局100は、上記セルラーシステム用の周波数帯域での無線通信を行う。例えば、当該周波数帯域は、上記セルラーシステム用のコンポーネントキャリアである。
 とりわけ第1の実施形態では、基地局100は、さらに、上記セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)での無線通信を行う。例えば、当該共用帯域は、無線LANのチャネルである。より具体的には、例えば、当該共用帯域は、5GHz帯(又は2.4GHz帯)のチャネルであり、20MHzの帯域幅を有する。
 なお、上記セルラーシステム用の上記周波数帯域は、ライセンスバンド(licensed band)、又はライセンスバンドに含まれる周波数帯域であると言える。また、上記共用帯域は、アンライセンスバンド(unlicensed band)、又はアンライセンスバンドに含まれる周波数帯域であると言える。
 (b)端末装置との無線通信
 基地局100は、端末装置との無線通信を行う。例えば、基地局100は、基地局100のセル101内に位置する端末装置との無線通信を行う。具体的には、例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (無線LANノード20)
 無線LANノード20は、無線LANのアクセスポイント又はステーションである。例えば、無線LANノード20は、IEEE802.11規格(例えば、IEEE802.11a、11b、11g、11n、11ac及び11adなど)のいずれかに従って動作する。
 無線LANノード20は、無線LANのチャネル(即ち、上記共用帯域)での無線通信を行う。例えば、無線LANノード20は、CSMAに従って無線通信を行う。より具体的には、例えば、無線LANノード20は、上記チャネルを対象とするキャリアセンスを行う。また、上記キャリアセンスの結果として上記チャネルが使用可能である場合に(例えば、上記キャリアセンスの結果として上記チャネルで所定時間にわたり他のノードにより信号が送信されていない場合に)、無線LANノード20は、上記チャネルでの無線通信を行う。
 <2.3.基地局の構成>
 次に、図7を参照して、第1の実施形態に係る基地局100の構成の一例を説明する。図7は、第1の実施形態に係る基地局100の構成の一例を示すブロック図である。図7を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (アンテナ部110)
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (無線通信部120)
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、セルラーシステム用の周波数帯域、及び/又はセルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。
 (ネットワーク通信部130)
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (記憶部140)
 記憶部140は、基地局100の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (処理部150)
 処理部150は、基地局100の様々な機能を提供する。処理部150は、キャリアセンス部151、情報取得部153、第1制御部155及び第2制御部157を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
 (キャリアセンス部151)
 キャリアセンス部151は、キャリアセンスを行う。即ち、キャリアセンス部151は、周波数帯域又は無線リソースで他のノードにより信号が送信されているかをチェックする。
 (情報取得部153)
 情報取得部153は、情報を取得する。例えば、情報取得部153は、第1制御部155又は第2制御部157のために情報を取得する。
 (第1制御部155)
 第1制御部155は、基地局100の無線通信を制御する。例えば、第1制御部155は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)における基地局100の無線通信を制御する。また、例えば、第1制御部155は、セルラーシステム用の周波数帯域における基地局100の無線通信を制御する。
 (第2制御部157)
 第2制御部157は、他のノードへの通知を行う。例えば、当該他のノードは、他の基地局を含む。また、当該他のノードは、コアネットワークを含んでもよい。
 <2.4.第1の実施形態に係る技術的特徴>
 次に、図8~図11を参照して、第1の実施形態に係る技術的特徴を説明する。
 (キャリアセンス及び信号の送信)
 (a)キャリアセンス
 とりわけ第1の実施形態では、キャリアセンス部151は、共用帯域(即ち、セルラーシステムと無線LANとの間で共用される周波数帯域)の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行う。即ち、キャリアセンス部151は、上記所定の無線リソースで他のノードにより信号が送信されているかをチェックする。なお、上記所定の無線リソースは、上記共用帯域の無線リソースの全てではなく一部である。
 (b)信号の送信
 また、とりわけ第1の実施形態では、第1制御部155は、上記共用帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、上記共用帯域における基地局100の無線通信を制御する。なお、上記所定の無線リソースは、上記共用帯域の無線リソースの全てではなく一部である。また、上記他の無線リソースも、上記共用帯域の無線リソースの一部である。
 (b-1)具体的な処理
 一例として、第1制御部155は、上記共用帯域の無線リソースの割当てを行う。この場合に、第1制御部155は、例えば、上記所定の無線リソースを端末装置に割り当てず、上記他の無線リソースを端末装置に割り当てる。これにより、例えば、基地局100及び端末装置は、上記所定の無線リソースで信号を送信しない。
 別の例として、第1制御部155は、上記共用帯域の無線リソースに信号をマッピングしてもよい。この場合に、第1制御部155は、例えば、上記所定の無線リソースには信号をマッピングせず、上記他の無線リソースに信号をマッピングしてもよい。これにより、例えば、基地局100は、上記所定の無線リソースで信号を送信しない。
 (b-2)キャリアセンスの結果に応じた制御
 第1制御部155は、上記キャリアセンスの結果に応じて、上記共用帯域における基地局100の無線通信を制御する。例えば、第1制御部155は、上記キャリアセンスの結果として上記所定の無線リソースで所定時間にわたり他のノードにより信号が送信されていない場合に、上記他の無線リソースで信号が送信されるように、上記共用帯域における基地局100の無線通信を制御する。
 (c)所定の無線リソース
 例えば、上記所定の無線リソースは、上記共用帯域の一部である部分帯域の無線リソースである。即ち、キャリアセンス部151は、上記部分帯域の無線リソースを対象とするキャリアセンスを行う。換言すると、キャリアセンス部151は、上記部分帯域を対象とするキャリアセンスを行う。
 (c-1)2つ以上の部分帯域
 例えば、上記所定の無線リソースは、それぞれ上記共用帯域の一部である2つ以上の部分帯域の無線リソースである。即ち、上記共用帯域のうちの2つ以上の部分帯域でキャリアセンスが行われる。また、上記共用帯域のうちの2つ以上の部分帯域の無線リソースで基地局100及び端末装置により信号が送信されない。
 なお、第1の実施形態では、当然ながら、上記所定の無線リソースは、上記共用帯域の一部である1つの部分帯域の無線リソースであってもよい。
 (c-2)部分帯域の例
 -固定帯域
 例えば、上記部分帯域は、期間によって変動しない固定帯域である。以下、この点について図8を参照して具体例を説明する。
 図8は、第1の実施形態に係る所定の無線リソースの第1の例を説明するための説明図である。図8を参照すると、共用帯域30及び共用帯域30のリソースブロックが示されている。この例では、基地局100は、それぞれ共用帯域30の一部である部分帯域31、33、35などのリソースブロックを対象とするキャリアセンスを行う。即ち、基地局100は、それぞれ共用帯域30の一部である部分帯域31、33、35などを対象とするキャリアセンスを行う。また、上記キャリアセンスの結果として部分帯域31、33、35などのリソースブロックで所定時間にわたり他のノードにより信号が送信されていない場合に、例えば、基地局100(及び/又は端末装置)は、他の部分帯域32、34、36などのリソースブロックで信号を送信する。なお、基地局100(及び/又は端末装置)は、例えば、部分帯域31、33、35などのリソースブロックでは信号を送信しない。
 例えば、図6に示されるように、基地局100A及び基地局100Bがある。この場合に、例えば、基地局100Aは、部分帯域31、33、35などのリソースブロックを対象とするキャリアセンスを行い、基地局100Bは、他の部分帯域32、34、36などのリソースブロックで信号を送信する。その結果、基地局100Aは、キャリアセンスにおいて、基地局100Bにより送信される信号を検出しない。
 -変動帯域
 上記部分帯域は、期間によって変動する帯域であってもよい。例えば、上記部分帯域は、所定のパターンに従って期間によって変動する帯域であってもよい。以下、この点について図9を参照して具体例を説明する。
 図9は、第1の実施形態に係る所定の無線リソースの第2の例を説明するための説明図である。図9を参照すると、共用帯域30及び共用帯域30のリソースブロックが示されている。基地局100は、所定のパターンに従って期間によって変動する部分帯域の無線リソースを対象とするキャリアセンスを行う。例えば、基地局100は、サブフレーム41では、部分帯域31、34、35などのリソースブロックを対象とするキャリアセンスを行う。即ち、基地局100は、サブフレーム41では、部分帯域31、34、35などを対象とするキャリアセンスを行う。基地局100は、サブフレーム42では、部分帯域32、35、36などを対象とするキャリアセンスを行い、サブフレーム43では、部分帯域33、34、35などを対象とするキャリアセンスを行い、サブフレーム44では、部分帯域31、32、33などを対象とするキャリアセンスを行う。また、上記キャリアセンスの結果として、上記所定のパターンに従って期間によって変動する上記部分帯域で所定時間にわたり他のノードにより信号が送信されていない場合に、基地局100(及び/又は端末装置)は、例えば、他の部分帯域の無線リソースで信号を送信する。この例では、基地局100(及び/又は端末装置)は、サブフレーム41では、部分帯域32、33、36などのリソースブロックで信号を送信する。基地局100(及び/又は端末装置)は、サブフレーム42では、部分帯域31、33、34などのリソースブロックで信号を送信し、サブフレーム43では、部分帯域31、32、36などのリソースブロックで信号を送信し、サブフレーム44では、部分帯域34、35、36などのリソースブロックで信号を送信する。
 例えば、図6に示されるように、基地局100A及び基地局100Bがある。この場合に、例えば、サブフレーム41で、基地局100Aは、部分帯域31、34、35などを対象とするキャリアセンスを行い、基地局100Bは、他の部分帯域32、33、36などのリソースブロックで信号を送信する。その結果、基地局100Aは、キャリアセンスにおいて、基地局100Bにより送信される信号を検出しない。
 なお、上記部分帯域は、図9に示されるようにサブフレームによって変動する帯域であってもよく、他の期間によって変動する帯域であってもよい。一例として、上記部分帯域は、所定数のサブフレームによって変動する帯域であってもよく、所定数の無線フレームによって変動する帯域であってもよい。また、上記所定のパターンは、所定の期間(例えば、所定数の無線フレーム)ごとに繰り返されるパターンであってもよい。
 (c-3)その他
 -制御領域及びデータ領域
 上記共用帯域について、制御領域及びデータ領域が存在してもよい。この場合に、上記所定の無線リソースは、制御領域の無線リソースを含まず、データ領域の無線リソースであってもよい。例えば、上記部分帯域の無線リソースのうちの上記データ領域の無線リソースを対象とするキャリアセンスが行われてもよく、当該無線リソースで信号が送信されなくてもよい。
 一方、(信号が送信される)上記他の無線リソースは、上記制御領域の無線リソース及び上記データ領域の無線リソースを含んでもよい。例えば、上記共用帯域の上記制御領域の無線リソース、及び、上記共用帯域の一部である他の部分帯域のデータ領域の無線リソースで、信号が送信されてもよい。
 上記制御領域は、物理制御チャネルが配置される領域であってもよい。換言すると、上記所定の無線リソースは、上記物理制御チャネルの無線リソースを含まなくてもよい。上記物理制御チャネルは、PDCCH(Physical Downlink Control Channel)を含んでもよい。また、上記データ領域は、上記制御領域以外の領域であってもよい。一例として、上記制御領域は、サブフレームのうちの所定数のシンボルにわたる領域であってもよく、上記データ領域は、サブフレームのうちの他のシンボルにわたる領域であってもよい。
 -所定の期間
 上記所定の無線リソースは、所定の期間内の無線リソースであってもよい。例えば、上記所定の期間において上記部分帯域の無線リソースを対象とするキャリアセンスが行われてもよく、上記所定の期間において当該無線リソースで信号が送信されなくてもよい。
 一方、(信号が送信される)上記他の無線リソースは、上記所定の期間内の無線リソース及び他の期間の無線リソースを含んでもよい。例えば、上記所定の期間において、上記共用帯域の一部である他の部分帯域の無線リソースで信号が送信されてもよく、他の期間において、上記共用帯域全体の無線リソースで信号が送信されてもよい。
 -所定のリソースエレメント
 上記所定の無線リソースは、上記部分帯域の無線リソースではなく、他の無線リソースであってもよい。一例として、上記所定の無線リソースは、離散した1つ以上のサブキャリアの無線リソース(例えば、リソースエレメント)であってもよい。
 (d)他の無線リソース
 例えば、上記所定の無線リソース以外の上記他の無線リソースは、上記共用帯域の一部である他の部分帯域の無線リソースを含む。即ち、基地局100(及び/又は端末装置)は、(少なくともいずれかの期間において、)上記部分帯域で信号を送信せず、上記他の部分帯域で信号を送信する。この点については、図8及び図9を参照して説明したとおりである。
 これにより、例えば、他の基地局によるキャリアセンスでの信号の検出を回避しつつ、無線LANノードの無線通信を抑制することが可能になる。
 (e)キャリアセンス及び信号送信の例
 図10は、第1の実施形態に係るキャリアセンス及び信号送信の第1の例を説明するための説明図である。基地局100Aは、無線LANノード20Aによる共用帯域での信号の送信が終了すると、当該共用帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行う。その後、基地局100A(及び/又は端末装置)は、上記所定の無線リソース以外の他の無線リソースで信号を送信する。一方、基地局100Bは、無線LANノード20Bによる上記共用帯域での信号の送信が終了すると、上記所定の無線リソースを対象とするキャリアセンスを行う。ここで、基地局100A(及び/又は端末装置)は、上記所定の無線リソース以外の他の無線リソースで信号を送信しているので、基地局100Bは、上記キャリアセンスにおいて基地局100A(及び/又は端末装置)により送信される信号を検出しない。その結果、上記キャリアセンス後に、基地局100B(及び/又は端末装置)は、上記所定の無線リソース以外の他の無線リソースで信号を送信する。
 以上のように、上記共用帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスが行われ、当該所定の無線リソース以外の他の無線リソースで信号が送信される。これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)をセルラーシステムにおいてより柔軟に使用することが可能になる。より具体的には、例えば、上記共用帯域において、セルラーシステムのノード間での競合が回避される。そのため、セルラーシステムのノードは、他のノードによる上記共用帯域の使用状況によらず、上記共用帯域を使用し得る。即ち、セルラーシステムにおける共用帯域の使用がより柔軟になり得る。
 また、共用帯域で送信される信号が、無線LANノードにより送信された信号であるか、又はセルラーシステムのノードにより送信された信号であるかを、信号の内容に基づいてチェックする必要がない。また、信号のデコードも必要がない。そのため、複雑さの増大が回避され得る。
 (他の基地局への終了タイミングの通知)
 例えば、情報取得部153は、共用帯域(即ち、セルラーシステムと無線LANとの間で共用される周波数帯域)での無線通信を基地局100が終了するタイミングを示す情報(以下、「第1のタイミング情報」と呼ぶ)を取得する。そして、第2制御部157は、当該タイミングを1つ以上の他の基地局に通知する。
 (a)第1のタイミング情報
 例えば、上記第1のタイミング情報は、処理部150により生成される。
 上記第1のタイミング情報は、上記共用帯域での無線通信を基地局100が終了する時刻を示す情報であってもよく、上記共用帯域での無線通信を基地局100が終了する無線フレーム及び/又はサブフレームを示す情報であってもよい。なお、上記第1のタイミング情報は、これらの例に限られず、他の情報であってもよい。
 (b)1つ以上の他の基地局
 例えば、上記1つ以上の他の基地局の各々は、基地局100の近隣の基地局である。例えば、上記1つ以上の他の基地局は、基地局100を含むセルラーシステムの基地局を含む。
 なお、上記1つ以上の他の基地局は、上記セルラーシステムとは異なる他のセルラーシステムの基地局を含んでもよい。これにより、セルラーシステム間でも競合が回避され得る。さらに、上記セルラーシステムは、第1のオペレータのシステムであり、上記他のセルラーシステムは、当該第1のオペレータとは異なる第2のオペレータのシステムであってもよい。これにより、異なるオペレータのセルラーシステム間でも競合が回避され得る。
 (c)タイミングの通知
 例えば、上記第2制御部157は、上記第1のタイミング情報の送信により、上記タイミングを上記1つ以上の他の基地局に通知する。例えば、上記第2制御部157は、ネットワーク通信部130を介して、上記第1のタイミング情報を上記1つ以上の他の基地局へ送信する。
 以上のように、基地局100は、上記タイミングを上記1つ以上の他の基地局に通知する。これにより、例えば、上記共用帯域での無線通信の終了のタイミングを基地局間で合わせることが可能になる。その結果、特定の無線LANノードが長時間にわたり無線通信を行えなくなることが回避され得る。
 図6を再び参照すると、例えば、無線LANノード20Aは、基地局100Aにより送信される信号を受信するが、基地局100Bにより送信される信号を受信しない。そのため、例えば、無線LANノード20Aは、基地局100Aが信号を送信している間は、上記共用帯域で無線通信を行うことができない。無線LANノード20Bは、基地局100Bにより送信される信号を受信するが、基地局100Aにより送信される信号を受信しない。そのため、無線LANノード20Bは、基地局100Bが信号を送信している間は、上記共用帯域で無線通信を行うことができない。無線LANノード20Cは、基地局100Aにより送信される信号、及び基地局100Bにより送信される信号を受信する。そのため、無線LANノード20Cは、基地局100A及び基地局100Bの少なくとも一方が上記共用帯域で信号を送信している間は、上記共用帯域で無線通信を行うことができない。このような場合に、無線LANノード20Cは、無線LANノード20A及び無線LANノード20Bと比べて、より長時間にわたって無線通信を行えなくなり得る。そこで、上述したように、上記共用帯域での無線通信の終了のタイミングを基地局100Aと基地局100Bとの間で合わせることにより、無線LANノード20Cが上記共用帯域で無線通信を行えなくなる時間がより短くなり得る。即ち、上記共用帯域における無線LANノード20Cの無線通信の機会の減少が抑えられ得る。
 (共用帯域での無線通信の終了)
 例えば、情報取得部153は、上記共用帯域での無線通信を他の基地局が終了するタイミングを示す情報(以下、「第2のタイミング情報」と呼ぶ)を取得する。そして、第1制御部155は、上記タイミングに従って、上記共用帯域における基地局100の無線通信を終了させる。
 (a)第2のタイミング情報
 例えば、上記第2のタイミング情報は、上記他の基地局により基地局100へ送信される情報であり、例えば、記憶部140に記憶される。情報取得部153は、記憶部140から、当該第2のタイミング情報を取得する。
 上記第2のタイミング情報は、上記共用帯域での無線通信を上記他の基地局が終了する時刻を示す情報であってもよく、上記共用帯域での無線通信を基地局100が終了する無線フレーム及び/又はサブフレームを示す情報であってもよい。なお、上記第1のタイミング情報は、これらの例に限られず、他の情報であってもよい。
 (b)他の基地局
 例えば、上記他の基地局は、基地局100の近隣の基地局である。例えば、上記他の基地局は、基地局100を含むセルラーシステムの基地局である。
 なお、上記他の基地局は、上記セルラーシステムとは異なる他のセルラーシステムの基地局であってもよい。これにより、セルラーシステム間でも競合が回避され得る。さらに、上記セルラーシステムは、第1のオペレータのシステムであり、上記他のセルラーシステムは、当該第1のオペレータとは異なる第2のオペレータのシステムであってもよい。これにより、異なるオペレータのセルラーシステム間でも競合が回避され得る。
 (c)共用帯域での無線通信の終了
 例えば、第1制御部155は、上記タイミングで、上記共用帯域における基地局100の無線通信を終了させる。以下、この点について図11を参照して具体例を説明する。
 図11は、第1の実施形態に係るキャリアセンス及び信号送信の第2の例を説明するための説明図である。図10を参照して説明した例と同様に、基地局100Aは、キャリアセンス後に共用帯域での無線通信を開始する。そして、基地局100Aは、共用帯域での無線通信を基地局100Aが終了するタイミングを基地局100Bに通知する。また、図10を参照して説明した例と同様に、基地局100Bも、キャリアセンス後に共用帯域での無線通信を開始する。その後、基地局100A及び基地局100Bは、上記タイミングで、上記共用帯域での無線通信を終了する。
 具体的な処理の一例として、第1制御部155は、上記タイミング以降の上記共用帯域の無線リソースを端末装置に割り当てない。別の例として、第1制御部155は、上記タイミング以降の上記共用帯域の無線リソースに信号をマッピングしない。
 以上のように、上記共用帯域での無線通信を他の基地局が終了するタイミングに従って、上記共用帯域における基地局100の無線通信が終了する。これにより、例えば、上記共用帯域での無線通信の終了のタイミングを基地局間で合わせることが可能になる。その結果、特定の無線LANノードが長時間にわたり無線通信を行えなくなることが回避され得る。
 <2.5.処理の流れ>
 次に、図12及び図13を参照して、第1の実施形態に係る処理の流れを説明する。
 (第1の処理)
 図12は、第1の実施形態に係る第1の処理の概略的な流れの一例を示すフローチャートである。当該第1の処理は、キャリアセンス及び信号の送受信に係る処理である。
 基地局100(キャリアセンス部151)は、共用帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行う(S1001)。
 キャリアセンスの結果として、上記所定の無線リソースで他のノードにより信号が送信されている場合には(S1003:YES)、処理はステップS1001へ戻る。キャリアセンスの結果として、上記所定の無線リソースで所定時間にわたり他のノードにより信号が送信されていない場合には(S1003:NO)、処理はステップS1005へ進む。
 基地局100は、上記共用帯域の無線リソースのうちの所定の無線リソースで信号を送信せず(又は受信せず)、上記共用帯域の無線リソースのうちの他の無線リソースで信号を送信する(又は受信する)(S1005)。なお、基地局100の第1制御部155は、上記所定の無線リソースで信号が送信されず、上記他の無線リソースで信号が送信されるように、上記共用帯域における基地局100の無線通信を制御する。
 上記共用帯域での無線通信を終了する場合には(S1007:YES)、処理は終了する。上記共用帯域での無線通信を終了しない場合には(S1007:NO)、処理はステップS1005へ戻る。
 (第2の処理)
 図13は、第1の実施形態に係る第2の処理の概略的な流れの一例を示すシーケンス図である。当該第2の処理は、共用帯域での無線通信の終了に係る処理である。
 基地局100Aは、共用帯域での無線通信を基地局100Aが終了するタイミング(終了タイミング)を基地局100Bに通知する(S1011)。
 基地局100Bは、通知に対する確認応答(acknowledgement)を基地局100Aへ送信する。
 その後、基地局100Aは、上記終了タイミングで上記共用帯域での無線通信を終了する(S1015)。
 また、基地局100Bは、上記終了タイミングに従って、上記共用帯域での無線通信を終了する(S1017)。例えば、基地局100Bは、上記終了タイミングで上記共用帯域での無線通信を終了する。
 <<3.第2の実施形態>>
 続いて、図14及び図15を参照して、第2の実施形態を説明する。
 <3.1.概要>
 (技術的課題)
 例えば、セルラーシステムと無線LAN(Local Area Network)との間で周波数帯域(例えば、5GHz帯に含まれる無線LANのチャネル)が共用される。しかし、この場合に、特定の無線LANノードが長時間にわたり無線通信を行えなくなり得る。
 図3を再び参照すると、例えば、無線LANノード20Aは、基地局10Aにより送信される信号を受信するが、基地局10Bにより送信される信号を受信しない。無線LANノード20Bは、基地局10Bにより送信される信号を受信するが、基地局10Aにより送信される信号を受信しない。無線LANノード20Cは、基地局10Aにより送信される信号、及び基地局10Bにより送信される信号を受信する。そのため、例えば、無線LANノード20Aは、基地局10Aが信号を送信している間は、上記共用帯域で無線通信を行うことができない。また、無線LANノード20Bは、基地局10Bが信号を送信している間は、上記共用帯域で無線通信を行うことができない。また、無線LANノード20Cは、基地局10A及び基地局10Bの少なくとも一方が上記共用帯域で信号を送信している間は、上記共用帯域で無線通信を行うことができない。そのため、無線LANノード20Cは、無線LANノード20A及び無線LANノード20Bと比べて、より長時間にわたって無線通信を行えなくなり得る。
 そこで、特定の無線LANノードが長時間にわたり無線通信を行えなくなることを回避することを可能にする仕組みが提供されることが望ましい。
 (手段)
 第2の実施形態では、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を基地局100が終了するタイミングを、1つ以上の他の基地局に通知する。
 第2の実施形態では、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を他の基地局が終了するタイミングに従って、上記周波数帯域での無線通信を終了する。
 これにより、例えば、特定の無線LANノードが長時間にわたり無線通信を行えなくなることを回避することが可能になる。
 <3.2.通信システムの概略的な構成>
 次に、図14を参照して、第2の実施形態に係る通信システム2の概略的な構成を説明する。図14は、第2の実施形態に係る通信システム2の概略的な構成の一例を示す説明図である。図14を参照すると、通信システム2は、基地局200及び無線LANノード20を含む。
 通信システム2の概略的な構成の説明は、符号の相違を除き、第1の実施形態に係る通信システム1の概略的な構成の説明と同じである。よって、ここでは重複する記載を省略する。なお、第2の実施形態に係る通信システム2の概略的な構成の説明のために、第1の実施形態に係る通信システム1の概略的な構成の説明の中の「基地局100」及び「セル101」は、それぞれ「基地局200」及び「セル201」に置き換えられる。
 <3.3.基地局の構成>
 次に、図15を参照して、第2の実施形態に係る基地局200の構成の一例を説明する。図15は、第2の実施形態に係る基地局200の構成の一例を示すブロック図である。図15を参照すると、基地局200は、アンテナ部210、無線通信部220、ネットワーク通信部230、記憶部240及び処理部250を備える。
 基地局200の構成の説明は、符号の相違を除き、第1の実施形態に係る基地局100の構成の説明と同じである。よって、ここでは重複する記載を省略する。なお、第2の実施形態に係る基地局200の構成の説明のために、第1の実施形態に係る基地局100の構成の説明の中の「基地局100」、「アンテナ部110」、「無線通信部120」、「ネットワーク通信部130」、「記憶部140」、「処理部150」、「キャリアセンス部151」、「情報取得部153」、「第1制御部155」及び「第2制御部157」は、それぞれ、「基地局200」、「アンテナ部210」、「無線通信部220」、「ネットワーク通信部230」、「記憶部240」、「処理部250」、「キャリアセンス部251」、「情報取得部253」、「第1制御部255」及び「第2制御部257」に置き換えられる。
 <3.4.第2の実施形態に係る技術的特徴>
 次に、第2の実施形態に係る技術的特徴を説明する。
 (他の基地局への終了タイミングの通知)
 例えば、情報取得部253は、共用帯域(即ち、セルラーシステムと無線LANとの間で共用される周波数帯域)での無線通信を基地局200が終了するタイミングを示す情報(以下、「第1のタイミング情報」と呼ぶ)を取得する。そして、第2制御部257は、当該タイミングを1つ以上の他の基地局に通知する。
 この点についての説明は、符号及び図番の相違を除き、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは重複する記載を省略する。なお、第2の実施形態に係るこの点についての説明のために、第1の実施形態に係るこの点についての説明の中の「ネットワーク通信部130」、「処理部150」、「情報取得部153」、「第2制御部157」及び「図6」は、それぞれ、「ネットワーク通信部230」、「処理部250」、「情報取得部253」、「第2制御部257」及び「図14」に置き換えられる。
 (共用帯域での無線通信の終了)
 例えば、情報取得部253は、上記共用帯域での無線通信を他の基地局が終了するタイミングを示す情報(以下、「第2のタイミング情報」と呼ぶ)を取得する。そして、第1制御部255は、上記タイミングに従って、上記共用帯域における基地局200の無線通信を終了させる。
 この点についての説明は、符号及び図番の相違を除き、第1の実施形態と第2の実施形態との間に差異はない。よって、ここでは重複する記載を省略する。なお、第2の実施形態に係るこの点についての説明のために、第1の実施形態に係るこの点についての説明の中の「記憶部140」、「処理部150」、「情報取得部153」及び「第1制御部155」は、それぞれ、「記憶部240」、「処理部250」、「情報取得部253」及び「第1制御部255」に置き換えられる。
 <2.5.処理の流れ>
 次に、第2の実施形態に係る処理の流れを説明する。
 第2の実施形態に係る処理の説明は、第1の実施形態に係る第2の処理の説明と同じである。よって、ここでは重複する記載を省略する。なお、第2の実施形態に係る処理の説明のために、第1の実施形態に係る第2の処理の説明の中の「基地局100A」及び「基地局100B」は、それぞれ、「基地局200A」及び「基地局200B」に置き換えられる。
 <<4.第3実施形態>>
 続いて、図16~図21を参照して、第3の実施形態を説明する。
 <4.1.概要>
 (技術的課題)
 第3の実施形態に係る技術的課題の説明は、第1の実施形態に係る技術的課題の説明と同じである。よって、ここでは重複する説明を省略する。
 (手段)
 第3の実施形態では、セルラーシステムの代表基地局は、当該セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う。また、上記代表基地局は、上記キャリアセンスの結果として上記周波数帯域が使用可能である場合に、上記代表基地局に対応する1つ以上の他の基地局への通知を行う。
 また、第3の実施形態では、基地局は、セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う上記セルラーシステムの代表基地局が、上記キャリアセンスの結果として上記周波数帯域が使用可能である場合に行う、上記基地局への通知に応じて、上記周波数帯域での無線通信を行う。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおいてより柔軟に使用することが可能になる。
 <4.2.通信システムの概略的な構成>
 次に、図16を参照して、第3の実施形態に係る通信システム3の概略的な構成を説明する。図16は、第3の実施形態に係る通信システム3の概略的な構成の一例を示す説明図である。図16を参照すると、通信システム3は、基地局300、基地局400及び無線LANノード20を含む。
 (基地局300、400)
 基地局300及び基地局400の各々は、セルラーシステムの基地局である。例えば、当該セルラーシステムは、LTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである。
 (a)基地局300と基地局400との関係
 とりわけ第3の実施形態では、基地局300は、セルラーシステムの代表基地局である。一方、基地局400は、基地局300(即ち、代表基地局)に対応する基地局である。
 一例として、基地局300(代表基地局)は、スモールセルクラスタのクラスタヘッドである基地局である。この場合に、基地局400は、上記スモールセルクラスタを形成する他の基地局である。
 別の例として、基地局300(代表基地局)は、マクロセルの基地局であってもよい。この場合に、基地局400は、上記マクロセルと重なるスモールセルの基地局であってもよい。
 (b)周波数帯域
 基地局300及び基地局400の各々は、セルラーシステム用の周波数帯域での無線通信を行う。例えば、当該周波数帯域は、上記セルラーシステム用のコンポーネントキャリアである。
 とりわけ第3の実施形態では、基地局300及び基地局400の各々は、さらに、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)での無線通信を行う。例えば、当該共用帯域は、無線LANのチャネルである。より具体的には、例えば、当該共用帯域は、5GHz帯(又は2.4GHz帯)のチャネルであり、20MHzの帯域幅を有する。
 なお、上記セルラーシステム用の上記周波数帯域は、ライセンスバンド、又はライセンスバンドに含まれる周波数帯域であると言える。また、上記共用帯域は、アンライセンスバンド、又はアンライセンスバンドに含まれる周波数帯域であると言える。
 (c)端末装置との無線通信
 基地局300及び基地局400の各々は、端末装置との無線通信を行う。例えば、基地局300及び基地局400の各々は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (無線LANノード20)
 無線LANノード20は、無線LANのアクセスポイント又はステーションである。例えば、無線LANノード20は、IEEE802.11規格(例えば、IEEE802.11a、11b、11g、11n、11ac及び11adなど)のいずれかに従って動作する。
 無線LANノード20は、無線LANのチャネル(即ち、上記共用帯域)での無線通信を行う。例えば、無線LANノード20は、CSMAに従って無線通信を行う。より具体的には、例えば、無線LANノード20は、上記チャネルを対象とするキャリアセンスを行う。また、上記キャリアセンスの結果として上記チャネルが使用可能である場合に(例えば、上記キャリアセンスの結果として上記チャネルで所定時間にわたり他のノードにより信号が送信されていない場合に)、無線LANノード20は、上記チャネルでの無線通信を行う。
 <4.3.基地局の構成>
 次に、図17を参照して、第3の実施形態に係る基地局300の構成の一例を説明する。図17は、第3の実施形態に係る基地局300の構成の一例を示すブロック図である。図17を参照すると、基地局300は、アンテナ部310、無線通信部320、ネットワーク通信部330、記憶部340及び処理部350を備える。
 (アンテナ部310)
 アンテナ部310は、無線通信部320により出力される信号を電波として空間に放射する。また、アンテナ部310は、空間の電波を信号に変換し、当該信号を無線通信部320へ出力する。
 (無線通信部320)
 無線通信部320は、信号を送受信する。例えば、無線通信部320は、セルラーシステム用の周波数帯域、及び/又はセルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。
 (ネットワーク通信部330)
 ネットワーク通信部330は、情報を送受信する。例えば、ネットワーク通信部330は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (記憶部340)
 記憶部340は、基地局300の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (処理部350)
 処理部350は、基地局300の様々な機能を提供する。処理部350は、キャリアセンス部351、第1制御部353及び第2制御部355を含む。なお、処理部350は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部350は、これらの構成要素の動作以外の動作も行い得る。
 (キャリアセンス部351)
 キャリアセンス部351は、キャリアセンスを行う。例えば、キャリアセンス部351は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)を対象とするキャリアセンスを行う。即ち、キャリアセンス部351は、上記共用帯域で他のノードにより信号が送信されているかをチェックする。
 (第1制御部353)
 第1制御部353は、他のノードへの通知を行う。例えば、当該他のノードは、他の基地局を含む。例えば、第1制御部353は、ネットワーク通信部330を介して情報(例えば、メッセージ)を他のノードへ送信することにより、当該他のノードへの通知を行う。
 (第2制御部355)
 第2制御部355は、基地局300の無線通信を制御する。例えば、第2制御部355は、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)における基地局300の無線通信を制御する。また、例えば、第2制御部355は、セルラーシステム用の周波数帯域における基地局300の無線通信を制御する。
 <4.4.基地局の構成>
 次に、図18を参照して、第3の実施形態に係る基地局400の構成の一例を説明する。図18は、第3の実施形態に係る基地局400の構成の一例を示すブロック図である。図18を参照すると、基地局400は、アンテナ部410、無線通信部420、ネットワーク通信部430、記憶部440及び処理部450を備える。
 (アンテナ部410)
 アンテナ部410は、無線通信部420により出力される信号を電波として空間に放射する。また、アンテナ部410は、空間の電波を信号に変換し、当該信号を無線通信部420へ出力する。
 (無線通信部420)
 無線通信部420は、信号を送受信する。例えば、無線通信部420は、セルラーシステム用の周波数帯域、及び/又はセルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)で、信号を送受信する。
 (ネットワーク通信部430)
 ネットワーク通信部430は、情報を送受信する。例えば、ネットワーク通信部430は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (記憶部440)
 記憶部440は、基地局400の動作のためのプログラム及びデータを一時的に又は恒久的に記憶する。
 (処理部450)
 処理部450は、基地局400の様々な機能を提供する。処理部450は、受付部451及び制御部453を含む。なお、処理部450は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部450は、これらの構成要素の動作以外の動作も行い得る。
 (受付部451)
 受付部451は、他のノードにより行われる通知を受け付ける。当該他のノードは、他の基地局を含む。例えば、受付部451は、ネットワーク通信部430を介して、他のノードにより送信される情報(例えば、メッセージ)を取得することにより、当該他のノードにより行われる通知を受け付ける。
 (制御部453)
 制御部453は、基地局400の無線通信を制御する。例えば、制御部453は、基地局400がセルラーシステム用の周波数帯域又は共用帯域での無線通信を行うように、基地局400の無線通信を制御する。例えば、制御部453は、共用帯域における基地局400の無線通信を開始させ、又は終了させる。
 <4.5.第3の実施形態に係る技術的特徴>
 次に、図19を参照して、第3の実施形態に係る技術的特徴を説明する。
 (キャリアセンス及び通知)
 (a)共用帯域を対象とするキャリアセンス
 基地局300(キャリアセンス部351)は、共用帯域(即ち、セルラーシステムと無線LANとの間で共用される周波数帯域)を対象とするキャリアセンスを行う。即ち、基地局300(キャリアセンス部351)は、上記共用帯域で他のノードにより信号が送信されているかをチェックする。
 (b)通知
 さらに、基地局300(第1制御部353)は、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に(例えば、上記キャリアセンスの結果として上記チャネルで所定時間にわたり他のノードにより信号が送信されていない場合に)、1つ以上の基地局400への通知を行う。一例として、基地局300は、情報(メッセージ)の送信により、上記通知を行う。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおいてより柔軟に使用することが可能になる。より具体的には、例えば、1つ以上の基地局400は、代表基地局である基地局300による通知に応じて、共用帯域での無線通信を行えばよいので、自らキャリアセンスを行わなくてもよい。そのため、基地局400が、共用帯域を対象とするキャリアセンスにおいて、他の基地局(基地局300又は基地局400)により送信される信号を検出し、当該共用帯域を使用できなくなる、ということもない。即ち、上記共用帯域において基地局間での競合が回避され得る。そのため、(例えば、干渉制御などにより)セルラーシステムにおいて共用帯域がより柔軟に使用され得る。
 (b-1)開始タイミングの通知
 例えば、上記通知は、上記共用帯域での無線通信の開始タイミングの通知を含む。即ち、基地局300(第1制御部353)は、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に、上記共用帯域での無線通信の開始タイミングを1つ以上の基地局400に通知する。
 一例として、基地局300(第1制御部353)は、上記開始タイミングの時刻を示す情報(例えば、メッセージ)の送信により、上記開始タイミングの通知を行う。別の例として、基地局300(第1制御部353)は、上記開始タイミングまでの調整時間を示す情報の送信により、上記開始タイミングの通知を行ってもよい。なお、第3の実施形態はこれらの例に限られず、基地局300(第1制御部353)は、上記開始タイミングの特定を可能にする他の情報の送信により、上記開始タイミングの通知を行ってもよい。
 これにより、例えば、共用帯域での無線通信の開始を基地局間で合わせることが可能になる。そのため、例えば、基地局間での干渉制御がより容易になる。また、特定の無線LANノードが長時間にわたり無線通信を行えなくなることが回避され得る。
 (b-2)終了タイミングの通知
 例えば、上記通知は、上記共用帯域での無線通信の終了タイミングの通知を含む。即ち、基地局300(第1制御部353)は、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に、上記共用帯域での無線通信の終了タイミングを1つ以上の基地局400に通知する。
 一例として、基地局300(第1制御部353)は、上記終了タイミングの時刻を示す情報(例えば、メッセージ)の送信により、上記終了タイミングの通知を行う。別の例として、基地局300(第1制御部353)は、上記開始タイミングから上記終了タイミングまでの期間(即ち、上記共用帯域での無線通信が行われる期間)を示す情報の送信により、上記終了タイミングの通知を行ってもよい。なお、第3の実施形態はこれらの例に限られず、基地局300(第1制御部353)は、上記終了タイミングの特定を可能にする他の情報の送信により、上記終了タイミングの通知を行ってもよい。
 これにより、例えば、共用帯域での無線通信の終了を基地局間で合わせることが可能になる。そのため、例えば、特定の無線LANノードが長時間にわたり無線通信を行えなくなることが回避され得る。
 なお、第2の実施形態では、個々の基地局が他の基地局に終了タイミングを通知するが、第3の実施形態では、代表基地局(基地局300)が1つ以上の他の基地局(基地局400)に終了タイミングをまとめて通知する。そのため、第3の実施形態では、多数の基地局が存在する場合(例えば、スモールセルクラスタの場合など)でも、手続きが煩雑にならない。
 (共用帯域でのビジートーンの送信)
 例えば、基地局300は、上記共用帯域での無線通信の開始タイミングまで上記共用帯域でビジートーンを送信する。第2制御部355は、基地局300が上記開始タイミングまで上記共用帯域でビジートーンを送信するように、基地局300による上記共用帯域でのビジートーンの送信を制御する。
 一例として、第2制御部355は、上記開始タイミングまでの上記共用帯域の無線リソースに、ビジートーン用の信号をマッピングする。これにより、基地局300は、上記開始タイミングまで上記共用帯域でビジートーンを送信する。
 これにより、例えば、上記開始タイミングまで上記共用帯域における無線LANノードの無線通信を抑制することが可能になる。
 (共用帯域での無線通信)
 (a)基地局400
 基地局400(受付部451)は、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に基地局300が行う基地局400への通知を受け付ける。そして、基地局400は、上記通知に応じて、上記共用帯域での無線通信を行う。制御部453は、上記通知に応じて、基地局400が上記共用帯域での無線通信を行うように、基地局400の無線通信を制御する。
 一例として、受付部451は、ネットワーク通信部430を介して、基地局300により送信される情報(例えば、メッセージ)を取得することにより、当該他のノードにより行われる通知を受け付ける。
 一例として、制御部453は、上記共用帯域の無線リソースの割当て、上記共用帯域での送信のための送信処理、及び/又は、上記共用帯域での受信のための受信処理などを行うことにより、基地局400の無線通信を制御する。
 (a-1)開始タイミング
 例えば、上記通知は、上記共用帯域での無線通信の開始タイミングの通知を含む。この場合に、基地局400は、当該開始タイミングに従って、上記共用帯域での無線通信を開始する。制御部453は、上記開始タイミングに従って、上記共用帯域における基地局400の無線通信を開始させる。例えば、制御部453は、上記開始タイミングに上記共用帯域における基地局400の無線通信を開始させる。
 一例として、制御部453は、上記開始タイミングに基づいて第1のタイマを設定し、当該第1のタイマを開始する。そして、制御部453は、当該第1のタイマの満了(expiration)後に、上記共用帯域における基地局400の無線通信を開始させる。
 (a-2)終了タイミング
 例えば、上記通知は、上記共用帯域での無線通信の終了タイミングの通知を含む。この場合に、基地局400は、当該終了タイミングに従って、上記共用帯域での無線通信を終了する。制御部453は、上記終了タイミングに従って、上記共用帯域における基地局400の無線通信を終了させる。例えば、制御部453は、上記終了タイミングに上記共用帯域における基地局400の無線通信を終了させる。
 一例として、制御部453は、上記終了タイミングに基づいて第2のタイマを設定し、当該第2のタイマを開始する。そして、制御部453は、当該第2のタイマの満了後に、上記共用帯域における基地局400の無線通信を終了させる。
 (b)基地局300
 例えば、基地局300は、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に、上記共用帯域での無線通信を行う。第2制御部355は、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に、基地局300が上記共用帯域で無線通信を行うように、基地局300の無線通信を制御する。
 一例として、第2制御部355は、上記共用帯域の無線リソースの割当て、上記共用帯域での送信のための送信処理、及び/又は、上記共用帯域での受信のための受信処理などを行うことにより、基地局300の無線通信を制御する。
 (b-1)開始タイミング
 例えば、基地局300は、上記開始タイミングに従って、上記共用帯域での無線通信を開始する。第2制御部355は、上記開始タイミングに従って、上記共用帯域における基地局300の無線通信を開始させる。例えば、第2制御部355は、上記開始タイミングに上記共用帯域における基地局300の無線通信を開始させる。
 一例として、第2制御部355は、上記開始タイミングに基づいて第1のタイマを設定し、当該第1のタイマを開始する。そして、第2制御部355は、当該第1のタイマの満了後に、上記共用帯域における基地局300の無線通信を開始させる。
 (b-2)終了タイミング
 例えば、基地局300は、上記終了タイミングに従って、上記共用帯域での無線通信を終了する。第2制御部355は、上記終了タイミングに従って、上記共用帯域における基地局300の無線通信を終了させる。例えば、第2制御部355は、上記終了タイミングに上記共用帯域における基地局300の無線通信を終了させる。
 一例として、第2制御部355は、上記終了タイミングに基づいて第2のタイマを設定し、当該第2のタイマを開始する。そして、第2制御部355は、当該第2のタイマの満了後に、上記共用帯域における基地局300の無線通信を終了させる。
 (動作の具体例)
 図19を参照して、第3の実施形態に係る基地局300及び基地局400の動作の具体例を説明する。図19は、第3の実施形態に係る基地局300及び基地局400の動作の例を説明するための説明図である。基地局300は、無線LANノード20による共用帯域での信号の送信が終了すると、当該共用帯域を対象とするキャリアセンスを行う。当該キャリアセンスの結果として当該共用帯域が使用可能である場合に、基地局300は、上記共用帯域での無線通信の開始タイミング、及び上記共用帯域での無線通信の終了タイミングを、1つ以上の基地局400に通知する。また、基地局300は、上記開始タイミングまで上記共用帯域でビジートーン(BT)を送信する。そして、基地局300及び上記1つ以上の基地局400は、上記開始タイミングに上記共用帯域での無線通信を開始する。また、基地局300及び上記1つ以上の基地局400は、上記終了タイミングに上記共用帯域での無線通信を終了する。
 <4.6.処理の流れ>
 次に、図20及び図21を参照して、第3の実施形態に係る処理の流れを説明する。
 (第1の処理)
 図20は、第3の実施形態に係る第1の処理の概略的な流れの一例を示すシーケンス図である。当該第1の処理は、基地局300及び基地局400の全体の処理である。
 基地局300は、共用帯域(セルラーシステムと無線LANとの間で共用される周波数帯域)で信号が検出されていることを基地局400に通知する(S1031)。
 そして、基地局300は、上記共用帯域を対象とするキャリアセンスの開始を基地局400に通知する(S1033)。即ち、基地局300は、基地局300が上記キャリアセンスを開始したことを基地局400に通知する
 その後、上記キャリアセンスの結果として上記共用帯域が使用可能である場合に、基地局300は、上記共用帯域での無線通信の開始タイミング、及び上記共用帯域での無線通信の終了タイミングを、1つ以上の基地局400に通知する(S1035)。
 基地局300及び上記1つ以上の基地局400は、上記開始タイミングに上記共用帯域での無線通信を開始する(S1037、S1039)。なお、基地局300は、上記開始タイミングまで、上記共用帯域でビジートーンを送信する。
 また、基地局300及び上記1つ以上の基地局400は、上記終了タイミングに上記共用帯域での無線通信を終了する(S1041、S1043)。
 (第2の処理)
 図21は、第3の実施形態に係る第2の処理の概略的な流れの一例を示すフローチャートである。当該第2の処理は、共用帯域での無線通信の開始又は終了のための処理である。ここでは、当該第2の処理を実行する主体が基地局400(制御部453)である例を説明するが、当該第2の処理は、基地局300(第2制御部355)によっても同様に実行され得る。
 制御部453は、基地局300が基地局400に通知する、上記共用帯域での無線通信の開始タイミングに基づいて、第1のタイマを設定し、当該第1のタイマを開始する(S1051)。また、制御部453は、基地局300が基地局400に通知する、上記共用帯域での無線通信の終了タイミングに基づいて、第2のタイマを設定し、当該第2のタイマを開始する(S1053)。
 その後、上記第1のタイマが満了(expire)すると(S1055:YES)、基地局400は、上記共用帯域での無線通信を開始する(S1057)。即ち、制御部453は、上記共用帯域における基地局400の無線通信を開始させる。
 さらに、上記第2のタイマが満了すると(S1059:YES)、基地局400は、上記共用帯域での無線通信を終了する(S1061)。即ち、制御部453は、上記共用帯域における基地局400の無線通信を終了させる。そして、処理は終了する。
 <<5.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局(基地局100、基地局200、基地局300又は基地局400)は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、上記基地局は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。上記基地局は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、上記基地局として動作してもよい。さらに、上記基地局の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 (第1の応用例)
 図22は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図22に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図22にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図22に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図22に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図22には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図22に示したeNB800において、図7を参照して説明した処理部150に含まれる1つ以上の構成要素(キャリアセンス部151、情報取得部153、第1制御部155及び/又は第2制御部157)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図15を参照して説明した処理部250に含まれる1つ以上の構成要素(キャリアセンス部251、情報取得部253、第1制御部255及び/又は第2制御部257)、図17を参照して説明した処理部350に含まれる1つ以上の構成要素(キャリアセンス部351、第1制御部353及び/又は第2制御部355)、及び図18を参照して説明した処理部450に含まれる1つ以上の構成要素(受付部451及び/又は制御部453)も、処理部150に含まれる上記1つ以上の構成要素と同様である。
 また、図22に示したeNB800において、図7を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。これらの点については、図15を参照して説明したアンテナ部210、無線通信部220及びネットワーク通信部230、図17を参照して説明したアンテナ部310、無線通信部320及びネットワーク通信部330、並びに、図18を参照して説明したアンテナ部410、無線通信部420及びネットワーク通信部430も、アンテナ部110、無線通信部120及びネットワーク通信部130と同様である。
 (第2の応用例)
 図23は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図23に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図23にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図22を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図22を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図23に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図23には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図23に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図23には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図23に示したeNB830において、図7を参照して説明した処理部150に含まれる1つ以上の構成要素(キャリアセンス部151、情報取得部153、第1制御部155及び/又は第2制御部157)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。これらの点については、図15を参照して説明した処理部250に含まれる1つ以上の構成要素(キャリアセンス部251、情報取得部253、第1制御部255及び/又は第2制御部257)、図17を参照して説明した処理部350に含まれる1つ以上の構成要素(キャリアセンス部351、第1制御部353及び/又は第2制御部355)、及び図18を参照して説明した処理部450に含まれる1つ以上の構成要素(受付部451及び/又は制御部453)も、処理部150に含まれる上記1つ以上の構成要素と同様である。
 また、図23に示したeNB830において、例えば、図7を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。これらの点については、図15を参照して説明したアンテナ部210、無線通信部220及びネットワーク通信部230、図17を参照して説明したアンテナ部310、無線通信部320及びネットワーク通信部330、並びに、図18を参照して説明したアンテナ部410、無線通信部420及びネットワーク通信部430も、アンテナ部110、無線通信部120及びネットワーク通信部130と同様である。
 <<6.まとめ>>
 ここまで、図3~図23を参照して、本開示の実施形態に係る各装置及び各処理などを説明した。
 (第1の実施形態)
 第1の実施形態によれば、基地局100は、セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うキャリアセンス部151と、上記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、上記周波数帯域における基地局100の無線通信を制御する第1制御部155と、を備える。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおいてより柔軟に使用することが可能になる。
 (第2の実施形態)
 第2の実施形態によれば、基地局200は、セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を基地局200が終了するタイミングを示す情報を取得する情報取得部253と、上記タイミングを1つ以上の他の基地局に通知する第2制御部257と、を備える。
 また、第2の実施形態によれば、基地局200は、セルラーシステムと無線LANとの間で共用される周波数帯域における基地局200の無線通信を制御する第1制御部255と、上記周波数帯域での無線通信を他の基地局が終了するタイミングを示す情報を取得する情報取得部253と、を備える。第1制御部255は、上記タイミングに従って、上記周波数帯域における基地局200の無線通信を終了させる。
 これにより、例えば、特定の無線LANノードが長時間にわたり無線通信を行えなくなることを回避することが可能になる。
 (第3の実施形態)
 第3の実施形態によれば、基地局300(代表基地局)は、セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行うキャリアセンス部351と、上記キャリアセンスの結果として上記周波数帯域が使用可能である場合に、基地局300に対応する1つ以上の他の基地局への通知を行う第1制御部353と、を備える。
 また、第3の実施形態によれば、基地局400(代表基地局に対応する基地局)は、セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う上記セルラーシステムの代表基地局が、上記キャリアセンスの結果として上記周波数帯域が使用可能である場合に行う、基地局400への通知を受け付ける受付部451と、上記通知に応じて、基地局400が上記周波数帯域での無線通信を行うように、基地局400の無線通信を制御する制御部453と、を備える。
 これにより、例えば、セルラーシステムと無線LANとの間で共用される周波数帯域(即ち、共用帯域)がセルラーシステムにおいてより柔軟に使用することが可能になる。
 以上、添付図面を参照しながら本開示の好適な実施形態を説明したが、本開示は係る例に限定されないことは言うまでもない。当業者であれば、請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。
 例えば、セルラーシステムがLTE、LTE-Advanced、又はこれらに準ずる通信規格に準拠したシステムである例を説明したが、本開示は係る例に限定されない。例えば、セルラーシステムは、他の通信規格に準拠したものであってもよい。
 また、本明細書の処理における処理ステップは、必ずしもフローチャート又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、処理における処理ステップは、フローチャート又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。
 また、本明細書の装置(例えば、基地局、基地局装置、又は基地局装置のためのモジュール)に備えられるプロセッサ(例えば、CPU、DSPなど)を上記装置として機能させるためのコンピュータプログラム(換言すると、上記プロセッサに上記装置の構成要素の動作を実行させるためのコンピュータプログラム)も作成可能である。また、当該コンピュータプログラムを記録した記録媒体も提供されてもよい。また、上記コンピュータプログラムを記憶するメモリと、上記コンピュータプログラムを実行可能な1つ以上のプロセッサとを備える装置(例えば、基地局、基地局装置、又は基地局装置のためのモジュール)も提供されてもよい。また、上記装置の構成要素(例えば、キャリアセンス部、情報取得部、第1制御部及び/又は第2制御部など)の動作を含む方法も、本開示に係る技術に含まれる。
 また、本明細書に記載された効果は、あくまで説明的又は例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記効果とともに、又は上記効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 セルラーシステムと無線LAN(Local Area Network)との間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うキャリアセンス部と、
 前記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、前記周波数帯域における前記セルラーシステムの基地局の無線通信を制御する第1制御部と、
を備える装置。
(2)
 前記所定の無線リソースは、前記周波数帯域の一部である部分帯域の無線リソースである、前記(1)に記載の装置。
(3)
 前記部分帯域は、期間によって変動しない固定帯域である、前記(2)に記載の装置。
(4)
 前記部分帯域は、期間によって変動する帯域である、前記(2)に記載の装置。
(5)
 前記部分帯域は、所定のパターンに従って期間によって変動する帯域である、前記(4)に記載の装置。
(6)
 前記他の無線リソースは、前記周波数帯域の一部である他の部分帯域の無線リソースを含む、前記(2)~(5)のいずれか1項に記載の装置。
(7)
 前記所定の無線リソースは、それぞれ前記周波数帯域の一部である2つ以上の部分帯域の無線リソースである、前記(2)~(6)のいずれか1項に記載の装置。
(8)
 前記第1制御部は、前記キャリアセンスの結果に応じて、前記周波数帯域における前記基地局の無線通信を制御する、前記(1)~(7)のいずれか1項に記載の装置。
(9)
 前記基地局が前記周波数帯域での無線通信を終了するタイミングを1つ以上の他の基地局に通知する第2制御部、
をさらに備える、前記(1)~(8)のいずれか1項に記載の装置。
(10)
 前記1つ以上の他の基地局の各々は、前記基地局の近隣の基地局である、前記(9)に記載の装置。
(11)
 前記1つ以上の他の基地局は、前記セルラーシステムとは異なる他のセルラーシステムの基地局を含む、前記(9)又は(10)に記載の装置。
(12)
 前記セルラーシステムは、第1のオペレータのシステムであり、
 前記他のセルラーシステムは、前記第1のオペレータとは異なる第2のオペレータのシステムである、
前記(11)に記載の装置。
(13)
 前記第1制御部は、他の基地局が前記周波数帯域での無線通信を終了するタイミングに従って、前記周波数帯域における前記基地局の無線通信を終了させる、前記(1)~(12)のいずれか1項に記載の装置。
(14)
 前記周波数帯域は、無線LANのチャネルである、前記(1)~(13)のいずれか1項に記載の装置。
(15)
 前記装置は、前記基地局、又は前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(1)~(14)のいずれか1項に記載の装置。
(16)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うことと、
 前記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、前記周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
を含む方法。
(17)
 セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うことと、
 前記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、前記周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
をプロセッサに実行させるためのプログラム。
(18)
 セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うことと、
 前記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、前記周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(19)
 セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を前記セルラーシステムの基地局が終了するタイミングを示す情報を取得する取得部と、
 前記タイミングを1つ以上の他の基地局に通知する制御部と、
を備える装置。
(20)
 前記1つ以上の他の基地局の各々は、前記基地局の近隣の基地局である、前記(19)に記載の装置。
(21)
 前記1つ以上の他の基地局は、前記セルラーシステムとは異なる他のセルラーシステムの基地局を含む、前記(19)又は(20)に記載の装置。
(22)
 前記セルラーシステムは、第1のオペレータのシステムであり、
 前記他のセルラーシステムは、前記第1のオペレータとは異なる第2のオペレータのシステムである、
前記(21)に記載の装置。
(23)
 前記装置は、前記基地局、又は前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(19)~(22)のいずれか1項に記載の装置。
(24)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの基地局の無線通信を制御する制御部と、
 前記周波数帯域での無線通信を他の基地局が終了するタイミングを示す情報を取得する取得部と、
を備え、
 前記制御部は、前記タイミングに従って、前記周波数帯域における前記基地局の無線通信を終了させる、
装置。
(25)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を前記セルラーシステムの基地局が終了するタイミングを示す情報を取得することと、
 前記タイミングを1つ以上の他の基地局に通知することと、
を含む方法。
(26)
 セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を前記セルラーシステムの基地局が終了するタイミングを示す情報を取得することと、
 前記タイミングを1つ以上の他の基地局に通知することと、
をプロセッサに実行させるためのプログラム。
(27)
 セルラーシステムと無線LANとの間で共用される周波数帯域での無線通信を前記セルラーシステムの基地局が終了するタイミングを示す情報を取得することと、
 前記タイミングを1つ以上の他の基地局に通知することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(28)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
 前記周波数帯域での無線通信を他の基地局が終了するタイミングを示す情報を取得することと、
を含み、
 前記周波数帯域における前記基地局の無線通信を制御することは、前記タイミングに従って前記周波数帯域における前記基地局の無線通信を終了させることを含む、
方法。
(29)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
 前記周波数帯域での無線通信を他の基地局が終了するタイミングを示す情報を取得することと、
をプロセッサに実行させるためのプログラムであり、
 前記周波数帯域における前記基地局の無線通信を制御することは、前記タイミングに従って前記周波数帯域における前記基地局の無線通信を終了させることを含む、
プログラム。
(30)
 セルラーシステムと無線LANとの間で共用される周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
 前記周波数帯域での無線通信を他の基地局が終了するタイミングを示す情報を取得することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体であり、
 前記周波数帯域における前記基地局の無線通信を制御することは、前記タイミングに従って前記周波数帯域における前記基地局の無線通信を終了させることを含む、
記録媒体。
(31)
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行うキャリアセンス部と、
 前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に、前記セルラーシステムの代表基地局に対応する1つ以上の他の基地局への通知を行う第1制御部と、
を備える装置。
(32)
 前記通知は、前記周波数帯域での無線通信の開始タイミングの通知を含む、前記(31)に記載の装置。
(33)
 前記第1制御部は、前記開始タイミングまでの調整時間を示す情報の送信により、前記開始タイミングの通知を行う、前記(32)に記載の装置。
(34)
 前記代表基地局の無線通信を制御する第2制御部、
をさらに備え、
 前記第2制御部は、前記開始タイミングに従って、前記周波数帯域における前記代表基地局の無線通信を開始させる、
前記(32)又は(33)に記載の装置。
(35)
 前記周波数帯域での無線通信の開始タイミングまで前記周波数帯域でビジートーンが送信されるように、前記代表基地局による前記周波数帯域でのビジートーンの送信を制御する第2制御部、
をさらに備える、前記(31)~(34)のいずれか1項に記載の装置。
(36)
 前記通知は、前記周波数帯域での無線通信の終了タイミングの通知を含む、前記(31)~(35)のいずれか1項に記載の装置。
(37)
 前記代表基地局の無線通信を制御する第2制御部、
をさらに備え、
 前記第2制御部は、前記終了タイミングに従って、前記周波数帯域における前記代表基地局の無線通信を終了させる、
前記(36)に記載の装置。
(38)
 前記代表基地局は、スモールセルクラスタのクラスタヘッドである基地局であり、
 前記1つ以上の他の基地局の各々は、前記スモールセルクラスタを形成する他の基地局である、
前記(31)~(37)のいずれか1項に記載の装置。
(39)
 前記代表基地局は、マクロセルの基地局であり、
 前記1つ以上の他の基地局の各々は、前記マクロセルと重なるスモールセルの基地局である、
前記(31)~(37)のいずれか1項に記載の装置。
(40)
 前記装置は、前記代表基地局、前記代表基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(31)~(39)のいずれか1項に記載の装置。
(41)
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う前記セルラーシステムの代表基地局が、前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に行う、前記代表基地局に対応する基地局への通知を受け付ける受付部と、
 前記通知に応じて、前記基地局が前記周波数帯域での無線通信を行うように、前記基地局の無線通信を制御する制御部と、
を備える装置。
(42)
 前記通知は、前記周波数帯域での無線通信の開始タイミングの通知を含み、
 前記制御部は、前記開始タイミングに従って、前記周波数帯域における前記基地局の無線通信を開始させる、
前記(41)に記載の装置。
(43)
 前記通知は、前記周波数帯域での無線通信の終了タイミングの通知を含み、
 前記制御部は、前記終了タイミングに従って、前記周波数帯域における前記基地局の無線通信を終了させる、
前記(41)又は(42)に記載の装置。
(44)
 前記装置は、前記基地局、前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、前記(41)~(43)のいずれか1項に記載の装置。
(45)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行うことと、
 前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に、前記セルラーシステムの代表基地局に対応する1つ以上の他の基地局への通知を行うことと、
を含む方法。
(46)
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行うことと、
 前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に、前記セルラーシステムの代表基地局に対応する1つ以上の他の基地局への通知を行うことと、
をプロセッサに実行させるためのプログラム。
(47)
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行うことと、
 前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に、前記セルラーシステムの代表基地局に対応する1つ以上の他の基地局への通知を行うことと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
(48)
 プロセッサにより、
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う前記セルラーシステムの代表基地局が、前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に行う、前記代表基地局に対応する基地局への通知を受け付けることと、
 前記通知に応じて、前記基地局が前記周波数帯域での無線通信を行うように、前記基地局の無線通信を制御することと、
を含む方法。
(49)
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う前記セルラーシステムの代表基地局が、前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に行う、前記代表基地局に対応する基地局への通知を受け付けることと、
 前記通知に応じて、前記基地局が前記周波数帯域での無線通信を行うように、前記基地局の無線通信を制御することと、
をプロセッサに実行させるためのプログラム。
(50)
 セルラーシステムと無線LANとの間で共用される周波数帯域を対象とするキャリアセンスを行う前記セルラーシステムの代表基地局が、前記キャリアセンスの結果として前記周波数帯域が使用可能である場合に行う、前記代表基地局に対応する基地局への通知を受け付けることと、
 前記通知に応じて、前記基地局が前記周波数帯域での無線通信を行うように、前記基地局の無線通信を制御することと、
をプロセッサに実行させるためのプログラムを記録した読み取り可能な記録媒体。
 1、2、3 通信システム
 10    基地局
 20    無線LANノード
 30    共用帯域
 31、32、33、34、35、36 部分帯域
 41、42、43、44       サブフレーム
 100、200、300、400   基地局
 151、251、351       キャリアセンス部
 153、253           情報取得部
 155、255、353       第1制御部
 157、257、355       第2制御部
 451               受付部
 453               制御部

Claims (16)

  1.  セルラーシステムと無線LAN(Local Area Network)との間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うキャリアセンス部と、
     前記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、前記周波数帯域における前記セルラーシステムの基地局の無線通信を制御する第1制御部と、
    を備える装置。
  2.  前記所定の無線リソースは、前記周波数帯域の一部である部分帯域の無線リソースである、請求項1に記載の装置。
  3.  前記部分帯域は、期間によって変動しない固定帯域である、請求項2に記載の装置。
  4.  前記部分帯域は、期間によって変動する帯域である、請求項2に記載の装置。
  5.  前記部分帯域は、所定のパターンに従って期間によって変動する帯域である、請求項4に記載の装置。
  6.  前記他の無線リソースは、前記周波数帯域の一部である他の部分帯域の無線リソースを含む、請求項2に記載の装置。
  7.  前記所定の無線リソースは、それぞれ前記周波数帯域の一部である2つ以上の部分帯域の無線リソースである、請求項2に記載の装置。
  8.  前記第1制御部は、前記キャリアセンスの結果に応じて、前記周波数帯域における前記基地局の無線通信を制御する、請求項1に記載の装置。
  9.  前記基地局が前記周波数帯域での無線通信を終了するタイミングを1つ以上の他の基地局に通知する第2制御部、
    をさらに備える、請求項1に記載の装置。
  10.  前記1つ以上の他の基地局の各々は、前記基地局の近隣の基地局である、請求項9に記載の装置。
  11.  前記1つ以上の他の基地局は、前記セルラーシステムとは異なる他のセルラーシステムの基地局を含む、請求項9に記載の装置。
  12.  前記セルラーシステムは、第1のオペレータのシステムであり、
     前記他のセルラーシステムは、前記第1のオペレータとは異なる第2のオペレータのシステムである、
    請求項11に記載の装置。
  13.  前記第1制御部は、他の基地局が前記周波数帯域での無線通信を終了するタイミングに従って、前記周波数帯域における前記基地局の無線通信を終了させる、請求項1に記載の装置。
  14.  前記周波数帯域は、無線LANのチャネルである、請求項1に記載の装置。
  15.  前記装置は、前記基地局、又は前記基地局のための基地局装置、又は当該基地局装置のためのモジュールである、請求項1に記載の装置。
  16.  プロセッサにより、
     セルラーシステムと無線LANとの間で共用される周波数帯域の無線リソースのうちの所定の無線リソースを対象とするキャリアセンスを行うことと、
     前記周波数帯域の無線リソースのうちの所定の無線リソースで信号が送信されず、当該所定の無線リソース以外の他の無線リソースで信号が送信されるように、前記周波数帯域における前記セルラーシステムの基地局の無線通信を制御することと、
    を含む方法。
PCT/JP2015/067912 2014-08-29 2015-06-22 装置及び方法 WO2016031366A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/327,479 US10694391B2 (en) 2014-08-29 2015-06-22 Device and method for controlling use of a frequency band shared by a cellular system and wireless system among multiple base stations
EP15836977.7A EP3188526B1 (en) 2014-08-29 2015-06-22 Carrier sensing on shared spectrum between lte-a and wlan

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174904 2014-08-29
JP2014-174904 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031366A1 true WO2016031366A1 (ja) 2016-03-03

Family

ID=55399271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067912 WO2016031366A1 (ja) 2014-08-29 2015-06-22 装置及び方法

Country Status (3)

Country Link
US (1) US10694391B2 (ja)
EP (1) EP3188526B1 (ja)
WO (1) WO2016031366A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016047514A1 (ja) * 2014-09-26 2017-07-13 京セラ株式会社 基地局及びユーザ端末
WO2019193662A1 (ja) * 2018-04-03 2019-10-10 富士通株式会社 基地局装置、端末装置、無線通信システム及び送信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165927A (ja) * 1998-11-24 2000-06-16 Toshiba Corp 無線通信システム、通信制御装置、無線基地局、および無線通信方法
JP2009194855A (ja) * 2008-02-18 2009-08-27 Hitachi Kokusai Electric Inc 列車無線システム
WO2013006988A1 (en) * 2011-07-14 2013-01-17 Renesas Mobile Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
JP2013520938A (ja) * 2010-02-24 2013-06-06 インターデイジタル パテント ホールディングス インコーポレイテッド アグリゲートビーコンを送信する方法および装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006094001A (ja) 2004-09-22 2006-04-06 Ntt Docomo Inc 移動通信システムおよび周波数帯割当装置ならびに周波数帯割当方法
WO2011123791A1 (en) * 2010-04-02 2011-10-06 Interdigital Patent Holdings, Inc. Dynamic control channel monitoring set for multi-carrier operations
US9750019B2 (en) * 2010-09-23 2017-08-29 Interdigital Patent Holdings, Inc. Channel access systems and methods for cognitive relaying for cellular systems
US9622249B2 (en) * 2010-12-20 2017-04-11 Nokia Technologies Oy Apparatus and method to set a control channel configuration in a communication system
US9693264B2 (en) 2011-04-18 2017-06-27 Lg Electronics Inc. Signal transmission method and device in a wireless communication system
WO2013078663A1 (en) * 2011-12-01 2013-06-06 Renesas Mobile Corporation Methods and devices enabling resource sharing for device-to-device communication in unlicensed band
US9420472B2 (en) * 2013-09-27 2016-08-16 Qualcomm Incorporated Prioritization of different operators in shared spectrum
US9220115B2 (en) * 2013-10-23 2015-12-22 Qualcomm Incorporated Techniques for channel access in asynchronous unlicensed radio frequency spectrum band deployments
US9924368B2 (en) * 2013-12-11 2018-03-20 Qualcomm Incorporated Apparatus and methods for cellular communications over unused unlicenced spectrum
US9681325B2 (en) * 2013-12-19 2017-06-13 Qualcomm Incorporated Channel and interference measurement in LTE/LTE-A networks including unlicensed spectrum
US9706572B2 (en) * 2014-04-30 2017-07-11 Qualcomm Incorporated Techniques for obtaining and maintaining access to a wireless communication medium
WO2016027855A1 (ja) * 2014-08-21 2016-02-25 日本電信電話株式会社 無線通信システム、無線通信方法、連携制御装置、端末装置、及び、ライセンスバンド基地局装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000165927A (ja) * 1998-11-24 2000-06-16 Toshiba Corp 無線通信システム、通信制御装置、無線基地局、および無線通信方法
JP2009194855A (ja) * 2008-02-18 2009-08-27 Hitachi Kokusai Electric Inc 列車無線システム
JP2013520938A (ja) * 2010-02-24 2013-06-06 インターデイジタル パテント ホールディングス インコーポレイテッド アグリゲートビーコンを送信する方法および装置
WO2013006988A1 (en) * 2011-07-14 2013-01-17 Renesas Mobile Corporation Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL -LUCENT SHANGHAI BELL ET AL.: "Considerations on LBT Enhancements for Licensed-Assisted Access", R1-144083, 3GPP, 10 August 2014 (2014-08-10), pages 1 - 6, XP050895043 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016047514A1 (ja) * 2014-09-26 2017-07-13 京セラ株式会社 基地局及びユーザ端末
WO2019193662A1 (ja) * 2018-04-03 2019-10-10 富士通株式会社 基地局装置、端末装置、無線通信システム及び送信方法

Also Published As

Publication number Publication date
US20170201888A1 (en) 2017-07-13
EP3188526B1 (en) 2020-12-02
EP3188526A1 (en) 2017-07-05
EP3188526A4 (en) 2018-04-04
US10694391B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
US11553526B2 (en) Receiver assisted transmissions in NRU
US11991031B2 (en) Multi-user(MU) transmission for soliciting acknowledgement(ACK) from a target base station
JP6559863B2 (ja) 非ライセンス帯域を介したlte(登録商標)チャネルアクセス
US11855931B2 (en) Channel access schemes for wireless local area network (WLAN) with full-duplex radios
JP6961484B2 (ja) 端末、無線通信方法及びシステム
EP3075189B1 (en) Wifi virtual carrier sense for lte/wifi co-channel coordination
EP3313140B1 (en) Method for setting nav in wireless communication system, and related device
JP6917905B2 (ja) 端末、無線通信方法、基地局及びシステム
US20180132278A1 (en) Methods, apparatus and systems for procedures for carrier sense multiple access and spatial reuse in sub-channelized wireless local area networks (wlans)
JP6239672B2 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017121301A1 (zh) 传输数据的方法和装置
WO2016182046A1 (ja) ユーザ端末および無線通信方法
US20190238272A1 (en) Wireless communication terminal and wireless communication method for multi-user concurrent transmission
US11357046B2 (en) Method and apparatus for controlling signal transmission of terminal supporting plurality of carriers
JP6687567B2 (ja) 無線基地局及び無線通信方法
KR102148654B1 (ko) 무선랜 시스템에서 멀티 유저 프레임 전송 방법
WO2016031366A1 (ja) 装置及び方法
JP6496938B2 (ja) 装置
JP2019208278A (ja) 基地局装置、ユーザ装置、基地局装置の制御方法及びユーザ装置の制御方法
JP6705378B2 (ja) 装置及びシステム
EP3793234A1 (en) Transmitter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15327479

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015836977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836977

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP