WO2016031120A1 - Operational amplifier and charge amplifier using same - Google Patents

Operational amplifier and charge amplifier using same Download PDF

Info

Publication number
WO2016031120A1
WO2016031120A1 PCT/JP2015/003500 JP2015003500W WO2016031120A1 WO 2016031120 A1 WO2016031120 A1 WO 2016031120A1 JP 2015003500 W JP2015003500 W JP 2015003500W WO 2016031120 A1 WO2016031120 A1 WO 2016031120A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
current
push
bipolar transistor
power supply
Prior art date
Application number
PCT/JP2015/003500
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健
Original Assignee
富士電機株式会社
富士電機機器制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 富士電機機器制御株式会社 filed Critical 富士電機株式会社
Publication of WO2016031120A1 publication Critical patent/WO2016031120A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers

Definitions

  • the present invention relates to an operational amplifier capable of high-speed operation and a charge amplifier using the operational amplifier.
  • the principle of the capacitance variable type physical quantity sensor is very simple.
  • a weight and a minute spring supporting the weight are formed by a Si process or the like, and a fixed electrode is provided so as to face the weight. Since the weight is supported by the spring, it can move to some extent with respect to the external force, and when the external force is applied, the capacitance between the weight and the fixed electrode changes as a result.
  • the principle of the capacitance variable physical quantity sensor using MEMS is to detect the displacement of the weight by reading this capacitance with a charge amplifier.
  • the charge amplifier is configured using the operational amplifier to observe the capacitance change in this way, noise is reduced at a high frequency.
  • noise is reduced at a high frequency.
  • a high SN can be achieved by adopting a circuit configuration capable of operating at a high frequency.
  • This current feedback operational amplifier has a configuration shown in FIG. 10 when simplified. That is, it has a buffer BU in which complementary npn-type bipolar transistor Q101 and pnp-type bipolar transistor Q102 having emitters connected to each other are connected in series.
  • the collectors of the bipolar transistors Q101 and 102 are individually connected to the positive power supply line Lp and the negative power supply line Ln via the diodes D101 and D102 in the forward direction.
  • Two diodes D103 and D104 are connected in series in the forward direction between the bases of the bipolar transistors Q101 and Q102.
  • the anode of the diode D103 is connected to the constant current source CI101 connected to the positive power supply line Lp
  • the cathode of the diode D104 is connected to the constant current source CI102 connected to the negative power supply line Ln.
  • a connection point between the cathode of the diode D103 and the anode of D104 is connected to the positive input terminal + tin. Further, the connection point between the emitters of the bipolar transistors Q101 and Q102 is connected to the negative side input terminal -tin. Further, the connection point between the collector of the bipolar transistor Q101 of the buffer BU and the cathode of the diode D101 is connected to the base of a pnp bipolar transistor Q103 constituting the output stage. Similarly, the connection point between the collector of the bipolar transistor Q102 of the buffer BU and the anode of the diode D102 is connected to the base of an npn-type bipolar transistor Q104 constituting the output stage.
  • the collectors of the bipolar transistors Q103 and Q104 are connected to each other, the emitter of the bipolar transistor Q103 is connected to the positive power supply line Lp, and the emitter of the bipolar transistor Q104 is connected to the negative power supply line Ln. Further, the connection point between the collectors of the bipolar transistors Q103 and Q104 is connected to the output terminal tout via the output stage buffer BA having a high impedance.
  • a parallel circuit of a resistor R101 and a capacitor C101 is connected between a connection point between the collectors of the bipolar transistors Q103 and Q104 and between the input side of the output stage buffer BA and the ground.
  • a load resistance R is connected between the negative side input terminal -tin and the ground, and a connection point between the load resistance R and the negative side input terminal -tin is connected to the output side of the output stage buffer BA via the feedback resistor Rf.
  • a current feedback operational amplifier In this current feedback type operational amplifier, when the input voltage at the positive input terminal + tin increases, the increase in the current flowing into the load resistor R is folded as it is to increase the potential of the output stage buffer BA having a high impedance. When the potentials of the input terminals + tin and ⁇ tin become equal, the increase in current disappears, and the output is stabilized at that potential. In the current feedback operational amplifier, amplification is performed by switching the current, and the reason for the high speed is that the current of the bipolar transistor can be switched faster than the voltage.
  • this class AB push-pull drive circuit uses two sets of the buffer BU shown in FIG. 10 described above, arranges these two sets of buffers BU1 and BU2 in parallel, and sets the buffer BU1. A connection point between the emitters of the bipolar transistors Q101 and Q102 and a connection point between the emitters of the bipolar transistors Q111 and Q112 of the buffer BU2 are connected to each other.
  • the collectors of the bipolar transistors Q101 and Q111 of the buffers BU1 and BU2 are connected to the positive power supply line Lp through the current mirror circuits CM101 and CM103, respectively.
  • the collectors of the bipolar transistors Q102 and Q112 of the buffers BU1 and BU2 are connected to the negative power supply line Ln through the current mirror circuits CM102 and CM104, respectively.
  • the collectors of the output transistors Q105 and Q106 of the current mirror circuits CM101 and CM102 are connected to the positive output terminal + OUT, and the collectors of the output transistors Q107 and Q108 of the current mirror circuits 103 and Q104 are connected to the negative output terminal ⁇ OUT.
  • diode-connected pnp bipolar transistors Q109 and Q110 are connected between the bases of the bipolar transistors Q101 and Q102 of the buffer BU1, and the bases of the bipolar transistors Q109 and Q110 are connected to the positive input terminal + IN.
  • pnp-type bipolar transistors Q113 and Q114 that are diode-connected are connected between the bases of the bipolar transistors Q111 and Q112 of the buffer BU2, and the bases of the bipolar transistors Q113 and Q114 are connected to the negative-side input terminal ⁇ IN.
  • a class AB push-pull drive circuit can be configured.
  • the current I1 flowing into the emitter of the bipolar transistor Q101 constituting the buffer BU1 and the current I2 flowing out from the collector of the bipolar transistor Q102 increase and decrease exponentially and differentially.
  • the current I3 flowing into the emitter of the bipolar transistor Q111 constituting the buffer BU2 and the current I4 flowing out from the collector of the bipolar transistor Q112 increase and decrease exponentially and differentially.
  • a class AB push-pull operation can be performed while suppressing a phase difference between paths at high frequencies.
  • the frequency at which the gain increases in the negative direction from -3 dB is 18.5 MHz as shown by the broken line in FIG.
  • the phase angle with respect to the frequency of the class AB push-pull drive circuit starts to decrease from 1 MHz as shown by the broken line in FIG. 6, and decreases by about ⁇ 50 deg at 18.5 MHz.
  • the phase angle is less than ⁇ 180 deg, it is considered stable, so the upper limit of the operating frequency of the class AB push-pull drive circuit is limited to 18.5 MHz from the gain characteristic.
  • a charge amplifier that detects a minute capacitance change may require a frequency band higher than 18.5 MHz.
  • the operational amplifier is configured including the class AB push-pull drive circuit having the above configuration, there is an unsolved problem that the operating frequency exceeds the upper limit (18.5 MHz) of the frequency of the class AB push-pull drive circuit. . Accordingly, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and an object thereof is to provide a stable operational amplifier having a higher frequency characteristic and a charge amplifier using the operational amplifier.
  • one aspect of an operational amplifier includes complementary first and second push-pull circuits connected in parallel between a positive power supply line and a negative power supply line, The first and second current-voltage conversion circuits connected to the positive power supply line by connecting the high potential sides of the first and second push-pull circuits, and the low potential sides of the first and second push-pull circuits. And third and fourth current-voltage conversion circuits connected to the negative power supply line.
  • the output of the first output stage is supplied to the base of the high potential side bipolar transistor of the final output stage, and the output of the second output stage is supplied to the base of the low potential side bipolar transistor of the final output stage. Supply.
  • one aspect of the charge amplifier according to the present invention uses the above-described operational amplifier as an operational amplifier constituting the integrating circuit.
  • one current-voltage conversion circuit is connected to each of the high-potential side and the low-potential side of the complementary first and second push-pull circuits, and is connected to the first push-pull circuit. Connecting the output sides of the two current-voltage conversion circuits connected to the first output stage, and connecting the output sides of the two current-voltage conversion circuits connected to the second push-pull circuit to the second output stage; By supplying the output sides of the first output stage and the second output stage to bipolar transistors of the same polarity that constitute the push-pull circuit of the final output stage, an operational amplifier that operates stably at a higher frequency is obtained. Can be configured.
  • the charge amplifier using the operational amplifier having the above effect as the operational amplifier constituting the integration circuit, it is possible to reliably suppress the influence of external noise while ensuring the operation speed.
  • FIG. 1 is a circuit diagram showing an example of an operational amplifier according to a first embodiment of the present invention. It is a characteristic diagram which shows the relationship between a bipolar transistor current and a voltage noise density when the electric current of a junction field effect transistor is 1 mA. It is a characteristic diagram which shows the relationship between a bipolar transistor current and a voltage noise density when the electric current of a junction field effect transistor is 10 mA. It is a circuit diagram which shows the modification of 1st Embodiment.
  • FIG. 6 is a circuit diagram showing an embodiment in which the operational amplifier according to the first embodiment is applied to a charge amplifier according to the second embodiment of the present invention.
  • FIG. 4 is a characteristic diagram showing frequency characteristics of the charge amplifiers of the present invention and the conventional example, where (a) is a gain characteristic diagram showing the relationship between frequency and gain, and (b) is a phase showing the relationship between frequency and phase angle. It is an angle characteristic diagram. It is a characteristic diagram which shows the power supply voltage dependence characteristic by the presence or absence of a cascode transistor. It is a circuit diagram which shows an example of the operational amplifier by the 3rd Embodiment of this invention. It is a circuit diagram which shows the modification of 3rd Embodiment. It is a circuit diagram which shows the prior art example used as the basis of an operational amplifier. It is a circuit diagram which shows the conventional operational amplifier.
  • the operational amplifier 1 has a first current-voltage conversion circuit 13 and a second current-voltage conversion circuit in which the high potential side of the first push-pull circuit 11 and the second push-pull circuit 12 arranged in parallel with the positive power supply line Lp. 14 is connected. Further, the low potential side of the first push-pull circuit 11 and the second push-pull circuit 12 is connected to the negative power supply line Ln through the third current-voltage conversion circuit 15 and the fourth current-voltage conversion circuit 16. .
  • connection point between the first push-pull circuit 11 and the first current-voltage conversion circuit 13 and a connection point between the first push-pull circuit 11 and the third current-voltage conversion circuit 15 are individually provided. Are connected to the first output stage 17. Further, the connection point between the second push-pull circuit 12 and the second current-voltage conversion circuit 14 and the connection point between the second push-pull circuit 12 and the fourth current-voltage conversion circuit 16 are individually set. Are connected to the second output stage 18.
  • the first push-pull circuit 11 includes an npn bipolar transistor Q11 and a pnp bipolar transistor Q12 whose emitters are connected to each other.
  • the collector of the npn-type bipolar transistor Q11 is connected to the first current-voltage conversion circuit 13
  • the collector of the pnp-type bipolar transistor Q12 is connected to the third current-voltage conversion circuit 15.
  • the bias circuit 21 includes an npn-type bipolar transistor Q13 and a pnp-type bipolar transistor Q14 that operate as diodes connected by connecting a collector and a base, respectively.
  • the collector of npn-type bipolar transistor Q13 is connected to positive power supply line Lp via npn-type bipolar transistor Q16 cascode-connected to first n-channel junction field-effect transistor Q15, and the base of npn-type bipolar transistor Q11 It is connected to the.
  • the collector of the pnp bipolar transistor Q14 is connected to the negative power supply line Ln via the current mirror circuit 22, and is also connected to the base of the pnp bipolar transistor Q12.
  • the base of npn bipolar transistor Q13 is connected to the connection point between the collector of npn bipolar transistor Q13 and the base of npn bipolar transistor Q11.
  • the base of the pnp bipolar transistor Q14 is connected to the connection point between the collector of the pnp bipolar transistor Q14 and the base of the pnp bipolar transistor Q12.
  • the positive input terminal + tin is connected to the gate of the first n-channel junction field effect transistor Q15.
  • a power supply circuit 23 is connected to a base which becomes a control terminal of the cascode-connected npn bipolar transistor Q16, and the power supply circuit 23 sets the base potential of the npn bipolar transistor Q16 to an intermediate potential between the ground potential and the power supply potential. Is set.
  • the second push-pull circuit 12 has the same configuration as the first push-pull circuit 11 described above, and has an npn-type bipolar transistor Q21 and a pnp-type bipolar transistor Q22 whose emitters are connected to each other.
  • the collector of the npn-type bipolar transistor Q21 is connected to the positive power supply line Lp via the second current-voltage conversion circuit 14.
  • the collector of the pnp bipolar transistor Q22 is connected to the negative power supply line Ln via the fourth current-voltage conversion circuit 16.
  • the bias circuit 24 includes an npn bipolar transistor Q23 and a pnp bipolar transistor Q24 that operate as diodes.
  • the collector of npn-type bipolar transistor Q23 is connected to positive power supply line Lp via npn-type bipolar transistor Q26 cascode-connected to second n-channel junction field-effect transistor Q25, and the base of npn-type bipolar transistor Q21 It is connected to the.
  • the collector of the pnp bipolar transistor Q24 is connected to the negative power supply line Ln via the current mirror circuit 22, and is also connected to the base of the pnp bipolar transistor Q22.
  • the base of npn bipolar transistor Q23 is connected to the connection point between the collector of npn bipolar transistor Q23 and the base of npn bipolar transistor Q21.
  • the base of the pnp bipolar transistor Q24 is connected to the connection point between the collector of the pnp bipolar transistor Q24 and the base of the pnp bipolar transistor Q22.
  • connection point between the emitters of the npn-type bipolar transistor Q11 and the pnp-type bipolar transistor Q12 of the first push-pull circuit 11, and the emitters of the npn-type bipolar transistor Q21 and the pnp-type bipolar transistor Q22 of the second push-pull circuit 12 are used.
  • a connection point between them is connected via an emitter connection resistor Re.
  • the negative input terminal -tin is connected to the gate of the second junction field effect transistor Q25.
  • a power supply circuit 23 is connected to the base of the cascode-connected npn bipolar transistor Q26, and the power supply circuit 23 fixes the base potential of the npn bipolar transistor Q26 to an intermediate potential between the ground potential and the power supply potential. .
  • the fixed potential of the cascode-connected npn-type bipolar transistors Q16 and Q26 is at least Vth + 1V in consideration of the operation (threshold voltage: Vth) of the n-channel junction field effect transistors Q15 and Q25.
  • the upper limit voltage is set to ensure the power supply voltage -1V.
  • the first current-voltage conversion circuit 13 includes a pnp bipolar transistor Q31 having an emitter connected to the positive power supply line Lp and a collector connected to the first push-pull circuit 11. The collector and base of the pnp bipolar transistor Q31 are connected, and these connection points are connected to the first output stage 17 to constitute a current mirror circuit as will be described later.
  • the second current-voltage conversion circuit 14 includes a pnp bipolar transistor Q32 having an emitter connected to the positive power supply line Lp and a collector connected to the second push-pull circuit 12.
  • the collector and base of the pnp bipolar transistor Q32 are connected, and these connection points are connected to the second output stage 18 to constitute a current mirror circuit as will be described later.
  • the third current-voltage conversion circuit 15 includes an npn-type bipolar transistor Q33 having an emitter connected to the negative power supply line Ln and a collector connected to the first push-pull circuit 11.
  • the base and collector of the npn-type bipolar transistor Q33 are connected, and these connection points are connected to the first output stage 17 to constitute a current mirror circuit as will be described later.
  • the fourth current-voltage conversion circuit 16 includes an npn-type bipolar transistor Q34 having an emitter connected to the negative power supply line Ln and a collector connected to the second push-pull circuit 12.
  • the base and collector of the npn-type bipolar transistor Q34 are connected, and these connection points are connected to the second output stage 18 to constitute a current mirror circuit as will be described later.
  • the current mirror circuit 22 includes an npn-type bipolar transistor Q35 interposed between the constant current source 31 and the negative power supply line Ln, an npn-type bipolar transistor Q36 having a base connected to the base of the npn-type bipolar transistor Q35, and Q37.
  • the npn-type bipolar transistor Q35 has a collector and a base connected to the constant current source 31, and an emitter connected to the negative power supply line Ln.
  • the npn bipolar transistor Q36 has a base connected to the base of the npn bipolar transistor Q35, and a collector connected to the base of the pnp bipolar transistor Q12 of the first push-pull circuit 11 and the collector and base of the pnp bipolar transistor Q14.
  • the emitter is connected to the negative power supply line Ln.
  • the base of the npn bipolar transistor Q37 is connected to the base of the npn bipolar transistor Q35, and the collector is connected to the base of the pnp bipolar transistor Q22 of the second push-pull circuit 12 and the collector and base of the pnp bipolar transistor Q24.
  • the emitter is connected to the negative power supply line Ln.
  • the first output stage 17 includes a pnp bipolar transistor Q41 having an emitter connected to the positive power supply line Lp, an npn having a collector connected to the collector of the pnp bipolar transistor Q41, and an emitter connected to the negative power supply line Ln.
  • Type bipolar transistor Q42 The base of the pnp bipolar transistor Q41 is connected to the connection point between the base and the collector of the pnp bipolar transistor Q31 of the first current-voltage conversion circuit 13, thereby forming a first current mirror circuit.
  • the input side circuit of the first current mirror circuit constitutes the first current-voltage conversion circuit 13.
  • the base of the npn-type bipolar transistor Q42 is connected to the connection point between the base and the collector of the npn-type bipolar transistor Q33 of the third current-voltage conversion circuit 15 to constitute a third current mirror circuit.
  • the input current circuit of the third current mirror circuit constitutes the third current-voltage conversion circuit 15.
  • the second output stage 18 also has a pnp bipolar transistor Q43 having an emitter connected to the positive power supply line Lp, a collector connected to the collector of the pnp bipolar transistor Q43, and an emitter.
  • the npn bipolar transistor Q44 is connected to the negative power supply line Ln.
  • the base of the pnp bipolar transistor Q43 is connected to the connection point between the base and collector of the pnp bipolar transistor Q32 of the second current-voltage conversion circuit 14, thereby forming a second current mirror circuit.
  • the input side circuit of the second current mirror circuit constitutes the second current-voltage conversion circuit 14.
  • the base of the npn-type bipolar transistor Q44 is connected to the connection point between the base and the collector of the npn-type bipolar transistor Q34 of the fourth current-voltage conversion circuit 16, thereby forming a fourth current mirror circuit.
  • the input current circuit of the fourth current mirror circuit constitutes the fourth current-voltage conversion circuit 16.
  • two npn bipolar transistors Q51 and Q52 are connected in series between the positive power supply line Lp and the negative power supply line Ln by connecting the emitter of the npn bipolar transistor Q51 to the collector of the npn bipolar transistor Q52. It has the structure made.
  • the base of the npn bipolar transistor Q51 on the high potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q41 and the npn bipolar transistor Q42 in the first output stage 17.
  • the base of the npn bipolar transistor Q52 on the low potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q43 and the npn bipolar transistor Q44 of the second output stage 18. Further, an output terminal tout is connected to a connection point between both npn-type bipolar transistors Q51 and Q52.
  • connection point between the base of the npn type bipolar transistor Q52 on the low potential side and the output terminal serving as a connection point of the pnp type bipolar transistor Q43 and the npn type bipolar transistor Q44 of the second output stage 18 and the negative power supply line Ln.
  • An npn bipolar transistor Q53 is connected between them.
  • the npn bipolar transistor Q53 has a collector connected to the output terminal of the second output stage 18 and the connection point of the npn bipolar transistor Q52, and an emitter connected to the negative power supply line Ln.
  • the base of the npn-type bipolar transistor Q53 is connected to the connection point between the output terminal of the second output stage 18 and the base of the npn-type bipolar transistor Q52 to constitute a constant current circuit. It should be noted that phase compensation capacitors C5 and C6 are connected between npn-type bipolar transistors Q51 and Q52 between collectors and bases for preventing deterioration of the high frequency characteristics of the operational amplifier.
  • a capacitor C7 for suppressing noise is connected between a connection point between the npn bipolar transistor Q23 and the junction field effect transistor Q25 in the second push-pull circuit 12 and a connection point between the output terminal tout of the final output stage 19.
  • the current output differential amplifier includes the final output stage 19, the junction field effect transistors Q15 and Q25, and the current mirror circuit 22.
  • the collector currents of the first push-pull circuit 11 and the second push-pull circuit 12 using complementary bipolar transistors Q11, Q12 and Q21, Q22 are used as the first current-voltage conversion circuit 13, respectively.
  • the second current-voltage conversion circuit 14, the third current-voltage conversion circuit 15, and the fourth current-voltage conversion circuit 16 have a folded structure. Therefore, when the voltage at the positive input terminal + tin rises, the increase in current flowing into the emitter connection resistor Re is turned back as it is, and the buffers (Q41, Q42 and Q43 of the first output stage 17 and the second output stage 18). And the potential of Q44) is increased.
  • the increase in current disappears, and the output is stabilized at that potential.
  • amplification is performed by switching the current, and the current of the bipolar transistor can be switched faster than the voltage, so that high-speed operation is possible.
  • the first push-pull circuit 11 and the second push-pull circuit 12 are provided, and these are used as a current path, thereby realizing a current feedback operational amplifier.
  • the first push-pull circuit 11 and the second push-pull circuit 12 drive the npn-type bipolar transistors Q51 and Q52 of the final output stage 19 through the first output stage 17 and the second output stage 18. Therefore, a large driving force can be obtained as an operational amplifier, and the speed can be increased.
  • the input terminals + tin and ⁇ tin to the gates of the n-channel junction field effect transistors Q15 and Q25, the input impedance can be increased, and the first push-pull circuit 11 and the bipolar transistor can be used.
  • Second push-pull circuit 12 first current-voltage conversion circuit 13, second current-voltage conversion circuit 14, third current-voltage conversion circuit 15, fourth current-voltage conversion circuit 16, first output stage 17
  • Second push-pull circuit 12 By configuring the second output stage 18 and the final output stage 19, it is possible to configure a current feedback operational amplifier with almost no loss in high-speed performance.
  • the noise of the operational amplifier itself In order to realize a high SN, it is important to reduce the noise of the operational amplifier itself. For that purpose, it is important to appropriately set a bias current value to be applied to the transistor. In particular, when used in a charge amplifier, high-frequency voltage noise density is important. In the case of non-feedback, the self-noise of the operational amplifier is given by the sum of noises generated in all devices, but is usually used with limited gain by applying feedback. In this case, noise generated from a device outside the negative feedback loop is corrected by the negative feedback and can be ignored in the frequency band where the negative feedback effect is present. Therefore, when considering noise, it is only necessary to focus on noise generated by devices in the feedback loop.
  • the current path is Q15-Q11-Re-Q21-Q25, and the other is the current path of Q15-Q13-Q14-Q12-Re-Q22-Q24-Q23-Q25.
  • the voltage noise Vfet of the junction field effect transistors Q15 and Q25 is a function of the frequency f and can be expressed by the following equation (1).
  • K JFET is a constant attributed to the shape of the junction field effect transistor, and changes depending on each process.
  • V BJT of the bipolar transistor can be expressed by the following equation (2).
  • g mBJT transconductance, r b of the bipolar transistor is the base resistance (usually about 5 [Omega).
  • the voltage noise VR of the resistor can be expressed by the following formula (3), where R is the resistance value.
  • 2K JFET / f is 1 / f noise, and if an appropriate junction field effect transistor is selected, noise that becomes a problem at the measurement frequency can be prevented from being generated.
  • the other terms are the sum of the resistance components, and the thermal noise due to the resistance is calculated.
  • a common junction field effect transistor has a conductance gm of about Is / 1V (Is is a source current), and even a high-performance type has Is / 0.2V, whereas a bipolar transistor has a well-known conductance gm. Thus, Ic / 26 mV. This indicates that the equivalent resistance of the junction field effect transistor is 10 to 40 times higher than that of the bipolar transistor when the same current is passed.
  • FIG. 2 shows the result of calculating the voltage noise density of the operational amplifier of FIG. 1 while ignoring the 1 / f noise term in the equation (5) when the current I JFET of the junction field effect transistor is 1 mA.
  • the current I BPT of the bipolar transistor is 0.1 mA or more, which is 1/10 of the current I JFET of the junction field effect transistor, the current is almost constant.
  • the current IBPT of the bipolar transistor is smaller than 0.1 mA, noise increases abruptly.
  • FIG. 3 shows the case where the current I JFET of the junction field effect transistor is set to 10 mA, but when the current I BPT of the bipolar transistor is reduced to 1 mA which is 1/10 of 1/10 of the current I JFET of the junction field effect transistor, Noise increases.
  • Noise design is performed as follows. First, the current of the junction field effect transistor is determined from the amount of noise of the required device. This corresponds to setting the noise of the flat portion in FIGS. Here not only calculate two cases, but if the current I JFET junction field effect transistor of Fig 2 is 1mA, 2.2nV / ⁇ Hz, the current I JFET junction field effect transistor of FIG. 3 10 mA of In this case, 1 nV / ⁇ Hz.
  • the current value of the bipolar transistor is determined. As is clear from FIGS. 2 and 3, even if the current I BPT of the bipolar transistor is set to be higher than the current I JFET of the junction field effect transistor, noise does not decrease and current consumption such as temperature rise increases. The harmful effects caused by this increase. Normally, the amount of current is reduced to reduce noise, but the noise increases when the current amount of the bipolar transistor becomes 1/10 or less of the current IJFET of the junction field effect transistor. The meaning of disappears.
  • the current I BPT of the bipolar transistor is set to a value that is equal to or slightly smaller than the current I JFET of the junction field effect transistor, thereby suppressing the adverse effect of temperature rise due to an increase in current consumption while suppressing the voltage noise density. can do.
  • connection point between the emitters of the bipolar transistors Q11 and Q12 connected in a complementary manner in the first push-pull circuit 11 and the emitters of the bipolar transistors Q21 and Q22 in a complementary connection in the second push-pull circuit 12 are used.
  • the connection point is connected via an emitter connection resistor Re.
  • the emitter connection resistor Re absorbs the variation in the characteristics. A more stable circuit can be obtained.
  • npn bipolar transistors Q16 and Q26 are cascode-connected to the positive power supply line Lp side of the n-channel junction field effect transistors Q15 and Q25, and the base potentials of the npn bipolar transistors Q16 and Q26 are set to the ground potential. It is fixed at an intermediate potential from the power supply potential. For this reason, it is possible to prevent the bias voltages of the bias circuits 21 and 24 of the first push-pull circuit 11 and the second push-pull circuit 12 from being affected by power supply voltage fluctuations from the positive power supply line Lp.
  • npn bipolar transistors Q16 and Q26 having the same polarity are connected between the n-channel junction field effect transistors Q15 and Q25 and the positive power supply line Lp.
  • the n-channel field effect transistors having the same polarity as the n-channel junction field effect transistors Q15 and Q25 may be used.
  • the present invention is not limited to the above configuration, and a constant current source may be applied instead of the npn-type bipolar transistors Q16 and Q26.
  • the n-channel junction field effect transistors Q15 and Q25 and the npn bipolar transistors Q16 and Q26 are connected to the first push-pull circuit 11 and the second push-pull circuit 12 and the positive power supply line Lp. It was inserted between.
  • the present invention is not limited to the configuration described above, and may be configured as shown in FIG. That is, the current mirror circuit 22 is inserted between the bias circuits 21 and 24 of the first push-pull circuit 11 and the second push-pull circuit 12 and the positive power supply line Lp.
  • p-channel junction field effect transistors Q61 and Q62 are interposed between the bias circuits 21 and 24 of the first push-pull circuit 11 and the second push-pull circuit 12 and the negative power supply line Ln. Then, pnp bipolar transistors Q63 and Q64 having the same polarity are cascode-connected to the p-channel junction field effect transistors Q61 and Q62. In this case, the same effect as that of the first embodiment can be obtained. Of course, a p-channel junction field effect transistor may be applied instead of the pnp bipolar transistors Q63 and Q64.
  • the final output stage 19 is configured by the npn-type bipolar transistors Q51 and Q52 has been described, but a pnp-type bipolar transistor may be applied instead.
  • the npn-type bipolar transistor can operate at a higher speed than the pnp-type bipolar transistor, the npn-type bipolar transistors Q51 and Q52 are applied to form a higher-speed operational amplifier as in the first embodiment. can do.
  • the circuit of the final output stage 19 includes two npn-type bipolar transistors Q51 and Q52 between the positive power supply line Lp and the negative power supply line Ln.
  • the circuit of the final output stage 19 has a circuit configuration having a complementary connection configuration in which a pnp bipolar transistor and an npn bipolar transistor with collectors connected to each other are connected between a positive power supply line and a negative power supply line Since the overall operation of the combination of the low potential side npn type bipolar transistor and the high potential side pnp type bipolar transistor becomes slow when pulled toward the pnp type bipolar transistor, the high speed of the npn type bipolar transistor Sex cannot be fully demonstrated.
  • the circuit of the final output stage 19 is replaced with two npn-type bipolar transistors Q51 and Qn between the positive power supply line Lp and the negative power supply line Ln. Since Q52 is configured to be connected in series with the emitter of npn bipolar transistor Q51 connected to the collector of npn bipolar transistor Q52, it is particularly suitable for realizing a high-speed operational amplifier.
  • a differential charge amplifier is configured using the operational amplifier in the first embodiment described above. That is, in the second embodiment, a parallel circuit of a feedback feedback resistor Rf and a capacitor Cf is connected between the inverting input terminal and the output terminal of the operational amplifier 1 of the first embodiment described above. .
  • variable capacitors C SENS M and C SENS P of the variable capacitance sensor 60 are connected to the inverting input terminal and the non-inverting input terminal of the operational amplifier 1.
  • the variable capacitance sensor 60 includes a pair of electrode portions each composed of a movable electrode and a fixed electrode facing each other that generate a capacitance change according to a physical quantity change, and a variable capacitance C SENS M configured by one electrode portion is provided.
  • a differential structure in which the variable capacitor C SENS P formed by the other electrode portion decreases as the number increases is increased.
  • variable capacitance sensor 60 a physical quantity sensor that detects a physical quantity such as acceleration or vibration using a MEMS (Micro Electro Mechanical System) structure is applied, and both the variable capacitance C SENS M and C SENS P are, for example, 1 pF and a minute capacitance.
  • a capacitor Cpp of 10 pF is connected between one electrode of the variable capacitor C SENS M and the inverting input terminal of the operational amplifier 1 and the ground.
  • one electrode of the variable capacitor C SENS P For example, a capacitor Cpm of 10 pF is connected between the non-inverting input terminal of the operational amplifier 1 and the ground.
  • An AC oscillator 61 as a bias voltage generation circuit for outputting, for example, an AC carrier signal of ⁇ 8 V at 100 kHz as a bias voltage is connected to the other electrode opposite to the operational amplifier 1 of each variable capacitor C SENS M and C SENS P.
  • a multiplier 62 as a demodulation circuit is connected to the output side of the operational amplifier 1, and the AC carrier signal of the AC oscillator 61 is input to the multiplier 62.
  • the capacitance detection signal demodulated by the multiplier 62 is subjected to noise removal by a low-pass filter 63 including a resistor R1 and a capacitor C1, and is output from an output terminal Tout.
  • a parallel circuit of an adjustment trimmer capacitor Cpin and a resistor Rpin is connected between the variable capacitor C SENSP of the variable capacitor sensor 60 and the non-inverting input terminal of the operational amplifier 1 and the ground.
  • the trimmer capacitor Cpin is adjusted so that the carrier signal of 100 kHz included in the input signal of the multiplier 62 that is the output of the charge amplifier 50 is minimized.
  • FIG. 6 shows the result of measuring the frequency characteristic of the charge amplifier 50 of the present invention shown in FIG. 5 as the characteristic in the circuit configuration of the second embodiment in comparison with the characteristic of the charge amplifier of the conventional example.
  • the gain characteristic with respect to the frequency is 18.5 MHz in the conventional circuit when the frequency at which the gain starts to decrease in the negative direction from ⁇ 3 dB is compared.
  • the frequency is 58.4 MHz, which indicates that the speed can be increased about three times.
  • the phase angle characteristic with respect to the frequency starts to decrease from 1 MHz in the conventional circuit and decreases to ⁇ 50 deg at 18.5 MHz, whereas the circuit according to the present invention. Then, it starts to decrease from 1 MHz and decreases to ⁇ 50 deg at 30 MHz. Therefore, by using the operational amplifier 1 of the first embodiment to configure the charge amplifier 50 that detects a minute change in capacitance, it is possible to realize a high SN.
  • the output voltage was measured by changing the Vdd voltage, which is the operating power supply supplied to.
  • the variable capacitance sensor 60 was kept stationary without applying an external force. The measurement results are shown in FIG.
  • the cascode connection In the case where there is no transistor, if the power supply voltage is changed, the capacity balance, that is, the gain balance is lost, and the output change phenomenon described above occurs.
  • transistors having the same polarity are cascaded on the drain side of the n-channel junction field effect transistors Q15 and Q25, that is, on the positive power supply line Lp side.
  • an alkaline button battery, a coin-type lithium primary battery or the like having a large power supply voltage fluctuation rate can be used as the power source, and the sensor device can be miniaturized.
  • the operational amplifier according to the third embodiment has a two-stage amplifier circuit configuration in order to increase the open loop gain. That is, in the third embodiment, the operational amplifier 1 has a two-stage amplifier circuit configuration in which a first amplification stage 70A and a second amplification stage 70B are provided, as shown in FIG.
  • the configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, and includes the first push-pull circuit 11 and the second push-pull circuit 12, and the first current-voltage conversion circuit 13 to A fourth current-voltage conversion circuit 16, a first output stage 17 and a second output stage 18, and a final output stage 19 are provided.
  • the second amplification stage 70B which is the final amplification stage, is interposed between the first output stage 17, the second output stage 18, and the final output stage 19.
  • the second amplification stage 70B includes a third push-pull circuit 71 and a fourth push-pull circuit 72 having the same configuration as the first push-pull circuit 11 and the second push-pull circuit 12 described above. Yes.
  • the second amplification stage 70B includes a fifth current-voltage conversion circuit 73 inserted between the high potential side of the third push-pull circuit 71 and the fourth push-pull circuit 72 and the positive power supply line Lp, and A sixth current-voltage conversion circuit 7374 is provided.
  • the second amplification stage 70B also has a seventh current-voltage conversion circuit 75 interposed between the low potential side of the third push-pull circuit 71 and the fourth push-pull circuit 72 and the negative power supply line Ln. And 8 current-voltage conversion circuits 76.
  • the second amplification stage 70B includes a third output stage 79 to which the output sides of the fifth current-voltage conversion circuit 73 and the seventh current-voltage conversion circuit 75 are connected, and the sixth current-voltage conversion circuit 74. And a fourth output stage 80 to which the output side of the eighth current-voltage conversion circuit 76 is connected.
  • the third push-pull circuit 71 includes an npn-type bipolar transistor Q71 and a pnp-type bipolar transistor Q72, whose emitters are connected to each other.
  • the collector of the npn-type bipolar transistor Q71 is connected to the fifth current-voltage conversion circuit 73, and the collector of the pnp-type bipolar transistor Q72 is connected to the seventh current-voltage conversion circuit 75.
  • the bias circuit 77 includes a pnp bipolar transistor Q75 having an emitter connected to the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 of the first amplification stage 70A, and a collector connected to the negative power supply line Ln.
  • the npn bipolar transistor Q76 has a collector connected to the positive power supply line Lp and an emitter connected to the collector of the npn bipolar transistor Q42 constituting the first output stage 17 of the first amplification stage 70A.
  • the connection point between the emitter of the pnp bipolar transistor Q75 and the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 is the third level. Is connected to the base of the npn-type bipolar transistor Q71 of the push-pull circuit 71 (that is, the high-potential side input section of the third push-pull circuit 71).
  • the connection point between the npn-type bipolar transistor Q76 and the npn-type bipolar transistor Q42 constituting the first output stage 17 (that is, the low-potential side output portion of the first output stage 17) is the third push-pull.
  • the pnp bipolar transistor Q72 of the circuit 71 is connected to the base (that is, the low potential side input portion of the third push-pull circuit 71).
  • the fourth push-pull circuit 72 includes an npn-type bipolar transistor Q73 and a pnp-type bipolar transistor Q74 whose emitters are connected to each other.
  • the collector of the npn-type bipolar transistor Q73 is connected to the sixth current-voltage conversion circuit 74, and the collector of the pnp-type bipolar transistor Q74 is connected to the eighth current-voltage conversion circuit 76.
  • the bias circuit 78 includes a pnp bipolar transistor Q77 having an emitter connected to the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 of the first amplification stage 70A, and a collector connected to the negative power supply line Ln.
  • the npn bipolar transistor Q78 has a collector connected to the positive power supply line Lp and an emitter connected to the collector of the npn bipolar transistor Q44 constituting the second output stage 18 of the first amplification stage 70A.
  • the connection point between the emitter of the pnp bipolar transistor Q77 and the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 (that is, the high potential side output portion of the second output stage 18) is the fourth.
  • the push-pull circuit 72 is connected to the base of the npn-type bipolar transistor Q73 (that is, the high-potential side input section of the fourth push-pull circuit 72).
  • the connection point between the npn-type bipolar transistor Q78 and the npn-type bipolar transistor Q44 constituting the second output stage 18 (that is, the low-potential side output portion of the second output stage 18) is the fourth push-pull.
  • the pnp bipolar transistor Q74 of the circuit 72 is connected to the base (that is, the low potential side input section of the fourth push-pull circuit 72).
  • the fifth current-voltage conversion circuit 73 includes a pnp bipolar transistor Q81 having an emitter connected to the positive power supply line Lp and a collector connected to the third push-pull circuit 71.
  • the collector and base of the pnp bipolar transistor Q81 are connected, and these connection points are connected to the third output stage 79, and a current mirror circuit is configured as will be described later.
  • the sixth current-voltage conversion circuit 74 includes a pnp bipolar transistor Q82 having an emitter connected to the positive power supply line Lp and a collector connected to the fourth push-pull circuit 72.
  • the collector and base of the pnp bipolar transistor Q82 are connected, and these connection points are connected to the fourth output stage 80, so that a current mirror circuit is configured as will be described later.
  • the seventh current-voltage conversion circuit 75 includes an npn-type bipolar transistor Q83 having an emitter connected to the negative power supply line Ln and a collector connected to the third push-pull circuit 71.
  • the collector and base of this npn-type bipolar transistor Q83 are connected, and these connection points are connected to the third output stage 79 to constitute a current mirror circuit as will be described later.
  • the eighth current-voltage conversion circuit 76 includes an npn-type bipolar transistor Q84 having an emitter connected to the negative power supply line Ln and a collector connected to the fourth push-pull circuit 72.
  • the collector and base of this npn-type bipolar transistor Q84 are connected, and these connection points are connected to the fourth output stage 80 to constitute a current mirror circuit as will be described later.
  • the third output stage 79 includes a pnp bipolar transistor Q101 having an emitter connected to the positive power supply line Lp, an npn having a collector connected to the collector of the pnp bipolar transistor Q101, and an emitter connected to the negative power supply line Ln.
  • Type bipolar transistor Q103 The base of the pnp bipolar transistor Q101 is connected to the connection point between the base and collector of the pnp bipolar transistor Q81 of the fifth current-voltage conversion circuit 73, thereby forming a fifth current mirror circuit.
  • the input side circuit of the fifth current mirror circuit constitutes the fifth current-voltage conversion circuit 73.
  • the base of the npn-type bipolar transistor Q103 is connected to the connection point between the base and the collector of the npn-type bipolar transistor Q83 of the seventh current-voltage conversion circuit 75 to constitute a seventh current mirror circuit.
  • the input side circuit of the seventh current mirror circuit constitutes the seventh current-voltage conversion circuit 75.
  • the fourth output stage 80 includes a pnp bipolar transistor Q102 having an emitter connected to the positive power supply line Lp, a collector connected to the collector of the pnp bipolar transistor Q102, and an emitter connected to the negative power supply line Ln. And an npn-type bipolar transistor Q104.
  • the base of the pnp bipolar transistor Q102 is connected to the connection point between the base and collector of the pnp bipolar transistor Q82 of the sixth current-voltage conversion circuit 74 to constitute a sixth current mirror circuit.
  • the input current circuit of the sixth current mirror circuit constitutes the sixth current-voltage conversion circuit 74.
  • the base of the npn bipolar transistor Q104 is connected to the connection point between the base and collector of the npn bipolar transistor Q84 of the eighth current-voltage conversion circuit 76, thereby forming an eighth current mirror circuit.
  • the input current circuit of the eighth current mirror circuit constitutes the eighth current-voltage conversion circuit 76.
  • the final output stage 19 includes two npn bipolar transistors Q91 and Q92 between the positive power supply line Lp and the negative power supply line Ln, and the npn bipolar transistor Q91 has an npn bipolar emitter.
  • the transistor Q92 is connected in series with the collector of the transistor Q92.
  • the base of the npn bipolar transistor Q91 on the high potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q101 and the npn bipolar transistor Q103 of the third output stage 79.
  • the base of the npn bipolar transistor Q92 on the low potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q102 and the npn bipolar transistor Q104 of the fourth output stage 80. Further, an output terminal tout is connected to a connection point between both npn-type bipolar transistors Q91 and Q92.
  • connection point between the base of the npn type bipolar transistor Q92 on the low potential side and the output terminal serving as a connection point between the pnp type bipolar transistor Q102 and the npn type bipolar transistor Q104 in the fourth output stage 80 and the negative power supply line Ln.
  • An npn bipolar transistor Q94 is connected between them.
  • the npn bipolar transistor Q94 has a collector connected to the output terminal of the fourth output stage 80 and a connection point of the npn bipolar transistor Q92, and an npn bipolar transistor Q94 having an emitter connected to the negative power supply line Ln.
  • the base of the npn type bipolar transistor Q94 is connected to the connection point between the output terminal of the fourth output stage 80 and the base of the npn type bipolar transistor Q92 to constitute a constant current circuit. It should be noted that phase compensation capacitors C0 and C1 that prevent deterioration of the high-frequency characteristics of the operational amplifier are connected between npn-type bipolar transistors Q91 and Q92 between their respective collectors and bases.
  • a capacitor that suppresses noise between a connection point between the npn-type bipolar transistor Q23 and the junction field effect transistor Q25 in the bias circuit 24 of the first amplification stage 70A and a connection point between the output terminal tout of the final output stage 19 C4 is connected.
  • the npn bipolar transistors Q16 and Q26 cascode-connected to the junction field effect transistors Q15 and Q25 in the first embodiment are omitted, but the first embodiment is omitted.
  • npn bipolar transistors Q16 and Q26 may be provided.
  • the first output stage of the first amplification stage 70A since the configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, the first output stage of the first amplification stage 70A. A large driving force can be obtained from the 17 and the second output stage 18 while suppressing noise, and an amplified output that can increase the speed can be obtained.
  • the amplified output of the first output stage 17 output from the first amplification stage 70A is input to the bias circuit 77 of the third push-pull circuit 71 of the second amplification stage 70B, and the second output
  • the amplified output of the output stage 18 is input to the bias circuit 78 of the fourth push-pull circuit 72 of the second amplification stage 70B. Therefore, the signals are amplified again by the third push-pull circuit 71 and the fourth push-pull circuit 72 and output to the final output stage 19, converted into a voltage by the final output stage 19, and output from the output terminal tout. .
  • the open loop gain (OLG) of the operational amplifier applied to the charge amplifier need not be a large value.
  • the open loop gain (OLG) of the operational amplifier 1 of the first embodiment described above is about 65 dB.
  • the first amplification stage 70A having the configuration of the first embodiment and the second amplification stage 70B that amplifies the amplification output of the first amplification stage 70A are provided.
  • OLG open loop gain
  • the connection position of the junction field effect transistors Q15 and Q25 is on the negative power supply line Ln side of the pnp bipolar transistors Q14 and Q24 of the bias circuit. Can be connected.
  • the current mirror circuit 22 may be connected to the positive power supply line Lp side.
  • the configuration example of FIG. 8 in the third embodiment the case where the final output stage 19 is configured by npn-type bipolar transistors Q91 and Q92 has been described. However, instead of these, a pnp-type bipolar transistor is applied. This point is the same as in the first embodiment.
  • the npn-type bipolar transistor can operate at a higher speed than the pnp-type bipolar transistor. Therefore, the npn-type bipolar transistors Q91 and Q92 are not provided as in the configuration example of FIG. A faster operational amplifier can be configured when applied.
  • the circuit of the final output stage 19 includes two npn-type bipolar transistors Q91 and Q92 between the positive power supply line Lp and the negative power supply line Ln.
  • Circuit configuration having a configuration in which the emitter of npn-type bipolar transistor Q91 is connected in series with the collector of npn-type bipolar transistor Q92, that is, the npn-type bipolar transistor is used for both the high-potential side and low-potential-side bipolar transistors. Therefore, the high-speed property of the npn-type bipolar transistor can be fully exhibited.
  • the circuit of the final output stage 19 has a circuit configuration having a complementary connection configuration in which a pnp bipolar transistor and an npn bipolar transistor with collectors connected to each other are connected between a positive power supply line and a negative power supply line Since the overall operation of the combination of the low potential side npn type bipolar transistor and the high potential side pnp type bipolar transistor becomes slow when pulled toward the pnp type bipolar transistor, the high speed of the npn type bipolar transistor Sex cannot be fully demonstrated.
  • the circuit configuration of the operational amplifier shown in FIG. 8 in the third embodiment is similar to the circuit configuration of the operational amplifier according to the first embodiment in that the circuit of the final output stage 19 is replaced with the positive power supply line Lp and Since the two npn bipolar transistors Q91 and Q92 are connected in series between the negative power supply line Ln and the emitter of the npn bipolar transistor Q91 connected to the collector of the npn bipolar transistor Q92, a high-speed operational amplifier Is particularly suitable for realizing the above.
  • the configuration of the operational amplifier having the two-stage amplifier circuit configuration in order to increase the open-loop gain is shown in FIG. 8, but the calculation having the two-stage amplifier circuit configuration in the present invention is shown in FIG.
  • the configuration of the amplifier is not limited to the configuration example shown in FIG. 8, but may be the circuit configuration shown in FIG. That is, in the configuration example of FIG. 9, the operational amplifier 1 has a two-stage amplifier circuit configuration in which the first amplifier stage 70A and the second amplifier stage 70C are provided.
  • the configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, and includes the first push-pull circuit 11, the second push-pull circuit 12, and the first current-voltage conversion circuits 134 to A fourth current-voltage conversion circuit 6, a first output stage 17 and a second output stage 18, and a final output stage 19 are provided.
  • the second amplification stage 70 ⁇ / b> C which is the final amplification stage, is interposed between the first output stage 17, the second output stage 18, and the final output stage 19.
  • the second amplifying stage 70C includes a third push-pull circuit 71 and a fourth push-pull circuit 72 having the same configuration as the first push-pull circuit 11 and the second push-pull circuit 12 described above.
  • the third push-pull circuit 71 includes an npn-type bipolar transistor Q71 and a pnp-type bipolar transistor Q72, whose emitters are connected to each other.
  • the collector of the npn type bipolar transistor Q71 is connected to the fifth current / voltage conversion circuit 73a, and the collector of the pnp type bipolar transistor Q72 is connected to the sixth current / voltage conversion circuit 74a.
  • the base of the npn-type bipolar transistor Q71 and the base of the pnp-type bipolar transistor Q72 are connected to the bias circuit 77.
  • the bias circuit 77 has a pnp bipolar transistor Q75 and an npn bipolar transistor Q76.
  • the emitter is connected to the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 of the first amplification stage 30A, and the collector is connected to the negative power supply line Ln.
  • the npn-type bipolar transistor Q76 has a collector connected to the positive power supply line Lp, and an emitter connected to the collector of the npn-type bipolar transistor Q42 constituting the first output stage 17 of the first amplification stage 30A.
  • connection point between the emitter of the pnp bipolar transistor Q75 and the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 is connected to the base of the npn bipolar transistor Q71 of the third push-pull circuit 71. Yes.
  • the connection point between the npn bipolar transistor Q76 and the npn bipolar transistor Q42 constituting the first output stage 17 is connected to the base of the pnp bipolar transistor Q72 of the third push-pull circuit 71.
  • the fourth push-pull circuit 72 includes an npn-type bipolar transistor Q73 and a pnp-type bipolar transistor Q74 whose emitters are connected to each other.
  • the collector of the npn-type bipolar transistor Q73 is connected to the fifth current-voltage conversion circuit 73a, and the collector of the pnp-type bipolar transistor Q74 is connected to the sixth current-voltage conversion circuit 74a.
  • the base of the npn type bipolar transistor Q73 and the base of the pnp type bipolar transistor Q74 are connected to the bias circuit 78.
  • the bias circuit 78 includes a pnp bipolar transistor Q77 and an npn bipolar transistor Q78.
  • the emitter is connected to the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 of the first amplification stage 30A, and the collector is connected to the negative power supply line Ln.
  • the npn bipolar transistor Q78 has a collector connected to the positive power supply line Lp and an emitter connected to the collector of the npn bipolar transistor Q44 that constitutes the second output stage 18 of the first amplification stage 30A.
  • connection point between the emitter of the pnp bipolar transistor Q77 and the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 is connected to the base of the npn bipolar transistor Q73 of the fourth push-pull circuit 72. Yes.
  • the connection point between the npn bipolar transistor Q78 and the npn bipolar transistor Q44 constituting the second output stage 18 is connected to the base of the pnp bipolar transistor Q74 of the fourth push-pull circuit 72.
  • the fifth current-voltage conversion circuit 73a includes a pnp bipolar transistor Q81 and a pnp bipolar transistor Q82a.
  • the pnp bipolar transistor Q81 has an emitter connected to the positive power supply line Lp and a collector connected to the third push-pull circuit 71.
  • the npn bipolar transistor Q82 has an emitter connected to the positive power supply line Lp and a collector connected to the fourth push-pull circuit 72.
  • the bases of these pnp bipolar transistors Q81 and Q82a are connected to each other, and the connection point of both bases is connected to the collector of the pnp bipolar transistor Q82a to form a current mirror circuit.
  • the sixth current-voltage conversion circuit 74a includes an npn bipolar transistor Q83 and an npn bipolar transistor Q84a.
  • the npn bipolar transistor Q83 has an emitter connected to the negative power supply line Ln and a collector connected to the third push-pull circuit 71.
  • the pnp bipolar transistor Q84 has an emitter connected to the negative power supply line Ln and a collector connected to the fourth push-pull circuit 72.
  • the bases of these npn-type bipolar transistors Q83 and Q84a are connected to each other, and the connection point of both bases is connected to the collector of the npn-type bipolar transistor Q84a to form a current mirror circuit.
  • connection point between the collector of the npn-type bipolar transistor Q71 of the third push-pull circuit 71 and the collector of the pnp-type bipolar transistor Q81 of the fifth current-voltage conversion circuit 73a is the output terminal, and the pnp-type bipolar of the final output stage 19 is used. It is connected to the base of transistor Q91a.
  • connection point between the collector of the pnp bipolar transistor Q72 of the third push-pull circuit 71 and the collector of the npn bipolar transistor Q83 of the sixth current-voltage conversion circuit 74a is the output terminal, and the npn type of the final output stage 19 It is connected to the base of bipolar transistor Q92.
  • the final output stage 19 has a complementary connection configuration in which a pnp bipolar transistor 91a and an npn bipolar transistor Q92, whose collectors are connected to each other, are connected between the positive power supply line Lp and the negative power supply line Ln.
  • a pnp bipolar transistor Q93 is connected between the base of the pnp bipolar transistor Q91a and the positive power supply line Lp.
  • the base of the pnp bipolar transistor Q93 is the connection point between the npn bipolar transistor Q71 of the third push-pull circuit 71 and the collector of the pnp bipolar transistor Q81 of the fifth current-voltage conversion circuit 73, and the final output.
  • the pnp bipolar transistor Q93 and the pnp bipolar transistor Q91a of the final output stage 19 form a constant current circuit.
  • an npn bipolar transistor Q94 is connected to the npn bipolar transistor Q92 between the base and the negative power supply line Ln as in the first embodiment.
  • the npn bipolar transistor Q94 and the npn bipolar transistor Q92 constitute a constant current circuit.
  • a capacitor that suppresses noise between a connection point between the npn-type bipolar transistor Q23 and the junction field effect transistor Q25 in the bias circuit 24 of the first amplification stage 70A and a connection point between the output terminal tout of the final output stage 19 C4 is connected.
  • the npn bipolar transistors Q16 and Q26 that are cascode-connected to the junction field effect transistors Q15 and Q25 in the first embodiment are omitted, but the first embodiment is omitted.
  • npn bipolar transistors Q16 and Q26 may be provided.
  • the configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, and therefore the first output stage of the first amplification stage 70A. A large driving force can be obtained from the 17 and the second output stage 18 while suppressing noise, and an amplified output that can increase the speed can be obtained.
  • the amplified output of the first output stage 17 output from the first amplification stage 70A is input to the bias circuit 77 of the third push-pull circuit 71 of the second amplification stage 70C, and the second output The amplified output of the output stage 18 is input to the bias circuit 78 of the fourth push-pull circuit 72 of the second amplification stage 70C. Therefore, the signals are amplified again by the third push-pull circuit 71 and the fourth push-pull circuit 72 and output to the final output stage 19, converted into a voltage by the final output stage 19, and output from the output terminal tout. .
  • the first amplification stage 70A having the configuration of the first embodiment and the second amplification stage 70C for amplifying the amplification output of the first amplification stage 70A are provided.
  • the operational amplifier according to the configuration example of FIG. 9 can be used without any problem for general amplification applications, similarly to the operational amplifier according to the configuration example of FIG.
  • connection position of the junction field effect transistors Q15 and Q25 is on the negative power supply line Ln side of the pnp bipolar transistors Q14 and Q24 of the bias circuit. Can be connected.
  • the current mirror circuit 22 may be connected to the positive power supply line Lp side.
  • SYMBOLS 1 Operational amplifier, Lp ... Positive power supply line, Ln ... Negative power supply line, 11 ... 1st push pull circuit, 12 ... 2nd push pull circuit, 13 ... 1st current voltage conversion circuit, 14 ... 2nd Current voltage conversion circuit, 15 ... third current voltage conversion circuit, 16 ... fourth current voltage conversion circuit, 17 ... first output stage, 18 ... second output stage, 19 ... final output stage, Q11 to Q14 ... Bipolar transistor, Q15 ... Junction type field effect transistor, Q16 ... Cascode-connected bipolar transistor, Q21 to Q24 ... Bipolar transistor, 21,24 ... Bias circuit, 22 ... Current mirror circuit, Re ... Emitter connection resistance, Q25 ...
  • junction type Field effect transistor Q26 ... Cascode-connected bipolar transistor, + tin ... Positive input terminal, -tin ... Negative electrode Input terminals, Q31 ⁇ Q37 ... bipolar transistors, Q41 ⁇ Q44 ... bipolar transistors, Q51 ⁇ Q53 ... bipolar transistor, Q61, Q62 ... junction field effect transistor, Q63, Q64 ... bipolar transistor, 50 ... charge amplifier, C SENS ... Variable Capacitance, 60 ... variable capacitance sensor, 61 ... AC oscillator, 62 ... multiplier, 63 ... low pass filter, 70A ... first amplification stage, 70B, 70C ... second amplification stage, 71 ...
  • third push-pull circuit 72: Fourth push-pull circuit, 73, 73a: Fifth current-voltage conversion circuit, 74, 74a: Sixth current-voltage conversion circuit, 75: Seventh current-voltage conversion circuit, 76: Eighth current voltage Conversion circuit, 77, 78 ... bias circuit, 79 ... third output stage, 80 ... fourth output stage, Q71 to Q78 Bipolar transistor, Q81 ⁇ Q84, Q82a, Q84a ... bipolar transistor, Q91 ⁇ Q94, Q91a ... bipolar transistor, Q101 ⁇ Q104 ... bipolar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

The present invention provides a stable operational amplifier having an enhanced frequency characteristic and also provides a charge amplifier using the same. An operational amplifier comprises: first and second push-pull circuits (11), (12) connected in parallel between positive and negative power supply lines; first and second current/voltage conversion circuits (13), (14) to which the higher potential sides of the first and second push-pull circuits (11), (12) are connected and which are connected to the positive power supply line; third and fourth current/voltage conversion circuits (15), (16) to which the lower potential sides of the first and second push-pull circuits are connected and which are connected to the negative power supply line; a first output stage (17) to which the output sides of the first and third current/voltage conversion circuits are connected; a second output stage (18) to which the output sides of the second and fourth current/voltage conversion circuits are connected; and an final output stage (19) in which bipolar transistors having the same polarity are connected between the positive power supply line and the negative power supply line. An output from the first output stage is supplied to the base of the transistor on the higher potential side of the final output stage, while an output from the second output stage is supplied to the bases of the transistors on the lower potential side of the final output stage.

Description

演算増幅器及びこれを使用したチャージアンプOperational amplifier and charge amplifier using the same
 本発明は、高速動作可能な演算増幅器及びこれを使用したチャージアンプに関する。 The present invention relates to an operational amplifier capable of high-speed operation and a charge amplifier using the operational amplifier.
 微小な容量変化を測定する原理を用いたセンサとして、近年開発・研究がなされているものにMEMS(Micro Electro Mechanical System)構造を利用した各種物理量を検出する各種物理量センサがある。
 容量可変型物理量センサの原理は、非常にシンプルで、錘とこの錘を支持する微小なばねとをSiプロセスなどで作成し、錘に対向する形で固定電極を設ける構成としている。錘はバネで支持されているので、外力に対してある程度自由に移動することが可能となり、外力が加わると結果として錘と固定電極間の静電容量が変化することになる。この静電容量をチャージアンプで読み取ることで錘の変位を検知するのがMEMSを利用した容量可変型物理量センサの原理である。
As sensors using the principle of measuring minute capacitance changes, there are various physical quantity sensors that detect various physical quantities using a MEMS (Micro Electro Mechanical System) structure that have been developed and studied in recent years.
The principle of the capacitance variable type physical quantity sensor is very simple. A weight and a minute spring supporting the weight are formed by a Si process or the like, and a fixed electrode is provided so as to face the weight. Since the weight is supported by the spring, it can move to some extent with respect to the external force, and when the external force is applied, the capacitance between the weight and the fixed electrode changes as a result. The principle of the capacitance variable physical quantity sensor using MEMS is to detect the displacement of the weight by reading this capacitance with a charge amplifier.
 このように容量変化を観測するために演算増幅器を用いてチャージアンプを構成すると、高周波でノイズが低下する。具体的には、およその傾向として、SNを1桁向上させるためには、1桁の高周波化が必要となる。逆に言うと、高周波での動作が可能な回路構成をとれば、高SN化が可能になることを示している。 If the charge amplifier is configured using the operational amplifier to observe the capacitance change in this way, noise is reduced at a high frequency. Specifically, as an approximate trend, in order to improve the SN by one digit, it is necessary to increase the frequency by one digit. In other words, it is shown that a high SN can be achieved by adopting a circuit configuration capable of operating at a high frequency.
 高周波で動作が可能な演算増幅器として知られているものに電流帰還型演算増幅器が存在する。この電流帰還型演算増幅器は、単純化した場合に、図10に示す構成となる。すなわち、エミッタ同士が互いに接続されたコンプリメンタリなnpn型のバイポーラトランジスタQ101及びpnp型のバイポーラトランジスタQ102を直列に接続したバッファBUを有する。 Current feedback operational amplifiers are known as operational amplifiers that can operate at high frequencies. This current feedback operational amplifier has a configuration shown in FIG. 10 when simplified. That is, it has a buffer BU in which complementary npn-type bipolar transistor Q101 and pnp-type bipolar transistor Q102 having emitters connected to each other are connected in series.
 このバッファBUは、バイポーラトランジスタQ101及び102のコレクタが正極電源ラインLp及び負極電源ラインLnに個別にダイオードD101及びD102を順方向に介して接続されている。
 バイポーラトランジスタQ101及びQ102のベース間には2つのダイオードD103及びD104が順方向に直列に接続されている。ここで、ダイオードD103のアノードが正極電源ラインLpに接続された定電流源CI101に接続され、ダイオードD104のカソードが負極電源ラインLnに接続された定電流源CI102に接続されている。
In the buffer BU, the collectors of the bipolar transistors Q101 and 102 are individually connected to the positive power supply line Lp and the negative power supply line Ln via the diodes D101 and D102 in the forward direction.
Two diodes D103 and D104 are connected in series in the forward direction between the bases of the bipolar transistors Q101 and Q102. Here, the anode of the diode D103 is connected to the constant current source CI101 connected to the positive power supply line Lp, and the cathode of the diode D104 is connected to the constant current source CI102 connected to the negative power supply line Ln.
 そして、ダイオードD103のカソード及びD104のアノードの接続点が正極側入力端子+tinに接続されている。また、バイポーラトランジスタQ101及びQ102のエミッタ間の接続点が負極側入力端子-tinに接続されている。
 さらに、バッファBUのバイポーラトランジスタQ101のコレクタとダイオードD101のカソードとの接続点が、出力段を構成するpnp型のバイポーラトランジスタQ103のベースに接続されている。同様にバッファBUのバイポーラトランジスタQ102のコレクタとダイオードD102のアノードとの接続点が出力段を構成するnpn型のバイポーラトランジスタQ104のベースに接続されている。
A connection point between the cathode of the diode D103 and the anode of D104 is connected to the positive input terminal + tin. Further, the connection point between the emitters of the bipolar transistors Q101 and Q102 is connected to the negative side input terminal -tin.
Further, the connection point between the collector of the bipolar transistor Q101 of the buffer BU and the cathode of the diode D101 is connected to the base of a pnp bipolar transistor Q103 constituting the output stage. Similarly, the connection point between the collector of the bipolar transistor Q102 of the buffer BU and the anode of the diode D102 is connected to the base of an npn-type bipolar transistor Q104 constituting the output stage.
 バイポーラトランジスタQ103及びQ104はコレクタ同士が互いに接続され、バイポーラトランジスタQ103のエミッタか正極電源ラインLpに接続され、バイポーラトランジスタQ104のエミッタが負極電源ラインLnに接続されている。
 さらに、バイポーラトランジスタQ103及びQ104のコレクタ間の接続点が高いインピーダンスを持つ出力段バッファBAを介して出力端子toutに接続されている。なお、バイポーラトランジスタQ103及びQ104のコレクタ間の接続点及び出力段バッファBAの入力側間と接地との間に抵抗R101及びコンデンサC101の並列回路が接続されている。
The collectors of the bipolar transistors Q103 and Q104 are connected to each other, the emitter of the bipolar transistor Q103 is connected to the positive power supply line Lp, and the emitter of the bipolar transistor Q104 is connected to the negative power supply line Ln.
Further, the connection point between the collectors of the bipolar transistors Q103 and Q104 is connected to the output terminal tout via the output stage buffer BA having a high impedance. A parallel circuit of a resistor R101 and a capacitor C101 is connected between a connection point between the collectors of the bipolar transistors Q103 and Q104 and between the input side of the output stage buffer BA and the ground.
 さらに、負極側入力端子-tinと接地との間に負荷抵抗Rが接続され、この負荷抵抗Rと負極側入力端子-tinとの接続点が帰還抵抗Rfを介して出力段バッファBAの出力側に接続されて電流帰還型演算増幅器が構成されている。
 この電流帰還型演算増幅器では、正極側入力端子+tinの入力電圧が上昇した場合、負荷抵抗Rに流れ込む電流の増加分がそのまま折り返されて高いインピーダンスを持つ出力段バッファBAの電位を上昇させる。入力端子+tin及び-tinの電位が等しくなると電流増加分が消失するので、その電位で出力は安定する。電流帰還型演算増幅器では、電流の切り替えで増幅を行っており、高速である理由は、バイポーラトランジスタの電流は電圧より速く切り替えることが可能なためである。
Further, a load resistance R is connected between the negative side input terminal -tin and the ground, and a connection point between the load resistance R and the negative side input terminal -tin is connected to the output side of the output stage buffer BA via the feedback resistor Rf. To form a current feedback operational amplifier.
In this current feedback type operational amplifier, when the input voltage at the positive input terminal + tin increases, the increase in the current flowing into the load resistor R is folded as it is to increase the potential of the output stage buffer BA having a high impedance. When the potentials of the input terminals + tin and −tin become equal, the increase in current disappears, and the output is stabilized at that potential. In the current feedback operational amplifier, amplification is performed by switching the current, and the reason for the high speed is that the current of the bipolar transistor can be switched faster than the voltage.
 ところで、微小な容量変化を検出するチャージアンプに適用する演算増幅器としては、高速で且つ発振が生じにくく安定な演算増幅器が求められている。
 このためには、例えば特許文献1に記載されているAB級プッシュプル駆動回路を演算増幅器に適用することが考えられる。このAB級プッシュプル駆動回路は、図11に示すように、上述した図10に示されているバッファBUを2組使用し、これら2組のバッファBU1及びBU2を並列に配置し、バッファBU1のバイポーラトランジスタQ101及びQ102のエミッタ間の接続点と、バッファBU2のバイポーラトランジスタQ111及びQ112のエミッタ間の接続点とを互いに接続する。
By the way, as an operational amplifier that is applied to a charge amplifier that detects a minute change in capacitance, a stable operational amplifier that is fast and hardly oscillates is required.
For this purpose, for example, it is conceivable to apply the class AB push-pull drive circuit described in Patent Document 1 to an operational amplifier. As shown in FIG. 11, this class AB push-pull drive circuit uses two sets of the buffer BU shown in FIG. 10 described above, arranges these two sets of buffers BU1 and BU2 in parallel, and sets the buffer BU1. A connection point between the emitters of the bipolar transistors Q101 and Q102 and a connection point between the emitters of the bipolar transistors Q111 and Q112 of the buffer BU2 are connected to each other.
 そして、バッファBU1及びBU2のバイポーラトランジスタQ101及びQ111のコレクタをそれぞれカレントミラー回路CM101及びCM103を介して正極電源ラインLpに接続する。また、バッファBU1及びBU2のバイポーラトランジスタQ102及びQ112のコレクタをそれぞれカレントミラー回路CM102及びCM104を介して負極電源ラインLnに接続する。 Then, the collectors of the bipolar transistors Q101 and Q111 of the buffers BU1 and BU2 are connected to the positive power supply line Lp through the current mirror circuits CM101 and CM103, respectively. The collectors of the bipolar transistors Q102 and Q112 of the buffers BU1 and BU2 are connected to the negative power supply line Ln through the current mirror circuits CM102 and CM104, respectively.
 さらに、カレントミラー回路CM101及びCM102の出力側トランジスタQ105及びQ106のコレクタを正極側出力端子+OUTに接続し、カレントミラー回路103及びQ104の出力側トランジスタQ107及びQ108のコレクタを負極側出力端子-OUTに接続する。
 また、バッファBU1のバイポーラトランジスタQ101及びQ102のベース間にダイオード接続されたpnp型のバイポーラトランジスタQ109及びQ110を接続し、バイポーラトランジスタQ109及びQ110のベースを正極側入力端子+INに接続する。同様に、バッファBU2のバイポーラトランジスタQ111及びQ112のベース間にダイオード接続されたpnp型のバイポーラトランジスタQ113及びQ114を接続し、バイポーラトランジスタQ113及びQ114のベースを負極側入力端子-INに接続する。
Further, the collectors of the output transistors Q105 and Q106 of the current mirror circuits CM101 and CM102 are connected to the positive output terminal + OUT, and the collectors of the output transistors Q107 and Q108 of the current mirror circuits 103 and Q104 are connected to the negative output terminal −OUT. Connecting.
Also, diode-connected pnp bipolar transistors Q109 and Q110 are connected between the bases of the bipolar transistors Q101 and Q102 of the buffer BU1, and the bases of the bipolar transistors Q109 and Q110 are connected to the positive input terminal + IN. Similarly, pnp-type bipolar transistors Q113 and Q114 that are diode-connected are connected between the bases of the bipolar transistors Q111 and Q112 of the buffer BU2, and the bases of the bipolar transistors Q113 and Q114 are connected to the negative-side input terminal −IN.
 このように演算増幅器を図11に示す構成とすることにより、AB級プッシュプル駆動回路を構成することができる。このAB級プッシュプル駆動回路では、バッファBU1を構成するバイポーラトランジスタQ101のエミッタに流入する電流I1とバイポーラトランジスタQ102のコレクタから流出する電流I2とが指数関数的に且つ差動的に増減する。同様に、バッファBU2を構成するバイポーラトランジスタQ111のエミッタに流入する電流I3とバイポーラトランジスタQ112のコレクタから流出する電流I4とが指数関数的に且つ差動的に増減する。電流I1及びI2を反転加算し、電流I3及びI4を反転加算することにより、互いに差動関係にある2種類のAB級駆動電流が出力端子+OUT及び-OUTから得られる。この場合、信号増幅に係る経路差が生じなく対称性が良好で、AB級動作のためのループを必要とせず、高周波における経路間位相差が生じ難いとともに、安定したAB級プッシュプル駆動回路を実現することができる。 In this way, by configuring the operational amplifier as shown in FIG. 11, a class AB push-pull drive circuit can be configured. In this class AB push-pull drive circuit, the current I1 flowing into the emitter of the bipolar transistor Q101 constituting the buffer BU1 and the current I2 flowing out from the collector of the bipolar transistor Q102 increase and decrease exponentially and differentially. Similarly, the current I3 flowing into the emitter of the bipolar transistor Q111 constituting the buffer BU2 and the current I4 flowing out from the collector of the bipolar transistor Q112 increase and decrease exponentially and differentially. By inverting and adding the currents I1 and I2 and inverting and adding the currents I3 and I4, two types of class AB driving currents having a differential relationship with each other can be obtained from the output terminals + OUT and -OUT. In this case, a path difference related to signal amplification does not occur, the symmetry is good, a loop for class AB operation is not required, a phase difference between paths at high frequencies hardly occurs, and a stable class AB push-pull drive circuit is provided. Can be realized.
特開平07-249946号公報JP 07-249946 A
 ところで、上記特許文献1に記載された従来例のAB級プッシュプル駆動回路では、高周波における経路間位相差を抑制して安定したAB級プッシュプル動作を行うことができるが、このAB級プッシュプル駆動回路の周波数に対するゲイン特性は、後述する図6で破線図示のように、ゲインが-3dBから負方向に増加する周波数は18.5MHzとなっている。一方、AB級プッシュプル駆動回路の周波数に対する位相角度は図6で破線図示のように、1MHzから減少し始め、18.5MHzでは、-50degほど低下している。ここで、位相角度は-180deg未満であれば安定とされているので、AB級プッシュプル駆動回路の動作周波数の上限はゲイン特性から18.5MHzに制限されることになる。 By the way, in the conventional class AB push-pull drive circuit described in Patent Document 1, a class AB push-pull operation can be performed while suppressing a phase difference between paths at high frequencies. As for the gain characteristic with respect to the frequency of the drive circuit, the frequency at which the gain increases in the negative direction from -3 dB is 18.5 MHz as shown by the broken line in FIG. On the other hand, the phase angle with respect to the frequency of the class AB push-pull drive circuit starts to decrease from 1 MHz as shown by the broken line in FIG. 6, and decreases by about −50 deg at 18.5 MHz. Here, since the phase angle is less than −180 deg, it is considered stable, so the upper limit of the operating frequency of the class AB push-pull drive circuit is limited to 18.5 MHz from the gain characteristic.
 微小な容量変化を検出するチャージアンプでは、18.5MHzより高い周波数帯域が求められることがある。この場合、上記構成のAB級プッシュプル駆動回路を含んで演算増幅器を構成すると、AB級プッシュプル駆動回路の周波数の上限(18.5MHz)を動作周波数が超えてしまうという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、周波数特性をより高めて安定した演算増幅器及びこれを使用したチャージアンプを提供することを目的としている。
A charge amplifier that detects a minute capacitance change may require a frequency band higher than 18.5 MHz. In this case, when the operational amplifier is configured including the class AB push-pull drive circuit having the above configuration, there is an unsolved problem that the operating frequency exceeds the upper limit (18.5 MHz) of the frequency of the class AB push-pull drive circuit. .
Accordingly, the present invention has been made paying attention to the unsolved problems of the above-described conventional example, and an object thereof is to provide a stable operational amplifier having a higher frequency characteristic and a charge amplifier using the operational amplifier.
 上記目的を達成するために、本発明に係る演算増幅器の一の態様は、正極電源ラインと負極電源ラインとの間に並列に接続したコンプリメンタリ形式の第1及び第2のプッシュプル回路と、前記第1及び第2のプッシュプル回路の高い電位側を接続し前記正極電源ラインに接続した第1及び第2の電流電圧変換回路と、前記第1及び第2のプッシュプル回路の低い電位側を接続し前記負極電源ラインに接続した第3及び第4の電流電圧変換回路とを備えている。また、前記第1及び第3の電流電圧変換回路の出力側が接続される第1の出力段と、前記第2及び第4の電流電圧変換回路の出力側が接続される第2の出力段と、前記正極電源ライン及び負極電源ライン間に、同一極性のバイポーラトランジスタを接続してプッシュプル回路構成を有する最終出力段とを備えている。そして、前記最終出力段の高い電位側のバイポーラトランジスタのベースに前記第1の出力段の出力を供給し、前記最終出力段の低い電位側のバイポーラトランジスタのベースに前記第2の出力段の出力を供給している。
 また、本発明に係るチャージアンプの一の態様は、積分回路を構成する演算増幅器として上述した演算増幅器を使用している。
In order to achieve the above object, one aspect of an operational amplifier according to the present invention includes complementary first and second push-pull circuits connected in parallel between a positive power supply line and a negative power supply line, The first and second current-voltage conversion circuits connected to the positive power supply line by connecting the high potential sides of the first and second push-pull circuits, and the low potential sides of the first and second push-pull circuits. And third and fourth current-voltage conversion circuits connected to the negative power supply line. A first output stage to which the output sides of the first and third current-voltage converter circuits are connected; a second output stage to which the output sides of the second and fourth current-voltage converter circuits are connected; A final output stage having a push-pull circuit configuration by connecting bipolar transistors of the same polarity between the positive power supply line and the negative power supply line is provided. The output of the first output stage is supplied to the base of the high potential side bipolar transistor of the final output stage, and the output of the second output stage is supplied to the base of the low potential side bipolar transistor of the final output stage. Supply.
Moreover, one aspect of the charge amplifier according to the present invention uses the above-described operational amplifier as an operational amplifier constituting the integrating circuit.
 本発明の一態様によれば、コンプリメンタリ形式の第1および第2のプッシュプル回路の高電位側及び低電位側にそれぞれ電流電圧変換回路を1つずつ接続し、第1のプッシュプル回路に接続された2つの電流電圧変換回路の出力側を第1の出力段に接続し、第2のプッシュプル回路に接続された2つの電流電圧変換回路の出力側を第2の出力段に接続し、第1の出力段及び第2の出力段の出力側を、最終出力段のプッシュプル回路を構成する同一極性のバイポーラトランジスタにそれぞれ供給することにより、より高い周波数で安定して動作する演算増幅器を構成することができる。 According to one aspect of the present invention, one current-voltage conversion circuit is connected to each of the high-potential side and the low-potential side of the complementary first and second push-pull circuits, and is connected to the first push-pull circuit. Connecting the output sides of the two current-voltage conversion circuits connected to the first output stage, and connecting the output sides of the two current-voltage conversion circuits connected to the second push-pull circuit to the second output stage; By supplying the output sides of the first output stage and the second output stage to bipolar transistors of the same polarity that constitute the push-pull circuit of the final output stage, an operational amplifier that operates stably at a higher frequency is obtained. Can be configured.
 また、積分回路を構成する演算増幅器として上記効果を有する演算増幅器を使用してチャージアンプを構成することにより、動作速度を確保しながら外来ノイズの影響を確実に抑制することができる。 Also, by configuring the charge amplifier using the operational amplifier having the above effect as the operational amplifier constituting the integration circuit, it is possible to reliably suppress the influence of external noise while ensuring the operation speed.
本発明の第1の実施形態による演算増幅器の一例を示す回路図である。1 is a circuit diagram showing an example of an operational amplifier according to a first embodiment of the present invention. 接合型電界効果トランジスタの電流を1mAとしたときのバイポーラトランジスタ電流と電圧ノイズ密度との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between a bipolar transistor current and a voltage noise density when the electric current of a junction field effect transistor is 1 mA. 接合型電界効果トランジスタの電流を10mAとしたときのバイポーラトランジスタ電流と電圧ノイズ密度との関係を示す特性線図である。It is a characteristic diagram which shows the relationship between a bipolar transistor current and a voltage noise density when the electric current of a junction field effect transistor is 10 mA. 第1の実施形態の変形例を示す回路図である。It is a circuit diagram which shows the modification of 1st Embodiment. 本発明の第2の実施形態であって、第1の実施形態による演算増幅器をチャージアンプに適用した場合の一実施形態を示す回路図である。FIG. 6 is a circuit diagram showing an embodiment in which the operational amplifier according to the first embodiment is applied to a charge amplifier according to the second embodiment of the present invention. 本発明及び従来例のチャージアンプの周波数特性を示す特性図であって、(a)は周波数とゲインとの関係を示すゲイン特性線図、(b)は周波数と位相角度との関係を示す位相角度特性線図である。4 is a characteristic diagram showing frequency characteristics of the charge amplifiers of the present invention and the conventional example, where (a) is a gain characteristic diagram showing the relationship between frequency and gain, and (b) is a phase showing the relationship between frequency and phase angle. It is an angle characteristic diagram. カスコードトランジスタの有無による電源電圧依存特性を示す特性線図である。It is a characteristic diagram which shows the power supply voltage dependence characteristic by the presence or absence of a cascode transistor. 本発明の第3の実施形態による演算増幅器の一例を示す回路図である。It is a circuit diagram which shows an example of the operational amplifier by the 3rd Embodiment of this invention. 第3の実施形態の変形例を示す回路図である。It is a circuit diagram which shows the modification of 3rd Embodiment. 演算増幅器の基本となる従来例を示す回路図である。It is a circuit diagram which shows the prior art example used as the basis of an operational amplifier. 従来の演算増幅器を示す回路図である。It is a circuit diagram which shows the conventional operational amplifier.
 次に、図面を参照して、本発明の一実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 また、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.
Further, the following embodiments exemplify devices for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, arrangement, etc. of the component parts. Is not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
 まず、本発明の一の態様を表す演算増幅器の第1の実施形態について説明する。
 演算増幅器1は、正極電源ラインLpに、並列配置された第1のプッシュプル回路11及び第2のプッシュプル回路12の高電位側が第1の電流電圧変換回路13及び第2の電流電圧変換回路14を介して接続されている。また、負極電源ラインLnに第1のプッシュプル回路11及び第2のプッシュプル回路12の低電位側が第3の電流電圧変換回路15及び第4の電流電圧変換回路16を介して接続されている。
First, a first embodiment of an operational amplifier that represents one aspect of the present invention will be described.
The operational amplifier 1 has a first current-voltage conversion circuit 13 and a second current-voltage conversion circuit in which the high potential side of the first push-pull circuit 11 and the second push-pull circuit 12 arranged in parallel with the positive power supply line Lp. 14 is connected. Further, the low potential side of the first push-pull circuit 11 and the second push-pull circuit 12 is connected to the negative power supply line Ln through the third current-voltage conversion circuit 15 and the fourth current-voltage conversion circuit 16. .
 また、第1のプッシュプル回路11と第1の電流電圧変換回路13との間の接続点と第1のプッシュプル回路11と第3の電流電圧変換回路15との間の接続点とが個別に第1の出力段17に接続されている。さらに、第2のプッシュプル回路12と第2の電流電圧変換回路14との間の接続点と第2のプッシュプル回路12と第4の電流電圧変換回路16との間の接続点とが個別に第2の出力段18に接続されている。 In addition, a connection point between the first push-pull circuit 11 and the first current-voltage conversion circuit 13 and a connection point between the first push-pull circuit 11 and the third current-voltage conversion circuit 15 are individually provided. Are connected to the first output stage 17. Further, the connection point between the second push-pull circuit 12 and the second current-voltage conversion circuit 14 and the connection point between the second push-pull circuit 12 and the fourth current-voltage conversion circuit 16 are individually set. Are connected to the second output stage 18.
 さらに、第1の出力段17の出力側と第2の出力段18の出力側とが最終出力段19に接続されている。
 第1のプッシュプル回路11は、エミッタが互いに接続されたnpn型バイポーラトランジスタQ11とpnp型バイポーラトランジスタQ12とを有する。npn型バイポーラトランジスタQ11のコレクタは第1の電流電圧変換回路13に接続され、pnp型バイポーラトランジスタQ12のコレクタは第3の電流電圧変換回路15に接続されている。
Further, the output side of the first output stage 17 and the output side of the second output stage 18 are connected to the final output stage 19.
The first push-pull circuit 11 includes an npn bipolar transistor Q11 and a pnp bipolar transistor Q12 whose emitters are connected to each other. The collector of the npn-type bipolar transistor Q11 is connected to the first current-voltage conversion circuit 13, and the collector of the pnp-type bipolar transistor Q12 is connected to the third current-voltage conversion circuit 15.
 さらに、npn型バイポーラトランジスタQ11のベース及びpnp型バイポーラトランジスタQ12のベースがバイアス回路21に接続されてB級プッシュプル回路を構成している。
 バイアス回路21は、それぞれコレクタ及びベースを接続してダイオード接続としたダイオードとして動作するnpn型バイポーラトランジスタQ13及びpnp型バイポーラトランジスタQ14を有する。npn型バイポーラトランジスタQ13のコレクタは、第1のnチャネル接合型電界効果トランジスタQ15とカスコード接続されたnpn型バイポーラトランジスタQ16を介して正極電源ラインLpに接続されるとともに、npn型バイポーラトランジスタQ11のベースに接続されている。
Further, the base of the npn type bipolar transistor Q11 and the base of the pnp type bipolar transistor Q12 are connected to the bias circuit 21 to constitute a class B push-pull circuit.
The bias circuit 21 includes an npn-type bipolar transistor Q13 and a pnp-type bipolar transistor Q14 that operate as diodes connected by connecting a collector and a base, respectively. The collector of npn-type bipolar transistor Q13 is connected to positive power supply line Lp via npn-type bipolar transistor Q16 cascode-connected to first n-channel junction field-effect transistor Q15, and the base of npn-type bipolar transistor Q11 It is connected to the.
 pnp型バイポーラトランジスタQ14のコレクタはカレントミラー回路22を介して負極電源ラインLnに接続されているとともに、pnp型バイポーラトランジスタQ12のベースに接続されている。
 また、npn型バイポーラトランジスタQ13のベースがnpn型バイポーラトランジスタQ13のコレクタ及びnpn型バイポーラトランジスタQ11のベースとの接続点に接続されている。同様に、pnp型バイポーラトランジスタQ14のベースがpnp型バイポーラトランジスタQ14のコレクタ及びpnp型バイポーラトランジスタQ12のベース間の接続点に接続されている。
The collector of the pnp bipolar transistor Q14 is connected to the negative power supply line Ln via the current mirror circuit 22, and is also connected to the base of the pnp bipolar transistor Q12.
The base of npn bipolar transistor Q13 is connected to the connection point between the collector of npn bipolar transistor Q13 and the base of npn bipolar transistor Q11. Similarly, the base of the pnp bipolar transistor Q14 is connected to the connection point between the collector of the pnp bipolar transistor Q14 and the base of the pnp bipolar transistor Q12.
 そして、第1のnチャネル接合型電界効果トランジスタQ15のゲートに正極側入力端子+tinが接続されている。また、カスコード接続されたnpn型バイポーラトランジスタQ16の制御端子となるベースには電源回路23が接続され、この電源回路23によってnpn型バイポーラトランジスタQ16のベース電位がグランド電位と電源電位との中間電位に設定されている。 The positive input terminal + tin is connected to the gate of the first n-channel junction field effect transistor Q15. In addition, a power supply circuit 23 is connected to a base which becomes a control terminal of the cascode-connected npn bipolar transistor Q16, and the power supply circuit 23 sets the base potential of the npn bipolar transistor Q16 to an intermediate potential between the ground potential and the power supply potential. Is set.
 第2のプッシュプル回路12も上述した第1のプッシュプル回路11と同様の構成を有し、エミッタが互い接続されたnpn型バイポーラトランジスタQ21及びpnp型バイポーラトランジスタQ22を有する。npn型バイポーラトランジスタQ21のコレクタは第2の電流電圧変換回路14を介して正極電源ラインLpに接続されている。また、pnp型バイポーラトランジスタQ22のコレクタは第4の電流電圧変換回路16を介して負極電源ラインLnに接続されている。 The second push-pull circuit 12 has the same configuration as the first push-pull circuit 11 described above, and has an npn-type bipolar transistor Q21 and a pnp-type bipolar transistor Q22 whose emitters are connected to each other. The collector of the npn-type bipolar transistor Q21 is connected to the positive power supply line Lp via the second current-voltage conversion circuit 14. The collector of the pnp bipolar transistor Q22 is connected to the negative power supply line Ln via the fourth current-voltage conversion circuit 16.
 さらに、npn型バイポーラトランジスタQ21のベース及びpnp型バイポーラトランジスタQ22のベースがバイアス回路24に接続されてB級プッシュプル回路を構成している。
 バイアス回路24は、それぞれダイオードとして動作するnpn型バイポーラトランジスタQ23及びpnp型バイポーラトランジスタQ24を有する。
 npn型バイポーラトランジスタQ23のコレクタが、第2のnチャネル接合型電界効果トランジスタQ25とカスコード接続されたnpn型バイポーラトランジスタQ26を介して正極電源ラインLpに接続されるとともに、npn型バイポーラトランジスタQ21のベースに接続されている。
 pnp型バイポーラトランジスタQ24のコレクタがカレントミラー回路22を介して負極電源ラインLnに接続されているとともに、pnp型バイポーラトランジスタQ22のベースに接続されている。
 また、npn型バイポーラトランジスタQ23のベースがnpn型バイポーラトランジスタQ23のコレクタ及びnpn型バイポーラトランジスタQ21のベースとの接続点に接続されている。
 同様に、pnp型バイポーラトランジスタQ24のベースがpnp型バイポーラトランジスタQ24のコレクタ及びpnp型バイポーラトランジスタQ22のベース間の接続点に接続されている。
Further, the base of the npn-type bipolar transistor Q21 and the base of the pnp-type bipolar transistor Q22 are connected to the bias circuit 24 to constitute a class B push-pull circuit.
The bias circuit 24 includes an npn bipolar transistor Q23 and a pnp bipolar transistor Q24 that operate as diodes.
The collector of npn-type bipolar transistor Q23 is connected to positive power supply line Lp via npn-type bipolar transistor Q26 cascode-connected to second n-channel junction field-effect transistor Q25, and the base of npn-type bipolar transistor Q21 It is connected to the.
The collector of the pnp bipolar transistor Q24 is connected to the negative power supply line Ln via the current mirror circuit 22, and is also connected to the base of the pnp bipolar transistor Q22.
The base of npn bipolar transistor Q23 is connected to the connection point between the collector of npn bipolar transistor Q23 and the base of npn bipolar transistor Q21.
Similarly, the base of the pnp bipolar transistor Q24 is connected to the connection point between the collector of the pnp bipolar transistor Q24 and the base of the pnp bipolar transistor Q22.
 そして、第1のプッシュプル回路11のnpn型バイポーラトランジスタQ11及びpnp型バイポーラトランジスタQ12のエミッタ間の接続点と、第2のプッシュプル回路12のnpn型バイポーラトランジスタQ21及びpnp型バイポーラトランジスタQ22のエミッタ間の接続点とがエミッタ接続抵抗Reを介して接続されている。
 また、第2の接合型電界効果トランジスタQ25のゲートに負極側入力端子-tinが接続されている。さらに、カスコード接続されたnpn型バイポーラトランジスタQ26のベースには電源回路23が接続され、この電源回路23によってnpn型バイポーラトランジスタQ26のベース電位がグランド電位と電源電位との中間電位に固定されている。
The connection point between the emitters of the npn-type bipolar transistor Q11 and the pnp-type bipolar transistor Q12 of the first push-pull circuit 11, and the emitters of the npn-type bipolar transistor Q21 and the pnp-type bipolar transistor Q22 of the second push-pull circuit 12 are used. A connection point between them is connected via an emitter connection resistor Re.
The negative input terminal -tin is connected to the gate of the second junction field effect transistor Q25. Further, a power supply circuit 23 is connected to the base of the cascode-connected npn bipolar transistor Q26, and the power supply circuit 23 fixes the base potential of the npn bipolar transistor Q26 to an intermediate potential between the ground potential and the power supply potential. .
 なお、カスコード接続されたnpn型バイポーラトランジスタQ16及びQ26の固定電位は、その下限電圧を、nチャネル接合型電界効果トランジスタQ15及びQ25の動作(スレッシュホールド電圧:Vth)を考慮し、最低でもVth+1Vに設定し、上限電圧は電源電圧-1Vを確保するように設定する。
 第1の電流電圧変換回路13は、エミッタが正極電源ラインLpに接続され、コレクタが第1のプッシュプル回路11に接続されたpnp型バイポーラトランジスタQ31を有する。このpnp型バイポーラトランジスタQ31のコレクタとベースとが接続され、これらの接続点が第1の出力段17に接続されて、後述するようにカレントミラー回路を構成している。
Note that the fixed potential of the cascode-connected npn-type bipolar transistors Q16 and Q26 is at least Vth + 1V in consideration of the operation (threshold voltage: Vth) of the n-channel junction field effect transistors Q15 and Q25. The upper limit voltage is set to ensure the power supply voltage -1V.
The first current-voltage conversion circuit 13 includes a pnp bipolar transistor Q31 having an emitter connected to the positive power supply line Lp and a collector connected to the first push-pull circuit 11. The collector and base of the pnp bipolar transistor Q31 are connected, and these connection points are connected to the first output stage 17 to constitute a current mirror circuit as will be described later.
 第2の電流電圧変換回路14は、エミッタが正極電源ラインLpに接続され、コレクタが第2のプッシュプル回路12に接続されたpnp型バイポーラトランジスタQ32を有する。このpnp型バイポーラトランジスタQ32のコレクタとベースとが接続され、これらの接続点が第2の出力段18に接続されて、後述するようにカレントミラー回路を構成している。 The second current-voltage conversion circuit 14 includes a pnp bipolar transistor Q32 having an emitter connected to the positive power supply line Lp and a collector connected to the second push-pull circuit 12. The collector and base of the pnp bipolar transistor Q32 are connected, and these connection points are connected to the second output stage 18 to constitute a current mirror circuit as will be described later.
 また、第3の電流電圧変換回路15は、エミッタが負極電源ラインLnに接続され、コレクタが第1のプッシュプル回路11に接続されたnpn型バイポーラトランジスタQ33を有する。そして、npn型バイポーラトランジスタQ33のベースとコレクタとが接続され、これらの接続点が第1の出力段17に接続されて、後述するようにカレントミラー回路を構成している。 The third current-voltage conversion circuit 15 includes an npn-type bipolar transistor Q33 having an emitter connected to the negative power supply line Ln and a collector connected to the first push-pull circuit 11. The base and collector of the npn-type bipolar transistor Q33 are connected, and these connection points are connected to the first output stage 17 to constitute a current mirror circuit as will be described later.
 第4の電流電圧変換回路16は、エミッタが負極電源ラインLnに接続され、コレクタが第2のプッシュプル回路12に接続されたnpn型バイポーラトランジスタQ34を有する。このnpn型バイポーラトランジスタQ34のベースとコレクタとが接続され、これらの接続点が第2の出力段18に接続されて、後述するようにカレントミラー回路を構成している。 The fourth current-voltage conversion circuit 16 includes an npn-type bipolar transistor Q34 having an emitter connected to the negative power supply line Ln and a collector connected to the second push-pull circuit 12. The base and collector of the npn-type bipolar transistor Q34 are connected, and these connection points are connected to the second output stage 18 to constitute a current mirror circuit as will be described later.
 カレントミラー回路22は、定電流源31と負極電源ラインLnとの間に介挿されたnpn型バイポーラトランジスタQ35と、このnpn型バイポーラトランジスタQ35のベースにベースが接続されたnpn型バイポーラトランジスタQ36及びQ37とを有する。
 npn型バイポーラトランジスタQ35は、コレクタ及びベースが定電流源31に接続され、エミッタが負極電源ラインLnに接続されている。
The current mirror circuit 22 includes an npn-type bipolar transistor Q35 interposed between the constant current source 31 and the negative power supply line Ln, an npn-type bipolar transistor Q36 having a base connected to the base of the npn-type bipolar transistor Q35, and Q37.
The npn-type bipolar transistor Q35 has a collector and a base connected to the constant current source 31, and an emitter connected to the negative power supply line Ln.
 npn型バイポーラトランジスタQ36は、npn型バイポーラトランジスタQ35のベースにベースが接続され、コレクタが第1のプッシュプル回路11のpnp型バイポーラトランジスタQ12のベースとpnp型バイポーラトランジスタQ14のコレクタ及びベースとに接続され、エミッタが負極電源ラインLnに接続されている。
 npn型バイポーラトランジスタQ37は、npn型バイポーラトランジスタQ35のベースにベースが接続され、コレクタが第2のプッシュプル回路12のpnp型バイポーラトランジスタQ22のベースとpnp型バイポーラトランジスタQ24のコレクタ及びベースとに接続され、エミッタが負極電源ラインLnに接続されている。
The npn bipolar transistor Q36 has a base connected to the base of the npn bipolar transistor Q35, and a collector connected to the base of the pnp bipolar transistor Q12 of the first push-pull circuit 11 and the collector and base of the pnp bipolar transistor Q14. The emitter is connected to the negative power supply line Ln.
The base of the npn bipolar transistor Q37 is connected to the base of the npn bipolar transistor Q35, and the collector is connected to the base of the pnp bipolar transistor Q22 of the second push-pull circuit 12 and the collector and base of the pnp bipolar transistor Q24. The emitter is connected to the negative power supply line Ln.
 第1の出力段17は、正極電源ラインLpにエミッタが接続されたpnp型バイポーラトランジスタQ41と、このpnp型バイポーラトランジスタQ41のコレクタにコレクタが接続され、エミッタが負極電源ラインLnに接続されたnpn型バイポーラトランジスタQ42とで構成されている。
 そして、pnp型バイポーラトランジスタQ41のベースが第1の電流電圧変換回路13のpnp型バイポーラトランジスタQ31のベース及びコレクタの接続点に接続されて第1のカレントミラー回路が構成されている。言い換えると、第1のカレントミラー回路の入力側回路が第1の電流電圧変換回路13を構成している。
 また、npn型バイポーラトランジスタQ42のベースが第3の電流電圧変換回路15のnpn型バイポーラトランジスタQ33のベース及びコレクタの接続点に接続されて第3のカレントミラー回路が構成されている。言い換えると、第3のカレントミラー回路の入力側回路が第3の電流電圧変換回路15を構成している。
The first output stage 17 includes a pnp bipolar transistor Q41 having an emitter connected to the positive power supply line Lp, an npn having a collector connected to the collector of the pnp bipolar transistor Q41, and an emitter connected to the negative power supply line Ln. Type bipolar transistor Q42.
The base of the pnp bipolar transistor Q41 is connected to the connection point between the base and the collector of the pnp bipolar transistor Q31 of the first current-voltage conversion circuit 13, thereby forming a first current mirror circuit. In other words, the input side circuit of the first current mirror circuit constitutes the first current-voltage conversion circuit 13.
Further, the base of the npn-type bipolar transistor Q42 is connected to the connection point between the base and the collector of the npn-type bipolar transistor Q33 of the third current-voltage conversion circuit 15 to constitute a third current mirror circuit. In other words, the input current circuit of the third current mirror circuit constitutes the third current-voltage conversion circuit 15.
 第2の出力段18も第1の出力段17と同様に、正極電源ラインLpにエミッタが接続されたpnp型バイポーラトランジスタQ43と、このpnp型バイポーラトランジスタQ43のコレクタにコレクタが接続され、エミッタが負極電源ラインLnに接続されたnpn型バイポーラトランジスタQ44とで構成されている。
 そして、pnp型バイポーラトランジスタQ43のベースが第2の電流電圧変換回路14のpnp型バイポーラトランジスタQ32のベース及びコレクタの接続点に接続されて第2のカレントミラー回路が構成されている。言い換えると、第2のカレントミラー回路の入力側回路が第2の電流電圧変換回路14を構成している。
 また、npn型バイポーラトランジスタQ44のベースが第4の電流電圧変換回路16のnpn型バイポーラトランジスタQ34のベース及びコレクタの接続点に接続されて第4のカレントミラー回路が構成されている。言い換えると、第4のカレントミラー回路の入力側回路が第4の電流電圧変換回路16を構成している。
Similarly to the first output stage 17, the second output stage 18 also has a pnp bipolar transistor Q43 having an emitter connected to the positive power supply line Lp, a collector connected to the collector of the pnp bipolar transistor Q43, and an emitter. The npn bipolar transistor Q44 is connected to the negative power supply line Ln.
The base of the pnp bipolar transistor Q43 is connected to the connection point between the base and collector of the pnp bipolar transistor Q32 of the second current-voltage conversion circuit 14, thereby forming a second current mirror circuit. In other words, the input side circuit of the second current mirror circuit constitutes the second current-voltage conversion circuit 14.
Further, the base of the npn-type bipolar transistor Q44 is connected to the connection point between the base and the collector of the npn-type bipolar transistor Q34 of the fourth current-voltage conversion circuit 16, thereby forming a fourth current mirror circuit. In other words, the input current circuit of the fourth current mirror circuit constitutes the fourth current-voltage conversion circuit 16.
 最終出力段19は、正極電源ラインLp及び負極電源ラインLn間に、2つのnpn型バイポーラトランジスタQ51及びQ52がnpn型バイポーラトランジスタQ51のエミッタをnpn型バイポーラトランジスタQ52のコレクタに接続して直列に接続された構成を有する。
 そして、高電位側のnpn型バイポーラトランジスタQ51のベースが第1の出力段17のpnp型バイポーラトランジスタQ41及びnpn型バイポーラトランジスタQ42の接続点となる出力端に接続されている。
 また、低電位側のnpn型バイポーラトランジスタQ52のベースが第2の出力段18のpnp型バイポーラトランジスタQ43及びnpn型バイポーラトランジスタQ44の接続点となる出力端に接続されている。
 さらに、両npn型バイポーラトランジスタQ51及びQ52の接続点に出力端子toutが接続されている。
In the final output stage 19, two npn bipolar transistors Q51 and Q52 are connected in series between the positive power supply line Lp and the negative power supply line Ln by connecting the emitter of the npn bipolar transistor Q51 to the collector of the npn bipolar transistor Q52. It has the structure made.
The base of the npn bipolar transistor Q51 on the high potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q41 and the npn bipolar transistor Q42 in the first output stage 17.
In addition, the base of the npn bipolar transistor Q52 on the low potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q43 and the npn bipolar transistor Q44 of the second output stage 18.
Further, an output terminal tout is connected to a connection point between both npn-type bipolar transistors Q51 and Q52.
 また、低電位側のnpn型バイポーラトランジスタQ52のベースと第2の出力段18のpnp型バイポーラトランジスタQ43及びnpn型バイポーラトランジスタQ44の接続点となる出力端との接続点と負極電源ラインLnとの間に、npn型バイポーラトランジスタQ53が接続されている。このnpn型バイポーラトランジスタQ53はコレクタが前記第2の出力段18の出力端及びnpn型バイポーラトランジスタQ52の接続点に、エミッタが負極電源ラインLnに接続されている。このnpn型バイポーラトランジスタQ53のベースが前記第2の出力段18の出力端及びnpn型バイポーラトランジスタQ52のベースとの接続点に接続されて定電流回路が構成されている。なお、npn型バイポーラトランジスタQ51およびQ52には、それぞれのコレクタとベースとの間に演算増幅器の高周波特性の劣化を防止する位相補償容量C5およびC6が接続されている。 Further, a connection point between the base of the npn type bipolar transistor Q52 on the low potential side and the output terminal serving as a connection point of the pnp type bipolar transistor Q43 and the npn type bipolar transistor Q44 of the second output stage 18 and the negative power supply line Ln. An npn bipolar transistor Q53 is connected between them. The npn bipolar transistor Q53 has a collector connected to the output terminal of the second output stage 18 and the connection point of the npn bipolar transistor Q52, and an emitter connected to the negative power supply line Ln. The base of the npn-type bipolar transistor Q53 is connected to the connection point between the output terminal of the second output stage 18 and the base of the npn-type bipolar transistor Q52 to constitute a constant current circuit. It should be noted that phase compensation capacitors C5 and C6 are connected between npn-type bipolar transistors Q51 and Q52 between collectors and bases for preventing deterioration of the high frequency characteristics of the operational amplifier.
 さらに、第2のプッシュプル回路12のnpn型バイポーラトランジスタQ23と接合型電界効果トランジスタQ25との接続点と最終出力段19の出力端子toutの接続点との間にノイズを抑制するコンデンサC7が接続されている。
 そして、少なくとも第1のプッシュプル回路11、第2のプッシュプル回路12、第1の電流電圧変換回路13~第4の電流電圧変換回路16、第1の出力段17及び第2の出力段18、最終出力段19、接合型電界効果トランジスタQ15,Q25及びカレントミラー回路22を含んで電流帰還型差動増幅器が構成されている。
Further, a capacitor C7 for suppressing noise is connected between a connection point between the npn bipolar transistor Q23 and the junction field effect transistor Q25 in the second push-pull circuit 12 and a connection point between the output terminal tout of the final output stage 19. Has been.
At least the first push-pull circuit 11, the second push-pull circuit 12, the first current-voltage conversion circuit 13 to the fourth current-voltage conversion circuit 16, the first output stage 17 and the second output stage 18. The current output differential amplifier includes the final output stage 19, the junction field effect transistors Q15 and Q25, and the current mirror circuit 22.
 次に、上記第1の実施形態の動作を説明する。
 上記第1の実施形態では、コンプリメンタリなバイポーラトランジスタQ11,Q12及びQ21,Q22を用いた第1のプッシュプル回路11及び第2のプッシュプル回路12のコレクタ電流をそれぞれ第1の電流電圧変換回路13及び第2の電流電圧変換回路14と第3の電流電圧変換回路15及び第4の電流電圧変換回路16とで折り返した構造を持つ。したがって、正極側入力端子+tinの電圧が上昇した場合、エミッタ接続抵抗Reに流れ込む電流の増加分がそのまま折り返されて第1の出力段17及び第2の出力段18のバッファ(Q41及びQ42とQ43及びQ44)の電位を上昇させる。
Next, the operation of the first embodiment will be described.
In the first embodiment, the collector currents of the first push-pull circuit 11 and the second push-pull circuit 12 using complementary bipolar transistors Q11, Q12 and Q21, Q22 are used as the first current-voltage conversion circuit 13, respectively. The second current-voltage conversion circuit 14, the third current-voltage conversion circuit 15, and the fourth current-voltage conversion circuit 16 have a folded structure. Therefore, when the voltage at the positive input terminal + tin rises, the increase in current flowing into the emitter connection resistor Re is turned back as it is, and the buffers (Q41, Q42 and Q43 of the first output stage 17 and the second output stage 18). And the potential of Q44) is increased.
 正極側入力端子+tinと負極側入力端子-tinの電位が等しくなると電流増加分が消失するので、その電位で出力は安定する。本実施形態では、電流の切り替えで増幅を行っており、バイポーラトランジスタの電流は電圧より早く切り替えることが可能なため高速動作が可能となる。
 このとき、第1のプッシュプル回路11及び第2のプッシュプル回路12を設けて、これらを電流経路とすることで電流帰還の演算増幅器を実現している。
 エミッタ接続抵抗Reで接続された4つのトランジスタQ11,Q12及びQ21,Q22と電源側に配置された第1の電流電圧変換回路13及び第2の電流電圧変換回路14と第3の電流電圧変換回路15及び第4の電流電圧変換回路16と第1の出力段17及び第2の出力段18とで構成される第1のカレントミラー回路~第4のカレントミラー回路は電流動作しているために非常に高速である。最終的に最終出力段19のバイポーラトランジスタQ51,Q52で電圧変換されるために、この部分で速度制限を受けるが、各バイポーラトランジスタQ51,Q52の面積とバイアス電流を最適に設定することで高速な増幅が可能となる。
When the potentials of the positive side input terminal + tin and the negative side input terminal -tin become equal, the increase in current disappears, and the output is stabilized at that potential. In this embodiment, amplification is performed by switching the current, and the current of the bipolar transistor can be switched faster than the voltage, so that high-speed operation is possible.
At this time, the first push-pull circuit 11 and the second push-pull circuit 12 are provided, and these are used as a current path, thereby realizing a current feedback operational amplifier.
Four transistors Q11, Q12 and Q21, Q22 connected by an emitter connection resistor Re, a first current-voltage conversion circuit 13, a second current-voltage conversion circuit 14 and a third current-voltage conversion circuit arranged on the power supply side Since the first current mirror circuit to the fourth current mirror circuit constituted by the 15 and fourth current-voltage conversion circuit 16 and the first output stage 17 and the second output stage 18 are operated in current. It is very fast. Since the voltage is finally converted by the bipolar transistors Q51 and Q52 of the final output stage 19, the speed is limited in this portion. However, the area and the bias current of each bipolar transistor Q51 and Q52 are optimally set so that the speed is high. Amplification is possible.
 このように、第1のプッシュプル回路11及び第2のプッシュプル回路12で第1の出力段17及び第2の出力段18を介して最終出力段19のnpn型バイポーラトランジスタQ51及びQ52を駆動するので、演算増幅器として大きな駆動力が得られるとともに、高速化がもたらされる。
 そして、入力端子+tin及び-tinをnチャネル接合型電界効果トランジスタQ15及びQ25のゲートに接続することにより、入力インピーダンスを高めることができるとともに、バイポーラトランジスタを使用して第1のプッシュプル回路11及び第2のプッシュプル回路12、第1の電流電圧変換回路13及び第2の電流電圧変換回路14、第3の電流電圧変換回路15及び第4の電流電圧変換回路16、第1の出力段17及び第2の出力段18、最終出力段19を構成することにより、高速性能はほとんど損なわれること無く、電流帰還型演算増幅器を構成することが可能となる。
In this way, the first push-pull circuit 11 and the second push-pull circuit 12 drive the npn-type bipolar transistors Q51 and Q52 of the final output stage 19 through the first output stage 17 and the second output stage 18. Therefore, a large driving force can be obtained as an operational amplifier, and the speed can be increased.
By connecting the input terminals + tin and −tin to the gates of the n-channel junction field effect transistors Q15 and Q25, the input impedance can be increased, and the first push-pull circuit 11 and the bipolar transistor can be used. Second push-pull circuit 12, first current-voltage conversion circuit 13, second current-voltage conversion circuit 14, third current-voltage conversion circuit 15, fourth current-voltage conversion circuit 16, first output stage 17 By configuring the second output stage 18 and the final output stage 19, it is possible to configure a current feedback operational amplifier with almost no loss in high-speed performance.
 また、高SNを実現するためには、演算増幅器自体の低ノイズ化が重要となる。そのためにはトランジスタに与えるバイアス電流値を適切に設定することが重要である。特に、チャージアンプに用いる場合には高周波の電圧ノイズ密度が重要なので、まずこれについて述べる。
 無帰還の場合、演算増幅器の自己ノイズは全てのデバイスで発生するノイズの総和で与えられるが、通常帰還をかけてゲインを限定して使用する。この場合、負帰還ループの外側にあるデバイスから発生するノイズは負帰還により修正されるので、負帰還の効果がある周波数帯域では無視することができる。したがって、ノイズを考慮するときには、帰還ループ内のデバイスが発生するノイズのみに着目すればよい。すなわち、正極側入力端子+tinから負極側入力端子-tinまでのデバイスから発生するノイズを考慮すればよい。具体的には、図1でQ15-Q11-Re-Q21-Q25の電流経路で、もう1つは、Q15-Q13-Q14-Q12-Re-Q22-Q24-Q23-Q25の電流経路である。
In order to realize a high SN, it is important to reduce the noise of the operational amplifier itself. For that purpose, it is important to appropriately set a bias current value to be applied to the transistor. In particular, when used in a charge amplifier, high-frequency voltage noise density is important.
In the case of non-feedback, the self-noise of the operational amplifier is given by the sum of noises generated in all devices, but is usually used with limited gain by applying feedback. In this case, noise generated from a device outside the negative feedback loop is corrected by the negative feedback and can be ignored in the frequency band where the negative feedback effect is present. Therefore, when considering noise, it is only necessary to focus on noise generated by devices in the feedback loop. That is, noise generated from the device from the positive input terminal + tin to the negative input terminal −tin may be considered. Specifically, in FIG. 1, the current path is Q15-Q11-Re-Q21-Q25, and the other is the current path of Q15-Q13-Q14-Q12-Re-Q22-Q24-Q23-Q25.
 接合型電界効果トランジスタQ15及びQ25の電圧ノイズVfetは周波数fの関数であり、以下の式(1)で表すことができる。 The voltage noise Vfet of the junction field effect transistors Q15 and Q25 is a function of the frequency f and can be expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
ここで、kはボルツマン定数、gmJFETは接合型電界効果トランジスタの相互コンダクタンス、Tは絶対温度である。また、KJFETは接合型電界効果トランジスタの形状に起因する定数であって、それぞれのプロセスによって変化する。
Figure JPOXMLDOC01-appb-M000001
Here, k is the Boltzmann constant, g mJFET is the mutual conductance of the junction field effect transistor, and T is the absolute temperature. K JFET is a constant attributed to the shape of the junction field effect transistor, and changes depending on each process.
 また、バイポーラトランジスタの電圧ノイズVBJTは以下の式(2)で表すことができる。 Further, the voltage noise V BJT of the bipolar transistor can be expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
ここで、gmBJTはバイポーラトランジスタの相互コンダクタンス、rはベース抵抗(通常5Ω程度)である。また、抵抗の電圧ノイズVは、抵抗値をRとして、以下の式(3)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
Here, g mBJT transconductance, r b of the bipolar transistor is the base resistance (usually about 5 [Omega). The voltage noise VR of the resistor can be expressed by the following formula (3), where R is the resistance value.
Figure JPOXMLDOC01-appb-M000003
 小信号でのダイオードの抵抗rは、素電荷をq、ダイオードを流れる電流をIとして、以下の式(4)にて表すことができるが、これはモデル上のもので、物理的な抵抗ではない。したがって、熱ノイズへの寄与は考えなくて良い。
Figure JPOXMLDOC01-appb-M000003
Resistance r d of the diodes in the small signal, the elementary charge q, the current through the diode as I d, can be expressed by the following equation (4), which is intended on the model, physical It is not resistance. Therefore, it is not necessary to consider the contribution to thermal noise.
Figure JPOXMLDOC01-appb-M000004
 以上より、ノイズを加算すればよいのだが、バイポーラトランジスタQ11,Q12(Q21、Q22)は並列なので半分のノイズになることに注意する。結果としてトータルノイズVnは、以下の式(5)で表すことができる。
Figure JPOXMLDOC01-appb-M000004
From the above, it is only necessary to add noise, but it should be noted that the bipolar transistors Q11 and Q12 (Q21, Q22) are in parallel because of the parallel noise. As a result, the total noise Vn can be expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
ここで、2KJFET/fは1/fノイズで、適切な接合型電界効果トランジスタを選択すれば、測定周波数で問題となるノイズを発生させないようにできる。その他の項は抵抗成分の和になっており、抵抗による熱ノイズを計算していることになる。
Figure JPOXMLDOC01-appb-M000005
Here, 2K JFET / f is 1 / f noise, and if an appropriate junction field effect transistor is selected, noise that becomes a problem at the measurement frequency can be prevented from being generated. The other terms are the sum of the resistance components, and the thermal noise due to the resistance is calculated.
 一般的な接合型電界効果トランジスタのコンダクタンスgmはIs/1V(Isはソース電流)程度であり、高性能なものでもIs/0.2Vなのに対して、バイポーラトランジスタのコンダクタンスgmは良く知られているようにIc/26mVである。これは同じ電流を流した時に接合型電界効果トランジスタの換算抵抗は、バイポーラトランジスタに比べて10~40倍高いことを示している。 A common junction field effect transistor has a conductance gm of about Is / 1V (Is is a source current), and even a high-performance type has Is / 0.2V, whereas a bipolar transistor has a well-known conductance gm. Thus, Ic / 26 mV. This indicates that the equivalent resistance of the junction field effect transistor is 10 to 40 times higher than that of the bipolar transistor when the same current is passed.
 たとえば、高性能な接合型電界効果トランジスタで、1mAのソース電流のとき、およそ5mS(前記(5)式の抵抗換算で約270Ω)の相互コンダクタンスを持っている接合型電界効果トランジスタを使用したときを例に考える。
 図2は接合型電界効果トランジスタの電流IJFETが1mAのときに図1の演算増幅器が持つ電圧ノイズ密度を、(5)式の1/fノイズ項を無視して計算した結果である。この図2から明らかなように、バイポーラトランジスタの電流IBPTが接合型電界効果トランジスタの電流IJFETの1/10である0.1mA以上では、ほぼ一定値をとる。しかしながら、バイポーラトランジスタの電流IBPTが0.1mAより小さくなると、急激にノイズが増加する。
 図3は接合型電界効果トランジスタの電流IJFETを10mAにした場合であるが、やはりバイポーラトランジスタの電流IBPTを接合型電界効果トランジスタの電流IJFETの1/10の1mA以下にした場合、急激にノイズが上昇する。
For example, when a high-performance junction field effect transistor having a mutual conductance of about 5 mS (about 270 Ω in terms of resistance in the equation (5)) is used when the source current is 1 mA. Take the example.
FIG. 2 shows the result of calculating the voltage noise density of the operational amplifier of FIG. 1 while ignoring the 1 / f noise term in the equation (5) when the current I JFET of the junction field effect transistor is 1 mA. As can be seen from FIG. 2, when the current I BPT of the bipolar transistor is 0.1 mA or more, which is 1/10 of the current I JFET of the junction field effect transistor, the current is almost constant. However, when the current IBPT of the bipolar transistor is smaller than 0.1 mA, noise increases abruptly.
FIG. 3 shows the case where the current I JFET of the junction field effect transistor is set to 10 mA, but when the current I BPT of the bipolar transistor is reduced to 1 mA which is 1/10 of 1/10 of the current I JFET of the junction field effect transistor, Noise increases.
 ノイズ設計は以下のように行う。まず、求める機器のノイズ量から接合型電界効果トランジスタの電流を定める。このことは図2及び図3では平坦部のノイズを設定することに相当する。ここでは2例しか計算していないが、図2の接合型電界効果トランジスタの電流IJFETが1mAの場合、2.2nV/√Hz、図3の接合型電界効果トランジスタの電流IJFETが10mAの場合1nV/√Hzになる。 Noise design is performed as follows. First, the current of the junction field effect transistor is determined from the amount of noise of the required device. This corresponds to setting the noise of the flat portion in FIGS. Here not only calculate two cases, but if the current I JFET junction field effect transistor of Fig 2 is 1mA, 2.2nV / √Hz, the current I JFET junction field effect transistor of FIG. 3 10 mA of In this case, 1 nV / √Hz.
 次にバイポーラトランジスタの電流値を決める。このバイポーラトランジスタの電流IBPTは、図2及び図3からも明らかなように接合型電界効果トランジスタの電流IJFET以上に設定してもノイズは低下せず、温度上昇などの消費電流が増加することによる弊害が多くなる。普通、ノイズを低下させるには電流量を下げるようにするが、バイポーラトランジスタの電流量が接合型電界効果トランジスタの電流IJFETの1/10以下になるとノイズが増大するため低ノイズの演算増幅器としての意味が無くなる。このため、バイポーラトランジスタの電流IBPTは接合型電界効果トランジスタの電流IJFETと同等か僅かに小さい値に設定することにより、電圧ノイズ密度を抑制しながら消費電流の増加による温度上昇の弊害を抑制することができる。 Next, the current value of the bipolar transistor is determined. As is clear from FIGS. 2 and 3, even if the current I BPT of the bipolar transistor is set to be higher than the current I JFET of the junction field effect transistor, noise does not decrease and current consumption such as temperature rise increases. The harmful effects caused by this increase. Normally, the amount of current is reduced to reduce noise, but the noise increases when the current amount of the bipolar transistor becomes 1/10 or less of the current IJFET of the junction field effect transistor. The meaning of disappears. For this reason, the current I BPT of the bipolar transistor is set to a value that is equal to or slightly smaller than the current I JFET of the junction field effect transistor, thereby suppressing the adverse effect of temperature rise due to an increase in current consumption while suppressing the voltage noise density. can do.
 ところで、nチャネル接合型電界効果トランジスタQ15及びQ25に代えてMOS型電界効果トランジスタを適用する場合には、MOS型電界効果トランジスタの1/fノイズが大きいことから、電圧ノイズ密度を抑制することができず、低ノイズ特性の演算増幅器を構成することができない。しかも、各バイポーラトランジスタに代えてMOS型電界効果トランジスタを適用した場合には、電圧ノイズ密度がさらに増加することになり、低ノイズ特性の演算増幅器を構成することは全くできない。 By the way, when a MOS field effect transistor is applied instead of the n-channel junction field effect transistors Q15 and Q25, the 1 / f noise of the MOS field effect transistor is large, so that the voltage noise density can be suppressed. It is impossible to construct an operational amplifier with low noise characteristics. In addition, when a MOS field effect transistor is applied in place of each bipolar transistor, the voltage noise density is further increased, and an operational amplifier having low noise characteristics cannot be constructed at all.
 また、本実施形態では、第1のプッシュプル回路11のコンプリメンタリ接続したバイポーラトランジスタQ11及びQ12のエミッタ間の接続点と第2のプッシュプル回路12のコンプリメンタリ接続したバイポーラトランジスタQ21及びQ22のエミッタ間の接続点とをエミッタ接続抵抗Reを介して接続している。このように、エミッタ接続抵抗Reを配置することにより、コンプリメンタリ接続される4つのバイポーラトランジスタQ11,Q12及びQ21,Q22の特性にバラツキがある程度大きい場合でもエミッタ接続抵抗Reによって特性のバラツキを吸収してより安定した回路とすることができる。 In the present embodiment, the connection point between the emitters of the bipolar transistors Q11 and Q12 connected in a complementary manner in the first push-pull circuit 11 and the emitters of the bipolar transistors Q21 and Q22 in a complementary connection in the second push-pull circuit 12 are used. The connection point is connected via an emitter connection resistor Re. As described above, by arranging the emitter connection resistor Re, even if the characteristics of the four bipolar transistors Q11, Q12 and Q21, Q22 that are connected in a complementary manner have a certain degree of variation, the emitter connection resistor Re absorbs the variation in the characteristics. A more stable circuit can be obtained.
 ちなみに、エミッタ接続抵抗Reを省略して、コンプリメンタリ接続したバイポーラトランジスタQ11及びQ12のエミッタ間の接続点とコンプリメンタリ接続したバイポーラトランジスタQ21及びQ22のエミッタ間の接続点とを直接接続した場合には、バイポーラトランジスタQ11,Q12及びQ21,Q22の特性のバラツキに応じて接続部を流れる電流が安定せず、正常な動作が損なわれることになる。 By the way, when the emitter connection resistor Re is omitted and the connection point between the emitters of the complementary transistors Q11 and Q12 and the connection point between the emitters of the complementary transistors Q21 and Q22 are connected directly, the bipolar The current flowing through the connecting portion is not stable according to variations in the characteristics of the transistors Q11, Q12 and Q21, Q22, and normal operation is impaired.
 さらに、本実施形態では、nチャネル接合型電界効果トランジスタQ15及びQ25の正極電源ラインLp側にnpn型バイポーラトランジスタQ16及びQ26をカスコード接続し、npn型バイポーラトランジスタQ16及びQ26のベース電位をグランド電位と電源電位との中間電位に固定している。
 このため、第1のプッシュプル回路11及び第2のプッシュプル回路12のバイアス回路21及び24のバイアス電圧が正極電源ラインLpからの電源電圧変動の影響を受けること防止することができる。このため、第1のプッシュプル回路11と第1の電流電圧変換回路13及び第3の電流電圧変換回路15との間の接続点から出力される出力電圧及び第2のプッシュプル回路12と第2の電流電圧変換回路14及び第4の電流電圧変換回路16との間の接続点から出力される出力電圧の変動を抑制することができる。
Further, in the present embodiment, npn bipolar transistors Q16 and Q26 are cascode-connected to the positive power supply line Lp side of the n-channel junction field effect transistors Q15 and Q25, and the base potentials of the npn bipolar transistors Q16 and Q26 are set to the ground potential. It is fixed at an intermediate potential from the power supply potential.
For this reason, it is possible to prevent the bias voltages of the bias circuits 21 and 24 of the first push-pull circuit 11 and the second push-pull circuit 12 from being affected by power supply voltage fluctuations from the positive power supply line Lp. Therefore, the output voltage output from the connection point between the first push-pull circuit 11 and the first current-voltage conversion circuit 13 and the third current-voltage conversion circuit 15, the second push-pull circuit 12, The fluctuation of the output voltage output from the connection point between the second current-voltage conversion circuit 14 and the fourth current-voltage conversion circuit 16 can be suppressed.
 なお、上記第1の実施形態においては、nチャネル接合型電界効果トランジスタQ15及びQ25と正極電源ラインLpとの間に同極性のnpn型バイポーラトランジスタQ16及びQ26を接続した場合について説明したが、これに限定されるものではなく、nチャネル接合型電界効果トランジスタQ15及びQ25と同極性のnチャネル電界効果トランジスタを適用するようにしてもよい。 In the first embodiment, the case where npn bipolar transistors Q16 and Q26 having the same polarity are connected between the n-channel junction field effect transistors Q15 and Q25 and the positive power supply line Lp has been described. However, the n-channel field effect transistors having the same polarity as the n-channel junction field effect transistors Q15 and Q25 may be used.
 また、上記第1の実施形態では、nチャネル接合型電界効果トランジスタQ15及びQ25と正極電源ラインLpとの間にnpn型バイポーラトランジスタQ16及びQ26をカスコード接続した場合について説明した。しかしながら、本発明では、上記構成に限定されるものではなく、npn型バイポーラトランジスタQ16及びQ26に代えて定電流源を適用するようにしても良い。 In the first embodiment, the case where the npn bipolar transistors Q16 and Q26 are cascode-connected between the n-channel junction field effect transistors Q15 and Q25 and the positive power supply line Lp has been described. However, the present invention is not limited to the above configuration, and a constant current source may be applied instead of the npn-type bipolar transistors Q16 and Q26.
 また、上記第1の実施形態においては、nチャネル接合型電界効果トランジスタQ15及びQ25、npn型バイポーラトランジスタQ16及びQ26を第1のプッシュプル回路11及び第2のプッシュプル回路12と正極電源ラインLpとの間に介挿した。しかしながら、本発明では、上記構成に限定されるものではなく、図4に示す構成としてもよい。
 すなわち、第1のプッシュプル回路11及び第2のプッシュプル回路12のバイアス回路21及び24と正極電源ラインLpとの間にカレントミラー回路22を介挿する。また、第1のプッシュプル回路11及び第2のプッシュプル回路12のバイアス回路21及び24と負極電源ラインLnとの間にpチャネル接合型電界効果トランジスタQ61及びQ62を介挿する。そして、pチャネル接合型電界効果トランジスタQ61及びQ62に同極性のpnp型バイポーラトランジスタQ63及びQ64をカスコード接続する。この場合も前述した第1の実施形態と同様の作用効果を得ることかできる。勿論、pnp型バイポーラトランジスタQ63及びQ64に代えてpチャネル接合型電界効果トランジスタを適用するようにしてもよい。
In the first embodiment, the n-channel junction field effect transistors Q15 and Q25 and the npn bipolar transistors Q16 and Q26 are connected to the first push-pull circuit 11 and the second push-pull circuit 12 and the positive power supply line Lp. It was inserted between. However, the present invention is not limited to the configuration described above, and may be configured as shown in FIG.
That is, the current mirror circuit 22 is inserted between the bias circuits 21 and 24 of the first push-pull circuit 11 and the second push-pull circuit 12 and the positive power supply line Lp. Further, p-channel junction field effect transistors Q61 and Q62 are interposed between the bias circuits 21 and 24 of the first push-pull circuit 11 and the second push-pull circuit 12 and the negative power supply line Ln. Then, pnp bipolar transistors Q63 and Q64 having the same polarity are cascode-connected to the p-channel junction field effect transistors Q61 and Q62. In this case, the same effect as that of the first embodiment can be obtained. Of course, a p-channel junction field effect transistor may be applied instead of the pnp bipolar transistors Q63 and Q64.
 また、第1の実施形態では、最終出力段19をnpn型バイポーラトランジスタQ51及びQ52で構成する場合について説明したが、これらに代えてpnp型バイポーラトランジスタを適用するようにしてもよい。しかしながら、npn型バイポーラトランジスタの方がpnp型バイポーラトランジスタより高速動作が可能であるので、上記第1の実施形態のようにnpn型バイポーラトランジスタQ51,Q52を適用した方がより高速な演算増幅器を構成することができる。 In the first embodiment, the case where the final output stage 19 is configured by the npn-type bipolar transistors Q51 and Q52 has been described, but a pnp-type bipolar transistor may be applied instead. However, since the npn-type bipolar transistor can operate at a higher speed than the pnp-type bipolar transistor, the npn-type bipolar transistors Q51 and Q52 are applied to form a higher-speed operational amplifier as in the first embodiment. can do.
 なお、この点に関し、上記第1の実施形態における図1の構成例は、最終出力段19の回路を、正極電源ラインLp及び負極電源ラインLn間に、2つのnpn型バイポーラトランジスタQ51及びQ52がnpn型バイポーラトランジスタQ51のエミッタをnpn型バイポーラトランジスタQ52のコレクタに接続して直列に接続された構成を有する回路構成、すなわち、高い電位側及び低い電位側のいずれのバイポーラトランジスタにもnpn型バイポーラトランジスタを用いた構成としているため、npn型バイポーラトランジスタの高速性を十分に発揮させることができるものとなっている。 In this regard, in the configuration example of FIG. 1 in the first embodiment, the circuit of the final output stage 19 includes two npn-type bipolar transistors Q51 and Q52 between the positive power supply line Lp and the negative power supply line Ln. A circuit configuration having a configuration in which the emitter of npn-type bipolar transistor Q51 is connected in series with the collector of npn-type bipolar transistor Q52, that is, the npn-type bipolar transistor is used for both the high-potential side and the low-potential-side bipolar transistors. Therefore, the high-speed property of the npn-type bipolar transistor can be fully exhibited.
 一方、最終出力段19の回路を、コレクタ同士を互いに接続したpnp型バイポーラトランジスタとnpn型バイポーラトランジスタとが正極電源ライン及び負極電源ライン間に接続されたコンプリメンタリ接続構成を有する回路構成とした場合は、低い電位側のnpn型バイポーラトランジスタと高い電位側のpnp型バイポーラトランジスタとの組み合わせでの総合動作が、pnp型バイポーラトランジスタの方に引っ張られることによって遅い動作となるため、npn型バイポーラトランジスタの高速性を十分に発揮させることができない。 On the other hand, when the circuit of the final output stage 19 has a circuit configuration having a complementary connection configuration in which a pnp bipolar transistor and an npn bipolar transistor with collectors connected to each other are connected between a positive power supply line and a negative power supply line Since the overall operation of the combination of the low potential side npn type bipolar transistor and the high potential side pnp type bipolar transistor becomes slow when pulled toward the pnp type bipolar transistor, the high speed of the npn type bipolar transistor Sex cannot be fully demonstrated.
 このように、第1の実施形態における図1に示した演算増幅器の回路構成は、最終出力段19の回路を、正極電源ラインLp及び負極電源ラインLn間に、2つのnpn型バイポーラトランジスタQ51及びQ52がnpn型バイポーラトランジスタQ51のエミッタをnpn型バイポーラトランジスタQ52のコレクタに接続して直列に接続された構成としているため、高速な演算増幅器を実現する上で特に好適なものとなっている。 As described above, in the circuit configuration of the operational amplifier shown in FIG. 1 in the first embodiment, the circuit of the final output stage 19 is replaced with two npn-type bipolar transistors Q51 and Qn between the positive power supply line Lp and the negative power supply line Ln. Since Q52 is configured to be connected in series with the emitter of npn bipolar transistor Q51 connected to the collector of npn bipolar transistor Q52, it is particularly suitable for realizing a high-speed operational amplifier.
 次に、本発明の第2の実施形態を図5について説明する。
 この第2の実施形態は、前述した第1の実施形態における演算増幅器を使用して差動型のチャージアンプを構成したものである。
 すなわち、第2の実施形態では、上述した第1の実施形態の演算増幅器1の反転入力側端子と出力側端子との間にフィードバック用の帰還抵抗Rf及びコンデンサCfの並列回路が接続されている。
Next, a second embodiment of the present invention will be described with reference to FIG.
In the second embodiment, a differential charge amplifier is configured using the operational amplifier in the first embodiment described above.
That is, in the second embodiment, a parallel circuit of a feedback feedback resistor Rf and a capacitor Cf is connected between the inverting input terminal and the output terminal of the operational amplifier 1 of the first embodiment described above. .
 また、演算増幅器1の反転入力端子及び非反転入力端子に、可変容量センサ60の可変容量CSENSM及びCSENSPが接続されている。可変容量センサ60は、物理量変化に応じた静電容量変化を生じる相対向する可動電極及び固定電極でそれぞれ構成される電極部を一対備え、一方の電極部で構成される可変容量CSENSMが増加すると他方の電極部で構成される可変容量CSENSPが減少する差動構造を有する。
 この可変容量センサ60は、MEMS(Micro Electro Mechanical System)構造を利用した加速度、振動等の物理量を検出する物理量センサが適用され、可変容量CSENSM及びCSENSPはともに例えば1pFと微小容量とされている。そして、可変容量CSENSMの一方の電極と演算増幅器1の反転入力端子との間と接地との間に例えば10pFのコンデンサCppが接続され、同様に、可変容量CSENSPの一方の電極と演算増幅器1の非反転入力端子との間と接地との間に例えば10pFのコンデンサCpmが接続されている。
The variable capacitors C SENS M and C SENS P of the variable capacitance sensor 60 are connected to the inverting input terminal and the non-inverting input terminal of the operational amplifier 1. The variable capacitance sensor 60 includes a pair of electrode portions each composed of a movable electrode and a fixed electrode facing each other that generate a capacitance change according to a physical quantity change, and a variable capacitance C SENS M configured by one electrode portion is provided. A differential structure in which the variable capacitor C SENS P formed by the other electrode portion decreases as the number increases is increased.
As this variable capacitance sensor 60, a physical quantity sensor that detects a physical quantity such as acceleration or vibration using a MEMS (Micro Electro Mechanical System) structure is applied, and both the variable capacitance C SENS M and C SENS P are, for example, 1 pF and a minute capacitance. Has been. For example, a capacitor Cpp of 10 pF is connected between one electrode of the variable capacitor C SENS M and the inverting input terminal of the operational amplifier 1 and the ground. Similarly, one electrode of the variable capacitor C SENS P For example, a capacitor Cpm of 10 pF is connected between the non-inverting input terminal of the operational amplifier 1 and the ground.
 各可変容量CSENSM及びCSENSPの演算増幅器1とは反対側の他方の電極には例えば100kHzで±8Vの交流キャリア信号をバイアス電圧として出力するバイアス電圧生成回路としての交流発振器61が接続されている。
 また、演算増幅器1の出力側には復調回路としての掛け算器62が接続され、この掛け算器62に交流発振器61の交流キャリア信号が入力されている。この掛け算器62で復調された容量検出信号は抵抗R1及びコンデンサC1で構成されるローパスフィルタ63によってノイズ除去して出力端子Toutから出力される。
An AC oscillator 61 as a bias voltage generation circuit for outputting, for example, an AC carrier signal of ± 8 V at 100 kHz as a bias voltage is connected to the other electrode opposite to the operational amplifier 1 of each variable capacitor C SENS M and C SENS P. Has been.
Further, a multiplier 62 as a demodulation circuit is connected to the output side of the operational amplifier 1, and the AC carrier signal of the AC oscillator 61 is input to the multiplier 62. The capacitance detection signal demodulated by the multiplier 62 is subjected to noise removal by a low-pass filter 63 including a resistor R1 and a capacitor C1, and is output from an output terminal Tout.
 また、可変容量センサ60の可変容量CSENSPと演算増幅器1の非反転入力端子との間と接地との間に調整用のトリマコンデンサCpinと抵抗Rpinとの並列回路が接続されている。ここで、トリマコンデンサCpinは、チャージアンプ50の出力となる掛け算器62の入力信号に含まれる100kHzのキャリア信号が最小になるように調整するものである。 Further, a parallel circuit of an adjustment trimmer capacitor Cpin and a resistor Rpin is connected between the variable capacitor C SENSP of the variable capacitor sensor 60 and the non-inverting input terminal of the operational amplifier 1 and the ground. Here, the trimmer capacitor Cpin is adjusted so that the carrier signal of 100 kHz included in the input signal of the multiplier 62 that is the output of the charge amplifier 50 is minimized.
 このようにチャージアンプ50を構成すると、出力端子Toutに接続されるローパスフィルタ63のカットオフ周波数(例えば72.3Hz)以下の容量変化を測定することができる。
 この第2の実施形態の回路構成における特性として、図5に示す本発明のチャージアンプ50の周波数特性を測定した結果を従来例のチャージアンプの特性と対比して図6に示す。
 まず、周波数に対するゲイン特性は、図6(a)のように、ゲインが-3dBから負方向に低下し始める周波数を比較すると、従来例の回路では18.5MHzであったのに対して、本発明の回路では58.4MHzになっており、およそ3倍の高速化が可能となっていることが示されている。
 次に、周波数に対する位相角度特性は、図6(b)のように、従来例の回路では1MHzから低下し始め、18.5MHzで-50degまで低下しているのに対して、本発明の回路では1MHzから低下し始め、30MHzで-50degまで低下している。
 したがって、第1実施形態の演算増幅器1を使用して微小な容量変化を検出するチャージアンプ50を構成することにより、高SN化を実現することができる。
When the charge amplifier 50 is configured in this way, it is possible to measure a change in capacitance of the low-pass filter 63 connected to the output terminal Tout below a cutoff frequency (for example, 72.3 Hz).
FIG. 6 shows the result of measuring the frequency characteristic of the charge amplifier 50 of the present invention shown in FIG. 5 as the characteristic in the circuit configuration of the second embodiment in comparison with the characteristic of the charge amplifier of the conventional example.
First, as shown in FIG. 6A, the gain characteristic with respect to the frequency is 18.5 MHz in the conventional circuit when the frequency at which the gain starts to decrease in the negative direction from −3 dB is compared. In the circuit of the invention, the frequency is 58.4 MHz, which indicates that the speed can be increased about three times.
Next, as shown in FIG. 6B, the phase angle characteristic with respect to the frequency starts to decrease from 1 MHz in the conventional circuit and decreases to −50 deg at 18.5 MHz, whereas the circuit according to the present invention. Then, it starts to decrease from 1 MHz and decreases to −50 deg at 30 MHz.
Therefore, by using the operational amplifier 1 of the first embodiment to configure the charge amplifier 50 that detects a minute change in capacitance, it is possible to realize a high SN.
 また、この第2の実施形態の回路構成において、演算増幅器1を構成する接合型電界効果トランジスタQ15及びQ25にカスコード接続するバイポーラトランジスタQ16及びQ26がある場合と無い場合の出力値を、演算増幅器1に供給される動作電源であるVdd電圧を変化させて出力電圧を測定した。なお、可変容量センサ60には外力を加えず、静止状態を保った。この測定結果を図7に示す。 Further, in the circuit configuration of the second embodiment, the output values when the bipolar transistors Q16 and Q26 that are cascode-connected to the junction field effect transistors Q15 and Q25 constituting the operational amplifier 1 are present and when there are no bipolar transistors Q16 and Q26 are obtained. The output voltage was measured by changing the Vdd voltage, which is the operating power supply supplied to. The variable capacitance sensor 60 was kept stationary without applying an external force. The measurement results are shown in FIG.
 この図7から明らかなように、カスコード接続したトランジスタがある場合、動作電源Vddを変化させても出力値に変化は見られず、“0”Vを維持するが、カスコード接続したトランジスタが無い場合には、動作電源Vddの1Vの変化でおよそ1.5mVの出力変化が見られた。
 この現象は差動型チャージアンプのプラスとマイナスの入力容量が異なることに起因して発生する現象である。完全な容量バランスが取れた場合には、このような現象は発生しないことは回路シミュレーションにより確認できるが、実際の回路では、可変容量センサ60の容量ばらつきや、プラスとマイナスのゲインを決定している容量などのばらつきが存在する。このばらつきをトリマコンデンサCpinでゲイン調整してゼロ点を決めているが、演算増幅器1の入力容量がnチャネル接合型電界効果トランジスタQ15及びQ25のソースドレイン電圧に依存しているために、カスコード接続したトランジスタが無い場合、電源電圧を変化させると容量バランス、すなわちゲインバランスが崩れてしまうことに起因して、上述のような出力変化の現象が発生する。
As is apparent from FIG. 7, when there is a cascode-connected transistor, the output value is not changed even when the operating power supply Vdd is changed, and “0” V is maintained, but there is no cascode-connected transistor. The output change of about 1.5 mV was observed when the operating power supply Vdd changed by 1V.
This phenomenon occurs due to the difference between the positive and negative input capacities of the differential charge amplifier. It can be confirmed by circuit simulation that such a phenomenon does not occur when the capacitance balance is perfect, but in an actual circuit, the capacitance variation of the variable capacitance sensor 60 and the plus and minus gains are determined. There are variations in capacity. This variation is gain-adjusted with a trimmer capacitor Cpin to determine the zero point. However, since the input capacitance of the operational amplifier 1 depends on the source-drain voltages of the n-channel junction field effect transistors Q15 and Q25, the cascode connection In the case where there is no transistor, if the power supply voltage is changed, the capacity balance, that is, the gain balance is lost, and the output change phenomenon described above occurs.
 シミュレーションで容量バランスを検討した結果、本実施形態では0.1pF程度の容量アンバランスがあることが判った。この程度のアンバランスは製造上容易に発生してしまう。
 一方、高分解能の可変容量センサの場合、5uV程度の分解能が必要になる。したがって、カスコード接続したトランジスタの無い場合、本実施例では許容される電源電圧変動は5mV程度となる。このような電源は、たとえば鉛蓄電池などで実現できるが、センサ機器の小型化が困難になってしまう。
As a result of examining the capacitance balance by simulation, it was found that there is a capacitance imbalance of about 0.1 pF in this embodiment. This level of imbalance can easily occur in manufacturing.
On the other hand, in the case of a high-resolution variable capacitance sensor, a resolution of about 5 uV is required. Therefore, when there is no cascode-connected transistor, the allowable power supply voltage fluctuation is about 5 mV in this embodiment. Such a power supply can be realized by, for example, a lead storage battery, but it is difficult to reduce the size of the sensor device.
 したがって、高分解能センサに応用する場合には、前述した第1の実施形態のように、nチャネルの接合型電界効果トランジスタQ15及びQ25のドレイン側すなわち正極電源ラインLp側に同極性のトランジスタをカスコード接続することにより、電源電圧の変動の影響を抑制することが望ましい。これによって、電源として、電源電圧変動率が大きいアルカリボタン電池やコイン型リチウム一次電池等を使用することができ、センサ機器の小型化を図ることができる。
 次に、本発明の第3の実施形態について図8を伴って説明する。
Therefore, when applied to a high-resolution sensor, as in the first embodiment described above, transistors having the same polarity are cascaded on the drain side of the n-channel junction field effect transistors Q15 and Q25, that is, on the positive power supply line Lp side. By connecting, it is desirable to suppress the influence of fluctuations in the power supply voltage. As a result, an alkaline button battery, a coin-type lithium primary battery or the like having a large power supply voltage fluctuation rate can be used as the power source, and the sensor device can be miniaturized.
Next, a third embodiment of the present invention will be described with reference to FIG.
 この第3の実施形態による演算増幅器は、オープンループゲインを大きくするために2段増幅回路構成としたものである。
 すなわち、第3の実施形態では、演算増幅器1が、図8に示すように、第1の増幅段70Aと第2の増幅段70Bとを設けた2段増幅回路構成とされている。
 第1の増幅段70Aの構成は前述した第1の実施形態と同様の構成を有し、第1のプッシュプル回路11及び第2のプッシュプル回路12と、第1の電流電圧変換回路13~第4の電流電圧変換回路16と、第1の出力段17及び第2の出力段18と、最終出力段19とを備えている。
The operational amplifier according to the third embodiment has a two-stage amplifier circuit configuration in order to increase the open loop gain.
That is, in the third embodiment, the operational amplifier 1 has a two-stage amplifier circuit configuration in which a first amplification stage 70A and a second amplification stage 70B are provided, as shown in FIG.
The configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, and includes the first push-pull circuit 11 and the second push-pull circuit 12, and the first current-voltage conversion circuit 13 to A fourth current-voltage conversion circuit 16, a first output stage 17 and a second output stage 18, and a final output stage 19 are provided.
 そして、最終増幅段である第2の増幅段70Bは、第1の出力段17及び第2の出力段18と最終出力段19との間に介挿されている。この第2の増幅段70Bは、前述した第1のプッシュプル回路11及び第2のプッシュプル回路12と同様の構成を有する第3のプッシュプル回路71及び第4のプッシュプル回路72を備えている。また、第2の増幅段70Bは第3のプッシュプル回路71及び第4のプッシュプル回路72の高電位側と正極電源ラインLpとの間に介挿された第5の電流電圧変換回路73及び第6の電流電圧変換回路7374を備えている。さらに、第2の増幅段70Bはまた第3のプッシュプル回路71及び第4のプッシュプル回路72の低電位側と負極電源ラインLnとの間に介挿された第7の電流電圧変換回路75及び8の電流電圧変換回路76を備えている。また、第2の増幅段70Bは前記第5の電流電圧変換回路73及び第7の電流電圧変換回路75の出力側が接続される第3の出力段79と、前記第6の電流電圧変換回路74及び第8の電流電圧変換回路76の出力側が接続される第4の出力段80とを備えている。 The second amplification stage 70B, which is the final amplification stage, is interposed between the first output stage 17, the second output stage 18, and the final output stage 19. The second amplification stage 70B includes a third push-pull circuit 71 and a fourth push-pull circuit 72 having the same configuration as the first push-pull circuit 11 and the second push-pull circuit 12 described above. Yes. The second amplification stage 70B includes a fifth current-voltage conversion circuit 73 inserted between the high potential side of the third push-pull circuit 71 and the fourth push-pull circuit 72 and the positive power supply line Lp, and A sixth current-voltage conversion circuit 7374 is provided. Furthermore, the second amplification stage 70B also has a seventh current-voltage conversion circuit 75 interposed between the low potential side of the third push-pull circuit 71 and the fourth push-pull circuit 72 and the negative power supply line Ln. And 8 current-voltage conversion circuits 76. The second amplification stage 70B includes a third output stage 79 to which the output sides of the fifth current-voltage conversion circuit 73 and the seventh current-voltage conversion circuit 75 are connected, and the sixth current-voltage conversion circuit 74. And a fourth output stage 80 to which the output side of the eighth current-voltage conversion circuit 76 is connected.
 第3のプッシュプル回路71は、それぞれエミッタ同士を互いに接続したnpn型バイポーラトランジスタQ71及びpnp型バイポーラトランジスタQ72を有する。そして、npn型バイポーラトランジスタQ71のコレクタが第5の電流電圧変換回路73に接続され、pnp型バイポーラトランジスタQ72のコレクタが第7の電流電圧変換回路75に接続されている。 The third push-pull circuit 71 includes an npn-type bipolar transistor Q71 and a pnp-type bipolar transistor Q72, whose emitters are connected to each other. The collector of the npn-type bipolar transistor Q71 is connected to the fifth current-voltage conversion circuit 73, and the collector of the pnp-type bipolar transistor Q72 is connected to the seventh current-voltage conversion circuit 75.
 また、npn型バイポーラトランジスタQ71のベース及びpnp型バイポーラトランジスタQ72のベースがバイアス回路77に接続されている。このバイアス回路77は、第1の増幅段70Aの第1の出力段17を構成するpnp型バイポーラトランジスタQ41のコレクタにエミッタを接続し、コレクタを負極電源ラインLnに接続したpnp型バイポーラトランジスタQ75と、コレクタが正極電源ラインLpに接続され、エミッタが第1の増幅段70Aの第1の出力段17を構成するnpn型バイポーラトランジスタQ42のコレクタに接続されたnpn型バイポーラトランジスタQ76とを有する。 Further, the base of the npn-type bipolar transistor Q71 and the base of the pnp-type bipolar transistor Q72 are connected to the bias circuit 77. The bias circuit 77 includes a pnp bipolar transistor Q75 having an emitter connected to the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 of the first amplification stage 70A, and a collector connected to the negative power supply line Ln. The npn bipolar transistor Q76 has a collector connected to the positive power supply line Lp and an emitter connected to the collector of the npn bipolar transistor Q42 constituting the first output stage 17 of the first amplification stage 70A.
 そして、pnp型バイポーラトランジスタQ75のエミッタと第1の出力段17を構成するpnp型バイポーラトランジスタQ41のコレクタとの接続点(すなわち、第1の出力段17の高電位側出力部)が、第3のプッシュプル回路71のnpn型バイポーラトランジスタQ71のベース(すなわち、第3のプッシュプル回路71の高電位側入力部)に接続されている。
 また、npn型バイポーラトランジスタQ76と、第1の出力段17を構成するnpn型バイポーラトランジスタQ42との接続点(すなわち、第1の出力段17の低電位側出力部)が、第3のプッシュプル回路71のpnp型バイポーラトランジスタQ72のベース(すなわち、第3のプッシュプル回路71の低電位側入力部)に接続されている。
The connection point between the emitter of the pnp bipolar transistor Q75 and the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 (that is, the high potential side output section of the first output stage 17) is the third level. Is connected to the base of the npn-type bipolar transistor Q71 of the push-pull circuit 71 (that is, the high-potential side input section of the third push-pull circuit 71).
The connection point between the npn-type bipolar transistor Q76 and the npn-type bipolar transistor Q42 constituting the first output stage 17 (that is, the low-potential side output portion of the first output stage 17) is the third push-pull. The pnp bipolar transistor Q72 of the circuit 71 is connected to the base (that is, the low potential side input portion of the third push-pull circuit 71).
 さらに、pnp型バイポーラトランジスタQ75及びnpn型バイポーラトランジスタQ76のベースがコンデンサC2を介して接地されている。
 第4のプッシュプル回路72は、上記第3のプッシュプル回路71と同様に、エミッタ同士を互いに接続したnpn型バイポーラトランジスタQ73及びpnp型バイポーラトランジスタQ74を有する。そして、npn型バイポーラトランジスタQ73のコレクタが第6の電流電圧変換回路74に接続され、pnp型バイポーラトランジスタQ74のコレクタが第8の電流電圧変換回路76に接続されている。
Further, the bases of the pnp bipolar transistor Q75 and the npn bipolar transistor Q76 are grounded via the capacitor C2.
Similar to the third push-pull circuit 71, the fourth push-pull circuit 72 includes an npn-type bipolar transistor Q73 and a pnp-type bipolar transistor Q74 whose emitters are connected to each other. The collector of the npn-type bipolar transistor Q73 is connected to the sixth current-voltage conversion circuit 74, and the collector of the pnp-type bipolar transistor Q74 is connected to the eighth current-voltage conversion circuit 76.
 また、npn型バイポーラトランジスタQ73のベース及びpnp型バイポーラトランジスタQ74のベースがバイアス回路78に接続されている。このバイアス回路78は、第1の増幅段70Aの第2の出力段18を構成するpnp型バイポーラトランジスタQ43のコレクタにエミッタを接続し、コレクタを負極電源ラインLnに接続したpnp型バイポーラトランジスタQ77と、コレクタを正極電源ラインLpに接続し、エミッタを第1の増幅段70Aの第2の出力段18を構成するnpn型バイポーラトランジスタQ44のコレクタに接続したnpn型バイポーラトランジスタQ78とを有する。 Also, the base of the npn bipolar transistor Q73 and the base of the pnp bipolar transistor Q74 are connected to the bias circuit 78. The bias circuit 78 includes a pnp bipolar transistor Q77 having an emitter connected to the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 of the first amplification stage 70A, and a collector connected to the negative power supply line Ln. The npn bipolar transistor Q78 has a collector connected to the positive power supply line Lp and an emitter connected to the collector of the npn bipolar transistor Q44 constituting the second output stage 18 of the first amplification stage 70A.
 そして、pnp型バイポーラトランジスタQ77のエミッタと第2の出力段18を構成するpnp型バイポーラトランジスタQ43のコレクタとの接続点(すなわち、第2の出力段18の高電位側出力部)が、第4のプッシュプル回路72のnpn型バイポーラトランジスタQ73のベース(すなわち、第4のプッシュプル回路72の高電位側入力部)に接続されている。
 また、npn型バイポーラトランジスタQ78と、第2の出力段18を構成するnpn型バイポーラトランジスタQ44との接続点(すなわち、第2の出力段18の低電位側出力部)が、第4のプッシュプル回路72のpnp型バイポーラトランジスタQ74のベース(すなわち、第4のプッシュプル回路72の低電位側入力部)に接続されている。
The connection point between the emitter of the pnp bipolar transistor Q77 and the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 (that is, the high potential side output portion of the second output stage 18) is the fourth. Of the push-pull circuit 72 is connected to the base of the npn-type bipolar transistor Q73 (that is, the high-potential side input section of the fourth push-pull circuit 72).
The connection point between the npn-type bipolar transistor Q78 and the npn-type bipolar transistor Q44 constituting the second output stage 18 (that is, the low-potential side output portion of the second output stage 18) is the fourth push-pull. The pnp bipolar transistor Q74 of the circuit 72 is connected to the base (that is, the low potential side input section of the fourth push-pull circuit 72).
 さらに、pnp型バイポーラトランジスタQ77及びnpn型バイポーラトランジスタQ78のベースがコンデンサC3を介して接地されている。
 第5の電流電圧変換回路73は、エミッタが正極電源ラインLpに接続され、コレクタが第3のプッシュプル回路71に接続されたpnp型バイポーラトランジスタQ81を有する。このpnp型バイポーラトランジスタQ81のコレクタとベースとが接続され、これらの接続点が第3の出力段79に接続されて、後述するようにカレントミラー回路が構成されている。
Further, the bases of the pnp bipolar transistor Q77 and the npn bipolar transistor Q78 are grounded via the capacitor C3.
The fifth current-voltage conversion circuit 73 includes a pnp bipolar transistor Q81 having an emitter connected to the positive power supply line Lp and a collector connected to the third push-pull circuit 71. The collector and base of the pnp bipolar transistor Q81 are connected, and these connection points are connected to the third output stage 79, and a current mirror circuit is configured as will be described later.
 また、第6の電流電圧変換回路74は、エミッタが正極電源ラインLpに接続され、コレクタが第4のプッシュプル回路72に接続されたpnp型バイポーラトランジスタQ82を有する。このpnp型バイポーラトランジスタQ82のコレクタとベースとが接続され、これらの接続点が第4の出力段80に接続されて、後述するようにカレントミラー回路が構成されている。 The sixth current-voltage conversion circuit 74 includes a pnp bipolar transistor Q82 having an emitter connected to the positive power supply line Lp and a collector connected to the fourth push-pull circuit 72. The collector and base of the pnp bipolar transistor Q82 are connected, and these connection points are connected to the fourth output stage 80, so that a current mirror circuit is configured as will be described later.
 また、第7の電流電圧変換回路75は、エミッタが負極電源ラインLnに接続され、コレクタが第3のプッシュプル回路71に接続されたnpn型バイポーラトランジスタQ83を有する。このnpn型バイポーラトランジスタQ83のコレクタとベースとが接続され、これらの接続点が第3の出力段79に接続されて後述するようにカレントミラー回路が構成されている。 The seventh current-voltage conversion circuit 75 includes an npn-type bipolar transistor Q83 having an emitter connected to the negative power supply line Ln and a collector connected to the third push-pull circuit 71. The collector and base of this npn-type bipolar transistor Q83 are connected, and these connection points are connected to the third output stage 79 to constitute a current mirror circuit as will be described later.
 また、第8の電流電圧変換回路76は、エミッタが負極電源ラインLnに接続され、コレクタが第4のプッシュプル回路72に接続されたnpn型バイポーラトランジスタQ84を有する。このnpn型バイポーラトランジスタQ84のコレクタとベースとが接続され、これらの接続点が第4の出力段80に接続されて、後述するようにカレントミラー回路が構成されている。 The eighth current-voltage conversion circuit 76 includes an npn-type bipolar transistor Q84 having an emitter connected to the negative power supply line Ln and a collector connected to the fourth push-pull circuit 72. The collector and base of this npn-type bipolar transistor Q84 are connected, and these connection points are connected to the fourth output stage 80 to constitute a current mirror circuit as will be described later.
 第3の出力段79は、正極電源ラインLpにエミッタが接続されたpnp型バイポーラトランジスタQ101と、このpnp型バイポーラトランジスタQ101のコレクタにコレクタが接続され、エミッタが負極電源ラインLnに接続されたnpn型バイポーラトランジスタQ103とで構成されている。
 そして、pnp型バイポーラトランジスタQ101のベースが第5の電流電圧変換回路73のpnp型バイポーラトランジスタQ81のベース及びコレクタの接続点に接続されて第5のカレントミラー回路が構成されている。言い換えると、第5のカレントミラー回路の入力側回路が第5の電流電圧変換回路73を構成している。
 また、npn型バイポーラトランジスタQ103のベースが第7の電流電圧変換回路75のnpn型バイポーラトランジスタQ83のベース及びコレクタの接続点に接続されて第7のカレントミラー回路が構成されている。言い換えると、第7のカレントミラー回路の入力側回路が第7の電流電圧変換回路75を構成している。
The third output stage 79 includes a pnp bipolar transistor Q101 having an emitter connected to the positive power supply line Lp, an npn having a collector connected to the collector of the pnp bipolar transistor Q101, and an emitter connected to the negative power supply line Ln. Type bipolar transistor Q103.
The base of the pnp bipolar transistor Q101 is connected to the connection point between the base and collector of the pnp bipolar transistor Q81 of the fifth current-voltage conversion circuit 73, thereby forming a fifth current mirror circuit. In other words, the input side circuit of the fifth current mirror circuit constitutes the fifth current-voltage conversion circuit 73.
Further, the base of the npn-type bipolar transistor Q103 is connected to the connection point between the base and the collector of the npn-type bipolar transistor Q83 of the seventh current-voltage conversion circuit 75 to constitute a seventh current mirror circuit. In other words, the input side circuit of the seventh current mirror circuit constitutes the seventh current-voltage conversion circuit 75.
 また、第4の出力段80は、正極電源ラインLpにエミッタが接続されたpnp型バイポーラトランジスタQ102と、このpnp型バイポーラトランジスタQ102のコレクタにコレクタが接続され、エミッタが負極電源ラインLnに接続されたnpn型バイポーラトランジスタQ104とで構成されている。
 そして、pnp型バイポーラトランジスタQ102のベースが第6の電流電圧変換回路74のpnp型バイポーラトランジスタQ82のベース及びコレクタの接続点に接続されて第6のカレントミラー回路が構成されている。言い換えると、第6のカレントミラー回路の入力側回路が第6の電流電圧変換回路74を構成している。
 また、npn型バイポーラトランジスタQ104のベースが第8の電流電圧変換回路76のnpn型バイポーラトランジスタQ84のベース及びコレクタの接続点に接続されて第8のカレントミラー回路が構成されている。言い換えると、第8のカレントミラー回路の入力側回路が第8の電流電圧変換回路76を構成している。
The fourth output stage 80 includes a pnp bipolar transistor Q102 having an emitter connected to the positive power supply line Lp, a collector connected to the collector of the pnp bipolar transistor Q102, and an emitter connected to the negative power supply line Ln. And an npn-type bipolar transistor Q104.
The base of the pnp bipolar transistor Q102 is connected to the connection point between the base and collector of the pnp bipolar transistor Q82 of the sixth current-voltage conversion circuit 74 to constitute a sixth current mirror circuit. In other words, the input current circuit of the sixth current mirror circuit constitutes the sixth current-voltage conversion circuit 74.
The base of the npn bipolar transistor Q104 is connected to the connection point between the base and collector of the npn bipolar transistor Q84 of the eighth current-voltage conversion circuit 76, thereby forming an eighth current mirror circuit. In other words, the input current circuit of the eighth current mirror circuit constitutes the eighth current-voltage conversion circuit 76.
 最終出力段19は、上述の第1の実施形態と同様に、正極電源ラインLp及び負極電源ラインLn間に、2つのnpn型バイポーラトランジスタQ91及びQ92がnpn型バイポーラトランジスタQ91のエミッタをnpn型バイポーラトランジスタQ92のコレクタに接続して直列に接続された構成を有する。
 そして、高電位側のnpn型バイポーラトランジスタQ91のベースが第3の出力段79のpnp型バイポーラトランジスタQ101及びnpn型バイポーラトランジスタQ103の接続点となる出力端に接続されている。
 また、低電位側のnpn型バイポーラトランジスタQ92のベースが第4の出力段80のpnp型バイポーラトランジスタQ102及びnpn型バイポーラトランジスタQ104の接続点となる出力端に接続されている。さらに、両npn型バイポーラトランジスタQ91及びQ92の接続点に出力端子toutが接続されている。
As in the first embodiment described above, the final output stage 19 includes two npn bipolar transistors Q91 and Q92 between the positive power supply line Lp and the negative power supply line Ln, and the npn bipolar transistor Q91 has an npn bipolar emitter. The transistor Q92 is connected in series with the collector of the transistor Q92.
The base of the npn bipolar transistor Q91 on the high potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q101 and the npn bipolar transistor Q103 of the third output stage 79.
The base of the npn bipolar transistor Q92 on the low potential side is connected to the output terminal serving as a connection point between the pnp bipolar transistor Q102 and the npn bipolar transistor Q104 of the fourth output stage 80. Further, an output terminal tout is connected to a connection point between both npn-type bipolar transistors Q91 and Q92.
 また、低電位側のnpn型バイポーラトランジスタQ92のベースと第4の出力段80のpnp型バイポーラトランジスタQ102及びnpn型バイポーラトランジスタQ104の接続点となる出力端との接続点と負極電源ラインLnとの間に、npn型バイポーラトランジスタQ94が接続されている。
 このnpn型バイポーラトランジスタQ94はコレクタが前記第4の出力段80の出力端及びnpn型バイポーラトランジスタQ92の接続点に、エミッタを負極電源ラインLnに接続したnpn型バイポーラトランジスタQ94が接続されている。
 また、npn型バイポーラトランジスタQ94はベースが前記第4の出力段80の出力端及びnpn型バイポーラトランジスタQ92のベースとの接続点に接続されて定電流回路が構成されている。なお、npn型バイポーラトランジスタQ91およびQ92には、それぞれのコレクタとベースとの間に演算増幅器の高周波特性の劣化を防止する位相補償容量C0およびC1が接続されている。
Further, a connection point between the base of the npn type bipolar transistor Q92 on the low potential side and the output terminal serving as a connection point between the pnp type bipolar transistor Q102 and the npn type bipolar transistor Q104 in the fourth output stage 80 and the negative power supply line Ln. An npn bipolar transistor Q94 is connected between them.
The npn bipolar transistor Q94 has a collector connected to the output terminal of the fourth output stage 80 and a connection point of the npn bipolar transistor Q92, and an npn bipolar transistor Q94 having an emitter connected to the negative power supply line Ln.
The base of the npn type bipolar transistor Q94 is connected to the connection point between the output terminal of the fourth output stage 80 and the base of the npn type bipolar transistor Q92 to constitute a constant current circuit. It should be noted that phase compensation capacitors C0 and C1 that prevent deterioration of the high-frequency characteristics of the operational amplifier are connected between npn-type bipolar transistors Q91 and Q92 between their respective collectors and bases.
 さらに、第1の増幅段70Aのバイアス回路24のnpn型バイポーラトランジスタQ23と接合型電界効果トランジスタQ25との接続点と最終出力段19の出力端子toutの接続点との間にノイズを抑制するコンデンサC4が接続されている。
 なお、この第3の実施形態では、前述した第1の実施形態における接合型電界効果トランジスタQ15及びQ25にカスコード接続されたnpn型バイポーラトランジスタQ16及びQ26が省略されているが、第1の実施形態と同様に、npn型バイポーラトランジスタQ16及びQ26を設けるようにしてもよい。
Further, a capacitor that suppresses noise between a connection point between the npn-type bipolar transistor Q23 and the junction field effect transistor Q25 in the bias circuit 24 of the first amplification stage 70A and a connection point between the output terminal tout of the final output stage 19 C4 is connected.
In the third embodiment, the npn bipolar transistors Q16 and Q26 cascode-connected to the junction field effect transistors Q15 and Q25 in the first embodiment are omitted, but the first embodiment is omitted. Similarly to the above, npn bipolar transistors Q16 and Q26 may be provided.
 このように、上記第3の実施形態によると、第1の増幅段70Aの構成が前述した第1の実施形態と同様の構成を有するので、この第1の増幅段70Aの第1の出力段17及び第2の出力段18からノイズを抑制しながら大きな駆動力が得られるとともに、高速化がもたらされる増幅出力が得られる。
 そして、この第1の増幅段70Aから出力される第1の出力段17の増幅出力が第2の増幅段70Bの第3のプッシュプル回路71のバイアス回路77に入力されるとともに、第2の出力段18の増幅出力が第2の増幅段70Bの第4のプッシュプル回路72のバイアス回路78に入力される。このため、これら第3のプッシュプル回路71及び第4のプッシュプル回路72によって再度増幅されて最終出力段19に出力され、この最終出力段19で電圧に変換されて出力端子toutから出力される。
As described above, according to the third embodiment, since the configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, the first output stage of the first amplification stage 70A. A large driving force can be obtained from the 17 and the second output stage 18 while suppressing noise, and an amplified output that can increase the speed can be obtained.
The amplified output of the first output stage 17 output from the first amplification stage 70A is input to the bias circuit 77 of the third push-pull circuit 71 of the second amplification stage 70B, and the second output The amplified output of the output stage 18 is input to the bias circuit 78 of the fourth push-pull circuit 72 of the second amplification stage 70B. Therefore, the signals are amplified again by the third push-pull circuit 71 and the fourth push-pull circuit 72 and output to the final output stage 19, converted into a voltage by the final output stage 19, and output from the output terminal tout. .
 ところで、演算増幅器をチャージアンプに適用する場合には、低ノイズ(高いSN比)にフィードバックを調整すると、おのずとゲイン(正確にはノイズゲイン)は20dB程度になる。したがって、チャージアンプへ適用する演算増幅器のオープンループゲイン(OLG)はさほど大きな値でなくても良い。前述した第1の実施形態の演算増幅器1のオープンループゲイン(OLG)は65dB程度である。 By the way, when the operational amplifier is applied to the charge amplifier, when the feedback is adjusted to low noise (high signal-to-noise ratio), the gain (accurately, noise gain) is naturally about 20 dB. Therefore, the open loop gain (OLG) of the operational amplifier applied to the charge amplifier need not be a large value. The open loop gain (OLG) of the operational amplifier 1 of the first embodiment described above is about 65 dB.
 しかしなから、チャージアンプ以外の通常の増幅器の用途では、90~120dBが必要となる。このため、上記第3の実施形態のように、第1の実施形態の構成を有する第1の増幅段70Aとこの第1の増幅段70Aの増幅出力を増幅する第2の増幅段70Bとを設けることにより、消費電流が約4.5mAで、オープンループゲイン(OLG)が120dBを確保することができる。したがって、第3の実施形態による演算増幅器は一般的な増幅用途に問題なく使用することができる。 However, 90 to 120 dB is required for normal amplifier applications other than charge amplifiers. Therefore, as in the third embodiment, the first amplification stage 70A having the configuration of the first embodiment and the second amplification stage 70B that amplifies the amplification output of the first amplification stage 70A are provided. By providing, it is possible to secure a current consumption of about 4.5 mA and an open loop gain (OLG) of 120 dB. Therefore, the operational amplifier according to the third embodiment can be used without problems for general amplification applications.
 なお、この第3の実施形態でも、前述した第1の実施形態と同様に、接合型電界効果トランジスタQ15及びQ25の接続位置はバイアス回路のpnp型バイポーラトランジスタQ14及びQ24の負極電源ラインLn側に接続することができる。この場合には、カレントミラー回路22を正極電源ラインLp側に接続すればよい。
 また、第3の実施形態における図8の構成例では、最終出力段19をnpn型バイポーラトランジスタQ91及びQ92で構成する場合について説明したが、これらに代えてpnp型バイポーラトランジスタを適用するようにしてもよく、この点は第1の実施形態と同様である。しかしながら、第1の実施形態で述べたように、npn型バイポーラトランジスタの方がpnp型バイポーラトランジスタより高速動作が可能であるので、上記図8の構成例のようにnpn型バイポーラトランジスタQ91,Q92を適用した方がより高速な演算増幅器を構成することができる。
In the third embodiment, as in the first embodiment, the connection position of the junction field effect transistors Q15 and Q25 is on the negative power supply line Ln side of the pnp bipolar transistors Q14 and Q24 of the bias circuit. Can be connected. In this case, the current mirror circuit 22 may be connected to the positive power supply line Lp side.
In the configuration example of FIG. 8 in the third embodiment, the case where the final output stage 19 is configured by npn-type bipolar transistors Q91 and Q92 has been described. However, instead of these, a pnp-type bipolar transistor is applied. This point is the same as in the first embodiment. However, as described in the first embodiment, the npn-type bipolar transistor can operate at a higher speed than the pnp-type bipolar transistor. Therefore, the npn-type bipolar transistors Q91 and Q92 are not provided as in the configuration example of FIG. A faster operational amplifier can be configured when applied.
 なお、この点に関し、上記第3の実施形態における図8の構成例は、最終出力段19の回路を、正極電源ラインLp及び負極電源ラインLn間に、2つのnpn型バイポーラトランジスタQ91及びQ92がnpn型バイポーラトランジスタQ91のエミッタをnpn型バイポーラトランジスタQ92のコレクタに接続して直列に接続された構成を有する回路構成、すなわち、高い電位側及び低い電位側のいずれのバイポーラトランジスタにもnpn型バイポーラトランジスタを用いた構成としているため、npn型バイポーラトランジスタの高速性を十分に発揮させることができるものとなっている。 In this regard, in the configuration example of FIG. 8 in the third embodiment, the circuit of the final output stage 19 includes two npn-type bipolar transistors Q91 and Q92 between the positive power supply line Lp and the negative power supply line Ln. Circuit configuration having a configuration in which the emitter of npn-type bipolar transistor Q91 is connected in series with the collector of npn-type bipolar transistor Q92, that is, the npn-type bipolar transistor is used for both the high-potential side and low-potential-side bipolar transistors. Therefore, the high-speed property of the npn-type bipolar transistor can be fully exhibited.
 一方、最終出力段19の回路を、コレクタ同士を互いに接続したpnp型バイポーラトランジスタとnpn型バイポーラトランジスタとが正極電源ライン及び負極電源ライン間に接続されたコンプリメンタリ接続構成を有する回路構成とした場合は、低い電位側のnpn型バイポーラトランジスタと高い電位側のpnp型バイポーラトランジスタとの組み合わせでの総合動作が、pnp型バイポーラトランジスタの方に引っ張られることによって遅い動作となるため、npn型バイポーラトランジスタの高速性を十分に発揮させることができない。 On the other hand, when the circuit of the final output stage 19 has a circuit configuration having a complementary connection configuration in which a pnp bipolar transistor and an npn bipolar transistor with collectors connected to each other are connected between a positive power supply line and a negative power supply line Since the overall operation of the combination of the low potential side npn type bipolar transistor and the high potential side pnp type bipolar transistor becomes slow when pulled toward the pnp type bipolar transistor, the high speed of the npn type bipolar transistor Sex cannot be fully demonstrated.
 このように、第3の実施形態における図8に示した演算増幅器の回路構成は、第1の実施形態による演算増幅器の回路構成と同様に、最終出力段19の回路を、正極電源ラインLp及び負極電源ラインLn間に、2つのnpn型バイポーラトランジスタQ91及びQ92がnpn型バイポーラトランジスタQ91のエミッタをnpn型バイポーラトランジスタQ92のコレクタに接続して直列に接続された構成としているため、高速な演算増幅器を実現する上で特に好適なものとなっている。 As described above, the circuit configuration of the operational amplifier shown in FIG. 8 in the third embodiment is similar to the circuit configuration of the operational amplifier according to the first embodiment in that the circuit of the final output stage 19 is replaced with the positive power supply line Lp and Since the two npn bipolar transistors Q91 and Q92 are connected in series between the negative power supply line Ln and the emitter of the npn bipolar transistor Q91 connected to the collector of the npn bipolar transistor Q92, a high-speed operational amplifier Is particularly suitable for realizing the above.
 なお、この第3の実施形態において、オープンループゲインを大きくするために2段増幅回路構成とした演算増幅器の構成を上述の図8に示したが、本発明において2段増幅回路構成とした演算増幅器の構成は、上記図8の構成例に限定されるものではなく、図9に示す回路構成としてもよい。
 すなわち、図9の構成例では、演算増幅器1が、第1の増幅段70Aと第2の増幅段70Cとを設けた2段増幅回路構成とされている。
In the third embodiment, the configuration of the operational amplifier having the two-stage amplifier circuit configuration in order to increase the open-loop gain is shown in FIG. 8, but the calculation having the two-stage amplifier circuit configuration in the present invention is shown in FIG. The configuration of the amplifier is not limited to the configuration example shown in FIG. 8, but may be the circuit configuration shown in FIG.
That is, in the configuration example of FIG. 9, the operational amplifier 1 has a two-stage amplifier circuit configuration in which the first amplifier stage 70A and the second amplifier stage 70C are provided.
 第1の増幅段70Aの構成は前述した第1の実施形態と同様の構成を有し、第1のプッシュプル回路11及び第2のプッシュプル回路12と、第1の電流電圧変換回路134~第4の電流電圧変換回路6と、第1の出力段17及び第2の出力段18と、最終出力段19とを備えている。
 そして、最終増幅段である第2の増幅段70Cは、第1の出力段17及び第2の出力段18と最終出力段19との間に介挿されたものである。この第2の増幅段70Cは、前述した第1のプッシュプル回路11及び第2のプッシュプル回路12と同様の構成を有する第3のプッシュプル回路71及び第4のプッシュプル回路72と、これら第3のプッシュプル回路71及び第4のプッシュプル回路72の高電位側と正極電源ラインLpとの間に介挿された第5の電流電圧変換回路73aと、第3のプッシュプル回路71及び第4のプッシュプル回路72の低電位側と負極電源ラインLnとの間に介挿された第6の電流電圧変換回路74aとを備えている。
The configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, and includes the first push-pull circuit 11, the second push-pull circuit 12, and the first current-voltage conversion circuits 134 to A fourth current-voltage conversion circuit 6, a first output stage 17 and a second output stage 18, and a final output stage 19 are provided.
The second amplification stage 70 </ b> C, which is the final amplification stage, is interposed between the first output stage 17, the second output stage 18, and the final output stage 19. The second amplifying stage 70C includes a third push-pull circuit 71 and a fourth push-pull circuit 72 having the same configuration as the first push-pull circuit 11 and the second push-pull circuit 12 described above. A fifth current-voltage conversion circuit 73a interposed between the high potential side of the third push-pull circuit 71 and the fourth push-pull circuit 72 and the positive power supply line Lp; a third push-pull circuit 71; A sixth current-voltage conversion circuit 74a interposed between the low potential side of the fourth push-pull circuit 72 and the negative power supply line Ln is provided.
 第3のプッシュプル回路71は、それぞれエミッタ同士を互いに接続したnpn型バイポーラトランジスタQ71及びpnp型バイポーラトランジスタQ72を有する。そして、npn型バイポーラトランジスタQ71のコレクタが第5の電流電圧変換回路73aに接続され、pnp型バイポーラトランジスタQ72のコレクタが第6の電流電圧変換回路74aに接続されている。 The third push-pull circuit 71 includes an npn-type bipolar transistor Q71 and a pnp-type bipolar transistor Q72, whose emitters are connected to each other. The collector of the npn type bipolar transistor Q71 is connected to the fifth current / voltage conversion circuit 73a, and the collector of the pnp type bipolar transistor Q72 is connected to the sixth current / voltage conversion circuit 74a.
 また、npn型バイポーラトランジスタQ71のベース及びpnp型バイポーラトランジスタQ72のベースがバイアス回路77に接続されている。このバイアス回路77は、pnp型バイポーラトランジスタQ75とnpn型バイポーラトランジスタQ76とを有する。
 pnp型バイポーラトランジスタQ75は、エミッタが第1の増幅段30Aの第1の出力段17を構成するpnp型バイポーラトランジスタQ41のコレクタに接続され、コレクタが負極電源ラインLnに接続されている。npn型バイポーラトランジスタQ76は、コレクタが正極電源ラインLpに接続され、エミッタが第1の増幅段30Aの第1の出力段17を構成するnpn型バイポーラトランジスタQ42のコレクタに接続されている。
The base of the npn-type bipolar transistor Q71 and the base of the pnp-type bipolar transistor Q72 are connected to the bias circuit 77. The bias circuit 77 has a pnp bipolar transistor Q75 and an npn bipolar transistor Q76.
In the pnp bipolar transistor Q75, the emitter is connected to the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 of the first amplification stage 30A, and the collector is connected to the negative power supply line Ln. The npn-type bipolar transistor Q76 has a collector connected to the positive power supply line Lp, and an emitter connected to the collector of the npn-type bipolar transistor Q42 constituting the first output stage 17 of the first amplification stage 30A.
 そして、pnp型バイポーラトランジスタQ75のエミッタと第1の出力段17を構成するpnp型バイポーラトランジスタQ41のコレクタとの接続点が第3のプッシュプル回路71のnpn型バイポーラトランジスタQ71のベースに接続されている。また、npn型バイポーラトランジスタQ76と、第1の出力段17を構成するnpn型バイポーラトランジスタQ42との接続点が第3のプッシュプル回路71のpnp型バイポーラトランジスタQ72のベースに接続されている。 The connection point between the emitter of the pnp bipolar transistor Q75 and the collector of the pnp bipolar transistor Q41 constituting the first output stage 17 is connected to the base of the npn bipolar transistor Q71 of the third push-pull circuit 71. Yes. The connection point between the npn bipolar transistor Q76 and the npn bipolar transistor Q42 constituting the first output stage 17 is connected to the base of the pnp bipolar transistor Q72 of the third push-pull circuit 71.
 さらに、pnp型バイポーラトランジスタQ75及びnpn型バイポーラトランジスタQ76のベースがコンデンサC2を介して接地されている。
 第4のプッシュプル回路72は、上記第3のプッシュプル回路71と同様に、エミッタ同士を互いに接続したnpn型バイポーラトランジスタQ73及びpnp型バイポーラトランジスタQ74を有する。そして、npn型バイポーラトランジスタQ73のコレクタが第5の電流電圧変換回路73aに接続され、pnp型バイポーラトランジスタQ74のコレクタが第6の電流電圧変換回路74aに接続されている。
Further, the bases of the pnp bipolar transistor Q75 and the npn bipolar transistor Q76 are grounded via the capacitor C2.
Similar to the third push-pull circuit 71, the fourth push-pull circuit 72 includes an npn-type bipolar transistor Q73 and a pnp-type bipolar transistor Q74 whose emitters are connected to each other. The collector of the npn-type bipolar transistor Q73 is connected to the fifth current-voltage conversion circuit 73a, and the collector of the pnp-type bipolar transistor Q74 is connected to the sixth current-voltage conversion circuit 74a.
 また、npn型バイポーラトランジスタQ73のベース及びpnp型バイポーラトランジスタQ74のベースがバイアス回路78に接続されている。このバイアス回路78は、pnp型バイポーラトランジスタQ77とnpn型バイポーラトランジスタQ78とを有する。
 pnp型バイポーラトランジスタQ77は、エミッタが第1の増幅段30Aの第2の出力段18を構成するpnp型バイポーラトランジスタQ43のコレクタに接続され、コレクタが負極電源ラインLnに接続されている。npn型バイポーラトランジスタQ78は、コレクタが正極電源ラインLpに接続され、エミッタが第1の増幅段30Aの第2の出力段18を構成するnpn型バイポーラトランジスタQ44のコレクタに接続されている。
The base of the npn type bipolar transistor Q73 and the base of the pnp type bipolar transistor Q74 are connected to the bias circuit 78. The bias circuit 78 includes a pnp bipolar transistor Q77 and an npn bipolar transistor Q78.
In the pnp bipolar transistor Q77, the emitter is connected to the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 of the first amplification stage 30A, and the collector is connected to the negative power supply line Ln. The npn bipolar transistor Q78 has a collector connected to the positive power supply line Lp and an emitter connected to the collector of the npn bipolar transistor Q44 that constitutes the second output stage 18 of the first amplification stage 30A.
 そして、pnp型バイポーラトランジスタQ77のエミッタと第2の出力段18を構成するpnp型バイポーラトランジスタQ43のコレクタとの接続点が第4のプッシュプル回路72のnpn型バイポーラトランジスタQ73のベースに接続されている。また、npn型バイポーラトランジスタQ78と、第2の出力段18を構成するnpn型バイポーラトランジスタQ44との接続点が第4のプッシュプル回路72のpnp型バイポーラトランジスタQ74のベースに接続されている。 The connection point between the emitter of the pnp bipolar transistor Q77 and the collector of the pnp bipolar transistor Q43 constituting the second output stage 18 is connected to the base of the npn bipolar transistor Q73 of the fourth push-pull circuit 72. Yes. The connection point between the npn bipolar transistor Q78 and the npn bipolar transistor Q44 constituting the second output stage 18 is connected to the base of the pnp bipolar transistor Q74 of the fourth push-pull circuit 72.
 さらに、pnp型バイポーラトランジスタQ77及びnpn型バイポーラトランジスタQ78のベースがコンデンサC3を介して接地されている。
 また、第5の電流電圧変換回路73aは、pnp型バイポーラトランジスタQ81とpnp型バイポーラトランジスタQ82aとを有する。pnp型バイポーラトランジスタQ81は、エミッタが正極電源ラインLpに接続され、コレクタが第3のプッシュプル回路71に接続されている。npn型バイポーラトランジスタQ82は、エミッタが正極電源ラインLpに接続され、コレクタが第4のプッシュプル回路72に接続されている。
 これらpnp型バイポーラトランジスタQ81及びQ82aのベースが互いに接続され、両ベースの接続点がpnp型バイポーラトランジスタQ82aのコレクタに接続されてカレントミラー回路が構成されている。
Further, the bases of the pnp bipolar transistor Q77 and the npn bipolar transistor Q78 are grounded via the capacitor C3.
The fifth current-voltage conversion circuit 73a includes a pnp bipolar transistor Q81 and a pnp bipolar transistor Q82a. The pnp bipolar transistor Q81 has an emitter connected to the positive power supply line Lp and a collector connected to the third push-pull circuit 71. The npn bipolar transistor Q82 has an emitter connected to the positive power supply line Lp and a collector connected to the fourth push-pull circuit 72.
The bases of these pnp bipolar transistors Q81 and Q82a are connected to each other, and the connection point of both bases is connected to the collector of the pnp bipolar transistor Q82a to form a current mirror circuit.
 また、第6の電流電圧変換回路74aは、npn型バイポーラトランジスタQ83とnpn型バイポーラトランジスタQ84aとを有する。npn型バイポーラトランジスタQ83は、エミッタが負極電源ラインLnに接続され、コレクタが第3のプッシュプル回路71に接続されている。pnp型バイポーラトランジスタQ84は、エミッタが負極電源ラインLnに接続され、コレクタが第4のプッシュプル回路72に接続されている。
 これらnpn型バイポーラトランジスタQ83及びQ84aのベースが互いに接続され、両ベースの接続点がnpn型バイポーラトランジスタQ84aのコレクタに接続されてカレントミラー回路が構成されている。
The sixth current-voltage conversion circuit 74a includes an npn bipolar transistor Q83 and an npn bipolar transistor Q84a. The npn bipolar transistor Q83 has an emitter connected to the negative power supply line Ln and a collector connected to the third push-pull circuit 71. The pnp bipolar transistor Q84 has an emitter connected to the negative power supply line Ln and a collector connected to the fourth push-pull circuit 72.
The bases of these npn-type bipolar transistors Q83 and Q84a are connected to each other, and the connection point of both bases is connected to the collector of the npn-type bipolar transistor Q84a to form a current mirror circuit.
 さらに、第3のプッシュプル回路71のnpn型バイポーラトランジスタQ71のコレクタと第5の電流電圧変換回路73aのpnp型バイポーラトランジスタQ81のコレクタとの接続点が出力端として最終出力段19のpnp型バイポーラトランジスタQ91aのベースに接続されている。同様に、第3のプッシュプル回路71のpnp型バイポーラトランジスタQ72のコレクタと第6の電流電圧変換回路74aのnpn型バイポーラトランジスタQ83のコレクタとの接続点が出力端として最終出力段19のnpn型バイポーラトランジスタQ92のベースに接続されている。 Further, the connection point between the collector of the npn-type bipolar transistor Q71 of the third push-pull circuit 71 and the collector of the pnp-type bipolar transistor Q81 of the fifth current-voltage conversion circuit 73a is the output terminal, and the pnp-type bipolar of the final output stage 19 is used. It is connected to the base of transistor Q91a. Similarly, the connection point between the collector of the pnp bipolar transistor Q72 of the third push-pull circuit 71 and the collector of the npn bipolar transistor Q83 of the sixth current-voltage conversion circuit 74a is the output terminal, and the npn type of the final output stage 19 It is connected to the base of bipolar transistor Q92.
 ここで、最終出力段19は、コレクタ同士を互いに接続したpnp型バイポーラトランジスタ91aとnpn型バイポーラトランジスタQ92とが正極電源ラインLp及び負極電源ラインLn間に接続されたコンプリメンタリ接続構成を有する。
 そして、pnp型バイポーラトランジスタQ91aのベースと正極電源ラインLp間にpnp型バイポーラトランジスタQ93が接続されている。このpnp型バイポーラトランジスタQ93のベースが第3のプッシュプル回路71のnpn型バイポーラトランジスタQ71と第5の電流電圧変換回路73のpnp型バイポーラトランジスタQ81のコレクタとの接続点である出力端と最終出力段19のpnp型バイポーラトランジスタQ91aのベースとの間に接続されている。
 このpnp型バイポーラトランジスタQ93と、最終出力段19のpnp型バイポーラトランジスタQ91aとで定電流回路が構成されている。
Here, the final output stage 19 has a complementary connection configuration in which a pnp bipolar transistor 91a and an npn bipolar transistor Q92, whose collectors are connected to each other, are connected between the positive power supply line Lp and the negative power supply line Ln.
A pnp bipolar transistor Q93 is connected between the base of the pnp bipolar transistor Q91a and the positive power supply line Lp. The base of the pnp bipolar transistor Q93 is the connection point between the npn bipolar transistor Q71 of the third push-pull circuit 71 and the collector of the pnp bipolar transistor Q81 of the fifth current-voltage conversion circuit 73, and the final output. Connected between the base of the pnp bipolar transistor Q91a of the stage 19.
The pnp bipolar transistor Q93 and the pnp bipolar transistor Q91a of the final output stage 19 form a constant current circuit.
 同様に、npn型バイポーラトランジスタQ92にも第1の実施形態と同様にベース及び負極電源ラインLn間にnpn型バイポーラトランジスタQ94が接続されている。このnpn型バイポーラトランジスタQ94とnpn型バイポーラトランジスタQ92とで定電流回路が構成されている。
 さらに、第1の増幅段70Aのバイアス回路24のnpn型バイポーラトランジスタQ23と接合型電界効果トランジスタQ25との接続点と最終出力段19の出力端子toutの接続点との間にノイズを抑制するコンデンサC4が接続されている。
Similarly, an npn bipolar transistor Q94 is connected to the npn bipolar transistor Q92 between the base and the negative power supply line Ln as in the first embodiment. The npn bipolar transistor Q94 and the npn bipolar transistor Q92 constitute a constant current circuit.
Further, a capacitor that suppresses noise between a connection point between the npn-type bipolar transistor Q23 and the junction field effect transistor Q25 in the bias circuit 24 of the first amplification stage 70A and a connection point between the output terminal tout of the final output stage 19 C4 is connected.
 なお、この図9の構成例では、前述した第1の実施形態における接合型電界効果トランジスタQ15及びQ25にカスコード接続されたnpn型バイポーラトランジスタQ16及びQ26が省略されているが、第1の実施形態と同様に、npn型バイポーラトランジスタQ16及びQ26を設けるようにしてもよい。
 このように、上記図9の構成例によると、第1の増幅段70Aの構成が前述した第1の実施形態と同様の構成を有するので、この第1の増幅段70Aの第1の出力段17及び第2の出力段18からノイズを抑制しながら大きな駆動力が得られるとともに、高速化がもたらされる増幅出力が得られる。
In the configuration example of FIG. 9, the npn bipolar transistors Q16 and Q26 that are cascode-connected to the junction field effect transistors Q15 and Q25 in the first embodiment are omitted, but the first embodiment is omitted. Similarly to the above, npn bipolar transistors Q16 and Q26 may be provided.
As described above, according to the configuration example of FIG. 9, the configuration of the first amplification stage 70A has the same configuration as that of the first embodiment described above, and therefore the first output stage of the first amplification stage 70A. A large driving force can be obtained from the 17 and the second output stage 18 while suppressing noise, and an amplified output that can increase the speed can be obtained.
 そして、この第1の増幅段70Aから出力される第1の出力段17の増幅出力が第2の増幅段70Cの第3のプッシュプル回路71のバイアス回路77に入力されるとともに、第2の出力段18の増幅出力が第2の増幅段70Cの第4のプッシュプル回路72のバイアス回路78に入力される。このため、これら第3のプッシュプル回路71及び第4のプッシュプル回路72によって再度増幅されて最終出力段19に出力され、この最終出力段19で電圧に変換されて出力端子toutから出力される。 The amplified output of the first output stage 17 output from the first amplification stage 70A is input to the bias circuit 77 of the third push-pull circuit 71 of the second amplification stage 70C, and the second output The amplified output of the output stage 18 is input to the bias circuit 78 of the fourth push-pull circuit 72 of the second amplification stage 70C. Therefore, the signals are amplified again by the third push-pull circuit 71 and the fourth push-pull circuit 72 and output to the final output stage 19, converted into a voltage by the final output stage 19, and output from the output terminal tout. .
 また、上記図9の構成例のように、第1の実施形態の構成を有する第1の増幅段70Aとこの第1の増幅段70Aの増幅出力を増幅する第2の増幅段70Cとを設けることにより、図8の構成例と同様に、消費電流が約4.5mAで、オープンループゲイン(OLG)が120dBを確保することができる。したがって、図9の構成例による演算増幅器は、図8の構成例による演算増幅器と同様に、一般的な増幅用途に問題なく使用することができる。 Further, as in the configuration example of FIG. 9, the first amplification stage 70A having the configuration of the first embodiment and the second amplification stage 70C for amplifying the amplification output of the first amplification stage 70A are provided. As a result, as in the configuration example of FIG. 8, it is possible to secure a current consumption of about 4.5 mA and an open loop gain (OLG) of 120 dB. Therefore, the operational amplifier according to the configuration example of FIG. 9 can be used without any problem for general amplification applications, similarly to the operational amplifier according to the configuration example of FIG.
 なお、この図9の構成例でも、前述した第1の実施形態と同様に、接合型電界効果トランジスタQ15及びQ25の接続位置はバイアス回路のpnp型バイポーラトランジスタQ14及びQ24の負極電源ラインLn側に接続することができる。この場合には、カレントミラー回路22を正極電源ラインLp側に接続すればよい。 In the configuration example of FIG. 9, as in the first embodiment described above, the connection position of the junction field effect transistors Q15 and Q25 is on the negative power supply line Ln side of the pnp bipolar transistors Q14 and Q24 of the bias circuit. Can be connected. In this case, the current mirror circuit 22 may be connected to the positive power supply line Lp side.
 1…演算増幅器、Lp…正極電源ライン、Ln…負極電源ライン、11…第1のプッシュプル回路、12…第2のプッシュプル回路、13…第1の電流電圧変換回路、14…第2の電流電圧変換回路、15…第3の電流電圧変換回路、16…第4の電流電圧変換回路、17…第1の出力段、18…第2の出力段、19…最終出力段、Q11~Q14…バイポーラトランジスタ、Q15…接合型電界効果トランジスタ、Q16…カスコード接続したバイポーラトランジスタ、Q21~Q24…バイポーラトランジスタ、21,24…バイアス回路、22…カレントミラー回路、Re…エミッタ接続抵抗、Q25…接合型電界効果トランジスタ、Q26…カスコード接続したバイポーラトランジスタ、+tin…正極側入力端子、-tin…負極側入力端子、Q31~Q37…バイポーラトランジスタ、Q41~Q44…バイポーラトランジスタ、Q51~Q53…バイポーラトランジスタ、Q61,Q62…接合型電界効果トランジスタ、Q63,Q64…バイポーラトランジスタ、50…チャージアンプ、CSENS…可変容量、60…可変容量センサ、61…交流発振器、62…掛け算器、63…ローパスフィルタ、70A…第1の増幅段、70B、70C…第2の増幅段、71…第3のプッシュプル回路、72…第4のプッシュプル回路、73,73a…第5の電流電圧変換回路、74,74a…第6の電流電圧変換回路、75…第7の電流電圧変換回路、76…第8の電流電圧変換回路、77,78…バイアス回路、79…第3の出力段、80…第4の出力段、Q71~Q78…バイポーラトランジスタ、Q81~Q84,Q82a,Q84a…バイポーラトランジスタ、Q91~Q94,Q91a…バイポーラトランジスタ、Q101~Q104…バイポーラトランジスタ DESCRIPTION OF SYMBOLS 1 ... Operational amplifier, Lp ... Positive power supply line, Ln ... Negative power supply line, 11 ... 1st push pull circuit, 12 ... 2nd push pull circuit, 13 ... 1st current voltage conversion circuit, 14 ... 2nd Current voltage conversion circuit, 15 ... third current voltage conversion circuit, 16 ... fourth current voltage conversion circuit, 17 ... first output stage, 18 ... second output stage, 19 ... final output stage, Q11 to Q14 ... Bipolar transistor, Q15 ... Junction type field effect transistor, Q16 ... Cascode-connected bipolar transistor, Q21 to Q24 ... Bipolar transistor, 21,24 ... Bias circuit, 22 ... Current mirror circuit, Re ... Emitter connection resistance, Q25 ... Junction type Field effect transistor, Q26 ... Cascode-connected bipolar transistor, + tin ... Positive input terminal, -tin ... Negative electrode Input terminals, Q31 ~ Q37 ... bipolar transistors, Q41 ~ Q44 ... bipolar transistors, Q51 ~ Q53 ... bipolar transistor, Q61, Q62 ... junction field effect transistor, Q63, Q64 ... bipolar transistor, 50 ... charge amplifier, C SENS ... Variable Capacitance, 60 ... variable capacitance sensor, 61 ... AC oscillator, 62 ... multiplier, 63 ... low pass filter, 70A ... first amplification stage, 70B, 70C ... second amplification stage, 71 ... third push-pull circuit, 72: Fourth push-pull circuit, 73, 73a: Fifth current-voltage conversion circuit, 74, 74a: Sixth current-voltage conversion circuit, 75: Seventh current-voltage conversion circuit, 76: Eighth current voltage Conversion circuit, 77, 78 ... bias circuit, 79 ... third output stage, 80 ... fourth output stage, Q71 to Q78 Bipolar transistor, Q81 ~ Q84, Q82a, Q84a ... bipolar transistor, Q91 ~ Q94, Q91a ... bipolar transistor, Q101 ~ Q104 ... bipolar transistor

Claims (13)

  1.  正極電源ラインと負極電源ラインとの間に並列に接続したコンプリメンタリ形式の第1のプッシュプル回路及び第2のプッシュプル回路と、
     前記第1のプッシュプル回路及び第2のプッシュプル回路の高い電位側を接続し前記正極電源ラインに接続した第1の電流電圧変換回路及び第2の電流電圧変換回路と、
     前記第1のプッシュプル回路及び第2のプッシュプル回路の低い電位側を接続し前記負極電源ラインに接続した第3の電流電圧変換回路及び第4の電流電圧変換回路と、
     前記第1の電流電圧変換回路及び第3の電流電圧変換回路の出力側が接続される第1の出力段と、
     前記第2の電流電圧変換回路及び第4の電流電圧変換回路の出力側が接続される第2の出力段と、
     前記正極電源ライン及び前記負極電源ライン間に、同一極性のバイポーラトランジスタを接続してプッシュプル回路構成を有する最終出力段とを備え、
     前記最終出力段の高い電位側のバイポーラトランジスタのベースに前記第1の出力段の出力を供給し、前記最終出力段の低い電位側のバイポーラトランジスタに前記第2の出力段の出力を供給する
     ことを特徴とする演算増幅器。
    Complementary first and second push-pull circuits connected in parallel between the positive and negative power supply lines;
    A first current-voltage conversion circuit and a second current-voltage conversion circuit, which are connected to the positive power supply line by connecting a high potential side of the first push-pull circuit and the second push-pull circuit;
    A third current-voltage conversion circuit and a fourth current-voltage conversion circuit connected to the negative power supply line by connecting a low potential side of the first push-pull circuit and the second push-pull circuit;
    A first output stage to which output sides of the first current-voltage conversion circuit and the third current-voltage conversion circuit are connected;
    A second output stage to which the output sides of the second current-voltage conversion circuit and the fourth current-voltage conversion circuit are connected;
    A final output stage having a push-pull circuit configuration by connecting bipolar transistors of the same polarity between the positive power line and the negative power line;
    Supplying the output of the first output stage to the base of the high potential side bipolar transistor of the final output stage, and supplying the output of the second output stage to the low potential side bipolar transistor of the final output stage; An operational amplifier characterized by.
  2.  前記最終出力段は、前記正極電源ライン及び前記負極電源ライン間に、一方のエミッタを他方のコレクタに接続した2つのnpnバイポーラトランジスタを有するプッシュプル回路で構成されていることを特徴とする請求項1に記載の演算増幅器。 The final output stage is constituted by a push-pull circuit having two npn bipolar transistors in which one emitter is connected to the other collector between the positive power supply line and the negative power supply line. The operational amplifier according to 1.
  3.  前記最終出力段は、前記正極電源ライン及び前記負極電源ライン間に、一方のコレクタを他方のエミッタに接続した2つのpnpバイポーラトランジスタを有するプッシュプル回路で構成されていることを特徴とする請求項1に記載の演算増幅器。 The final output stage is constituted by a push-pull circuit having two pnp bipolar transistors in which one collector is connected to the other emitter between the positive power supply line and the negative power supply line. The operational amplifier according to 1.
  4.  前記第1の出力段および前記第2の出力段と前記最終出力段との間に最終増幅段を介挿してなり、
     前記最終増幅段は、
     前記正極電源ラインと前記負極電源ラインとの間に並列に接続したコンプリメンタリ形式の第3のプッシュプル回路及び第4のプッシュプル回路と、
     前記第3のプッシュプル回路及び第4のプッシュプル回路の高い電位側を接続し前記正極電源ラインに接続した第5の電流電圧変換回路及び第6の電流電圧変換回路と、
     前記第3のプッシュプル回路及び第4のプッシュプル回路の低い電位側を接続し前記負極電源ラインに接続した第7の電流電圧変換回路及び第8の電流電圧変換回路と、
     前記第5の電流電圧変換回路及び第7の電流電圧変換回路の出力側が接続される第3の出力段と、
     前記第6の電流電圧変換回路及び第8の電流電圧変換回路の出力側が接続される第4の出力段とを備え、
     前記第3のプッシュプル回路及び第4のプッシュプル回路の各高電位側入力部にはそれぞれ前記第1の出力段及び第2の出力段の各高電位側出力部が接続されるとともに、前記第3のプッシュプル回路及び第4のプッシュプル回路の各低電位側入力部にはそれぞれ前記第1の出力段及び第2の出力段の各低電位側出力部が接続され、
     前記最終出力段の高い電位側のバイポーラトランジスタのベースに前記第3の出力段の出力を供給し、前記最終出力段の低い電位側のバイポーラトランジスタのベースに前記第4の出力段の出力を供給する
     ことを特徴とする請求項1から3の何れか1項に記載の演算増幅器。
    A final amplification stage is interposed between the first output stage and the second output stage and the final output stage;
    The final amplification stage includes:
    Complementary third push-pull circuit and fourth push-pull circuit connected in parallel between the positive power line and the negative power line;
    A fifth current-voltage converter circuit and a sixth current-voltage converter circuit connected to the positive power supply line by connecting the high potential side of the third push-pull circuit and the fourth push-pull circuit;
    A seventh current-voltage conversion circuit and an eighth current-voltage conversion circuit connected to the negative power supply line by connecting the low potential side of the third push-pull circuit and the fourth push-pull circuit;
    A third output stage to which the output sides of the fifth current-voltage conversion circuit and the seventh current-voltage conversion circuit are connected;
    A fourth output stage to which the output sides of the sixth current-voltage conversion circuit and the eighth current-voltage conversion circuit are connected;
    The high-potential side input sections of the first output stage and the second output stage are connected to the high-potential side input sections of the third push-pull circuit and the fourth push-pull circuit, respectively. The low potential side input units of the first and second output stages are connected to the low potential side input units of the third push-pull circuit and the fourth push-pull circuit, respectively.
    The output of the third output stage is supplied to the base of the high potential side bipolar transistor of the final output stage, and the output of the fourth output stage is supplied to the base of the low potential side bipolar transistor of the final output stage. The operational amplifier according to any one of claims 1 to 3, wherein the operational amplifier is provided.
  5.  前記第5の電流電圧変換回路は、前記第3のプッシュプル回路の高い電位側及び前記正極電源ライン間に接続された第5のカレントミラー回路の入力側回路で構成され、前記第6の電流電圧変換回路は、前記第4のプッシュプル回路の高い電位側及び前記正極電源ライン間に接続された第6のカレントミラー回路の入力側回路で構成され、前記第7の電流電圧変換回路は、前記第3のプッシュプル回路の低い電位側及び前記負極電源ライン間に接続された第7のカレントミラー回路の入力側回路で構成され、前記第8の電流電圧変換回路は、前記第4のプッシュプル回路の低い電位側及び前記負極電源ライン間に接続された第8のカレントミラー回路の入力側回路で構成されていることを特徴とする請求項4に記載の演算増幅器。 The fifth current-voltage conversion circuit includes a high potential side of the third push-pull circuit and an input side circuit of a fifth current mirror circuit connected between the positive power supply lines, and the sixth current The voltage conversion circuit includes a high potential side of the fourth push-pull circuit and an input side circuit of a sixth current mirror circuit connected between the positive power supply lines, and the seventh current-voltage conversion circuit includes: The eighth push-pull circuit is composed of an input side circuit of a seventh current mirror circuit connected between the low potential side of the third push-pull circuit and the negative power supply line, and the eighth current-voltage conversion circuit includes the fourth push-pull circuit. 5. The operational amplifier according to claim 4, comprising an input side circuit of an eighth current mirror circuit connected between a low potential side of a pull circuit and the negative power supply line.
  6.  前記第1の電流電圧変換回路は、前記第1のプッシュプル回路の高い電位側及び前記正極電源ライン間に接続された第1のカレントミラー回路の入力側回路で構成され、前記第2の電流電圧変換回路は、前記第2のプッシュプル回路の高い電位側及び前記正極電源ライン間に接続された第2のカレントミラー回路の入力側回路で構成され、前記第3の電流電圧変換回路は、前記第1のプッシュプル回路の低い電位側及び前記負極電源ライン間に接続された第3のカレントミラー回路の入力側回路で構成され、前記第4の電流電圧変換回路は、前記第2のプッシュプル回路の低い電位側及び前記負極電源ライン間に接続された第4のカレントミラー回路の入力側回路で構成されていることを特徴とする請求項1から5の何れか1項に記載の演算増幅器。 The first current-voltage conversion circuit includes a high potential side of the first push-pull circuit and an input side circuit of a first current mirror circuit connected between the positive power supply lines, and the second current The voltage conversion circuit includes a high potential side of the second push-pull circuit and an input side circuit of a second current mirror circuit connected between the positive power supply lines, and the third current-voltage conversion circuit includes: The fourth push-pull circuit is constituted by an input side circuit of a third current mirror circuit connected between the low potential side of the first push-pull circuit and the negative power supply line, and the fourth current-voltage conversion circuit is configured by the second push-pull circuit. 6. The performance according to claim 1, comprising a low potential side of a pull circuit and an input side circuit of a fourth current mirror circuit connected between the negative power supply line. Amplifier.
  7.  前記第1のプッシュプル回路及び前記第2のプッシュプル回路は、正極電源ラインと負極電源ラインとの間に順方向に電流が流れるように介挿されたダイオードで構成されるバイアス回路と、互いのエミッタ間を接続し、前記バイアス回路の高い電位側にベースを接続したnpnバイポーラトランジスタ及び前記バイアス回路の低い電位側にベースを接続したpnpバイポーラトランジスタとを有することを特徴とする請求項1から6の何れか1項に記載の演算増幅器。 The first push-pull circuit and the second push-pull circuit include a bias circuit including a diode interposed so that a current flows in a forward direction between the positive power supply line and the negative power supply line, and 2. An npn bipolar transistor having a base connected to a high potential side of the bias circuit and a pnp bipolar transistor having a base connected to a low potential side of the bias circuit. The operational amplifier according to any one of 6.
  8.  前記バイアス回路のダイオードはダイオード接続したバイポーラトランジスタで構成されていることを特徴とする請求項7に記載の演算増幅器。 8. The operational amplifier according to claim 7, wherein the diode of the bias circuit is composed of a diode-connected bipolar transistor.
  9.  前記第1のプッシュプル回路及び第2のプッシュプル回路は、前記npnバイポーラトランジスタ及びpnpバイポーラトランジスタのエミッタ間の接続点が抵抗を介し接続されていることを特徴とする請求項7又は8に記載の演算増幅器。 The connection point between the emitters of the npn bipolar transistor and the pnp bipolar transistor is connected via a resistor in the first push-pull circuit and the second push-pull circuit. Operational amplifier.
  10.  前記第1のプッシュプル回路及び第2のプッシュプル回路の各バイアス回路の電流を制御し、ゲートが入力端に接続されたnチャネル又はpチャネルの第1及び第2の接合型電界効果トランジスタを備えていることを特徴とする請求項7から9の何れか1項に記載の演算増幅器。 N-channel or p-channel first and second junction field effect transistors, each of which controls a current of each bias circuit of the first push-pull circuit and the second push-pull circuit and has a gate connected to an input terminal. The operational amplifier according to claim 7, wherein the operational amplifier is provided.
  11.  nチャネル又はpチャネルの前記第1の接合型電界効果トランジスタ及び第2の接合型電界効果トランジスタのドレインと正極電源ライン又は負極電源ラインとの間に当該第1の接合型電界効果トランジスタ及び第2の接合型電界効果トランジスタと同極性のトランジスタをカスコード接続し、当該トランジスタの制御端子の電位をグランド電位と電源電位との中間電位に固定したことを特徴とする請求項10に記載の演算増幅器。 The first junction field effect transistor and the second junction between the drain of the first junction field effect transistor and the second junction field effect transistor of n channel or p channel and the positive power supply line or the negative power supply line. 11. The operational amplifier according to claim 10, wherein a transistor having the same polarity as the junction field effect transistor is cascode-connected, and the potential of the control terminal of the transistor is fixed to an intermediate potential between the ground potential and the power supply potential.
  12.  積分回路を構成する演算増幅器として前記請求項1から11の何れか1項に記載の演算増幅器を使用したことを特徴とするチャージアンプ。 A charge amplifier using the operational amplifier according to any one of claims 1 to 11 as an operational amplifier constituting an integrating circuit.
  13.  積分回路を構成する演算増幅器として前記請求項10又は11に記載の演算増幅器を使用してなるチャージアンプであって、
     物理量変化に応じた静電容量変化を生じる可動電極及び固定電極でそれぞれ構成される電極部を一対備えた差動構造の物理量センサと、前記一対の電極部それぞれの可動電極及び固定電極の一方に供給するバイアス電圧を生成するバイアス電圧生成回路とを備え、前記一対の電極部それぞれの可動電極及び固定電極の他方が入力端子に入力されて前記一対の電極部それぞれの可動電極及び固定電極間の各微小静電容量の間の差分を前記演算増幅器の第1及び第2の接合型電界効果トランジスタのゲートに入力したことを特徴とするチャージアンプ。
    A charge amplifier using the operational amplifier according to claim 10 or 11 as an operational amplifier constituting an integrating circuit,
    A physical quantity sensor having a differential structure having a pair of electrode parts each composed of a movable electrode and a fixed electrode that generates a capacitance change according to a change in physical quantity, and one of the movable electrode and the fixed electrode of each of the pair of electrode parts A bias voltage generation circuit for generating a bias voltage to be supplied, and the other of the movable electrode and the fixed electrode of each of the pair of electrode portions is input to an input terminal, and between the movable electrode and the fixed electrode of each of the pair of electrode portions A charge amplifier characterized in that a difference between each minute electrostatic capacitance is inputted to the gates of the first and second junction field effect transistors of the operational amplifier.
PCT/JP2015/003500 2014-08-27 2015-07-10 Operational amplifier and charge amplifier using same WO2016031120A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-172182 2014-08-27
JP2014172182 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031120A1 true WO2016031120A1 (en) 2016-03-03

Family

ID=55399043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003500 WO2016031120A1 (en) 2014-08-27 2015-07-10 Operational amplifier and charge amplifier using same

Country Status (1)

Country Link
WO (1) WO2016031120A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245456A (en) * 2020-03-01 2020-06-05 徐晨旭 Service management system based on big data
RU2786512C1 (en) * 2022-05-06 2022-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Input stage of a high-speed operational amplifier with a "bended" cascode class ab

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505032A (en) * 1993-10-21 1996-05-28 ナショナル・セミコンダクター・コーポレーション Balanced high-speed differential input stage for operational amplifiers
JP2005045835A (en) * 2004-09-29 2005-02-17 Oki Electric Ind Co Ltd Operational amplifier
JP2013150274A (en) * 2012-01-23 2013-08-01 Fuji Electric Co Ltd Capacity-voltage conversion circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505032A (en) * 1993-10-21 1996-05-28 ナショナル・セミコンダクター・コーポレーション Balanced high-speed differential input stage for operational amplifiers
JP2005045835A (en) * 2004-09-29 2005-02-17 Oki Electric Ind Co Ltd Operational amplifier
JP2013150274A (en) * 2012-01-23 2013-08-01 Fuji Electric Co Ltd Capacity-voltage conversion circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245456A (en) * 2020-03-01 2020-06-05 徐晨旭 Service management system based on big data
CN111245456B (en) * 2020-03-01 2020-10-02 北京瞭望神州科技有限公司 Service management system based on big data
RU2786512C1 (en) * 2022-05-06 2022-12-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" (ДГТУ) Input stage of a high-speed operational amplifier with a "bended" cascode class ab

Similar Documents

Publication Publication Date Title
US9065407B2 (en) High speed transimpedance amplifier
US10749489B2 (en) Dynamic phased array tapering without phase recalibration
US9722555B1 (en) Differential circuits with constant GM bias
JP2007174029A (en) Gain variable circuit and automatic gain control amplifier using the same
JP4528790B2 (en) Signal strength detection circuit
US9543909B2 (en) Amplifier, driving method for amplifier, and electronic circuit system
WO2016031120A1 (en) Operational amplifier and charge amplifier using same
US20140240044A1 (en) Dual path operational amplifier
US8624671B2 (en) Audio amplifying circuit with improved noise performance
US9729126B2 (en) Method and implementation for accurate gain-bandwidth product tuning
JP5471960B2 (en) Charge detection circuit
WO2015190030A1 (en) Operational amplifier and charge amplifier using same
US11716061B2 (en) Multi-stage amplifier circuits and methods
US10784828B2 (en) Methods and apparatus for an operational amplifier with a variable gain-bandwidth product
JP2010278733A (en) Operational amplifier circuit
RU2433523C1 (en) Precision differential operational amplifier
US7312658B2 (en) Differential amplifier with two outputs and a single input of improved linearity
JP2004282479A (en) Transconductance amplifier
JP6221614B2 (en) High resistance circuit using MOS transistors
RU2394360C1 (en) Cascode differential amplifier with increased input resistance
JP6887672B2 (en) Op amp
JP2010056606A (en) Transconductance amplifier
JP2008271449A (en) Attenuator
WO2020129884A1 (en) Temperature detection circuit
JP5330299B2 (en) Variable gain amplifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15836636

Country of ref document: EP

Kind code of ref document: A1