WO2016031247A1 - 非酵素的核酸鎖結合方法 - Google Patents

非酵素的核酸鎖結合方法 Download PDF

Info

Publication number
WO2016031247A1
WO2016031247A1 PCT/JP2015/004294 JP2015004294W WO2016031247A1 WO 2016031247 A1 WO2016031247 A1 WO 2016031247A1 JP 2015004294 W JP2015004294 W JP 2015004294W WO 2016031247 A1 WO2016031247 A1 WO 2016031247A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
group
acid chain
electrophile
phosphorothioate
Prior art date
Application number
PCT/JP2015/004294
Other languages
English (en)
French (fr)
Inventor
阿部 洋
豪斗 丸山
Original Assignee
国立研究開発法人科学技術振興機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人科学技術振興機構 filed Critical 国立研究開発法人科学技術振興機構
Priority to US15/505,656 priority Critical patent/US10570385B2/en
Priority to JP2016544965A priority patent/JP6703948B2/ja
Priority to EP15836978.5A priority patent/EP3187584B1/en
Publication of WO2016031247A1 publication Critical patent/WO2016031247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/34Polynucleotides, e.g. nucleic acids, oligoribonucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6811Selection methods for production or design of target specific oligonucleotides or binding molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Definitions

  • the present invention relates to a method for binding a nucleic acid chain to a nucleic acid chain by a chemical reaction without depending on an enzymatic reaction, a method for determining a base sequence of a nucleic acid chain and a method for introducing a functional nucleic acid molecule into a cell using this method. More specifically, the present invention relates to a non-enzymatic nucleic acid chain binding method capable of forming a bond between nucleic acid strands with a natural structure or a similar structure.
  • RNA interference is important in the fields of molecular biology, pharmacy and medicine as a technique for specifically suppressing the expression of a target gene.
  • RNAi can be induced by introducing a short double-stranded RNA of 20 to 23 nucleotides, called siRNA (small interfering RNA), into a cell.
  • siRNA small interfering RNA
  • siRNA is a small molecule, cell membrane permeability is not sufficient, and stability in serum is insufficient, so there is room for improvement in RNAi induction efficiency by siRNA.
  • siRNA has a problem that it activates innate immunity via a pattern recognition receptor such as Toll-like receptor.
  • the present inventors have disclosed a method of constructing a functional molecule in a cell by introducing a functional nucleic acid molecule such as siRNA into the cell in a form that can be easily taken up into the cell (non-contained). (See also Patent Document 1).
  • This method is a method for constructing a functional nucleic acid molecule composed of one or two nucleic acid strands, and includes the following steps 1) and 2).
  • intracellular built-up method an electrophilic group is bonded to the “corresponding terminal” of one fragment and a nucleophilic group is bonded to the “corresponding terminal” of the other fragment, and the fragments are bonded to each other by these chemical reactions.
  • an iodoacetyl group, a bromoacetyl group, or an iodo group is used as an electrophilic group
  • a phosphorothioate group is used as a nucleophilic group
  • ribose of two fragments is linked by these chemical reactions.
  • a structure that does not exist in the natural nucleic acid chain is generated due to the electrophilic group and the nucleophilic group bonded to the fragment of the functional nucleic acid molecule. That is, in a natural nucleic acid chain, ribose is bonded by a phosphodiester bond, but an interribose bond formed by a chemical reaction between an iodoacetyl group or the like and a phosphorothioate group does not exist in the natural nucleic acid chain. A structure containing sulfur atoms results. In order to sufficiently function a functional nucleic acid molecule constructed in a cell, it is considered preferable to prevent such a non-natural structure from being introduced.
  • the main object of the present invention is to provide a technique for joining a nucleic acid chain and a nucleic acid chain with a natural structure or a similar structure thereto.
  • the present invention provides the following [1] to [14].
  • [1] A method of binding a nucleic acid chain and a nucleic acid chain without depending on an enzymatic reaction,
  • a non-enzymatic nucleic acid chain binding method comprising a step of reacting a nucleic acid chain having a phosphorothioate group with a nucleic acid chain having a hydroxyl group or an amino group in the presence of an electrophile.
  • the nucleotide has a phosphorothioate group at the 5′-position or the 3′-position, and a labeling substance bonded to the phosphorothioate group via a disulfide bond, [6]
  • a method for introducing a functional nucleic acid molecule into a cell A nucleic acid chain having a phosphorothioate group, which can constitute the functional nucleic acid molecule, and a nucleic acid chain having a nucleic acid chain having a hydroxyl group or an amino group, which can constitute the functional nucleic acid molecule;
  • a method for introducing a functional nucleic acid molecule into a cell A nucleic acid chain having a phosphorothioate group, which can constitute the functional nucleic acid molecule, and an activation procedure for reacting with an electrophile to bind the electrophile to the phosphorothioate group;
  • a nucleic acid chain having a phosphorothioate group to which the electrophile is bound is combined with the nucleic acid chain having the hydroxyl group or amino group by the action of the electrophile to generate the functional nucleic acid molecule in the cell.
  • a kit for non-enzymatic binding of nucleic acid strands A reagent for thiophosphorylating a nucleic acid strand; An electrophile; And a nucleoside having an amino group at the 5′-position or the 3′-position.
  • a kit for non-enzymatic binding of nucleic acid strands A nucleic acid chain having a phosphorothioate group; An electrophile; And a nucleic acid chain having a hydroxyl group or an amino group.
  • the present invention provides a non-enzymatic binding technique for binding a nucleic acid chain and a nucleic acid chain with a natural structure or a similar structure, and a method for determining the base sequence of a nucleic acid chain.
  • Example 3 is a diagram illustrating an activation reaction of a 3′-terminal phosphorothioate group with 1-fluoro-2,4-dinitrobenzene (Example 1).
  • Example 1 which is a figure explaining the analysis result of the reaction product of activation reaction by 1-fluoro- 2, 4- dinitrobenzene of 3 'terminal phosphorothioate group.
  • Example 1 which is a figure explaining the coupling
  • Example 1 which is a figure explaining the analysis result of the reaction product of the coupling reaction of the DNA strand which has a phosphorothioate group in 3 'terminal, and the DNA strand which has an amino group in 5' terminal.
  • Example 2 which is a figure explaining the coupling
  • Example 2 which is a figure explaining the analysis result of the binding reaction efficiency of the DNA chain which has a phosphorothioate group in 3 'terminal, and the DNA chain which has a hydroxyl group in 5' terminal.
  • Example 3 which is a figure explaining the coupling
  • Example 3 which is a figure explaining the analysis result of the binding reaction efficiency of the RNA chain
  • Example 4 which is a figure explaining the result of the luciferase gene expression suppression test by siRNA created by the nucleic acid chain
  • Nucleic acid chain binding method comprises a nucleic acid chain having a phosphorothioate group (hereinafter referred to as “nucleic acid chain 1”) in the presence of an electrophile, a nucleic acid chain having a hydroxyl group or an amino group (Hereinafter referred to as “nucleic acid chain 2”).
  • FIG. 1 shows a nucleic acid chain binding reaction in the nucleic acid chain binding method according to the present invention. The figure shows a case where the nucleic acid strand 1 and the nucleic acid strand 2 are formed in a double strand formation (hybridization) state with a nucleic acid strand having a base sequence complementary to both nucleic acid strands.
  • nucleic acid chain binding method first, a nucleic acid chain having a phosphorothioate group at the 5 'end or 3' end is used as the nucleic acid chain 1.
  • Introduction of a phosphorothioate group at the 5 ′ end or 3 ′ end of the nucleic acid strand 1 can be performed by a conventionally known method (Nucleic® Acids® Symposium® Series, 2007, No. 51, pp.353-354, Bioconjugate Chem, 2008). , Vol.19, pp.327-333, see Non-Patent Document 1).
  • the “nucleic acid chain” is not limited to those consisting of natural nucleic acids (DNA and RNA), but hydrogen can be obtained by chemically modifying the base, sugar, and phosphate diester portion of the natural nucleic acid. Also included are artificial nucleic acids (such as LNA and BNA) whose physical properties such as binding mode, higher order structure and polarity are changed.
  • LNA and BNA artificial nucleic acids
  • the length of the nucleic acid chain to be combined is not particularly limited, and the lengths of the two nucleic acid chains to be combined may be different.
  • the electrophile used in the nucleic acid chain binding method according to the present invention is not particularly limited as long as it is a compound that activates a phosphorothioate group and enables a binding reaction with a hydroxyl group or an amino group.
  • the electrophile may be a compound having a leaving group capable of nucleophilic substitution with the oxygen atom of the hydroxyl group or the nitrogen atom of the amino group.
  • the electrophile for example, the following compounds can be used.
  • R 1 , R 2 and R 3 each independently represents a NO 2 group, an OCOCH 3 group, a CN group, a CF 3 group, a CO 2 H group, a CO 2 CH 3 group or an NH 2 group
  • L represents a leaving group selected from F, Cl, SO 3 H and SO 2 NR 4 ;
  • R 4 represents NH 2 , NHPh, or NHPh—OCH 3 .
  • R 1 , R 2 , R 3 and R 4 are not limited to the specific substituents or leaving groups exemplified above, and other groups can be adopted as long as the effects of the present invention are exhibited. .
  • nucleic acid chain 2 has a hydroxyl group
  • Specific examples of the compounds of formula (I) and formula (II) include the following compounds.
  • R ′ 2 is the same as R 4 described above.
  • 1-fluoro-2,4-dinitrobenzene or trinitrochlorobenzene is exemplified as a suitable compound (see Examples).
  • the following compounds are also mentioned as an electrophile.
  • electrophile for example, compounds described in JP-A No. 2001-194762, JP-A No. 2001-035550, JP-A No. 2000-1000048, JP-A No. 10-337195, and the like may be used. is there.
  • the electrophile removes the leaving group (fluorine atom in the figure) and binds to the sulfur atom of the phosphorothioate group of the nucleic acid chain 1 at the site where the leaving group was bound. .
  • a nucleic acid chain 1 having a phosphorothioate group and an electrophilic group bonded to the phosphorothioate group is generated as an intermediate.
  • the electrophile nucleophilically substitutes for the oxygen atom of the hydroxyl group of the nucleic acid chain 2 or the nitrogen atom of the amino group, and replaces the sulfur atom from the phosphorothioate group of the nucleic acid chain 1 and the hydrogen atom from the hydroxyl group or amino group of the nucleic acid chain 2. Extract and detach. As a result, the nucleic acid chain 1 and the nucleic acid chain 2 are bonded between the phosphorus atom of the phosphate group of the nucleic acid chain 1 and the oxygen atom or nitrogen atom of the nucleic acid chain 2.
  • the activation of the phosphorothioate group of the nucleic acid chain 1 by an electrophile and the nucleophilic substitution of the electrophile for the oxygen atom or nitrogen atom of the nucleic acid chain 2 may be carried out in an appropriate buffer, such as the reaction temperature and reaction time.
  • an appropriate buffer such as the reaction temperature and reaction time.
  • the activation of the phosphorothioate group of the nucleic acid chain 1 by the electrophile and the nucleophilic substitution of the electrophile for the oxygen atom or nitrogen atom of the nucleic acid chain 2 may be performed in two steps. You may carry out by reaction of these.
  • FIG. 2C shows the structure of the binding site when the nucleic acid chain 2 has a hydroxyl group
  • FIG. 2D shows the structure of the binding site when the nucleic acid chain 2 has an amino group.
  • FIG. 2 (A) shows conventional enzymatic binding using DNA / RNA ligase
  • FIG. 2 (B) shows conventional non-enzymatic binding (Nucleic® Acids® Symposium® Series, 2007, No. 51, p.353-354, Bioconjugate Chem , 2008, Vol.19, p.327-333, see Non-Patent Document 1, etc.).
  • the structure of the binding site is a phosphodiester bond similar to that of a natural nucleic acid (see (A)).
  • a structure containing a sulfur atom (see the dotted circle in (B)) that does not exist in the natural nucleic acid chain occurs at the binding site.
  • Such a non-natural structure containing a sulfur atom is different from a natural phosphodiester bond in terms of properties such as distance between atoms and charge, in order to express a desired biological activity in the nucleic acid strand after the bond. May not be preferred.
  • the structure of the binding site can be the same phosphodiester bond as that of the natural nucleic acid (see (C)).
  • the binding site has an amino group, the binding site has a structure in which a nitrogen atom is monosubstituted (see (D)).
  • the structure containing this nitrogen atom is non-natural, the difference in properties (such as distance and charge between atoms) from the natural phosphodiester bond is small compared to the structure containing a sulfur atom. It is considered that the nucleic acid chain has little influence on the biological activity. In fact, as will be described later in Examples, it has been confirmed that the binding structure containing this nitrogen atom does not affect the gene suppression effect activity of siRNA.
  • FIG. 2 shows an example in which the phosphorothioate group is present at the 3 ′ end of the nucleic acid chain 1 and the hydroxyl group or amino group is present at the 5 ′ end of the nucleic acid chain 2.
  • the phosphorothioate group may be present at the 5 'end of the nucleic acid chain 1, and the hydroxyl group or amino group may be present at the 3' end of the nucleic acid chain.
  • the conventional enzymatic bond requires that the 5 'position is a phosphate group and the 3' position is a hydroxyl group.
  • kits for use in the above-described nucleic acid chain binding method comprises: (A) a nucleic acid chain having a phosphorothioate group; (B) an electrophile; (C) a nucleic acid chain having a hydroxyl group or an amino group.
  • a kit for non-enzymatic binding of nucleic acid strands according to the present invention is: (A) a reagent for thiophosphorylating a nucleic acid chain; (B) an electrophile; (C) A nucleoside having an amino group at the 5′-position or the 3′-position may be included.
  • the nucleic acid chain having the phosphorothioate group of the configuration (A) is the nucleic acid chain 1 described above.
  • the thiophosphorylation reagent of configuration (a) prepares a nucleic acid chain (nucleic acid chain 1) having a phosphorothioate group by preparing a nucleic acid chain to be bound by a user in advance and introducing a sulfur atom into the phosphate group of the nucleic acid chain. Used to do.
  • nucleic acid chain having the hydroxyl group or amino group of the configuration (C) is the nucleic acid chain 2 described above.
  • nucleoside having the configuration (c) a nucleic acid chain to be bound by a user is prepared in advance, and a nucleic acid chain (nucleic acid chain) having a hydroxyl group or an amino group by introducing an amino group at the 5′-position or 3′-position of the nucleic acid chain Used to prepare 2).
  • nucleic acid chain 2 can be obtained by binding a natural or other artificial nucleoside such as cytosine.
  • the kit according to the present invention is used for the activation reaction of the phosphorothioate group of the nucleic acid chain 1 with an electrophile or the nucleophilic substitution reaction for the oxygen atom or nitrogen atom of the nucleic acid chain 2 of the electrophile in addition to the above-described configuration.
  • the reaction solution and buffer solution may be included.
  • the kit according to the present invention may contain a labeling substance (fluorescent substance), a primer, a reducing agent (DTT), etc., which will be described later, when used for reading the base sequence of a nucleic acid chain described below.
  • the method for binding nucleic acid chains according to the present invention can be applied to reading (sequence) the base sequence of a nucleic acid chain.
  • the method for determining the base sequence of a nucleic acid chain according to the present invention includes the following procedure.
  • a complementary strand having a base sequence complementary to the nucleic acid strand and having a phosphorothioate group at the 5 ′ end or 3 ′ end is hydroxylated at the 3′-position or 5′-position in the presence of an electrophile.
  • a procedure of reacting with a mixture of nucleosides having an amino group and differently labeled depending on the base wherein the nucleotide has a phosphorothioate group at the 5′-position or the 3′-position, and the phosphorothioate group via a disulfide bond
  • a labeled substance bound thereto is a mixture of nucleosides having an amino group and differently labeled depending on the base (wherein the nucleotide has a phosphorothioate group at the 5′-position or the 3′-position, and the phosphorothioate group via a
  • sequences have been performed using PCR amplification products as templates.
  • a reaction solution containing a template, a primer, a DNA polymerase, dNTP (a mixture of four types of deoxyribonucleotide triphosphates), and ddNTP (a fluorescently labeled dNTP that stops the DNA elongation reaction) is prepared.
  • the extension reaction is initiated from the 3 ′ end of the specifically annealed primer.
  • the extension reaction proceeds while dNTP containing a base complementary to the template is bound to the sequence reaction product, but the reaction stops when ddNTP is randomly incorporated into the sequence reaction product.
  • Each sequence reaction product has a different size, and fluorescently labeled ddNTP is incorporated at the 3 'end of each product.
  • the sequence reaction products are size-separated by a capillary array, and the fluorescence from each sequence reaction product is read to reveal a base sequence complementary to the template, whereby the base sequence of the template can be determined.
  • the sequence applying the nucleic acid chain binding method according to the present invention in principle, it is possible to carry out using a single molecule of nucleic acid as a template without amplifying the target nucleic acid by PCR. .
  • FIG. 3 the procedure of the method for determining the base sequence of the nucleic acid chain according to the present invention will be described.
  • a complementary strand (primer) having a base sequence complementary to a nucleic acid strand to be read (target strand) is prepared.
  • This primer may be designed in the same manner as the conventional sequencing method.
  • a phosphorothioate group is introduced at the 3 ′ end of the primer.
  • nucleoside mixture having an amino group (or hydroxyl group) at the 5 'position and a phosphorothioate group at the 3' position is prepared.
  • Each nucleoside in the nucleoside mixture has a labeling substance bonded to the 3'-position phosphorothioate group via a disulfide bond.
  • This nucleoside mixture is a mixture of nucleosides in which any one of adenine, guanine, cytosine, and thymine is bonded to the 1'-position, and a labeling substance having different characteristics is modified depending on the base to which each nucleoside is bonded.
  • the labeling substance may be a fluorescent substance similar to the conventional sequencing method.
  • the primer is reacted with the nucleoside mixture in the presence of an electrophile.
  • the primer and the nucleoside are bound by the activation of the phosphorothioate group at the 3 ′ end of the primer with an electrophile and the nucleophilic substitution reaction of the electrophile with the nitrogen atom (or oxygen atom) of the nucleoside.
  • Procedure (2) In this procedure, the fluorescence from the fluorescent substance of the nucleoside bound to the primer is detected.
  • the detection of fluorescence may be performed in the same manner as in the conventional sequencing method.
  • Procedure (3) In this procedure, a fluorescent substance bonded to a nucleoside through a disulfide bond is released. As a result, the phosphorothioate group is again introduced into the 3 ′ end of the extended primer.
  • the cleavage of the disulfide bond may be performed using a general-purpose reducing agent such as dithiothreitol (DTT).
  • DTT dithiothreitol
  • Procedure (4) By repeating the above steps (1) to (3), the primer is extended while nucleosides containing bases complementary to the template are bonded one by one. At this time, each time one base is extended, fluorescence from the fluorescent substance is detected, and based on the fluorescence, a base sequence complementary to the target strand is determined, and thereby the base sequence of the target strand is determined. Can be determined.
  • the primer extension reaction is carried out by binding to the phosphorothioate group at the 3 'end of the primer and the amino group (or hydroxyl group) at the 5' position of the nucleoside.
  • the phosphorothioate group may be present at the 5 'end of the nucleic acid chain 1, and the hydroxyl group or amino group may be present at the 3' end of the nucleic acid chain.
  • nucleic acid chain binding method it is possible to perform the primer extension reaction by binding the hydroxyl group or amino group at the 3 ′ end of the primer and the phosphorothioate group at the 5 ′ position of the nucleoside. .
  • the method for introducing a functional nucleic acid molecule into a cell according to the present invention includes the following procedures.
  • (1-1) a nucleic acid chain having a phosphorothioate group, which can constitute the functional nucleic acid molecule, and a nucleic acid chain having a nucleic acid chain having a hydroxyl group or an amino group, which can constitute the functional nucleic acid molecule;
  • An electrophile The introduction procedure to introduce into the cell.
  • the method for introducing a functional nucleic acid molecule into a cell according to the present invention may include the following procedure. (1-2) a nucleic acid chain having a phosphorothioate group, which can constitute the functional nucleic acid molecule, and an activation procedure for reacting with an electrophile to bind the electrophile to the phosphorothioate group; An introduction procedure for introducing a nucleic acid chain having a nucleic acid chain having a hydroxyl group or an amino group and a nucleic acid chain having a phosphorothioate group bound to the electrophile into a cell, which can constitute the functional nucleic acid molecule.
  • the method for introducing a functional nucleic acid molecule into a cell according to the present invention can be carried out by applying the nucleic acid binding method according to the present invention in the “intracellular built-up method” disclosed in Patent Document 1. The outline of the procedure will be described below.
  • Procedure (1-1) In this procedure, a functional nucleic acid molecule is made into two or more nucleic acid strands (fragments), a phosphorothioate group is introduced into one nucleic acid strand, and introduced into a cell together with the other nucleic acid strand having a hydroxyl group or an amino group and an electrophile. .
  • the “functional nucleic acid molecule” is a nucleic acid in which a plurality of nucleic acids are linked in a chain (that is, oligo or polynucleotide) and exhibits a predetermined function against life phenomena such as development and differentiation. Refers to a molecule.
  • the functional nucleic acid molecule may be a DNA molecule, an RNA molecule, or a DNA / RNA hybrid molecule.
  • the functional nucleic acid molecule may be composed of one nucleic acid chain or may be composed of two nucleic acid chains.
  • the functional nucleic acid molecule may contain a non-natural nucleic acid in a part thereof.
  • the above DNA molecule includes, for example, DNA aptamer; CpG motif; DNAzyme;
  • the base is a DNA strand and RNA and / or a non-natural nucleic acid are introduced in part are classified as DNA molecules.
  • the RNA molecule include an RNA aptamer; an RNA molecule (RNAi nucleic acid molecule for RNAi) showing RNA interference such as shRNA, siRNA, and microRNA; an antisense RNA molecule; an RNA ribozyme;
  • RNA molecules include a DNA / RNA hybrid aptamer;
  • a functional nucleic acid molecule is one that hybridizes within a nucleic acid molecule or forms a hybridized region that hybridizes between different nucleic acid molecules in order to exert its function.
  • the functional nucleic acid molecule is more preferably an RNAi nucleic acid molecule having a hybridizing region formed by hybridizing within a nucleic acid molecule or between different nucleic acid molecules, and more preferably an RNAi nucleic acid molecule comprising two nucleic acid strands. It is.
  • the length (mer) of a nucleic acid molecule for RNAi comprising a double-stranded nucleic acid strand is, for example, 15 to 40 mer, preferably 15 to 35 mer, and more preferably 20 to 35 mer.
  • the lengths of the two nucleic acid strands (sense strand and antisense strand) constituting the nucleic acid molecule for RNAi may be different.
  • the sense strand is 13 mer or more
  • the antisense strand is 19 mer or more.
  • nucleic acid chain that can constitute a functional nucleic acid molecule corresponds to a nucleic acid fragment obtained by dividing a functional nucleic acid molecule into two or more.
  • a functional nucleic acid molecule is constructed.
  • the “nucleic acid strand that can constitute a functional nucleic acid molecule” is two nucleic acid fragments obtained by dividing the sense strand into, for example, 10 mer.
  • an antisense strand (for example, 24 mer) can be divided into four nucleic acid strands of 6 mer each.
  • a single nucleic acid molecule for RNAi can be constructed by linking the nucleic acid fragment of the sense strand (10 mer ⁇ 2) and the nucleic acid fragment of the antisense strand (6 mer ⁇ 4) in an appropriate order.
  • a nucleic acid strand that can constitute a functional nucleic acid molecule is not intended to generate a nucleic acid strand by once constructing a functional nucleic acid molecule and then dividing it.
  • the lengths of a plurality of nucleic acid chains derived from one functional nucleic acid molecule are not particularly limited, and may be different from each other.
  • the nucleic acid chain can be prepared by a chemical synthesis method such as the phosphoramidite method and the H-phosphonate method, an in vitro transcription synthesis method, a method using a plasmid or a viral vector, a method using a PCR cassette, or the like.
  • the introduction of the nucleic acid chain and the electrophile into the cell is carried out by adding a nucleic acid chain and an electrophile to the cell culture after performing a treatment for enhancing the substance permeability of the cell membrane by a conventionally known method, or This can be done by contacting the cell surface.
  • a nucleic acid chain and an electrophile for example, an electroporation method, a microinjection method, a lipofection method, a calcium phosphate method, and the like can be applied.
  • examples of in vivo introduction methods include local administration, intravenous administration, and a method using a gene gun.
  • a pharmaceutical composition for example, a liposome preparation
  • a pharmaceutically acceptable carrier if necessary.
  • nucleic acid chain and the electrophile may be mixed together and introduced into the cell as a composition by a single operation, or may be introduced separately into the cell.
  • two or more nucleic acid chains for constructing a functional nucleic acid molecule may be introduced into the cell by a single operation, or each may be introduced separately into the cell.
  • the target cell is not particularly limited, and may be either a prokaryotic cell or a eukaryotic cell.
  • eukaryotic cells include cells derived from fungi, plants and animals.
  • animal cells include non-mammalian cells such as insect cells and mammalian cells. Mammalian cells include rodents such as mice, rats and guinea pigs, non-human animal cells such as rabbits, dogs and cats, or human cells.
  • the cell may be a cultured cell or a living cell (an unisolated cell in the living body).
  • a preferable example of the cell is a cultured stem cell of human and various animals (including cells having universal differentiation ability or multipotency such as ES cell, iPS cell, and mesenchymal stem cell).
  • procedure (1-2) first, a nucleic acid chain having a phosphorothioate group is reacted with an electrophile to bind the electrophile to the phosphorothioate group to activate the phosphorothioate group (activation procedure). Thereafter, a nucleic acid chain having a nucleic acid chain having a hydroxyl group or an amino group and a nucleic acid chain having a phosphorothioate group bound to an electrophile are introduced into the cell (introduction procedure).
  • Procedure (2-1) In this procedure, in a cell, a nucleic acid chain having a phosphorothioate group is bonded to a nucleic acid chain having a hydroxyl group or an amino group by the action of an electrophile to generate a functional nucleic acid molecule.
  • a functional nucleic acid molecule may be generated by causing an interaction such as hybridization within the functional nucleic acid molecule or between different nucleic acid molecules.
  • a nucleic acid chain having a phosphorothioate group to which an electrophile is bound even if the nucleic acid chain having a phosphorothioate group is introduced into a cell by the action of the electrophile, the nucleic acid chain having a hydroxyl group or an amino group
  • the functional nucleic acid molecule can be produced in the cell by binding (procedure (2-2)).
  • the method for introducing a functional nucleic acid molecule into a cell according to the present invention, at least a part of the nucleic acid chain constituting the functional nucleic acid molecule is introduced into the cell as a plurality of fragments, and the functional nucleic acid molecule is constructed in the cell. be able to. Accordingly, uptake of functional nucleic acid molecules into cells is improved. Moreover, since at least a part of the nucleic acid chain is used as a shorter fragment, an immune response to the functional nucleic acid molecule can be suppressed.
  • Example 1 Binding of a DNA strand having a phosphorothioate group at the 3 'end and a DNA strand having an amino group at the 5'end> (1) Activation of 3′-terminal phosphorothioate group with 1-fluoro-2,4-dinitrobenzene DNA having 3′-end phosphorothioate group (3′PS DNA) and 1-fluoro-2,4-dinitrobenzene (DNFB) ) Were mixed to synthesize DNA (3′DNP-PS DNA) in which 2,4-dinitrobenzene of DNFB was bound to the sulfur atom of the phosphorothioate group (see FIG. 4).
  • DNA and RNA were synthesized by a DNA synthesizer (GeneWorld® H8-SE) based on the phosphoramidite method.
  • amidite reagent 3′-Phosphate CPG (Glen Research) and phosphorylation reagent (Glen reserch) were used for phosphorylation at the 5 ′ end or 3 ′ end, respectively. Thiolation was performed using Sulfurizing® Reagent® (Glen® Research).
  • FAM Fluorescein
  • 3′PS DNA The phosphorothioate group of 3′PS DNA was activated by incubating a mixed solution prepared with the following composition at 25 ° C. for 1 hour.
  • 3'PS DNA 200 ⁇ M DNFB (200 mM in DMSO) 20 mM Sodium borate buffer (100 mM, pH 8.5) 20 mM Adjust final volume to 100 ⁇ L with water
  • FIG. 1 The result of analyzing the product by HPLC is shown in FIG.
  • the conditions of HPLC are as follows. Column: Hydrosphere C18 (YMC), S-5 ⁇ m, 12 nm, 250 ⁇ 4.6 mm I.D. Buffer concentration: 5-50% (0-15 min) Solution A: 5% acetonitrile, aqueous solution containing 50 mM TEAA Solution B: 100% acetonitrile
  • the binding reaction was performed by incubating a mixed solution prepared at the following composition at 25 ° C. 3'DNP-PS DNA 2 ⁇ M 5'NH 2 DNA 4 ⁇ M Phosphate buffer (100 mM, pH 8.0, 7.0, 6.0) 20 mM MgCl 2 10 mM Adjust final volume to 25 ⁇ L with water
  • Example 2 Binding of a DNA strand having a phosphorothioate group at the 3 'end and a DNA strand having a hydroxyl group at the 5'end> (1) Activation of the 3′-terminal phosphorothioate group with trinitrochlorobenzene The procedure described in Procedure 1 of Example 1 except that the electrophile was changed from DNFB to trinitrochlorobenzene (TNCB). 'The terminal phosphorothioate group was activated (see Figure 8).
  • the binding reaction was performed by incubating a mixed solution prepared at the following composition at 25 ° C. 3'-TNP-PS DNA 2 ⁇ M 5'OH DNA 4 ⁇ M Trinitrochlorobenzene (100 mM in DMSO) 10 mM Sodium phospahte buffer (100 mM, pH 7.0) 20 mM MgCl 2 10 mM Adjust final volume to 25 ⁇ L with water
  • FIG. 9 shows the results of electrophoresis of the products sampled after 1, 4, 8, and 12 hours and calculating the efficiency of the nucleic acid chain binding reaction by band quantification.
  • the reaction efficiency was 10% or more.
  • Example 3 Binding of RNA strand having phosphorothioate group at 5 'end and RNA strand having amino group at 3'end> (1) Activation of 5 ′ terminal phosphorothioate group with 1-fluoro-2,4-dinitrobenzene RNA having a phosphorothioate group at the 5 ′ end (5 ′ PS RNA) and DNFB are mixed, and DNFB is added to the sulfur atom of the phosphorothioate group. RNA to which 2,4-dinitrobenzene was bound (5′DNP-PS RNA) was synthesized (see FIG. 10). The reaction conditions are the same as in Example 1.
  • FIG. 11 shows the result of electrophoresis of the product and calculation of the efficiency of the nucleic acid chain binding reaction by band quantification.
  • the efficiency of the nucleic acid chain binding reaction was 80% or more under pH 8 conditions.
  • Example 4 Inhibition of gene expression by siRNA> A gene expression suppression test was performed using siRNA that was prepared by binding RNA strands according to the method described in Example 3 and that had a formamidate bond in the strand.
  • Cells transfected with luciferase are cultured in DMEM (Wako) medium containing 10% FBS at 37 ° C, 5% CO 2 , and 100 ⁇ L each in a 96-well plate, 4.0 ⁇ 10 3 cells / well Sowing.
  • the cells were further cultured at 37 ° C. under 5% CO 2 for 24 hours, and in a state of about 60% confluence, siRNA was co-transfected using the transfection reagent Lipofectamine 2000 (invitrogen) according to the protocol attached to the reagent.
  • the cells were incubated at 37 ° C. under 5% CO 2 for 6 hours, and the medium was replaced with DMEM medium containing 10% FBS. After further incubation at 37 ° C. for 18 hours, Luciferase Assay System (Promega) was used to quantify the luciferase expression level according to the attached protocol.
  • Luciferase Assay System Promega
  • scramble RNA indicates the result of negative control
  • siRNA indicates the result of positive control.
  • the scrambled siRNA refers to RNA having the same nucleotide composition ratio as that of siRNA for suppressing a target gene and having a sequence different from any gene. That is, scrambled siRNA is foreign RNA that does not affect the expression of cellular genes.
  • siRNA produced by the binding method according to the present invention (“Phosphoroamideate-type ligated siRNA” in the figure) showed a gene suppression effect equivalent to or higher than that of normal siRNA. From this result, it was shown that a functional nucleic acid molecule maintaining physiological activity can be prepared by the binding method according to the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 核酸鎖と核酸鎖とを、天然型の構造あるいはこれに類似の構造によって結合するための技術として、核酸鎖と核酸鎖とを酵素反応に依らずに結合させる方法であって、ホスホロチオエート基を有する核酸鎖を、求電子剤の存在下で、水酸基又はアミノ基を有する核酸鎖と反応させる手順を含む、非酵素的核酸鎖結合方法を提供する。

Description

非酵素的核酸鎖結合方法
 本発明は、酵素反応に依らず化学反応によって核酸鎖と核酸鎖とを結合する方法、これを応用した核酸鎖の塩基配列の決定方法及び機能性核酸分子の細胞内導入方法に関する。より詳しくは、核酸鎖間の結合を、天然型構造又はこれに類似の構造で形成可能な非酵素的核酸鎖結合方法等に関する。
 RNA干渉(RNA interference:RNAi)は、標的とする遺伝子の発現を特異的に抑制するための手法として、分子生物学、薬学及び医学等の分野で重要となっている。RNAiは、siRNA(small interfering RNA)と称される、20~23ヌクレオチドの短い2本鎖RNAを細胞内に導入することによって誘導できる。しかし、siRNAは、小分子であるものの細胞膜透過性が十分でなく、また血清中での安定性も不十分であるために、siRNAによるRNAiの誘導効率には改善の余地があった。また、siRNAは、Toll-like receptorなどのパターン認識受容体を介して自然免疫を活性化してしまうという問題がある。
 本発明者らは、特許文献1において、siRNAなどの機能性核酸分子を細胞に取り込み容易な形態にして細胞内に導入し、細胞内で機能性分子を構築する方法を開示している(非特許文献1も参照)。この方法は、1または2本の核酸鎖からなる機能性核酸分子の構築法であって、以下の工程1)および2)を含んでいる。
1)化学反応により相互結合する官能基対を対応する末端に付した2以上の断片を細胞内に導入する導入工程、
2)上記細胞内で上記官能基同士を反応させて断片同士を結合し、1または2本の核酸鎖からなる機能性核酸分子を生成する生成工程。
 上記の方法は、機能性核酸分子を構成する核酸鎖の少なくとも一部を複数の断片として細胞に導入し、細胞内で機能性核酸分子を構築させるものである(以下「細胞内ビルトアップ法」とも称する)。この方法では、一方の断片の「対応する末端」に求電子基を、他方の断片の「対応する末端」に求核基を結合させ、これらの化学反応により断片同士を結合させている。具体的には、求電子基としてヨードアセチル基、ブロモアセチル基又はヨード基を、求核基としてホスホロチオエート基を用い、これらの化学反応によって2つの断片のリボースを連結させている。
国際公開第2013/129663号
Chem. Commun., 2014, 50, 1284-1287
 特許文献1に記載される「細胞内ビルトアップ法」によれば、機能性核酸分子をより短い断片として用いることができるため、機能性核酸分子の細胞への取り込みが向上し、機能性核酸分子に起因する免疫応答も抑制できる。
 しかし、当該方法では、機能性核酸分子の断片に結合させた求電子基及び求核基に起因して、天然の核酸鎖には存在しない構造が生じてしまう。すなわち、天然の核酸鎖では、リボースはホスホジエステル結合によって結合されているが、ヨードアセチル基等とホスホロチオエート基との化学反応によって形成されるリボース間結合には、天然の核酸鎖には存在しない、硫黄原子を含む構造が生じる。細胞内で構築した機能性核酸分子を十分に機能させるためには、このような非天然型の構造が導入されないようにすることが好ましいと考えられる。
 そこで、本発明は、核酸鎖と核酸鎖とを、天然型の構造あるいはこれに類似の構造によって結合するための技術を提供することを主な目的とする。
 上記の課題を解決するために、本発明は、以下の[1]~[14]を提供する。
[1]核酸鎖と核酸鎖とを酵素反応に依らずに結合させる方法であって、
ホスホロチオエート基を有する核酸鎖を、求電子剤の存在下で、水酸基又はアミノ基を有する核酸鎖と反応させる手順を含む、非酵素的核酸鎖結合方法。
[2]前記ホスホロチオエート基が核酸鎖の3’末端に、前記水酸基又はアミノ基が核酸鎖の5’末端に存在する、[1]の非酵素的核酸鎖結合方法。
[3]前記ホスホロチオエート基が核酸鎖の5’末端に、前記水酸基又はアミノ基が核酸鎖の3’末端に存在する、[1]の非酵素的核酸鎖結合方法。
[4]前記求電子剤が下記式(I)又は式(II)で示される化合物である、[1]~[3]のいずれかの非酵素的核酸鎖結合方法。
Figure JPOXMLDOC01-appb-C000001
(式中、R1、R2及びR3は、それぞれ独立してNO2基、OCOCH3基、CN基、CF3基、CO2H基、CO2CH3基又はNH2基を示し、
Lは、F、Cl、SO3H及びSO2NR4から選択される脱離基を示し、
4は、NH2、NHPh、NHPh-OCH3を示す。)
[5]前記求電子剤が、1-フルオロ-2,4-ジニトロベンゼン又はトリニトロクロロベンゼンである、[4]の非酵素的核酸鎖結合方法。
[6]核酸鎖の塩基配列の決定方法であって、
前記核酸鎖に相補的な塩基配列を有し、5’末端又は3’末端にホスホロチオエート基を有する相補鎖を、求電子剤の存在下で、3’位又は5’位に水酸基又はアミノ基を有し、塩基に応じて異なる標識がされたヌクレオシドの混合物と反応させる手順と、
前記相補鎖に結合したヌクレオシドの標識からの信号を検出する手順と、
前記信号に基づいて、塩基核酸鎖の塩基配列を決定する手順と、を含む方法。
[7]前記ヌクレオチドは、5’位又は3’位のホスホロチオエート基と、該ホスホロチオエート基にジスルフィド結合を介して結合した標識物質とを有し、
該標識物質からの信号を検出した後、前記ジスルフィド結合を還元して前記標識物質を前記相補鎖から遊離させる手順を含む、[6]の方法。
[8]機能性核酸分子を細胞内に導入する方法であって、
前記機能性核酸分子を構成し得る、ホスホロチオエート基を有する核酸鎖と、前記機能性核酸分子を構成し得る、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、
求電子剤と、
を細胞内に導入する導入手順を含む方法。
[9]前記ホスホロチオエート基を有する核酸鎖を、前記求電子剤の作用により、前記水酸基又はアミノ基を有する核酸鎖と結合させて、前記機能性核酸分子を細胞内で生成させる組立手順を含む、[8]記載の方法。
[10]機能性核酸分子を細胞内に導入する方法であって、
前記機能性核酸分子を構成し得る、ホスホロチオエート基を有する核酸鎖と、求電子剤と反応させて、ホスホロチオエート基に求電子剤を結合させる活性化手順と、
前記機能性核酸分子を構成し得る、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、前記求電子剤が結合したホスホロチオエート基を有する核酸鎖と、を細胞内に導入する導入手順と、を含む方法。
[11]前記求電子剤が結合したホスホロチオエート基を有する核酸鎖を、該求電子剤の作用により、前記水酸基又はアミノ基を有する核酸鎖と結合させて、前記機能性核酸分子を細胞内で生成させる組立手順を含む、[10]の方法。 
[12]核酸鎖の非酵素的結合のためのキットであって、
核酸鎖をチオリン酸化するための試薬と、
求電子剤と、
5’位又は3’位にアミノ基を有するヌクレオシドと、を含むキット。
[13]核酸鎖の非酵素的結合のためのキットであって、
ホスホロチオエート基を有する核酸鎖と、
求電子剤と、
水酸基又はアミノ基を有する核酸鎖と、を含んでなるキット。
[14]ホスホロチオエート基と、該ホスホロチオエート基に結合された求電子基とを有する核酸鎖。
 本発明により、核酸鎖と核酸鎖とを、天然型の構造あるいはこれに類似の構造によって結合するための非酵素的結合技術及び核酸鎖の塩基配列の決定方法が提供される。
本発明に係る核酸鎖結合方法における核酸鎖の結合反応を説明する図である。 本発明及び従来技術に係る核酸鎖結合方法により形成される結合部位の構造を説明する図である。(A)はリガーゼを用いた従来の酵素的結合、(B)は従来の非酵素的結合、(C)及び(D)は本発明に係る結合により生じる構造を示す。 本発明に係る核酸鎖の塩基配列の決定方法の手順を説明する図である。 3’末端ホスホロチオエート基の1-フルオロ-2,4-ジニトロベンゼンによる活性化反応を説明する図である(実施例1)。 3’末端ホスホロチオエート基の1-フルオロ-2,4-ジニトロベンゼンによる活性化反応の反応生成物の解析結果を説明する図である(実施例1)。 3’末端にホスホロチオエート基を有するDNA鎖と5’末端にアミノ基を有するDNA鎖との結合反応を説明する図である(実施例1)。 3’末端にホスホロチオエート基を有するDNA鎖と5’末端にアミノ基を有するDNA鎖との結合反応の反応生成物の解析結果を説明する図である(実施例1)。 3’末端にホスホロチオエート基を有するDNA鎖と5’末端に水酸基を有するDNA鎖との結合反応を説明する図である(実施例2)。 3’末端にホスホロチオエート基を有するDNA鎖と5’末端に水酸基を有するDNA鎖との結合反応効率の解析結果を説明する図である(実施例2)。 5’末端にホスホロチオエート基を有するRNA鎖と3’末端にアミノ基を有するRNA鎖との結合反応を説明する図である(実施例3)。 5’末端にホスホロチオエート基を有するRNA鎖と3’末端にアミノ基を有するRNA鎖との結合反応効率の解析結果を説明する図である(実施例3)。 本発明に係る核酸鎖結合方法により作成したsiRNAによるルシフェラーゼ遺伝子発現抑制試験の結果を説明する図である(実施例4)。
 以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
1.核酸鎖の結合方法
 本発明に係る核酸鎖結合方法は、ホスホロチオエート基を有する核酸鎖(以下「核酸鎖1」と称する)を、求電子剤の存在下で、水酸基又はアミノ基を有する核酸鎖(以下「核酸鎖2」と称する)と反応させる手順を含む。図1に、本発明に係る核酸鎖結合方法における核酸鎖の結合反応を示す。図では、核酸鎖1と核酸鎖2とを、両核酸鎖に相補的な塩基配列を有する核酸鎖との2本鎖形成(ハイブリダイズ)状態で行う場合を示している。
 本発明に係る核酸鎖結合方法では、まず、核酸鎖1として、5’末端又は3’末端にホスホロチオエート基を有する核酸鎖を用いる。核酸鎖1の5’末端又は3’末端へのホスホロチオエート基の導入は、従来公知の手法によって行うことができる(Nucleic Acids Symposium Series, 2007, No. 51, p.353-354, Bioconjugate Chem, 2008, Vol.19, p.327-333, 非特許文献1等参照)。
 ここで、本発明において、「核酸鎖」には、天然型の核酸(DNA及びRNA)からなるものに限られず、天然型核酸の塩基、糖、リン酸ジエステル部に化学修飾を加えることで水素結合様式や高次構造さらには極性などの物性を変化させた人工核酸(LNA及びBNAなど)からなるものも含まれるものとする。本明細書で天然型核酸鎖に関して用いる「5’位」、「3’位」、「5’末端」、「3’末端」及び「リボース」等の用語は、非天然型核酸鎖についてはその化学修飾の態様に応じて適宜同一の意味の用語に読み替えられ得るものである。また、本発明に係る核酸鎖の結合方法において、結合対象とする核酸鎖の長さは特に限定されず、結合する2つの核酸鎖の長さは異なっていてもよい。
 本発明に係る核酸鎖結合方法に用いられる求電子剤は、ホスホロチオエート基を活性化して水酸基又はアミノ基との結合反応を可能とする化合物であれば特に限定されない。求電子剤は、水酸基の酸素原子又はアミノ基の窒素原子と求核置換可能な、脱離基を有する化合物であればよい。求電子剤には、例えば、以下の化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000002
(式中、R1、R2及びR3は、それぞれ独立してNO2基、OCOCH3基、CN基、CF3基、CO2H基、CO2CH3基又はNH2基を示し、
Lは、F、Cl、SO3H及びSO2NR4から選択される脱離基を示し、
4は、NH2、NHPh、NHPh-OCH3を示す。)
 なお、R1、R2、R3及びR4は、上記に例示した具体的な置換基又は脱離基に限定されず、本発明の効果を奏する限りにおいて他の基を採用することもできる。
 これらのうち、核酸鎖2が水酸基を有する場合には、より反応性が高い式(I)の化合物を用いることが好ましい。式(I)及び式(II)の化合物として、具体的には以下の化合物が例示される。ここで、R’2は、上記のR4と同じである。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 これらのうち、1-フルオロ-2,4-ジニトロベンゼン又はトリニトロクロロベンゼンが好適な化合物として例示される(実施例参照)。また、求電子剤として以下の化合物も挙げられる。
Figure JPOXMLDOC01-appb-C000007
 さらに、求電子剤としては、例えば特開2001-194762号公報、特開2001-035550号公報、特開2000-100487号公報、特開平10-337195号公報などに記載の化合物も使用できる場合がある。
 図1に示すように、求電子剤は、脱離基(図ではフッ素原子)を脱離させて、当該脱離基が結合していた部位において核酸鎖1のホスホロチオエート基の硫黄原子に結合する。これにより、ホスホロチオエート基と、該ホスホロチオエート基に結合された求電子基とを有する核酸鎖1が中間体として生成する。
 さらに、求電子剤は、核酸鎖2の水酸基の酸素原子又はアミノ基の窒素原子と求核置換し、核酸鎖1のホスホロチオエート基から硫黄原子を、核酸鎖2の水酸基又はアミノ基から水素原子を抜き取って脱離する。これによって、核酸鎖1のリン酸基のリン原子と、核酸鎖2の酸素原子又は窒素原子との間で、核酸鎖1と核酸鎖2が結合される。
 核酸鎖1のホスホロチオエート基の求電子剤による活性化と、求電子剤の核酸鎖2の酸素原子又は窒素原子に対する求核置換は、適当な緩衝液中で行えばよく、反応温度及び反応時間等についても特に制限はない。この点、DNA/RNAリガーゼを用いた従来の酵素的結合では、酵素の活性を維持するために反応液の組成やpH,反応温度を最適化しておく必要があった。
 また、核酸鎖1のホスホロチオエート基の求電子剤による活性化と、求電子剤の核酸鎖2の酸素原子又は窒素原子に対する求核置換は、2段階の反応に分けて行ってもよく、1段階の反応で行ってもよい。
 核酸鎖2が水酸基を有する場合の結合部位の構造を図2(C)に、核酸鎖2がアミノ基を有する場合の結合部位の構造を図2(D)に示す。図2(A)は、DNA/RNAリガーゼを用いた従来の酵素的結合、(B)は従来の非酵素的結合(Nucleic Acids Symposium Series, 2007, No. 51, p.353-354, Bioconjugate Chem, 2008, Vol.19, p.327-333, 非特許文献1等参照)によって生じる構造を示す。
 従来の酵素的結合では、結合部位の構造は、天然型核酸と同様のホスホジエステル結合となる((A)参照)。一方、ホスホロチオエート基とヨードアセチル基を用いる従来の非酵素的結合では、結合部位に、天然の核酸鎖には存在しない、硫黄原子を含む構造((B)中、点線丸印参照)が生じる。このような硫黄原子を含む非天然型の構造は、天然型のリン酸ジエステル結合とは原子間の距離や電荷などの性質が異なり、結合後の核酸鎖に所望の生物活性を発現させるためには好ましくない場合がある。
 これに対して、本発明に係る方法では、核酸鎖2が水酸基を有する場合には、結合部位の構造は、天然型核酸と同様のホスホジエステル結合とできる((C)参照)。また、核酸鎖2がアミノ基を有する場合には、結合部位は、窒素原子が一置換した構造となる((D)参照)。この窒素原子を含む構造は非天然型であるものの、天然型のリン酸ジエステル結合との性質(原子間の距離や電荷など)の相違が硫黄原子を含む構造に比べて小さいので、結合後の核酸鎖の生物活性に与える影響は少ないと考えられる。事実、実施例において後述するように、この窒素原子を含む結合構造は、siRNAの遺伝子抑制効果活性に影響を与えないことが確認されている。
 図2では、ホスホロチオエート基が核酸鎖1の3’末端に、水酸基又はアミノ基が核酸鎖2の5’末端に存在する例を示した。本発明に係る核酸鎖結合方法においては、ホスホロチオエート基が核酸鎖1の5’末端に、水酸基又はアミノ基が核酸鎖の3’末端に存在していてもよい。この点、従来の酵素的結合では、5’位がリン酸基で3’位が水酸基であることが必要であった。
2.キット
 本発明は、上述した核酸鎖の結合方法の実施に供されるキットをも提供する。本発明に係る核酸鎖の非酵素的結合のためのキットは、
(A)ホスホロチオエート基を有する核酸鎖と、
(B)求電子剤と、
(C)水酸基又はアミノ基を有する核酸鎖と、を含む。
 あるいは、本発明に係る核酸鎖の非酵素的結合のためのキットは、
(a)核酸鎖をチオリン酸化するための試薬と、
(B)求電子剤と、
(c)5’位又は3’位にアミノ基を有するヌクレオシドと、を含んでなるものであってもよい。
 構成(A)のホスホロチオエート基を有する核酸鎖は、上述した核酸鎖1である。構成(a)のチオリン酸化試薬は、ユーザが結合対象とする核酸鎖を予め用意し、当該核酸鎖のリン酸基に硫黄原子を導入してホスホロチオエート基を有する核酸鎖(核酸鎖1)を調製するために用いられる。
 また、構成(C)の水酸基又はアミノ基を有する核酸鎖は、上述した核酸鎖2である。構成(c)のヌクレオシドは、ユーザが結合対象とする核酸鎖を予め用意し、当該核酸鎖の5’位又は3’位にアミノ基を導入して水酸基又はアミノ基を有する核酸鎖(核酸鎖2)を調製するために用いられる。ユーザは、予め用意する核酸鎖を、核酸鎖2よりも1ヌクレオシドだけ短いものとして調製し、当該核酸鎖の5’位又は3’位に、アミノ基を有するアデニン、グアニン、チミン(ウラシル)、シトシンなどの天然型あるいはその他の人工型のヌクレオシドを結合させることによって、核酸鎖2を得ることができる。
 本発明に係るキットは、上述した構成に加えて、核酸鎖1のホスホロチオエート基の求電子剤による活性化反応、あるいは求電子剤の核酸鎖2の酸素原子又は窒素原子に対する求核置換反応に用いられる反応液及び緩衝液などを含んでいてもよい。さらに、本発明に係るキットは、次に説明する核酸鎖の塩基配列の読み取りに用いられる場合、後述する標識物質(蛍光物質)やプライマー、還元剤(DTT)などを含んでいてもよい。
3.核酸鎖の塩基配列の決定方法
 本発明に係る核酸鎖の結合方法は、核酸鎖の塩基配列の読み取り(シークエンス)に応用が可能である。
 すなわち、本発明に係る核酸鎖の塩基配列の決定方法は、以下の手順を含む。
(1)前記核酸鎖に相補的な塩基配列を有し、5’末端又は3’末端にホスホロチオエート基を有する相補鎖を、求電子剤の存在下で、3’位又は5’位に水酸基又はアミノ基を有し、塩基に応じて異なる標識がされたヌクレオシドの混合物と反応させる手順(ここで、前記ヌクレオチドは、5’位又は3’位のホスホロチオエート基と、該ホスホロチオエート基にジスルフィド結合を介して結合した標識物質とを有する)。
(2)前記相補鎖に結合したヌクレオシドの標識からの信号を検出する手順。
(3)前記ジスルフィド結合を還元して前記標識物質を前記相補鎖から遊離させる手順。(4)前記信号に基づいて、塩基核酸鎖の塩基配列を決定する手順。
 従来、シークエンスは、PCR増幅産物をテンプレートとして行われていた。具体的には、テンプレート、プライマー、DNAポリメラーゼ、dNTP(4種類のデオキシリボヌクレオチド三リン酸の混合物)、ddNTP(蛍光標識され、DNAの伸長反応を止めるdNTP)を含む反応液を調製し、テンプレートに特異的にアニーリングしたプライマーの3’末端から伸長反応を開始する。伸長反応は、テンプレートと相補的な塩基を含むdNTPをシークエンス反応産物に結合させながら進行するが、ddNTPがランダムにシークエンス反応産物に取り込まれると反応が停止する。それぞれのシークエンス反応産物はサイズが異なり、各産物の3’末端には蛍光標識されたddNTPが取り込まれている。シークエンス反応産物をキャピラリーアレイでサイズ分離し、各シークエンス反応産物からの蛍光を読み取ることで、テンプレートに相補的な塩基配列が明らかとなり、これによってテンプレートの塩基配列を決定することができる。
 これに対して、本発明に係る核酸鎖の結合方法を応用したシークエンスでは、原理的には、読み取り対象核酸をPCRにより増幅することなく、一分子の核酸をテンプレートして行うことが可能である。図3を参照して、本発明に係る核酸鎖の塩基配列の決定方法の手順を説明する。
手順(1)
 まず、読み取り対象核酸鎖(ターゲット鎖)に相補的な塩基配列を有する相補鎖(プライマー)を用意する。このプライマーは、従来のシークエンス法と同様にして設計すればよい。プライマーの3’末端には、ホスホロチオエート基が導入されている。
 次に、5’位にアミノ基(又は水酸基)を有し、3’位にホスホロチオエート基を有するヌクレオシド混合物を用意する。ヌクレオシド混合物中の各ヌクレオシドは、3’位のホスホロチオエート基にジスルフィド結合を介して結合した標識物質を有している。このヌクレオシド混合物は、アデニン、グアニン、シトシン及びチミンのいずれかの塩基が1’位に結合したヌクレオシドの混合物であり、それぞれ結合する塩基に応じて異なる特性を示す標識物質が修飾されている。標識物質は、従来のシークエンス法と同様の蛍光物質であってよい。
 本手順では、プライマーを、求電子剤の存在下で、ヌクレオシド混合物と反応させる。当該反応では、プライマーの3’末端のホスホロチオエート基の求電子剤による活性化と、ヌクレオシドの窒素原子(又は酸素原子)による求電子剤の求核置換反応によってプライマーとヌクレオシドが結合され、プライマーが伸長する。
手順(2)
 本手順では、プライマーに結合したヌクレオシドの蛍光物質からの蛍光を検出する。蛍光の検出は、従来のシークエンス法と同様にして行えばよい。
手順(3)
 本手順では、ヌクレオシドにジスルフィド結合を介して結合した蛍光物質を遊離させる。これにより、伸長したプライマーの3’末端は、再度、ホスホロチオエート基が導入された状態となる。ジスルフィド結合の切断は、ジチオスレイトール(DTT)などの汎用の還元剤を用いて行えばよい。
手順(4)
 上記の手順(1)~(3)を繰り返すことで、テンプレートと相補的な塩基を含むヌクレオシドを1つずつ結合させながらプライマーを伸長させる。この際、一塩基分を伸長させる毎に、蛍光物質からの蛍光の検出を行うことで、該蛍光に基づいて、ターゲット鎖に相補的な塩基配列を決定し、これによってターゲット鎖の塩基配列を決定することができる。
 ここでは、プライマーの3’末端のホスホロチオエート基、ヌクレオシドの5’位のアミノ基(又は水酸基)との結合によってプライマーの伸長反応を行う例を説明した。本発明に係る核酸鎖結合方法においては、上述の通り、ホスホロチオエート基が核酸鎖1の5’末端に、水酸基又はアミノ基が核酸鎖の3’末端に存在していてもよい。このため、本発明に係る核酸鎖の結合方法においても、プライマーの3’末端の水酸基又はアミノ基と、ヌクレオシドの5’位のホスホロチオエート基との結合によってプライマーの伸長反応を行うことが可能である。
4.機能性核酸分子の細胞内導入方法
 本発明に係る核酸鎖の結合方法は、前述した「細胞内ビルトアップ法」にも応用が可能である。
 すなわち、本発明に係る機能性核酸分子の細胞内導入方法は、以下の手順を含む。
(1-1)前記機能性核酸分子を構成し得る、ホスホロチオエート基を有する核酸鎖と、前記機能性核酸分子を構成し得る、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、
求電子剤と、
を細胞内に導入する導入手順。
(2-1)前記ホスホロチオエート基を有する核酸鎖を、前記求電子剤の作用により、前記水酸基又はアミノ基を有する核酸鎖と結合させて、前記機能性核酸分子を細胞内で生成させる組立手順。
 あるいは、本発明に係る機能性核酸分子の細胞内導入方法は、以下の手順を含むものであってもよい。
(1-2)前記機能性核酸分子を構成し得る、ホスホロチオエート基を有する核酸鎖と、求電子剤と反応させて、ホスホロチオエート基に求電子剤を結合させる活性化手順と、
前記機能性核酸分子を構成し得る、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、前記求電子剤が結合したホスホロチオエート基を有する核酸鎖と、を細胞内に導入する導入手順。
(2-2)前記求電子剤が結合したホスホロチオエート基を有する核酸鎖を、該求電子剤の作用により、前記水酸基又はアミノ基を有する核酸鎖と結合させて、前記機能性核酸分子を細胞内で生成させる組立手順。
 本発明に係る機能性核酸分子の細胞内導入方法は、特許文献1に開示される「細胞内ビルトアップ法」において、本発明に係る核酸結合方法を適用することによって実施できる。以下に手順の概要を説明する。
手順(1-1)
 本手順では、機能性核酸分子を2以上の核酸鎖(断片)とし、一方の核酸鎖にホスホロチオエート基を導入し、水酸基又はアミノ基を有する他方の核酸鎖及び求電子剤とともに細胞内に導入する。
 ここで、「機能性核酸分子」とは、複数個の核酸が鎖状に連結してなり(すなわち、オリゴまたはポリヌクレオチド)、発生・分化等の生命現象に対して所定の機能を発揮する核酸分子を指す。
 機能性核酸分子は、DNA分子、RNA分子、またはDNA・RNAハイブリッド分子であってよい。機能性核酸分子は、1本の核酸鎖から構成されるものであっても、2本の核酸鎖から構成されるものであってもよい。また、機能性核酸分子は、その一部に非天然型核酸を含んでいてもよい。
 上記DNA分子には、例えば、DNAアプタマー;CpGモチーフ;DNAザイム;等が含まれる。なお、本明細書において、ベースがDNA鎖であり、一部にRNAおよび/または非天然型核酸が導入されているものは、DNA分子に分類する。上記RNA分子には、例えば、RNAアプタマー;shRNA、siRNA、およびmicroRNA等のRNA干渉作用を示すRNA分子(RNAi用核酸分子);アンチセンスRNA分子;RNAリボザイム;等が含まれる。なお、本明細書において、ベースがRNA鎖であり、一部にDNAおよび/または非天然型核酸が導入されているものは、RNA分子に分類する。DNA・RNAハイブリッド分子としては、例えば、DNA・RNAハイブリッドアプタマー;等が挙げられる。
 機能性核酸分子は、その機能を発揮するために、核酸分子内でハイブリダイズするか、または異なる核酸分子間でハイブリダイズするハイブリダイズ領域を形成するものである。機能性核酸分子は、より好ましくは、核酸分子内または異なる核酸分子間でハイブリダイズしてなるハイブリダイズ領域を持つRNAi用核酸分子であり、さらに好ましくは2本の核酸鎖からなるRNAi用核酸分子である。2本鎖の核酸鎖からなるRNAi用核酸分子の長さ(mer)は、例えば、15~40merであり、好ましくは15~35merであり、より好ましくは20~35merである。ここで、RNAi用核酸分子を構成する2本の核酸鎖(センス鎖、アンチセンス鎖)の長さは異なっていてもよく、通常、センス鎖は13mer以上、アンチセンス鎖は19mer以上とされる。
 また、「機能性核酸分子を構成し得る核酸鎖」とは、機能性核酸分子を2以上に分割した核酸断片に相当する。そして、一つの機能性核酸分子に由来する全ての核酸鎖を適切な順序で連結すると機能性核酸分子が構築される。上記のRNAi用核酸分子において、センス鎖が20merである場合、「機能性核酸分子を構成し得る核酸鎖」とは、センス鎖を例えば10merずつに分割した2つの核酸断片である。また、同様に、アンチセンス鎖(例えば24mer)についても、これを例えば6merずつの4本の核酸鎖に分割することができる。センス鎖の核酸断片(10mer×2)とアンチセンス鎖の核酸断片(6mer×4)を適切な順序で連結することにより、一つのRNAi用核酸分子を構築できる。ただし、「機能性核酸分子を構成し得る核酸鎖」とは、機能性核酸分子を一度構築した後にこれを分断して当該核酸鎖を生成することを意図するものではない。また、一つの機能性核酸分子に由来する複数の核酸鎖の長さもそれぞれ特に限定されるものではなく、互いに異なっていてもよい。
 核酸鎖の調製は、ホスホロアミダイト法及びH-ホスホネート法等の化学合成方法、in vitro transcription合成方法、プラスミドもしくはウイルスベクターを用いる方法、またはPCRカセットによる方法等によって行うことができる。
 核酸鎖及び求電子剤の細胞内への導入は、従来公知の手法により細胞膜の物質透過性を亢進させる処理を行った上で、核酸鎖及び求電子剤を細胞の培養中に添加する、あるいは細胞表面に接触させることにより行うことができる。また、in vitroにおける導入方法としては、例えば、エレクトロポレーション法、マイクロインジェクション法、リポフェクション法、およびリン酸カルシウム法等も適用できる。さらに、in vivoにおける導入方法としては、例えば、局所投与、静脈内投与、および遺伝子銃を用いる方法等が挙げられる。in vivoに適用する場合、必要に応じて、薬学的に許容可能な担体と組み合わせて薬学的組成物(例えば、リポソーム製剤等)を製造してもよい。
 また、核酸鎖及び求電子剤は、全てを混合して組成物として一度の操作で細胞内に導入してもよいし、別々に細胞内に導入してもよい。また、機能性核酸分子を構築するための2以上の核酸鎖を、一度の操作で細胞内に導入してもよいし、それぞれを別々に細胞内に導入してもよい。
 対象となる細胞は、特に限定されず、原核細胞及び真核細胞の何れでもよい。真核細胞としては、菌類、植物及び動物等に由来する細胞が挙げられる。動物細胞としては、昆虫細胞等の非哺乳類細胞及び哺乳類細胞が挙げられる。哺乳類細胞としては、マウス、ラット、モルモット等のげっ歯類、ウサギ、イヌ、およびネコ等の非ヒト動物の細胞又はヒトの細胞が挙げられる。また、細胞は、培養細胞でもよいし、生体細胞(生体内にある単離されていない細胞)でもよい。細胞の好ましい一例は、ヒト及び各種動物の培養幹細胞(ES細胞、iPS細胞、間葉系幹細胞などの万能分化能あるいは多分化能を有する細胞を含む)である。
 本手順(1-1)は、ホスホロチオエート基を有する核酸鎖と水酸基又はアミノ基を有する核酸鎖を有する核酸鎖を求電子剤とともに細胞内に導入した後、細胞内において、求電子剤によりホスホロチオエート基を活性化して水酸基又はアミノ基との結合反応を誘起するものである。求電子剤によるホスホロチオエート基の活性化は、細胞内への導入前に行われてもよい。すなわち、手順(1-1)にかえて、上記手順(1-2)を採用することもできる。手順(1-2)では、まず、ホスホロチオエート基を有する核酸鎖と、求電子剤と反応させて、ホスホロチオエート基に求電子剤を結合させて、ホスホロチオエート基を活性化する(活性化手順)。その後に、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、求電子剤が結合したホスホロチオエート基を有する核酸鎖と、を細胞内に導入する(導入手順)。
手順(2-1)
 本手順では、細胞内において、ホスホロチオエート基を有する核酸鎖を、求電子剤の作用により、水酸基又はアミノ基を有する核酸鎖と結合させて、機能性核酸分子を生成させる。この際、機能性核酸分子内または異なる核酸分子間でハイブリダイゼーションのような相互作用を生じて、機能性核酸分子が生成される場合もある。
 手順(1-2)により、予め、ホスホロチオエート基を有する核酸鎖と、求電子剤と反応させて、ホスホロチオエート基に求電子剤を結合させた後に、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、求電子剤が結合したホスホロチオエート基を有する核酸鎖と、を細胞内に導入する場合においても、求電子剤の作用によって、ホスホロチオエート基を有する核酸鎖を、水酸基又はアミノ基を有する核酸鎖と結合させて、機能性核酸分子を細胞内で生成させることが可能である(手順(2-2))。
 本発明に係る機能性核酸分子の細胞内導入方法によれば、機能性核酸分子を構成する核酸鎖の少なくとも一部を複数の断片として細胞に導入し、細胞内で機能性核酸分子を構築させることができる。従って、機能性核酸分子の細胞への取り込みが向上する。また、核酸鎖の少なくとも一部をより短い断片として用いるために、機能性核酸分子に対する免疫応答を抑制できる。
<実施例1:3’末端にホスホロチオエート基を有するDNA鎖と5’末端にアミノ基を有するDNA鎖との結合>
(1) 3’末端ホスホロチオエート基の1-フルオロ-2,4-ジニトロベンゼンによる活性化
 3’末端にホスホロチオエート基を有するDNA(3’PS DNA)と1-フルオロ-2,4-ジニトロベンゼン(DNFB)を混合し、ホスホロチオエート基の硫黄原子にDNFBの2,4-ジニトロベンゼンを結合させたDNA(3’DNP-PS DNA)を合成した(図4参照)。
 DNA及びRNAは、ホスホロアミダイト法に基づきDNA合成機(GeneWorld H8-SE)により合成した。アミダイト試薬としては、5’末端又は3’末端のリン酸化には、それぞれ3'-Phosphate CPG (Glen Research)とphosphorylation reagent (Glen reserch)を用いた。チオ化はSulfurizing Reagent (Glen Research)を用いて行った。末端のアミノ基の導入には、合成した5'-Amino dT Phosphoroamidite、3'-Amino dT Phosphoroamidite又は3'-Amino rC CPGを使用した。フルオレセイン(FAM)の導入は5'-Fluorescein Phosphoramidite (Glen Research)及び6-Fluorescein Phosphoramidite (Glen Research)を使用した。
 DNA及びRNAの脱保護は定法に従って行った。ホスホロチオエート基DNAは、粗精製のまま次の反応に用いた。5’アミノ基DNA及び5’水酸基DNAは、カートリッジ精製を行った。また、DNA及びRNAについては、適宜、HPLCやPAGEによる精製を行った。
 3’PS DNAのホスホロチオエート基の活性化は、下記の組成で調製した混合液を25℃で1時間インキュベートすることにより行った。
 3'PS DNA                200 μM
 DNFB (200 mM in DMSO)          20 mM
 Sodium borate buffer (100 mM, pH 8.5)  20 mM
 水で最終容量を100 μLに調整
 生成物をHPLCにより解析した結果を図5に示す。HPLCの条件は、以下の通りである。
 カラム:Hydrosphere C18(YMC), S-5 μm, 12 nm, 250×4.6 mmI.D.
 バッファー濃度:5 - 50 % (0 - 15 min)
 溶液A:5 %アセトニトリル、50 mM TEAA添加水溶液
 溶液B:100 % アセトニトリル
(2) 5’末端アミノ基との結合
 3’DNP-PS DNAと5’末端にアミノ基を有するDNA(5’NH2 DNA)を混合し、両者を結合させた(図6参照)。
 結合反応は、下記の組成で調製した混合液を25℃でインキュベートすることにより行った。
 3'DNP-PS DNA                 2 μM
 5'NH2 DNA                  4 μM
 Phosphate buffer (100 mM, pH 8.0, 7.0, 6.0)  20 mM
 MgCl2                    10 mM
 水で最終容量を25 μLに調整
 10、30、60、120分後にサンプリングを行った生成物に80% formamide, 10 mM EDTA を加えて、15 %ポリアクリルアミドゲル電気泳動 (5.6 M urea, 25% formamide, 1×TBE)により解析、定量した(ChemiDocTMXRS+ system (Bio-Rad))。結果を図7に示す。核酸鎖の結合反応の効率は、pH8の条件下で80%以上であった。
<実施例2:3’末端にホスホロチオエート基を有するDNA鎖と5’末端に水酸基を有するDNA鎖との結合>
(1) 3’末端ホスホロチオエート基のトリニトロクロロベンゼンによる活性化
 求電子剤をDNFBからトリニトロクロロベンゼン(TNCB)に変更した以外は、実施例1の手順(1)と同様にして、核酸鎖の3’末端ホスホロチオエート基を活性化した(図8参照)。
(2) 5’末端水酸基との結合
 得られた3’末端活性化核酸鎖と、5’末端に水酸基を有するDNA(5’OH DNA)とを混合し、両者を結合させた(図8参照)。
 結合反応は、下記の組成で調製した混合液を25℃でインキュベートすることにより行った。
 3'-TNP-PS DNA                2 μM
 5'OH DNA                  4 μM
 Trinitrochlorobenzene (100 mM in DMSO)   10 mM
 Sodium phospahte buffer (100 mM, pH 7.0)  20 mM
 MgCl2                   10 mM
 水で最終容量を25 μLに調整
 1、4、8、12時間後にサンプリングを行った生成物を電気泳動し、バンド定量により核酸鎖の結合反応の効率を算出した結果を図9に示す。反応効率は、10%以上であった。
<実施例3:5’末端にホスホロチオエート基を有するRNA鎖と3’末端にアミノ基を有するRNA鎖との結合>
(1) 5’末端ホスホロチオエート基の1-フルオロ-2,4-ジニトロベンゼンによる活性化
 5’末端にホスホロチオエート基を有するRNA(5’PS RNA)とDNFBを混合し、ホスホロチオエート基の硫黄原子にDNFBの2,4-ジニトロベンゼンを結合させたRNA(5’DNP-PS RNA)を合成した(図10参照)。反応条件は、実施例1と同様である。
(2) 3’末端アミノ基との結合
 DNP-PS RNAと3’末端にアミノ基を有するRNA(3’NH2 RNA)を混合し、両者を結合させた(図10参照)。反応条件は、実施例1と同様である。
 生成物を電気泳動し、バンド定量により核酸鎖の結合反応の効率を算出した結果を図11に示す。核酸鎖の結合反応の効率は、pH8の条件下で80%以上であった。
 5’末端にホスホロチオエート基を有するDNA鎖と3’末端にアミノ基を有するDNA鎖についても、本実施例と同様にして結合させることが可能であった。
<実施例4:siRNAによる遺伝子発現抑制>
 実施例3に記載の方法に従ってRNA鎖を結合して作成され、鎖中にホルホルアミデート結合を有するsiRNAを用いて、遺伝子の発現抑制試験を行った。
 ルシフェラーゼを遺伝子導入した細胞(HeLa-Luc)を10% FBSを含むDMEM (Wako)培地中で37℃, 5% CO2下培養し、96穴プレートに100 μL ずつ、4.0×103 cell/ウェルとなるよう播種した。さらに37℃, 5% CO2下で24時間培養し、約60%コンフルエントの状態で、siRNAをトランスフェクション試薬Lipofectamine 2000 (invitrogen)を用い、試薬添付のプロトコールに従ってコトランスフェクションした。
 トランスフェクション後、37℃, 5% CO2下6時間インキュベートし、培地を10% FBSを含むDMEM培地に交換した。37℃でさらに18 時間インキュベート後、Luciferase Assay System (プロメガ)を用い、添付のプロトコールに従いルシフェラーゼ発現量を定量した。
 結果を図12に示す。図中、「scramble RNA」はネガティブコントロール、「siRNA」はポジティブコントロールの結果を示す。なお、スクランブルsiRNAとは、標的遺伝子を抑制するためのsiRNAと同じヌクレオチドの構成比を有し、どの遺伝子とも異なる配列から成るRNAをいう。つまり、スクランブルsiRNAは、細胞の遺伝子の発現に影響しない外来RNAである。
 本発明に係る結合方法により作成されたsiRNA(図中「Phosphoroamideate型ligated siRNA」)は、通常のsiRNAと同等以上の遺伝子抑制効果を示した。この結果から、本発明に係る結合方法により、生理活性を維持した機能性核酸分子を作成できることが示された。

Claims (14)

  1.  核酸鎖と核酸鎖とを酵素反応に依らずに結合させる方法であって、
    ホスホロチオエート基を有する核酸鎖を、求電子剤の存在下で、水酸基又はアミノ基を有する核酸鎖と反応させる手順を含む、非酵素的核酸鎖結合方法。
  2.  前記ホスホロチオエート基が核酸鎖の3’末端に、前記水酸基又はアミノ基が核酸鎖の5’末端に存在する、請求項1記載の非酵素的核酸鎖結合方法。
  3.  前記ホスホロチオエート基が核酸鎖の5’末端に、前記水酸基又はアミノ基が核酸鎖の3’末端に存在する、請求項1記載の非酵素的核酸鎖結合方法。
  4.  前記求電子剤が下記式(I)又は式(II)で示される化合物である、請求項1~3のいずれか一項に記載の非酵素的核酸鎖結合方法。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R1、R2及びR3は、それぞれ独立してNO2基、OCOCH3基、CN基、CF3基、CO2H基、CO2CH3基又はNH2基を示し、
    Lは、F、Cl、SO3H及びSO2NR4から選択される脱離基を示し、
    4は、NH2、NHPh、NHPh-OCH3を示す。)
  5.  前記求電子剤が、1-フルオロ-2,4-ジニトロベンゼン又はトリニトロクロロベンゼンである、請求項4記載の非酵素的核酸鎖結合方法。
  6.  核酸鎖の塩基配列の決定方法であって、
    前記核酸鎖に相補的な塩基配列を有し、5’末端又は3’末端にホスホロチオエート基を有する相補鎖を、求電子剤の存在下で、3’位又は5’位に水酸基又はアミノ基を有し、塩基に応じて異なる標識がされたヌクレオシドの混合物と反応させる手順と、
    前記相補鎖に結合したヌクレオシドの標識からの信号を検出する手順と、
    前記信号に基づいて、塩基核酸鎖の塩基配列を決定する手順と、を含む方法。
  7.  前記ヌクレオチドは、5’位又は3’位のホスホロチオエート基と、該ホスホロチオエート基にジスルフィド結合を介して結合した標識物質とを有し、
    該標識物質からの信号を検出した後、前記ジスルフィド結合を還元して前記標識物質を前記相補鎖から遊離させる手順を含む、請求項6記載の方法。
  8.  機能性核酸分子を細胞内に導入する方法であって、
    前記機能性核酸分子を構成し得る、ホスホロチオエート基を有する核酸鎖と、前記機能性核酸分子を構成し得る、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、
    求電子剤と、
    を細胞内に導入する導入手順を含む方法。
  9.  前記ホスホロチオエート基を有する核酸鎖を、前記求電子剤の作用により、前記水酸基又はアミノ基を有する核酸鎖と結合させて、前記機能性核酸分子を細胞内で生成させる組立手順を含む、請求項8記載の方法。
  10.  機能性核酸分子を細胞内に導入する方法であって、
    前記機能性核酸分子を構成し得る、ホスホロチオエート基を有する核酸鎖と、求電子剤と反応させて、ホスホロチオエート基に求電子剤を結合させる活性化手順と、
    前記機能性核酸分子を構成し得る、水酸基又はアミノ基を有する核酸鎖を有する核酸鎖と、前記求電子剤が結合したホスホロチオエート基を有する核酸鎖と、を細胞内に導入する導入手順と、を含む方法。
  11.  前記求電子剤が結合したホスホロチオエート基を有する核酸鎖を、該求電子剤の作用により、前記水酸基又はアミノ基を有する核酸鎖と結合させて、前記機能性核酸分子を細胞内で生成させる組立手順を含む、請求項10記載の方法。
  12.  核酸鎖の非酵素的結合のためのキットであって、
    核酸鎖をチオリン酸化するための試薬と、
    求電子剤と、
    5’位又は3’位にアミノ基を有するヌクレオシドと、を含むキット。
  13.  核酸鎖の非酵素的結合のためのキットであって、
    ホスホロチオエート基を有する核酸鎖と、
    求電子剤と、
    水酸基又はアミノ基を有する核酸鎖と、を含んでなるキット。
  14.  ホスホロチオエート基と、該ホスホロチオエート基に結合された求電子基とを有する核酸鎖。
PCT/JP2015/004294 2014-08-26 2015-08-26 非酵素的核酸鎖結合方法 WO2016031247A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/505,656 US10570385B2 (en) 2014-08-26 2015-08-26 Method for non-enzymatic combination of nucleic acid chains
JP2016544965A JP6703948B2 (ja) 2014-08-26 2015-08-26 非酵素的核酸鎖結合方法
EP15836978.5A EP3187584B1 (en) 2014-08-26 2015-08-26 Method for non-enzymatic combination of nucleic acid chains

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171540 2014-08-26
JP2014-171540 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031247A1 true WO2016031247A1 (ja) 2016-03-03

Family

ID=55399160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004294 WO2016031247A1 (ja) 2014-08-26 2015-08-26 非酵素的核酸鎖結合方法

Country Status (4)

Country Link
US (1) US10570385B2 (ja)
EP (1) EP3187584B1 (ja)
JP (1) JP6703948B2 (ja)
WO (1) WO2016031247A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108467889A (zh) * 2018-04-04 2018-08-31 苏州创澜生物科技有限公司 一种用于多重pcr的荧光探针及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512544A (ja) * 2001-12-14 2005-05-12 アメルシャム・バイオサイエンシーズ・アクチボラグ 核酸の合成後ラベリングとその使用
WO2013129663A1 (ja) * 2012-03-02 2013-09-06 独立行政法人理化学研究所 機能性核酸分子の構築法、および当該方法に用いる核酸組合せ物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001365A1 (en) 1993-07-02 1995-01-12 Lynx Therapeutics, Inc. Synthesis of branched nucleic acids
DK2463386T3 (en) 2005-06-15 2017-07-31 Complete Genomics Inc Nucleic acid analysis using random mixtures of non-overlapping fragments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005512544A (ja) * 2001-12-14 2005-05-12 アメルシャム・バイオサイエンシーズ・アクチボラグ 核酸の合成後ラベリングとその使用
WO2013129663A1 (ja) * 2012-03-02 2013-09-06 独立行政法人理化学研究所 機能性核酸分子の構築法、および当該方法に用いる核酸組合せ物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187584A4 *

Also Published As

Publication number Publication date
US10570385B2 (en) 2020-02-25
JPWO2016031247A1 (ja) 2017-06-08
EP3187584B1 (en) 2021-02-24
JP6703948B2 (ja) 2020-06-03
EP3187584A4 (en) 2018-05-09
US20170283787A1 (en) 2017-10-05
EP3187584A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
Röthlisberger et al. Aptamer chemistry
Hamashima et al. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology
Santner et al. Efficient access to 3′-terminal azide-modified RNA for inverse click-labeling patterns
George et al. Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry
Mannack et al. Current techniques for visualizing RNA in cells
CA3114892A1 (en) Methods and compositions for increasing capping efficiency of transcribed rna
Xiao et al. Site-selective RNA functionalization via DNA-induced structure
Bugaut et al. SELEX and dynamic combinatorial chemistry interplay for the selection of conjugated RNA aptamers
WO2004024929A2 (en) Proximity-aided synthesis of templated molecules
AU6022798A (en) Bioconjugation of oligonucleotides
WO2019236644A1 (en) Encoded libraries and methods of use for screening nucleic acid targets
US20160266133A1 (en) Nucleic acid-scaffolded small molecule libraries
CA3178127A1 (en) Self-circularized rna structure
JP7465507B2 (ja) Staple核酸を利用したタンパク質翻訳反応の抑制法
JP6703948B2 (ja) 非酵素的核酸鎖結合方法
Guenther et al. C5-amino acid functionalized LNA: positively poised for antisense applications
JP6126075B2 (ja) 機能性核酸分子の構築法、および当該方法に用いる核酸組合せ物
US11254982B2 (en) Osmiumtetroxide-based conversion of RNA and DNA containing thiolated nucleotides
WO2023167276A1 (ja) キャップ化rna及びその製造方法並びにタンパク質の製造装置及びタンパク質の製造方法
Maghami Development, characterization, and application of RNA catalysts for in situ labeling of target RNA molecules
Mack Biochemical investigation of lariat debranching enzyme and spliceosomal RNA through the use of backbone branched RNA
Papastavrou Alternative pathways for vitamin biosynthesis mediated by in vitro selected nucleic acids
EP4172170A1 (en) Fluorescent cytosine analogues and their application in transcription and translation
VJC et al. Current techniques for visualizing RNA in cells
Chowdhury DNA Origami Nanostructures for the Delivery and Discovery of Nucleic Acids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544965

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505656

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836978

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836978

Country of ref document: EP