WO2016031235A1 - 太陽電池モジュール及び太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュール及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2016031235A1
WO2016031235A1 PCT/JP2015/004271 JP2015004271W WO2016031235A1 WO 2016031235 A1 WO2016031235 A1 WO 2016031235A1 JP 2015004271 W JP2015004271 W JP 2015004271W WO 2016031235 A1 WO2016031235 A1 WO 2016031235A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
string
solar cell
wiring member
strings
Prior art date
Application number
PCT/JP2015/004271
Other languages
English (en)
French (fr)
Inventor
長谷川 勲
佳居 実沢
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016544961A priority Critical patent/JP6455685B2/ja
Priority to EP15835736.8A priority patent/EP3188255B1/en
Priority to CN201580046656.XA priority patent/CN106605305B/zh
Publication of WO2016031235A1 publication Critical patent/WO2016031235A1/ja
Priority to US15/414,905 priority patent/US10388813B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/02013Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising output lead wires elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a solar cell module and a method for manufacturing the solar cell module.
  • a solar cell module in which a string group of solar cells is arranged on a base material having a three-dimensional curvature (hereinafter referred to as “curved base material”) is known (for example, see Patent Document 1).
  • curved base material a base material having a three-dimensional curvature
  • Patent Document 1 a three-dimensionally curved solar cell module is manufactured by manufacturing a string group on a flat surface from the viewpoint of productivity and the like, and then arranging the string group on a curved base material. It is preferable to manufacture.
  • the space between the strings is partially narrowed, and the solar cells may come into contact with each other to cause a short circuit or a cell crack.
  • the string group arrange
  • a solar cell module that is one embodiment of the present disclosure includes a base material that is curved in a vertical direction and a horizontal direction, a plurality of solar cells that are arranged on the base material, and adjacent solar cells that are connected in the vertical direction. And a first wiring member that forms a plurality of strings in which a plurality of solar cells are arranged in a row, and a first wiring member that extends in the vertical direction from the top of the solar cells located at the ends of the strings.
  • a second wiring member that forms a string group by horizontally connecting strings that are at least partially adjacent to each other, and at least a portion of the second wiring member and a string row to which the wiring member is connected
  • interval with the photovoltaic cell located in this edge is narrower on the lateral end side than on the lateral central part side of the string group.
  • adjacent solar cells are connected in the vertical direction by the first wiring member, and a plurality of strings in which a plurality of solar cells are arranged in a line is formed.
  • the second wiring member is connected to the first wiring member extending in the vertical direction from the top of the solar cell located at the end of the string row, and at least a part of the second wiring member is used to connect the adjacent strings horizontally.
  • Forming the string group by connecting in a direction, and disposing the string group on a base material that is curved in the vertical direction and the horizontal direction, and forming at least a part of the second group when forming the string group.
  • the distance between the wiring member and the solar cell located at the end of the string row to which the wiring member is connected is smaller on the lateral end side than on the lateral center side of the string group. 2 wiring materials first To connect to the wire.
  • a favorable arrangement state of solar cells can be obtained without causing a short circuit due to contact between solar cells, cell cracking, or the like. Further, the load on the wiring material can be reduced and the reliability can be improved.
  • vertical direction and “horizontal direction” are used as terms indicating directions.
  • the vertical direction is a direction in which solar cells constituting the string are arranged.
  • the horizontal direction is a direction orthogonal to the vertical direction, and is a direction in which the strings constituting the string group are arranged.
  • the description “providing the second member on the first member” does not intend only when the first and second members are provided in direct contact unless specifically limited. That is, this description includes a case where another member exists between the first and second members.
  • a surface on which sunlight mainly enters is referred to as a “light receiving surface”, and a surface opposite to the light receiving surface is referred to as a “back surface”.
  • the terms light receiving surface and back surface are also used for components such as solar cells.
  • FIGS. 1 and 2 are a perspective view and a plan view, respectively, of the solar cell module 10 viewed from the light receiving surface side.
  • FIG. 3 is a diagram showing a part of a longitudinal section of the solar cell module 10.
  • the solar cell module 10 includes a plurality of solar cells 11, a first protection member 12 provided on the light receiving surface side of the solar cells 11, and the back surface side of the solar cells 11. And a second protective member 13 provided on the head.
  • the plurality of solar cells 11 are sandwiched between the first protective member 12 and the second protective member 13 and sealed with a filler 14 (see FIG. 3) filled between the protective members.
  • the solar cell module 10 includes a base material that is curved in the vertical direction and the horizontal direction, and has a three-dimensionally curved shape.
  • the first protective member 12 is a base material having a three-dimensional curvature that is curved in the vertical direction and the horizontal direction.
  • the second protection member 13, the filler 14, and the string group 30 are arranged on the first protection member 12, and the solar cell module 10 curved three-dimensionally. Is obtained.
  • the solar cell module 10 connects the adjacent solar cells 11 in the vertical direction, and forms a plurality of strings 20 (see FIGS. 1 and 2) in which the plurality of solar cells 11 are arranged in a row. 21 is provided.
  • the first wiring member 21 bends in the thickness direction of the module between adjacent solar cells 11, and forms an electrode on the light receiving surface side of one solar cell 11 and an electrode on the back surface side of the other solar cell 11. Each is attached using an adhesive or the like (see FIG. 3).
  • the solar cell module 10 includes a second wiring member 31 (see FIGS. 1 and 2) connected to a first wiring member 21 extending in the vertical direction from the top of the solar cells 11 positioned at the end of the string 20. . At least some of the second wiring members 31 form a string group 30 by connecting adjacent strings 20 in the horizontal direction. That is, the string group 30 includes a plurality of strings 20 and a plurality of second wiring members 31. In the present embodiment, six strings 20 of strings 20 (strings 20a, 20b, 20c, 20d, 20e, and 20f in order from the left in FIG. 2) are arranged in the horizontal direction to form the string group 30.
  • the solar cell module 10 preferably includes a terminal portion 15 (see FIGS. 1 and 2) to which at least a part of the second wiring member 31 is connected.
  • the terminal portion 15 is provided on the back side of the second protective member 13, and the four second wiring members 31 disposed on one end side in the vertical direction of the solar cell module 10 are connected to the terminal portion 15. ing.
  • the four second wiring members 31 two connect adjacent strings 20, and the remaining two connect one row of strings 20 and the terminal portion 15. It is preferable that a power cable connected to an external device is connected to the terminal portion 15 and a bypass diode for stabilizing the output is provided.
  • the solar battery cell 11 includes a photoelectric conversion unit that generates carriers by receiving sunlight.
  • the photoelectric conversion unit includes, for example, a light receiving surface electrode formed on the light receiving surface of the photoelectric conversion unit and a back electrode formed on the back surface (both not shown) as electrodes for collecting the generated carriers.
  • a wiring material 21 is connected to each electrode.
  • the structure of the photovoltaic cell 11 is not limited to this, For example, the structure in which the electrode was formed only on the back surface of a photoelectric conversion part may be sufficient.
  • the back electrode is preferably formed in a larger area than the light receiving surface electrode, and the surface having the larger electrode area (or the surface on which the electrode is formed) can be said to be the back surface of the solar battery cell 11.
  • the photoelectric conversion unit includes, for example, a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), and indium phosphide (InP), an amorphous semiconductor layer formed on the semiconductor substrate, and an amorphous semiconductor A transparent conductive layer formed on the layer.
  • a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), and indium phosphide (InP)
  • an amorphous semiconductor layer formed on the semiconductor substrate and an amorphous semiconductor A transparent conductive layer formed on the layer.
  • an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer are sequentially formed on one surface of an n-type single crystal silicon substrate, and an i-type non-crystalline layer is formed on the other surface.
  • Examples include a structure in which a crystalline silicon layer, an n-type amorphous silicon layer, and a transparent conductive
  • first protection member 12 and the second protection member 13 for example, a glass substrate, a resin substrate, a resin film, or the like can be used.
  • a member having translucency is applied to the first protective member 12, and it is preferable to use a glass substrate from the viewpoint of fire resistance, durability, and the like.
  • the thickness of the glass substrate is, for example, about 2 to 6 mm.
  • the second protective member 13 may be a transparent member or an opaque member.
  • a resin film is used for the second protection member 13.
  • the thickness of the resin film is, for example, about 50 to 300 ⁇ m.
  • the first protective member 12 is used as a base material curved in the vertical direction and the horizontal direction.
  • the first protective member 12 is not particularly limited as long as it has a curved surface that is curved in the vertical direction and the horizontal direction.
  • the first protective member 12 has a curved surface having a three-dimensional curvature, such as a shape obtained by cutting a part of a spherical surface.
  • the curvature of the first protective member 12 is not particularly limited, and may be constant throughout the first protective member 12 or may be different in some regions. In the following description, it is assumed that the curvature of the first protective member 12 is substantially constant.
  • the first protective member 12 is a transparent glass substrate having a substantially constant curvature, for example, three-dimensionally curved, and has a substantially rectangular shape in plan view.
  • substantially ** is intended to include what is recognized as being substantially constant as well as being completely constant when described by taking substantially constant as an example.
  • the filler 14 fills the gap between the solar battery cell 11 and each protection member and serves to seal the solar battery cell 11. It is preferable that the filler 14 is mainly composed of a resin that can be applied to a laminating process described later. Examples of the resin include ethylene vinyl acetate copolymer (EVA) and polyvinyl butyral (PVB).
  • EVA ethylene vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the filler 14 may contain various additives such as an antioxidant, a flame retardant, and an ultraviolet absorber, and the filler 14 disposed on the back side of the solar battery cell 11 includes titanium oxide or the like. A pigment may be included.
  • FIG. it is narrower on the lateral end side than on the lateral central portion side of the string group 30.
  • the string group 30 includes, for example, a long wiring member 31L longer than the horizontal length of two rows of the strings 20 among the second wiring members 31 connected to the terminal portion 15.
  • the strings 20a and 20f located at both ends of the string group 30 are connected to the terminal portion 15 by long wiring members 31La and 31Lb, respectively.
  • the adjacent strings 20b and 20c and the strings 20d and 20e are connected by the second wiring members 31a and 31b, respectively, and one end of the wiring member is connected to the terminal portion 15.
  • column of the string 20a to which the said wiring material is connected is a horizontal direction edge part side rather than the horizontal direction center part side of the string group 30. It is narrowed by.
  • the distance between the long wiring member 31Lb and the solar cells 11 positioned at the ends of the strings 20f to which the wiring member is connected is also narrower on the lateral end side than the lateral center side of the string group 30. It has become. In other words, the distance between the long wiring members 31La and 31Lb and the solar battery cells 11 of each string to which the wiring members are connected is more than the lateral center portion of the first protective member 12 that is a curved base material.
  • each second wiring member 31 is symmetrical with respect to the central portion in the horizontal direction of the string group 30, the following description will be given taking the string 20a and the long wiring member 31La as an example.
  • the plurality of first wiring members 21 extend in the vertical direction from the top of the solar cells 11 located at the end of the row and are connected to the long wiring member 31La.
  • the string 20a (the same applies to the other strings 20 in this embodiment), for example, two adjacent solar cells 11 are connected by three first wiring members 21 arranged in the horizontal direction.
  • the length of each first wiring member 21, at least the length extending in the vertical direction from the top of the solar cells 11 located at the end of the string 20 a (extension length), is the width of the string group 30. It is preferable that the length becomes shorter as approaching the direction end.
  • the extension length of the three first wiring members 21 of the string 20a is the first wiring member 21a ⁇ 21b ⁇ 21c. is there.
  • the long wiring member 31La is connected to the tip of each first wiring member.
  • interval of the elongate wiring material 31La and the photovoltaic cell 11 of the string 20a becomes narrow at the horizontal direction edge part side rather than the horizontal direction center part side of the string group 30.
  • the long wiring member 31La is preferably curved along the curved surface of the first protective member 12.
  • the long wiring member 31La is curved so that the curvature along the curved surface of the first protective member 12 is along a virtual curve ⁇ having a constant curvature.
  • the distortion of the long wiring material 31La is reduced, and the load applied to the wiring material is reduced.
  • the long wiring member 31La is curved along the virtual curve ⁇ , a part of the string 20 (for example, the string 20a) is easily moved to the inside of the string group 30.
  • the said movement is suppressed by adjustment of the space
  • the distance between the second wiring member 31a and each of the solar cells 11 of the strings 20b and 20c is substantially the same.
  • interval of the 2nd wiring material 31b and each photovoltaic cell 11 of the strings 20d and 20e is substantially the same.
  • the extension lengths of the first wiring members 21 in these strings are also substantially the same. Note that the distance between the second wiring members 31a and 31b and the solar cells 11 of each string to which the wiring member is connected is made narrower on the lateral end side than on the lateral center side of the string group 30. Also good. Further, the extension length of the first wiring member 21 is made substantially the same, and the connection position with the second wiring member 31 is changed to adjust the distance between the second wiring member 31 and the solar cell 11 of the string 20. It is also possible to do.
  • the solar cell module 10 having the above-described configuration can be manufactured by laminating the string group 30 using a resin sheet constituting the first protective member 12, the second protective member 13, and the filler 14.
  • the first protective member 12, the first resin sheet constituting the filler 14, the string group 30, the second resin sheet constituting the filler 14, and the second protective member 13 are sequentially laminated on the heater. Is done.
  • the string group 30 is arranged on the first protective member 12 after being manufactured on a plane as described later from the viewpoint of productivity and the like.
  • This laminated body is heated to a temperature at which the resin sheet constituting the filler 14 is softened in a vacuum state, for example.
  • the solar cell module 10 is obtained by laminating each member by continuing heating while pressing each component member on the heater side under atmospheric pressure.
  • FIG. 4 shows a group of strings 30 (before being placed on a substrate) manufactured on a plane.
  • the string group 30 includes a first wiring member 21 that connects a plurality of solar cells 11 in a vertical direction to form a string 20 on a plane, and the first wiring member 21 of each string. It is manufactured by connecting the second wiring member 31.
  • the second wiring members 31a and 31b have an L shape, and most of the second wiring members 31a and 31b extend in the lateral direction, and the first wiring members 21 of the strings 20b and 20c and the strings 20d and 20e are respectively Each is connected to the wiring member 21.
  • the long wiring members 31La and 31Lb also have an L-shape, but are not extended straight in the horizontal direction like the second wiring materials 31a and 31b, and the strings approach the horizontal central portion of the string group 30. It is inclined in the vertical direction so as to be away from 20.
  • the string group 30 having such a shape on the first protective member 12 and laminating with each of the above constituent members, the long wiring member 31La is bent along the curved surface of the first protective member 12, The solar cell module 10 having the configuration is obtained.
  • an example of the manufacturing method of the solar cell module 10 includes the following procedure.
  • Adjacent solar battery cells 11 are connected in the vertical direction by the first wiring member 21 to form a plurality of strings 20 in which a plurality of solar battery cells 11 are arranged in a line.
  • the second wiring member 31 is connected to the first wiring member 21 extending in the vertical direction from the top of the solar cells 11 positioned at the end of the string 20, and is adjacent by at least a part of the second wiring member 31.
  • a string group 30 is formed by connecting the matching strings 20 in the horizontal direction.
  • the string group 30 is disposed on the first protective member 12 that is a base material that is curved in the vertical direction and the horizontal direction.
  • the distance between at least a part of the second wiring members 31 and the solar cells 11 located at the ends of the columns of the strings 20 to which the wiring members are connected is set in the string group 30. It is narrower on the side in the lateral direction than on the side in the lateral direction. That is, the second wiring member 31 is connected to the first wiring member 21 so that the interval is narrower on the side in the horizontal direction than on the side in the horizontal direction of the string group 30.
  • the long wiring member 31La and the solar cell 11 of the string 20a are arranged so that the distance between the string group 30 is narrower on the lateral end side than on the lateral center side.
  • the wiring member is connected to the first wiring member 21 (the same applies to the case of the long wiring member 31Lb).
  • a plurality of first wiring members 21 are extended from above the solar cells 11 positioned at the end of the row of strings 20 a, and the length of each first wiring member is set at the lateral end of the string group 30. The closer the length is, the shorter the wiring material 31La is connected to the tip of each first wiring material.
  • the distortion of each wiring material is small, and the load applied to the wiring material is reduced.
  • the solar cell module 10 even when the second wiring member 31 is curved so as to follow the curved surface of the first protective member 12, the spacing between the strings 20 is easily maintained constant. Thereby, the favorable arrangement
  • the solar cell module 50 which is 2nd Embodiment is demonstrated in detail, referring FIG.5 and FIG.6.
  • the same components as those in the above embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the strings 20 constituting the string group 51 are in seven rows, and the second wiring member 52 is not symmetrical with respect to the central portion in the horizontal direction of the string group 51.
  • the distance between the long wiring members 52La and 52Lb and the solar cells 11 located at the ends of the columns of the strings 20 to which the wiring members are connected is a terminal in the lateral direction of the string group 51. It is narrower on the side farther from the terminal part 15 than on the side closer to the part 15.
  • the solar cell module 50 is different from the long wiring members 31La and 31Lb of the solar cell module 10 in that the long wiring members 52La and 52Lb both connect the adjacent strings 20 to each other.
  • the extension length of the six first wiring members 21 connected to the long wiring member 52La (the same applies to the long wiring member 52Lb) is closer to the terminal portion 15 than the side closer to the terminal portion 15 of the string group 51. Shorten on the far side. That is, the extension lengths of the six first wiring members 21 are the first wiring members 21a ⁇ 21b ⁇ 21c ⁇ 21d ⁇ 21e ⁇ 21f.
  • the string group 51 is first manufactured on a plane. Also in this case, a plurality of first wiring members 21 are extended from above the solar cells 11 located at the ends of the strings 20, and the length of each first wiring member approaches the lateral end of the string group 51. Keep it short. Then, the long wiring members 52La and 52Lb are respectively connected to the distal ends of the first wiring members. By arranging the string group 51 thus manufactured on the first protective member 12 and laminating with the above constituent members, the long wiring members 52La and 52Lb are curved so as to follow the curved surface of the first protective member 12. And the solar cell module 50 provided with the said structure is obtained.
  • the mode in which the distance between the long wiring material and the string solar cell changes is illustrated.
  • the distance between the wiring material shorter than the horizontal length of two strings and the string solar cell is based on the interval.
  • the form may be narrower on the side in the lateral direction than on the side in the lateral direction of the material.
  • the distance between all the second wiring members including the second wiring member that connects only the adjacent strings and the solar cells of the strings is more lateral than the central portion in the lateral direction of the base material. The form which became narrow at the edge part side may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュール10は、縦方向及び横方向に湾曲する基材と、当該基材上に配置される複数の太陽電池セル11と、隣り合う太陽電池セル11同士を縦方向に接続して、複数の太陽電池セル11が一列に並んだ複数のストリング20を形成する第1配線材21と、ストリング20の列の端に位置する太陽電池セル11上から縦方向に延出する第1配線材21に接続され、少なくとも一部が隣り合うストリング20同士を横方向に接続してストリング群30を形成する第2配線材31とを備える。少なくとも一部の第2配線材31と、当該配線材が接続されるストリング20の太陽電池セル11との間隔は、ストリング群30の横方向中央部側よりも横方向端部側で狭くなっている。

Description

太陽電池モジュール及び太陽電池モジュールの製造方法
 本開示は、太陽電池モジュール及び太陽電池モジュールの製造方法に関する。
 3次元的に曲率を持つ基材(以下、「湾曲基材」という)上に太陽電池セルのストリング群を配置してなる太陽電池モジュールが知られている(例えば、特許文献1参照)。特許文献1でも述べられているように、3次元的に湾曲した太陽電池モジュールは、生産性等の観点から、平面上でストリング群を製造した後、当該ストリング群を湾曲基材上に配置して製造することが好ましい。
特開2014-96511号公報
 湾曲基板上にストリング群を配置した場合、例えばストリング同士の間隔が一部で狭くなり、太陽電池セル同士が接触して、短絡、セル割れ等が発生する可能性がある。また、湾曲基材上に配置されたストリング群では、配線材に大きな負荷がかかり易いため、当該負荷を低減して信頼性を高めることが求められる。
 本開示の一態様である太陽電池モジュールは、縦方向及び横方向に湾曲する基材と、基材上に配置される複数の太陽電池セルと、隣り合う太陽電池セル同士を縦方向に接続して、複数の太陽電池セルが一列に並んだ複数のストリングを形成する第1配線材と、ストリングの列の端に位置する太陽電池セル上から縦方向に延出する第1配線材に接続され、少なくとも一部が隣り合うストリング同士を横方向に接続してストリング群を形成する第2配線材と、を備え、少なくとも一部の第2配線材と、当該配線材が接続されるストリングの列の端に位置する太陽電池セルとの間隔は、ストリング群の横方向中央部側よりも横方向端部側で狭くなっている。
 本開示の一態様である太陽電池モジュールの製造方法は、隣り合う太陽電池セル同士を第1配線材により縦方向に接続して、複数の太陽電池セルが一列に並んだ複数のストリングを形成することと、ストリングの列の端に位置する太陽電池セル上から縦方向に延出する第1配線材に第2配線材を接続し、少なくとも一部の第2配線材により隣り合うストリング同士を横方向に接続してストリング群を形成することと、縦方向及び横方向に湾曲する基材上にストリング群を配置することと、を含み、ストリング群を形成するときに、少なくとも一部の第2配線材と、当該配線材が接続されるストリングの列の端に位置する太陽電池セルとの間隔が、ストリング群の横方向中央部側よりも横方向端部側で狭くなるように、当該第2配線材を第1配線材に接続する。
 本開示の一態様によれば、3次元的に湾曲した太陽電池モジュールにおいて、太陽電池セル同士の接触による短絡、セル割れ等が発生することなく、太陽電池セルの良好な配列状態が得られる。また、配線材にかかる負荷を低減して、信頼性を向上させることができる。
第1実施形態である太陽電池モジュールを受光面側から見た斜視図である(併せて、当該太陽電池モジュールの横方向断面を示す)。 第1実施形態である太陽電池モジュールを受光面側から見た平面図である。 第1実施形態である太陽電池モジュールの縦方向断面の一部を示す図である。 第1実施形態である太陽電池モジュールの製造方法を説明するための図である。 第2実施形態である太陽電池モジュールを受光面側から見た平面図である。 第2実施形態である太陽電池モジュールの製造方法を説明するための図である。
 以下、図面を参照しながら、実施形態の一例について詳細に説明する。
 実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
 本明細書では、方向を示す用語として「縦方向」、「横方向」を使用する。縦方向とは、ストリングを構成する太陽電池セルが並ぶ方向である。横方向とは、縦方向に直交する方向であって、ストリング群を構成するストリングが並ぶ方向である。また、「第1の部材上に第2の部材を設ける」といった記載は、特に限定を付さない限り、第1及び第2の部材が直接接触して設けられる場合のみを意図しない。即ち、この記載は、第1及び第2の部材の間に、その他の部材が存在する場合を含む。
 以下では、太陽電池モジュールにおいて太陽光が主に入射(50%超過~100%)する面を「受光面」、受光面と反対側の面を「裏面」とする。受光面、裏面の用語は、太陽電池セル等の構成要素についても使用する。
 <第1実施形態>
 以下、図1~図4を参照しながら、第1実施形態である太陽電池モジュール10について詳細に説明する。図1及び図2は、それぞれ、太陽電池モジュール10を受光面側から見た斜視図、平面図である。図3は、太陽電池モジュール10の縦方向断面の一部を示す図である。
 図1~図3に示すように、太陽電池モジュール10は、複数の太陽電池セル11と、太陽電池セル11の受光面側に設けられた第1保護部材12と、太陽電池セル11の裏面側に設けられた第2保護部材13とを備える。複数の太陽電池セル11は、第1保護部材12及び第2保護部材13により挟持されると共に、各保護部材の間に充填された充填剤14(図3参照)により封止されている。
 太陽電池モジュール10は、縦方向及び横方向に湾曲した基材を備え、3次元的に湾曲した形状を有する。本実施形態では、第1保護部材12が縦方向及び横方向に湾曲した、3次元的に曲率を持つ基材である。詳しくは後述するように、第1保護部材12上に第2保護部材13、充填材14、及びストリング群30(図1,2参照)を配置して、3次元的に湾曲した太陽電池モジュール10が得られる。
 太陽電池モジュール10は、隣り合う太陽電池セル11同士を縦方向に接続して、複数の太陽電池セル11が一列に並んだ複数のストリング20(図1,2参照)を形成する第1配線材21を備える。第1配線材21は、例えば隣り合う太陽電池セル11の間でモジュールの厚み方向に曲がり、一方の太陽電池セル11の受光面側の電極と他方の太陽電池セル11の裏面側の電極とに接着剤等を用いてそれぞれ取り付けられる(図3参照)。
 太陽電池モジュール10は、ストリング20の列の端に位置する太陽電池セル11上から縦方向に延出する第1配線材21に接続される第2配線材31(図1,2参照)を備える。少なくとも一部の第2配線材31は、隣り合うストリング20同士を横方向に接続してストリング群30を形成する。即ち、ストリング群30は、複数のストリング20と、複数の第2配線材31とで構成される。本実施形態では、6列のストリング20(図2の左から順に、ストリング20a,20b,20c,20d,20e,20fとする)が横方向に配置されてストリング群30が構成されている。
 太陽電池モジュール10は、少なくとも一部の第2配線材31が接続される端子部15(図1,2参照)を備えることが好適である。本実施形態では、第2保護部材13の裏側に端子部15が設けられており、太陽電池モジュール10の縦方向一端側に配置された4本の第2配線材31が端子部15に接続されている。4本の第2配線材31のうち、2本は隣り合うストリング20同士を接続し、残りの2本は1列のストリング20と端子部15を接続している。端子部15には、外部装置につながる電力ケーブルが接続され、出力の安定化を図るバイパスダイオードが設けられることが好ましい。
 太陽電池セル11は、太陽光を受光することでキャリアを生成する光電変換部を備える。光電変換部は、生成したキャリアを収集する電極として、例えば光電変換部の受光面上に形成される受光面電極と、裏面上に形成される裏面電極とを有する(いずれも図示せず)。各電極には、配線材21が接続される。但し、太陽電池セル11の構造はこれに限定されず、例えば光電変換部の裏面上のみに電極が形成された構造であってもよい。なお、裏面電極は受光面電極よりも大面積に形成されることが好ましく、電極面積が大きい方の面(又は電極が形成される面)が太陽電池セル11の裏面であるといえる。
 光電変換部は、例えば結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体基板と、半導体基板上に形成された非晶質半導体層と、非晶質半導体層上に形成された透明導電層とを有する。具体例としては、n型単結晶シリコン基板の一方の面上にi型非晶質シリコン層、p型非晶質シリコン層、及び透明導電層を順に形成し、他方の面上にi型非晶質シリコン層、n型非晶質シリコン層、及び透明導電層を順に形成した構造が挙げられる。透明導電層は、酸化インジウム(In23)や酸化亜鉛(ZnO)等の金属酸化物に、SnやSb等をドープした透明導電性酸化物から構成されることが好ましい。
 第1保護部材12、第2保護部材13には、例えばガラス基板、樹脂基板、樹脂フィルム等を用いることができる。第1保護部材12には、透光性を有する部材が適用され、耐火性、耐久性等の観点から、ガラス基板を用いることが好ましい。ガラス基板の厚みは、例えば2~6mm程度である。第2保護部材13には、透明な部材を用いてもよいし、不透明な部材を用いてもよい。第2保護部材13には、例えば樹脂フィルムが用いられる。樹脂フィルムの厚みは、例えば50~300μm程度である。
 本実施形態では、上記のように、縦方向及び横方向に湾曲した基材として第1保護部材12を用いる。第1保護部材12は、縦方向及び横方向に湾曲した曲面を有するものであれば特に限定されず、例えば球面の一部を切り出した形状のように、3次元的な曲率を持つ曲面を有する。第1保護部材12の曲率は、特に限定されず、第1保護部材12の全域で一定であってもよく、一部の領域で異なっていてもよい。以下では、第1保護部材12の曲率は略一定として説明する。第1保護部材12は、例えば3次元的に湾曲した曲率が略一定の透明なガラス基板であり、平面視略矩形形状を有する。なお、本明細書において「略**」との記載は、略一定を例に挙げて説明すると、完全に一定はもとより実質的に一定と認められるものを含む意図である。
 充填材14は、太陽電池セル11と各保護部材との隙間を埋めて、太陽電池セル11を封止する役割を果たす。充填材14は、後述のラミネート工程に適用可能な樹脂を主成分することが好ましい。当該樹脂としては、エチレン酢酸ビニル共重合体(EVA)、ポリビニルブチラール(PVB)等が例示できる。充填剤14には、酸化防止剤、難燃剤、紫外線吸収剤等の各種添加剤が含まれていてもよく、太陽電池セル11の裏面側に配置される充填材14には、酸化チタン等の顔料が含まれていてもよい。
 図1及び図2に示すように、太陽電池モジュール10では、少なくとも一部の第2配線材31と、当該配線材が接続されるストリング20の列の端に位置する太陽電池セル11との間隔が、ストリング群30の横方向中央部側よりも横方向端部側で狭くなっている。
 ストリング群30は、例えば端子部15に接続される第2配線材31のうち、ストリング20の2列分の横方向長さよりも長い長尺配線材31Lを有する。本実施形態では、図2に示すように、ストリング群30の両端に位置するストリング20a,20fが、それぞれ長尺配線材31La,31Lbにより端子部15に接続されている。また、隣り合うストリング20b,20c同士、ストリング20d,20e同士が、それぞれ第2配線材31a,31bにより接続され、当該配線材の一端部が端子部15に接続されている。
 そして、長尺配線材31Laと、当該配線材が接続されるストリング20aの列の端に位置する太陽電池セル11との間隔が、ストリング群30の横方向中央部側よりも横方向端部側で狭くなっている。長尺配線材31Lbと、当該配線材が接続されるストリング20fの列の端に位置する太陽電池セル11との間隔も、ストリング群30の横方向中央部側よりも横方向端部側で狭くなっている。換言すると、長尺配線材31La,31Lbと、当該各配線材が接続される各ストリングの太陽電池セル11との間隔が、湾曲基材である第1保護部材12の横方向中央部側よりも横方向端部側で狭くなっている。また、当該間隔はストリング群30の横方向で端子部15からの距離が遠くなるほど狭くなっている。なお、各第2配線材31はストリング群30の横方向中央部に対して左右対称であるから、以下では、ストリング20a、長尺配線材31La側を例に挙げて説明する。
 ストリング20aでは、列の端に位置する太陽電池セル11上から複数の第1配線材21が縦方向に延出して長尺配線材31Laと接続されることが好適である。ストリング20a(本実施形態では他のストリング20も同様)は、例えば横方向に並んだ3本の第1配線材21により隣り合う2つの太陽電池セル11が接続されている。そして、当該各第1配線材21の長さ、少なくともストリング20aの列の端に位置する太陽電池セル11上から縦方向に延出する長さ(延出長さ)は、ストリング群30の横方向端部に近づくにつれて短くなっていることが好適である。
 即ち、ストリング20aの3本の第1配線材21(図2の左から順に、第1配線材21a,21b,21cとする)の延出長さは、第1配線材21a<21b<21cである。長尺配線材31Laは、当該各第1配線材の先端部に接続される。これにより、長尺配線材31Laとストリング20aの太陽電池セル11との間隔が、ストリング群30の横方向中央部側よりも横方向端部側で狭くなる。
 長尺配線材31Laは、第1保護部材12の曲面に沿って湾曲していることが好適である。長尺配線材31Laは、例えば第1保護部材12の曲面に沿った曲率が一定の仮想曲線αに沿うように湾曲する。これにより、例えば長尺配線材31Laの歪みが小さくなって、当該配線材にかかる負荷が低減される。なお、長尺配線材31Laが仮想曲線αに沿うように湾曲すると、ストリング20の一部(例えば、ストリング20a)がストリング群30の内側に移動し易くなる。本実施形態では、長尺配線材31Laとストリング20aの太陽電池セル11との間隔の調整により当該移動が抑制される。即ち、長尺配線材31Laが第1保護部材12の曲面に沿うように湾曲した場合においても、ストリング20同士の間隔が一部で狭くなって太陽電池セル11同士が接触することを防止できる。
 本実施形態では、第2配線材31aとストリング20b,20cの各太陽電池セル11との間隔は、互いに略同一である。また、第2配線材31bとストリング20d,20eの各太陽電池セル11との間隔は、互いに略同一である。これら各ストリングにおける第1配線材21の延出長さについても、互いに略同一である。なお、第2配線材31a,31bと、当該配線材が接続される各ストリングの太陽電池セル11との間隔を、ストリング群30の横方向中央部側よりも横方向端部側で狭くしてもよい。また、第1配線材21の延出長さを略同一とし、第2配線材31との接続位置を変更することで、第2配線材31とストリング20の太陽電池セル11との間隔を調整することも可能である。
 上記構成を備えた太陽電池モジュール10は、第1保護部材12、第2保護部材13、及び充填剤14を構成する樹脂シートを用いてストリング群30をラミネートすることにより製造できる。ラミネート装置では、ヒーター上に、第1保護部材12、充填剤14を構成する第1の樹脂シート、ストリング群30、充填剤14を構成する第2の樹脂シート、第2保護部材13が順に積層される。ストリング群30は、生産性等の観点から、後述するように平面上で製造された後、第1保護部材12上に配置される。この積層体は、例えば真空状態で充填材14を構成する樹脂シートが軟化する温度に加熱される。その後、大気圧下でヒーター側に各構成部材を押し付けながら加熱を継続して各部材をラミネートすることにより、太陽電池モジュール10が得られる。
 図4は、平面上で製造されたストリング群30(基材上に配置される前)を示す。
 図4に示すように、ストリング群30は、平面上において、第1配線材21により複数の太陽電池セル11を縦方向に接続してストリング20を形成し、当該各ストリングの第1配線材21に第2配線材31を接続して製造される。本実施形態では、第2配線材31a,31bがL字形状を有し、その大部分が横方向に延設されて、ストリング20b,20cの各第1配線材21、ストリング20d,20eの各配線材21にそれぞれ接続されている。
 一方、長尺配線材31La,31LbもL字形状を有するが、第2配線材31a,31bのように横方向に真っ直ぐ延設されておらず、ストリング群30の横方向中央部に近づくにつれてストリング20から離れるように縦方向に傾いている。かかる形状を有するストリング群30を第1保護部材12上に配置して上記各構成部材とラミネートすることにより、長尺配線材31Laが第1保護部材12の曲面に沿うように湾曲して、上記構成を備えた太陽電池モジュール10が得られる。
 つまり、太陽電池モジュール10の製造方法の一例は、下記の手順を含む。
(1)隣り合う太陽電池セル11同士を第1配線材21により縦方向に接続して、複数の太陽電池セル11が一列に並んだ複数のストリング20を形成する。
(2)ストリング20の列の端に位置する太陽電池セル11上から縦方向に延出する第1配線材21に第2配線材31を接続し、少なくとも一部の第2配線材31により隣り合うストリング20同士を横方向に接続してストリング群30を形成する。
(3)縦方向及び横方向に湾曲する基材である第1保護部材12上にストリング群30を配置する。
 そして、ストリング群30を形成するときに、少なくとも一部の第2配線材31と、当該配線材が接続されるストリング20の列の端に位置する太陽電池セル11との間隔をストリング群30の横方向中央部側よりも横方向端部側で狭くする。即ち、当該間隔がストリング群30の横方向中央部側よりも横方向端部側で狭くなるように、当該第2配線材31を第1配線材21に接続する。
 ストリング群30を形成する際、長尺配線材31Laとストリング20aの太陽電池セル11との間隔がストリング群30の横方向中央部側よりも横方向端部側で狭くなるように、当該長尺配線材を第1配線材21に接続する(長尺配線材31Lbの場合も同様)。本実施形態では、ストリング20aの列の端に位置する太陽電池セル11上から第1配線材21を複数延出させ、当該各第1配線材の長さをストリング群30の横方向端部に近づくほど短くし、当該各第1配線材の先端部に長尺配線材31Laを接続する。
 以上のように、上記構成を備えた太陽電池モジュール10によれば、各配線材の歪みが小さく、配線材にかかる負荷が低減される。太陽電池モジュール10によれば、第2配線材31が第1保護部材12の曲面に沿うように湾曲した場合においても、ストリング20同士の間隔が一定に維持され易い。これにより、太陽電池セル11同士の接触による短絡、セル割れ等が発生することなく、太陽電池セル11(ストリング20)の良好な配列状態が得られる。また、第2配線材31だけでなく、第1配線材21にかかる負荷も低減され、例えば良好な外観と、高い信頼性が得られる。
 <第2実施形態>
 以下、図5及び図6を参照しながら、第2実施形態である太陽電池モジュール50について詳細に説明する。以下では、上記実施形態と同様の構成要素には同じ符号を用いて重複する説明を省略する。
 図5に示すように、太陽電池モジュール50では、ストリング群51を構成するストリング20が7列であり、第2配線材52がストリング群51の横方向中央部に対して左右対称ではない点で、太陽電池モジュール10と異なる。太陽電池モジュール50においても、長尺配線材52La,52Lbと、当該配線材が接続される各ストリング20の列の端に位置する太陽電池セル11との間隔は、ストリング群51の横方向で端子部15に近い側よりも端子部15に遠い側で狭くなっている。
 太陽電池モジュール50では、長尺配線材52La,52Lbが、いずれも隣り合うストリング20同士を接続している点で、太陽電池モジュール10の長尺配線材31La,31Lbと異なる。長尺配線材52La(長尺配線材52Lbについても同様)に接続される6本の第1配線材21の延出長さは、ストリング群51の端子部15に近い側よりも端子部15に遠い側で短くなる。即ち、当該6本の第1配線材21の延出長さは、第1配線材21a<21b<21c<21d<21e<21fである。
 図6に示すように、太陽電池モジュール50の製造過程では、太陽電池モジュール10の場合と同様に、まずストリング群51が平面上で製造される。この場合も、ストリング20の列の端に位置する太陽電池セル11上から第1配線材21を複数延出させ、当該各第1配線材の長さをストリング群51の横方向端部に近づくほど短くする。そして、当該各第1配線材の先端部に長尺配線材52La,52Lbをそれぞれ接続する。このように製造されたストリング群51を第1保護部材12上に配置して上記各構成部材とラミネートすることにより、長尺配線材52La,52Lbが第1保護部材12の曲面に沿うように湾曲して、上記構成を備えた太陽電池モジュール50が得られる。
 上記実施形態では、長尺配線材とストリングの太陽電池セルとの間隔が変化する形態を例示したが、ストリング2列分の横方向長さより短い配線材とストリングの太陽電池セルとの間隔が基材の横方向中央部側よりも横方向端部側で狭くなった形態であってもよい。また、太陽電池モジュールは、隣り合うストリング同士のみを接続する第2配線材を含む全ての第2配線材と、ストリングの太陽電池セルとの間隔が基材の横方向中央部側よりも横方向端部側で狭くなった形態であってもよい。
 10,50 太陽電池モジュール、11 太陽電池セル、12 第1保護部材、13 第2保護部材、14 充填材、15 端子部、20,20a,20b,20c,20d,20e,20f ストリング、21,21a,21b,21c,21d,21e,21f 第1配線材、30,51 ストリング群、31,31a,31b,52 第2配線材、31L,31La,31Lb,52La,52Lb 長尺配線材

Claims (7)

  1.  縦方向及び横方向に湾曲する基材と、
     前記基材上に配置される複数の太陽電池セルと、
     隣り合う前記太陽電池セル同士を縦方向に接続して、複数の前記太陽電池セルが一列に並んだ複数のストリングを形成する第1配線材と、
     前記ストリングの列の端に位置する前記太陽電池セル上から縦方向に延出する前記第1配線材に接続され、少なくとも一部が隣り合う前記ストリング同士を横方向に接続してストリング群を形成する第2配線材と、
     を備え、
     少なくとも一部の前記第2配線材と、当該配線材が接続される前記ストリングの列の端に位置する前記太陽電池セルとの間隔は、前記ストリング群の横方向中央部側よりも横方向端部側で狭くなっている、太陽電池モジュール。
  2.  少なくとも一部の前記第2配線材が接続される端子部を備え、
     前記端子部に接続される前記第2配線材のうち前記ストリングの2列分の横方向長さよりも長い長尺配線材と、当該配線材に接続される前記ストリングの列の端に位置する前記太陽電池セルとの間隔が、前記ストリング群の横方向で前記端子部に近い側よりも前記端子部に遠い側で狭くなっている、請求項1に記載の太陽電池モジュール。
  3.  前記第1配線材は、前記ストリングの列の端に位置する前記太陽電池セル上から縦方向に複数延出して前記長尺配線材と接続され、
     当該各第1配線材の長さが、前記ストリング群の横方向で前記端子部に近い側よりも前記端子部に遠い側で短くなっている、請求項2に記載の太陽電池モジュール。
  4.  前記長尺配線材は、前記基板の曲面に沿って湾曲している、請求項2又は3に記載の太陽電池モジュール。
  5.  隣り合う太陽電池セル同士を第1配線材により縦方向に接続して、複数の前記太陽電池セルが一列に並んだ複数のストリングを形成することと、
     前記ストリングの列の端に位置する前記太陽電池セル上から縦方向に延出する前記第1配線材に第2配線材を接続し、少なくとも一部の前記第2配線材により隣り合う前記ストリング同士を横方向に接続してストリング群を形成することと、
     縦方向及び横方向に湾曲する基材上に前記ストリング群を配置することと、
     を含み、
     前記ストリング群を形成するときに、少なくとも一部の前記第2配線材と、当該配線材が接続される前記ストリングの列の端に位置する前記太陽電池セルとの間隔が、前記ストリング群の横方向中央部側よりも横方向端部側で狭くなるように、当該第2配線材を前記第1配線材に接続する、太陽電池モジュールの製造方法。
  6.  端子部に接続される前記第2配線材のうち前記ストリングの2列分の横方向長さよりも長い長尺配線材と、当該配線材に接続される前記ストリングの列の端に位置する前記太陽電池セルとの間隔が、前記ストリング群の横方向で前記端子部に近い側よりも前記端子部に遠い側で狭くなるように、当該長尺配線材を前記第1配線材に接続する、請求項5に記載の製造方法。
  7.  前記ストリングの列の端に位置する前記太陽電池セル上から前記第1配線材を複数延出させ、当該各第1配線材の長さを前記ストリング群の横方向で前記端子部に近い側よりも前記端子部に遠い側で短くし、
     当該各第1配線材の先端部に前記長尺配線材を接続する、請求項6に記載の製造方法。
PCT/JP2015/004271 2014-08-28 2015-08-25 太陽電池モジュール及び太陽電池モジュールの製造方法 WO2016031235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016544961A JP6455685B2 (ja) 2014-08-28 2015-08-25 太陽電池モジュール及び太陽電池モジュールの製造方法
EP15835736.8A EP3188255B1 (en) 2014-08-28 2015-08-25 Solar cell module and production method therefor
CN201580046656.XA CN106605305B (zh) 2014-08-28 2015-08-25 太阳能电池组件和太阳能电池组件的制造方法
US15/414,905 US10388813B2 (en) 2014-08-28 2017-01-25 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174136 2014-08-28
JP2014174136 2014-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/414,905 Continuation US10388813B2 (en) 2014-08-28 2017-01-25 Solar cell module

Publications (1)

Publication Number Publication Date
WO2016031235A1 true WO2016031235A1 (ja) 2016-03-03

Family

ID=55399149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004271 WO2016031235A1 (ja) 2014-08-28 2015-08-25 太陽電池モジュール及び太陽電池モジュールの製造方法

Country Status (5)

Country Link
US (1) US10388813B2 (ja)
EP (1) EP3188255B1 (ja)
JP (2) JP6455685B2 (ja)
CN (1) CN106605305B (ja)
WO (1) WO2016031235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101193A1 (ja) * 2016-11-29 2018-06-07 京セラ株式会社 太陽電池装置
KR101897748B1 (ko) * 2017-04-24 2018-09-12 엘지전자 주식회사 곡면 태양전지 모듈

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4097769A4 (en) * 2020-01-31 2024-02-28 Higher Dimension Materials, Inc. REUSABLE AND SELF-COOLING SOLAR PANELS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231990A (ja) * 2001-02-06 2002-08-16 Nissan Motor Co Ltd 太陽電池パネル
JP2005191422A (ja) * 2003-12-26 2005-07-14 Seiko Epson Corp 回路基板、電気光学装置、及び電子機器
WO2014109281A1 (ja) * 2013-01-10 2014-07-17 三洋電機株式会社 太陽電池モジュールの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100990116B1 (ko) * 2010-05-17 2010-10-29 엘지전자 주식회사 태양전지 모듈
WO2012099705A2 (en) * 2011-01-17 2012-07-26 Kent Kernahan Idealized solar panel
US8853525B2 (en) * 2011-11-14 2014-10-07 Prism Solar Technologies, Inc. Frameless photovoltaic module
US20130160823A1 (en) * 2011-12-21 2013-06-27 Solopower, Inc. Integrated structural solar module and chassis
JP5671707B2 (ja) * 2012-11-12 2015-02-18 パナソニックIpマネジメント株式会社 太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231990A (ja) * 2001-02-06 2002-08-16 Nissan Motor Co Ltd 太陽電池パネル
JP2005191422A (ja) * 2003-12-26 2005-07-14 Seiko Epson Corp 回路基板、電気光学装置、及び電子機器
WO2014109281A1 (ja) * 2013-01-10 2014-07-17 三洋電機株式会社 太陽電池モジュールの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101193A1 (ja) * 2016-11-29 2018-06-07 京セラ株式会社 太陽電池装置
JPWO2018101193A1 (ja) * 2016-11-29 2019-10-24 京セラ株式会社 太陽電池装置
KR101897748B1 (ko) * 2017-04-24 2018-09-12 엘지전자 주식회사 곡면 태양전지 모듈
EP3618127A4 (en) * 2017-04-24 2020-12-30 LG Electronics Inc. -1- CURVED SOLAR CELL MODULE

Also Published As

Publication number Publication date
US10388813B2 (en) 2019-08-20
CN106605305B (zh) 2018-04-13
JP6635389B2 (ja) 2020-01-22
US20170133536A1 (en) 2017-05-11
EP3188255A4 (en) 2017-08-16
EP3188255B1 (en) 2018-10-10
JP2019033302A (ja) 2019-02-28
EP3188255A1 (en) 2017-07-05
JP6455685B2 (ja) 2019-01-23
JPWO2016031235A1 (ja) 2017-06-08
CN106605305A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6478128B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP6272964B2 (ja) 太陽電池モジュール
CN102959723B (zh) 太阳能电池模块及其制造方法
JP6635389B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
US20190123229A1 (en) Solar cell module
WO2014208312A1 (ja) 太陽電池モジュール及びその製造方法
CN110313072B (zh) 部分半透明光伏模块以及用于制造的方法
JP2019050375A (ja) 太陽電池パネル
JP2008300449A (ja) 太陽電池モジュール及びその製造方法
JP6516228B2 (ja) 太陽電池モジュール
KR102374146B1 (ko) 태양 전지 패널 및 이의 제조 방법
JP2016143680A (ja) 太陽電池モジュール
WO2014033884A1 (ja) 太陽電池モジュールの配線材、太陽電池モジュール、及び太陽電池モジュールの製造方法
JP2018041840A (ja) 太陽電池モジュールおよび樹脂シート
JP6134918B2 (ja) 太陽電池モジュール
JP6313005B2 (ja) 光電変換素子及び太陽電池モジュール
KR102257815B1 (ko) 태양 전지 모듈
JP2017117877A (ja) 太陽電池モジュール
KR102379388B1 (ko) 태양 전지 및 이를 포함하는 태양 전지 패널
JP5919494B2 (ja) 太陽電池モジュール
WO2015145925A1 (ja) 太陽電池モジュール
JP2016015515A (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544961

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835736

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE