WO2016030919A1 - 画像色分布検査装置および画像色分布検査方法 - Google Patents

画像色分布検査装置および画像色分布検査方法 Download PDF

Info

Publication number
WO2016030919A1
WO2016030919A1 PCT/JP2014/004372 JP2014004372W WO2016030919A1 WO 2016030919 A1 WO2016030919 A1 WO 2016030919A1 JP 2014004372 W JP2014004372 W JP 2014004372W WO 2016030919 A1 WO2016030919 A1 WO 2016030919A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
color
distribution
chromaticity diagram
region
Prior art date
Application number
PCT/JP2014/004372
Other languages
English (en)
French (fr)
Inventor
加藤 誠
Original Assignee
有限会社パパラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社パパラボ filed Critical 有限会社パパラボ
Priority to PCT/JP2014/004372 priority Critical patent/WO2016030919A1/ja
Publication of WO2016030919A1 publication Critical patent/WO2016030919A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters

Definitions

  • the present invention relates to an image color distribution inspection apparatus and method for inspecting the color distribution of an image.
  • RGB color system camera As a conventional means for acquiring color information.
  • the RGB color system has been proposed by the International Commission on Illumination (CIE), and uses the three primary colors of specific wavelengths obtained from the actual spectral spectrum to add these colors to obtain the same color for the desired color. Is.
  • CIE International Commission on Illumination
  • the RGB color system there is a negative part in the RGB color matching function that expresses the spectral sensitivity corresponding to the human eye, so it is not possible to subtract light depending on additive color mixing. It is difficult to handle negative values of spectral sensitivity as they are. Therefore, the RGB color system camera approximates and expresses the negative part generated in the RGB color matching function by modifying and correcting it.
  • the spectrocolorimetric method directly measures the emission spectrum emitted from the light source by a large number of sensors, or measures the reflectance for each wavelength in the reflection spectrum of the sample, and calculates the sensitivity using the XYZ color matching function. By doing so, tristimulus values X, Y, and Z with high measurement accuracy are obtained.
  • the tristimulus value direct reading method is a method of directly reading tristimulus values X, Y, and Z which are colorimetric values by an optical sensor (color sensor or photoelectric colorimeter) equipped with three types of filters.
  • the color unevenness inspection method includes an inspection image display step for displaying an image for color unevenness inspection on the projector 2, a color space conversion characteristic acquisition step for acquiring RGB / XYZ conversion characteristics of the projector 2, and a color unevenness.
  • the second color space format of the captured image data is set to the first of the projector 2 based on the imaging process of acquiring the captured image data by capturing the inspection image by the imaging means and the RGB / XYZ conversion characteristics of the projector 2. Based on the color space conversion step for generating the converted image data converted into the color space format, the converted image display step for displaying the converted image data by the projector 2, and the converted image for color unevenness inspection, the color unevenness inspection is performed. A color unevenness inspection step.
  • the spectrocolorimetric method uses a diffraction grating or a prism for spectroscopic measurement, it is not practical from the viewpoint of cost effectiveness to perform two-dimensional spectrocolorimetry.
  • the router condition for evaluating the degree of association in which the spectral sensitivity characteristics of the three types of color sensors are expressed by linear transformation of XYZ color matching functions it is not easy to satisfy the router condition for evaluating the degree of association in which the spectral sensitivity characteristics of the three types of color sensors are expressed by linear transformation of XYZ color matching functions.
  • the two peaks of the X graph of the XYZ color matching functions cannot be represented directly, and an approximate process is performed, which is a factor that impairs accuracy.
  • Patent Document 1 it is possible to objectively evaluate color unevenness without relying on the inspector's visual observation, but the accuracy of the camera that is the acquisition of color information, that is, the imaging means, is conventionally The image display with the accuracy required in recent years was not possible.
  • the hue is conventionally determined by human eyes, but it may be difficult to determine the color, and a solution is required.
  • the color of the tile is slightly different in color every time it is fired, so even if it is judged that there is no problem at the stage of inspection by human eyes, a defect may be discovered only after it is applied to a building.
  • tiles may be intentionally provided with various patterns (wood grain, rock pattern, etc.) instead of a single color. In such cases, an accurate color distribution analysis is required.
  • the present invention responds to the demands for the acquisition, reproduction, and analysis of faithful color information in various fields, and obtains accurate image color distribution that is faithful and accurate to the human eye, thereby accurately adjusting the color of the product. It is an object of the present invention to provide an image color distribution inspection apparatus and method for inspecting an image.
  • the present invention provides an imaging apparatus having three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), and S 3 ( ⁇ )) linearly converted equivalently to CIE XYZ color matching functions, A normalized first chromaticity diagram distribution of the region of interest of the first image acquired by the imaging device is generated, and the normalized second chromaticity diagram of the region of interest of the second image acquired by the imaging device.
  • Generating a distribution comparing the first chromaticity diagram distribution with the second chromaticity diagram distribution, detecting an overlapping region of the first chromaticity diagram distribution and the second chromaticity diagram distribution,
  • An image color distribution inspection apparatus that detects a first pixel number of a region of interest, detects a second pixel number of the overlapping region, and calculates a ratio of the second pixel number to the first pixel number.
  • the image color distribution may further include an arithmetic processing unit that converts the three spectral sensitivities acquired by the imaging device into tristimulus values X, Y, and Z in the CIE XYZ color system. Inspection equipment.
  • the present invention is an image color distribution inspection device, wherein the arithmetic processing unit of the display device converts three spectral sensitivities acquired by the imaging device into an arbitrary color system.
  • the present invention divides the image into arbitrary positions, numbers or shapes, visualizes the luminance, chromaticity or color difference in each block and displays them at the position of the image corresponding to the position of the block.
  • This is an image color distribution inspection apparatus.
  • the present invention uses an imaging apparatus having three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), and S 3 ( ⁇ )) that are linearly converted equivalently to the CIE XYZ color matching functions.
  • a step of generating a normalized first chromaticity diagram distribution of a region of interest of the first image acquired by the imaging device, and a region of interest of the second image acquired by the imaging device Generating a normalized second chromaticity diagram distribution of the first chromaticity diagram distribution, comparing the first chromaticity diagram distribution with the second chromaticity diagram distribution, and a first chromaticity diagram distribution Detecting an overlapping region of a second chromaticity diagram distribution; detecting a first pixel number of the region of interest; detecting a second pixel number of the overlapping region; and for the first pixel number
  • a step of calculating a ratio of the second number of pixels, and an image color distribution inspection method comprising: Is the law.
  • the captured image is converted to tristimulus values X, Y, and Z in the CIE XYZ color system and / or converted to any other color system before the arithmetic processing step.
  • An image color distribution inspection method comprising a conversion processing step.
  • the image is divided into blocks at an arbitrary position, number or shape, and brightness, chromaticity or color difference in each block is visualized, and in the display step, the visual processing is performed.
  • the image color distribution inspection method is characterized in that the luminance, chromaticity, or color difference that has been processed is displayed at the position of the image corresponding to the position of the block.
  • the present invention is the image color distribution inspection method characterized in that, in the arithmetic processing step, the luminance, chromaticity or color difference between any two points of the image is visualized.
  • the image pickup apparatus picks up an image with three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )), that is, the observation object is divided into three channels.
  • S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ ) the observation object is divided into three channels.
  • any of an optical filter set to obtain these spectral sensitivities, a dichroic mirror, a dichroic prism, or the like can be used.
  • Spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) of the imaging device are mountain-shaped with a single peak having no negative value from the CIE XYZ spectral characteristics. Equivalent conversion is performed under the condition that the peak values of the sensitivity curves are equal and the overlap of the spectral sensitivity curves is minimized.
  • the curve of the spectral characteristic S 1 has a peak wavelength of 582 nm and a half-value width of 523. ⁇ 629 nm, and 1/10 width is 491 to 663 nm.
  • the curve of the spectral characteristic S 2 has a peak wavelength of 543 nm, a half width of 506 to 589 nm, and a 1/10 width of 464 to 632 nm.
  • Curve of the spectral characteristics S 3 is a peak wavelength of 446 nm, a half width 423 ⁇ 478nm, 1/10 width of 409 ⁇ 508 nm.
  • the luminance, chromaticity, or color difference in the present invention only represents a specific example of color information handled in the present invention, and it is of course possible to handle hue, brightness, saturation, reflectance, etc. in an arbitrary color system. It is.
  • the present invention responds to the demands for the acquisition, reproduction, and analysis of faithful color information in various fields, and obtains accurate image color distribution that is faithful and accurate to the human eye, thereby accurately adjusting the color of the product. Can be inspected.
  • (C) is explanatory drawing at the time of attaching optical filter 22a, 22b, 22c to the image pick-up element 23 microscopically.
  • (D) is explanatory drawing which shows the Bayer arrangement
  • (A) is explanatory drawing which shows the specific area
  • (b) is xy chromaticity diagram which shows the area
  • (c) is a two-dimensional color space.
  • (D) is a graph showing the TOTAL region B in the two-dimensional color space.
  • It is a block diagram which shows the structure of the image color distribution inspection apparatus 101 of Embodiment 2 of this invention. It is a flowchart in the arithmetic processing unit 103 of the image color distribution inspection apparatus 101 of Embodiment 2 of the present invention. It is a block diagram which shows the structure of the image color distribution inspection apparatus 201 of Embodiment 3 of this invention.
  • the image color distribution inspection apparatus 1 has three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) which are linear transformations equivalent to XYZ color matching functions (see FIG. 1). 2)), an arithmetic processing device 3 that performs arithmetic processing on an image acquired by the imaging device 2, and a display device 4 that displays an image based on a signal from the arithmetic processing device 3.
  • S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ ) which are linear transformations equivalent to XYZ color matching functions (see FIG. 1). 2
  • an arithmetic processing device 3 that performs arithmetic processing on an image acquired by the imaging device 2
  • a display device 4 that displays an image based on a signal from the arithmetic processing device 3.
  • the spectral sensitivity of the imaging apparatus 2 satisfies the router condition, and the spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) are XYZ color matching functions as shown in FIG. Thus, it is a mountain shape having no negative value and having a single peak, equivalent conversion is performed under the condition that the peak values of the respective spectral sensitivity curves are equal and the overlapping of the spectral sensitivity curves is minimized.
  • the spectral sensitivity (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) has the following characteristics.
  • Equation 1 The three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) are obtained using the following Equation 1.
  • Equation 1 For details on the spectral characteristics themselves, refer to Japanese Patent Application Laid-Open No. 2005-257827.
  • the imaging device 2 is disposed behind the photographing lens 21, the three optical filters 22a, 22b, and 22c disposed behind the photographing lens 21, and the optical filters 22a, 22b, and 22c. And an image pickup device 23 (CCD, CMOS, etc.).
  • the three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) of the imaging device 2 are the products of the spectral transmittances of the optical filters 22a, 22b, and 22c and the spectral sensitivity of the image sensor 23. Is given by.
  • the arrangement relationship between the optical filters 22a, 22b, and 22c and the image sensor 23 in FIG. 1 is merely shown schematically. Specific examples of methods for acquiring image information in accordance with the three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) will be given below. It is possible to adopt other methods.
  • FIG. 3A shows a system using a dichroic mirror. This is because light of a specific wavelength is reflected by the dichroic mirror 22c ′, and the remaining light that has been transmitted is further reflected and spectrally reflected by another dichroic mirror 22a ′ to obtain image sensors 23a and 23b. , 23c are read in parallel.
  • the dichroic mirror 22a ′ corresponds to the optical filters 22a and 22b
  • the dichroic mirror 22c ′ corresponds to the optical filter 22c.
  • Light incident from the photographic lens 21 is reflected light according to the spectral sensitivity S 3 by the dichroic mirror 22C', the remaining light is transmitted.
  • the dichroic light transmitted through the dichroic mirror 22c', in the dichroic mirror 22a ' it is reflected light in accordance with the spectral sensitivity S 1, since the light in accordance with the rest of the spectral sensitivity S 2 passes through each image sensor 23a, the image pickup device 23b Imaging is performed to obtain spectral sensitivities S 1 and S 2 .
  • a dichroic prism having the same characteristics may be used to split the light into three, and the image sensors 23a, 23b, and 23c may be bonded to the positions where each light is transmitted.
  • the system shown in FIG. 3B uses a filter turret 27.
  • Optical filters 22a, 22b, and 22c are provided on a filter turret 27 having the same direction as the incident light from the photographic lens 21 as a rotation axis, and these are mechanically rotated. S 1 , S 2 , S 3 are obtained.
  • FIG. 3C shows a method in which the optical filters 22 a, 22 b, and 22 c are microscopically attached to the image sensor 23.
  • the arrangement of the optical filters 22a, 22b, and 22c other than the Bayer arrangement is not particularly disturbed in the first embodiment.
  • Each of the optical filters 22a, 22b, and 22c is very fine and is attached to the image sensor 23 by printing. However, in the present invention, this arrangement is not meaningful, but a filter having characteristics of spectral sensitivity (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) is attached to the image sensor. .
  • the imaging apparatus 2 converts the image information acquired by the spectral sensitivity (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) into tristimulus values X, Y, and Z in the XYZ color system, and acquires them.
  • An arithmetic processing unit 24 that converts image data based on the tristimulus values X, Y, and Z into an arbitrary color system by conversion processing, and an image display device 25 that displays the visualized image are provided.
  • the calculation processing device 3 calculates the luminance, chromaticity, etc. at an arbitrary position of the image acquired by the imaging device 2 and performs a visualization process.
  • the display device 4 displays the image processed by the arithmetic processing device 3.
  • the display device 4 appropriately includes input means (not shown) and the like.
  • the input means is a keyboard, a mouse, a touch panel provided in the image display device, or the like.
  • the image color distribution inspection device 1 operates by connecting an imaging device 2, an arithmetic processing device 3, and a display device 4.
  • the connection method can be selected regardless of wired or wireless.
  • the flowchart in the imaging device 2 is shown in FIG. 4, and the flowchart in the arithmetic processing device 3 is shown in FIG.
  • initialization is performed as shown in FIG. 4 (initialization S1).
  • the inspection object 5 is imaged by the spectral sensitivity (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) (imaging process S 2), and then the captured image data is captured by the image sensor 23.
  • Input input processing S3
  • the arithmetic processing unit 24 converts it into tristimulus values X, Y, and Z (conversion processing S4).
  • Spectral sensitivities S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )
  • data transmission S5 When the image is a moving image, a series of processing from imaging processing S2 to data transmission S5 is continuously performed. The image is displayed on the image display device 25.
  • the conversion formulas from the tristimulus values X, Y, Z to the Y′xy color system are given in Formulas 2 and 3.
  • a luminance meter (not shown) is used together with the imaging device 2, and Y is Y ′ calibrated by the luminance meter value (nt). Since color space conversion formulas are commonly used, other detailed formulas are omitted.
  • the imaging process S2 is a process of imaging the inspection object 5 by the imaging device 2 having three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) (FIGS. 1 and 4). reference). Spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) are given according to the above equation 1.
  • Input processing S3 is continuously performed at the same time as imaging is performed by the photographing lens 21, the optical filters 22a, 22b, and 22c, and the image sensor 23.
  • the input image data is a value according to the spectral sensitivity (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ ))
  • imaging is performed by the conversion processing S4 in the arithmetic processing unit 24 of the imaging device 2.
  • the image data of the obtained image is converted into tristimulus values X, Y, and Z. This conversion is performed according to Equation 1. That is, the tristimulus values X, Y, and Z are obtained by multiplying the inverse matrix of the coefficients in Equation 1.
  • the imaging device 2 transmits values to the arithmetic processing device 3 with values according to the spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )).
  • initialization is performed as shown in FIG. 5 (initialization S110).
  • the display device 4 receives the spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) transmitted from the imaging device 2 while being connected to the imaging device 2 (data reception S120). . Thereafter, the spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) are converted into tristimulus values X, Y, Z, a chromaticity coordinate histogram is calculated, and an exponent value is calculated ( The content is transmitted to the display device 4 (display process S150). In accordance with data reception S120 from the imaging device 2, a series of processing from conversion processing S130 to display processing S150 is continuously performed.
  • Arithmetic processing S140 is a step of calculating and visualizing an exponent value of the captured image, and converting the color information into RGB or the like when necessary for display on the display device 4.
  • the display processing S150 is a step of displaying the visualized index on the image display device, and the processing returns.
  • a sub-flowchart of S140 in FIG. 6 will be described.
  • a first image as a reference is captured in advance, a second image of an object to be compared next is sequentially captured, and an index is sequentially calculated as follows. The similarity of chromaticity is determined by this index.
  • the first pixel number of the area a cut out from the captured image is counted (S141). This first pixel number is the pixel count number of the overlapping area A shown in FIG. Also, the Lab value is calculated.
  • the second pixel number of the reference image is counted (S142).
  • the second pixel number is a total pixel count number, and is a count number corresponding to the region A or the region B that is not subjected to the overlap calculation shown in FIG.
  • the Lab value of the Lab space is calculated.
  • the Lab color space is a kind of complementary color space, and has a dimension L meaning lightness and a and b complementary colors, and is based on nonlinearly compressed coordinates of the CIE XYZ color space.
  • index pixel count in overlap area A / pixel count in area A or area B without overlap calculation x 100%
  • the index is 100%, the values match completely, and if the index is less than 100%, the difference in chromaticity increases. Thereby, when it determines with it being a numerical value more than fixed, it can determine with it being a conformity product.
  • the comparison algorithm is projected on the xy plane, but the same overlap index is used in xyz (a space obtained by normalizing XYZ) and XYZ (a non-normalized three-dimensional space). Also good.
  • the color information obtained primarily is the three spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) by a function equivalent to the XYZ color matching function, so that RGB Compared with the case of acquiring by means of high accuracy and faithful to the sensitivity of the human eye.
  • S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) since the overlap of these spectral sensitivities (S 1 ( ⁇ ), S 2 ( ⁇ ), S 3 ( ⁇ )) is small, S / N is sufficient, and the curve in the spectral sensitivity curve also changes naturally. Errors in colorimetry are kept to a minimum.
  • the brightness and chromaticity index values which are the color information of the image, are calculated, the subtle differences in the color of the tiles, etc., by reflecting the difference in the color texture (mottled pattern, color pattern, sensation, etc.) Can be determined.
  • a camera 102 that captures an image of a color determination target car 105, an arithmetic processing device 103 that connects a signal from the camera 102 via a switch 106, and a display device 104 that is connected to the arithmetic processing device 103 and displays an index. .
  • the arithmetic processing device 103 is connected to a calculation unit 103A that calculates a reference stimulus value XYZ1, a calculation unit 103B that calculates a stimulus value XYZ2 to be determined, and a calculation unit 103A and a calculation unit 103B. Then, the calculation unit 103C that calculates the color matching index of the vehicle and the OK signal or the NG signal from the calculation unit 103C are transmitted to the display unit 104 or transmitted to the outside. Note that the switch 106 selectively inputs the stimulus value XYZ1 and the stimulus value XYZ2.
  • the target vehicle is an example.
  • FIG. 9 is a flowchart for calculating the color distribution coincidence by comparing the color distributions from the two images A and B.
  • a specific region region to be examined
  • S202 an area similar to that of the image A is cut out from the image B
  • the chromaticity value is calculated from the images A and B (S203).
  • An xy chromaticity coordinate histogram is calculated from the converted xyz value (S204). Difference data is obtained for the overlapping degree in a two-dimensional space (xy chromaticity value) or a three-dimensional space (xyz chromaticity value) (S205).
  • An xy histogram is calculated (S206).
  • Superposition index TotalA count ⁇ ⁇ plus component of (A ⁇ B) ⁇ / TotalA count is calculated (S207), and the process returns.
  • the color determination target is the cheek region of the face, and the camera 202 images the human head.
  • the arithmetic processing device 203 is connected to the arithmetic unit 203A for calculating the reference stimulus value XYZ1, the arithmetic unit 203B for calculating the stimulus value XYZ2 to be determined, the arithmetic unit 203A and the arithmetic unit 203B, and the color matching degree index.
  • the calculation unit 203C that performs the calculation and the exponent value from the calculation unit 203C are transmitted to the coloring device 207.
  • a person looks at the screen according to the index value to determine whether or not an appropriate makeup color is obtained by looking at the screen, and further performs a coloring process 207.
  • the switch 206 selectively inputs the reference XYZ and the target XYZ.
  • the main processing is generally the same as the flowchart shown in FIG.
  • the image color distribution inspection apparatus 1 is used for inspection of color unevenness at the tile manufacturing site, color inspection of clothing, color inspection of fabrics, accurate color inspection of printed colors, discrimination of accurate color of specimens in pathological inspection, arts and crafts, etc. There are image inspection of products and other general-purpose uses.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 人の眼に忠実で正確な色情報を取得して、色情報から色合い等を正確に検査する画像色分布検査装置と方法を提供する。 CIE XYZ等色関数と等価に線形変換された三つの分光感度(S(λ),S(λ),S(λ))を有する撮像装置と、撮像装置により取得した第1画像の関心領域の正規化された第1の色度図分布を生成し、撮像装置により取得した第2画像の関心領域の正規化された第2の色度図分布を生成し、第1の色度図分布と、第2の色度図分布とを対比し、第1の色度図分布と第2の色度図分布の重複領域を検出し、関心領域の第1画素数を検出し、重複領域の第2画素数を検出し、第1画素数に対する第2画素数の割合を演算する。

Description

画像色分布検査装置および画像色分布検査方法
 本発明は、画像の色分布を検査する画像色分布検査装置とその方法に関する。
 近年の技術進歩や価値観の多様化により、写真・映像分野、印刷分野、芸術分野など様々な場面において、より高精度な色再現への要求が高まっている。例えば、遠隔医療や電子商取引において正確な色情報を共有するために忠実な色情報の取得・再現手段が求められている。また、ディスプレイやプリンターの性能が格段に進歩しており、人間の眼に忠実な色情報を活用する有効性が増しているため、忠実な色情報を取得し分析するための手段がより手軽に提供されることが求められている。
 従来からある色情報の取得手段として、RGB表色系カメラがある。RGB表色系は国際照明委員会(CIE)によって提唱されたものであり、実際の分光スペクトルから得られる特定波長の三原色を用いてこれらを加法混色し、求める色について等色を得ようとするものである。しかし、RGB表色系において人の眼に対応する分光感度を表したRGB等色関数には負の部分が生じているところ、加法混色によっては光の引き算をすることはできないので、そのような分光感度の負の値をそのまま扱うことは難しい。そこでRGB表色系カメラはRGB等色関数に生じる負の部分を変形・修正して近似的に表している。しかし、この近似処理によって人の眼の色域にある色を正確に捉えることができなくなり、画像や映像の色ズレや色つぶれを起こす原因となっていた。一方、RGB等色関数にある負の部分を生じさせないように座標変換した色空間としてCIE XYZ等色関数(以下、XYZ等色関数という)があり、これを用いた色情報の取得手段として、分光測色方法と三刺激値直読方法がある。
 分光測色方法は、多数個のセンサによって光源から発せられる放射スペクトルを直接測定するか、または、試料の反射スペクトルにおけるそれぞれの波長ごとの反射率を測定し、XYZ等色関数を用いて感度計算することにより、計測精度の高い三刺激値X,Y,Zを得るというものである。一方、三刺激値直読方法は、3種類のフィルタを装着した光センサ(カラーセンサまたは光電色彩計)により、測色値である三刺激値X,Y,Zを直接に読む方法である。
 そのような色情報の取得手段がある中、上述のように色情報を取得し分析するための手段が求められているところ、これに関連する先行技術として特許文献1が挙げられる。これは、容易に色ムラ検査を実施可能な色ムラ検査方法、および色ムラ検査方法で用いる検査用画像データ生成装置を提供することを課題とするものである。またその解決手段は、色ムラ検査方法は、プロジェクタ2に色ムラ検査用画像を表示させる検査画像表示工程と、プロジェクタ2のRGB/XYZ変換特性を取得する色空間変換特性取得工程と、色ムラ検査用画像を撮像手段により撮像して、撮像画像データを取得する撮像工程と、プロジェクタ2のRGB/XYZ変換特性に基づいて、撮像画像データの第二の色空間形式をプロジェクタ2の第一の色空間形式に変換した変換画像データを生成する色空間変換工程と、変換画像データをプロジェクタ2により表示させる変換画像表示工程と、色ムラ検査用変換画像に基づいて、色ムラの検査を実施する色ムラ検査工程と、を備えるというものである。
特開2010-145097号公報
 しかしながら、分光測色方法では回折格子またはプリズムにより分光するため、二次元の分光測色を行うことは費用対効果の観点から現実的ではない。一方、三刺激値直読方法においても、3種のカラーセンサの分光感度特性がXYZ等色関数の線形変換で表される連関の度合いを評価するルータ条件を満足することは容易ではなく、特に3種のカラーセンサによっては、XYZ等色関数のうちXのグラフが有する二つの山を直接に表わすことができず、やはり近似的な処理を行うこととなって精度を損なう要因となっていた。
 また、特許文献1に記載の発明によっては、検査員の目視に頼らずに色ムラを客観的に評価することが可能であるが、色情報の取得すなわち撮像手段であるカメラの精度が従来と変わりなく、近年求められる精度での画像表示ができるものではなかった。
 また、色合いについても、従来、人の目で判別しているが、その判別が困難な場合があり、解決が求められている。例えば、タイルの色は、その焼成ごとに微妙に色合いが異なるので、人の眼による検査の段階では問題ないと判断された場合でも、建築物に施工されて初めて不具合が発見される場合がある。またタイルは、単色ではなく各種模様(木目、岩石パタン等)を意図的につけた場合もあり、こうした場合には、正確な色分布についての解析が必要となる。
 そこで、本発明は、様々な分野における忠実な色情報の取得、再現や分析等の要求に応え、また、人の眼に忠実で正確な画像色分布を取得して、製品の色合い等を的確に検査するための画像色分布検査装置及び方法を提供することを課題とする。
 上記課題に鑑み本発明は、CIE XYZ等色関数と等価に線形変換された三つの分光感度(S(λ),S(λ),S(λ))を有する撮像装置と、該撮像装置により取得した第1画像の関心領域の正規化された第1の色度図分布を生成し、前記撮像装置により取得した第2画像の関心領域の正規化された第2の色度図分布を生成し、前記第1の色度図分布と、第2の色度図分布とを対比し、第1の色度図分布と第2の色度図分布の重複領域を検出し、前記関心領域の第1画素数を検出し、前記重複領域の第2画素数を検出し、前記第1画素数に対する第2画素数の割合を演算する画像色分布検査装置である。
 また本発明は、前記撮像装置が前記撮像装置により取得した三つの分光感度をCIE XYZ表色系における三刺激値X,Y,Zに変換する演算処理部を備えることを特徴とする画像色分布検査装置である。
 また本発明は、前記表示装置の前記演算処理部が前記撮像装置により取得した三つの分光感度を任意の表色系に変換することを特徴とする画像色分布検査装置である。
 また本発明は、前記画像を任意の位置、数ないし形状にブロック分けし、個々の該ブロックにおける輝度、色度または色差を視覚化処理して該ブロックの位置に対応する前記画像の位置に表示することを特徴とする画像色分布検査装置である。
 また上記課題に鑑み本発明は、CIE XYZ等色関数と等価に線形変換された三つの分光感度(S(λ),S(λ),S(λ))を有する撮像装置を利用する画像色分布検査方法において、該撮像装置により取得した第1画像の関心領域の正規化された第1の色度図分布を生成するステップと、前記撮像装置により取得した第2画像の関心領域の正規化された第2の色度図分布を生成するステップと、前記第1の色度図分布と、第2の色度図分布とを対比するステップと、第1の色度図分布と第2の色度図分布の重複領域を検出するステップと、前記関心領域の第1画素数を検出するステップと、前記重複領域の第2画素数を検出するステップと、前記第1画素数に対する第2画素数の割合を演算するステップと、を備える画像色分布検査方法である。
 また本発明は、前記演算処理ステップの前に、撮像された画像をCIE XYZ表色系における三刺激値X,Y,Zに変換し、および/または、その他の任意の表色系に変換する変換処理ステップを備えることを特徴とする画像色分布検査方法である。
 また本発明は、前記演算処理ステップにおいて、前記画像を任意の位置、数ないし形状にブロック分けし、個々の該ブロックにおける輝度、色度または色差を視覚化処理し、前記表示ステップにおいて、前記視覚化処理した輝度、色度または色差を前記ブロックの位置に対応する前記画像の位置に表示することを特徴とする画像色分布検査方法である。
 また本発明は、前記演算処理ステップにおいて、前記画像の任意の二点間における輝度、色度または色差を視覚化処理することを特徴とする画像色分布検査方法である。
 本発明における撮像装置は、三つの分光感度(S(λ),S(λ),S(λ))により、すなわち、観測対象物を三つのチャンネルに分けて撮像することとなるが、その手段としては、これらの分光感度を得るために設定された光学フィルタまたはダイクロイックミラーもしくはダイクロイックプリズム等のいずれであるかを問わず用いることができる。
 前記撮像装置の分光感度(S(λ),S(λ),S(λ))は、CIE XYZ分光特性から負の値を持たない、単独ピークを持つ山形であり、それぞれの分光感度曲線のピーク値が等しく、かつ分光感度の曲線の重なりは最小限にするという条件から等価変換したものであって、分光特性Sのカーブは、ピーク波長が582nmであり、半値幅が523~629nmであり、1/10幅が491~663nmである。分光特性Sのカーブは、ピーク波長が543nmであり、半値幅が506~589nmであり、1/10幅が464~632nmである。分光特性Sのカーブは、ピーク波長が446nmであり、半値幅が423~478nmであり、1/10幅が409~508nmである。
 本発明における輝度、色度または色差とは本発明で扱う色情報の具体例を表わすにすぎず、任意の表色系における色相、明度、彩度、反射率等を扱うことができるのは無論である。
 そこで、本発明は、様々な分野における忠実な色情報の取得、再現や分析等の要求に応え、また、人の眼に忠実で正確な画像色分布を取得して、製品の色合い等を的確に検査することができる。
[規則91に基づく訂正 28.11.2014] 
[規則91に基づく訂正 11.09.2014] 
本発明実施形態1の画像色分布検査装置1の構成を示す図である。 本発明実施形態1におけるXYZ表色系カメラである撮像装置2の分光感度を示す関数である。 本発明実施形態1において三つの分光感度(S(λ),S(λ),S(λ))に従って画像情報を取得する方式の具体例である。(a)はダイクロイックミラーを用いる場合の説明図である。(b)はフィルタターレットを用いる場合の説明図である。(c)は光学フィルタ22a,22b,22cを撮像素子23に微視的に貼着した場合の説明図である。(d)は(c)におけるベイヤー配列を示す説明図である。 本発明実施形態1の撮像装置2におけるフローチャートである。 本発明実施形態1の演算処理装置3におけるフローチャートである。 本発明実施形態1の演算処理装置3におけるサブーチャートである。 (a)は発明実施形態1の演算処理装置3における特定領域aを示す説明図、(b)は特定領域aに対応する領域cを示すxy色度図、(c)は二次元色空間での重複領域Aを示すグラフ、(d)は、二次元色空間でのTOTAL領域Bを示すグラフである。 本発明実施形態2の画像色分布検査装置101の構成を示すブロック図である。 本発明実施形態2の画像色分布検査装置101の演算処理装置103におけるフローチャートである。 本発明実施形態3の画像色分布検査装置201の構成を示すブロック図である。 本発明実施形態1の画像色分布検査装置1の各タイルA-1,A-2の撮影を示す平面図である。 同じく色度図上の分布を示す説明図である。 本発明実施形態1の画像色分布検査装置1の各タイルB-1,B-2の撮影を示す平面図である。 同じく色度図上の分布を示す説明図である。 本発明実施形態1の画像色分布検査装置1の各タイルC-1,C-2の撮影を示す平面図である。 同じく色度図上の分布を示す説明図である。 本発明実施形態1の画像色分布検査装置1のタイルD-1の撮影を示す平面図である。 同じく色度図上の分布を示す説明図である。
 本発明の好適な実施形態1による画像色分布検査装置1について図1~図11を参照して説明する。画像色分布検査装置1は、図1に示す通り、XYZ等色関数と等価な線形変換である三つの分光感度(S(λ),S(λ),S(λ))(図2参照)に従って画像を撮像する撮像装置2と、撮像装置2により取得した画像を演算処理する演算処理装置3と、演算処理装置3からの信号に基づいて画像を表示する表示装置4と、を備える。以下、詳細に説明する。
 撮像装置2の分光感度はルータ条件を満たすものであって、その分光感度(S(λ),S(λ),S(λ))は、図2に示す通り、XYZ等色関数から、負の値を持たず、単独ピークを持つ山形であり、それぞれの分光感度曲線のピーク値が等しく、かつ分光感度の曲線の重なりはできるだけ少なくするという条件から等価変換したものである。分光感度(S(λ),S(λ),S(λ))は具体的には以下の特性を持つ。
                記
    ピーク波長      半値幅        1/10幅
  582nm   523~629nm   491~663nm
  543nm   506~589nm   464~632nm
  446nm   423~478nm   409~508nm
 上記の分光特性Sのピーク波長を580±4nm、分光特性Sのピーク波長を543±3nm、分光特性Sのピーク波長を446±7nmとして取り扱うこともできる。
 三つの分光感度(S(λ),S(λ),S(λ))は次の数式1を用いて求められるものである。分光特性自体についての詳細は特開2005-257827号公報を参照されたい。
Figure JPOXMLDOC01-appb-M000001
 撮像装置2は、図1に示すように、撮影レンズ21と、この撮影レンズ21の後方に配置された三つの光学フィルタ22a,22b,22cと、光学フィルタ22a,22b,22cの後方に配置された撮像素子23(CCD、CMOSなど)と、を備えている。撮像装置2の三つの分光感度(S(λ),S(λ),S(λ))は、光学フィルタ22a,22b,22cの分光透過率と撮像素子23の分光感度との積により与えられるものである。図1における光学フィルタ22a,22b,22cと撮像素子23との配列的関係は模式的に示したものにすぎないものである。三つの分光感度(S(λ),S(λ),S(λ))に従って画像情報を取得する方式について以下に具体例を挙げるが、本実施形態1ではこれらのうちいずれをも採ることができ、また、その他の方式を採ることもできる。
 図3(a)に示すものはダイクロイックミラーを用いる方式である。これはダイクロイックミラー22c´により特定の波長の光を反射し、透過した残りの光について、さらに別のダイクロイックミラー22a´により別の特定の波長の光を反射して分光し、撮像素子23a,23b,23cを三つ並列にして読み出す方式である。ここでは、ダイクロイックミラー22a´が光学フィルタ22a,22bに相当し、ダイクロイックミラー22c´が光学フィルタ22cに相当する。撮影レンズ21から入射する光はダイクロイックミラー22c´により分光感度Sに従う光が反射され、残りの光は透過する。ダイクロイックミラー22c´により反射された光を反射鏡26により反射して撮像素子23cにより分光感度Sを得る。一方、ダイクロイックミラー22c´を透過した光は、ダイクロイックミラー22a´において、分光感度Sに従う光が反射され、残りの分光感度Sに従う光は透過するため、それぞれ撮像素子23a、撮像素子23bにより撮像して分光感度S,Sを得る。ダイクロイックミラーに代えて同様な特性を有するダイクロイックプリズムを用いて三つに分光し、それぞれの光が透過する位置に撮像素子23a,23b,23cを接着することとしてもよい。
 図3(b)に示すものはフィルタターレット27を用いる方式である。撮影レンズ21からの入射光と同じ方向を回転軸に持つフィルタターレット27に光学フィルタ22a,22b,22cを設けてこれらを機械的に回転させ、順次透過する光について撮像素子23により三つの分光感度S,S,Sを得るものである。
 図3(c)に示すものは光学フィルタ22a,22b,22cを撮像素子23に微視的に貼着する方式である。撮像素子23上における光学フィルタ22a,22b,22cは、図3(d)に示すように、ベイヤー配列型に設けられる。この配列は、格子状に分けた撮像素子23上の領域のうち半分に光学フィルタ22bを設け、残りの半分の領域に光学フィルタ22aと光学フィルタ22cとをそれぞれ均等に配置するものである。すなわち、配置量は光学フィルタ22a:光学フィルタ22b:光学フィルタ22c=1:2:1となる。光学フィルタ22a,22b,22cの配列をベイヤー配列以外のものとすることは本実施形態1において特に妨げられない。一つ一つの光学フィルタ22a,22b,22cは非常に微細であるため、印刷により撮像素子23に貼着される。ただし、本発明はこの配列に意味があるのではなく、分光感度(S(λ),S(λ),S(λ))の特性のフィルタを撮像素子に貼着することにある。
 撮像装置2は分光感度(S(λ),S(λ),S(λ))により取得した画像情報をXYZ表色系における三刺激値X,Y,Zに変換し、取得した三刺激値X,Y,Zによる画像データを変換処理によって任意の表色系に変換する演算処理部24、視覚化処理された画像を表示する画像表示装置25を備える。
 演算処理装置3は撮像装置2により取得した画像の任意の位置における輝度、色度等を演算し視覚化処理するものである。表示装置4は、演算処理装置3で処理された画像を表示するものである。この表示装置4は適宜、入力手段(図示略)等を備える。入力手段はキーボード、マウス、画像表示装置に設けられるタッチパネル等である。
 画像色分布検査装置1の動作について具体例を挙げつつ説明する。画像色分布検査装置1は、図1に示す通り、撮像装置2と、演算処理装置3と、表示装置4とを接続することにより動作する。接続方法は有線・無線を問わず選択できる。撮像装置2におけるフローチャートを図4に、演算処理装置3におけるフローチャートを図6に、それぞれ示す。
 撮像装置2の電源が入ると、図4に示す通り、初期化をする(初期化S1)。つぎに、分光感度(S(λ),S(λ),S(λ))により検査対象物5を撮像し(撮像処理S2)、その後、撮像された画像データを撮像素子23により入力し(入力処理S3)、演算処理部24にて三刺激値X,Y,Zに変換する(変換処理S4)。分光感度(S(λ),S(λ),S(λ))は表示装置4に送信される(データ送信S5)。画像が動画である場合には、撮像処理S2からデータ送信S5の一連の処理が連続的に行われる。画像は画像表示装置25に表示される。
 参考として三刺激値X,Y,ZからY´xy表色系への変換式を数式2,3に挙げる。ここでは撮像装置2とともに輝度計(図示略)を使用し、Yは輝度計の値(nt)により校正してY´としたものである。色空間の変換式は慣用されているものであるため、その他の詳しい式については割愛する。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 撮像処理S2は、三つの分光感度(S(λ),S(λ),S(λ))を有する撮像装置2によって検査対象物5を撮像する工程である(図1,図4参照)。分光感度(S(λ),S(λ),S(λ))は上記の数式1に従って与えられるものである。撮影レンズ21と光学フィルタ22a,22b,22cと撮像素子23により撮像されると同時に入力処理S3が連続的に行われる。
 入力された画像データは分光感度(S(λ),S(λ),S(λ))に従った値であるため、撮像装置2の演算処理部24における変換処理S4によって、撮像された画像の画像データを三刺激値X,Y,Zに変換する。この変換は数式1に従って行われる。すなわち、数式1における係数の逆行列を乗じて三刺激値X,Y,Zを得ることとなる。なお、撮像装置2からは分光感度(S(λ),S(λ),S(λ))に従った値のまま演算処理装置3に送信する。
 演算処理装置3に電源が入ると、図5に示す通り、初期化をする(初期化S110)。表示装置4は撮像装置2と接続された状態において、撮像装置2から送信された分光感度(S(λ),S(λ),S(λ))を受信する(データ受信S120)。その後、分光感度(S(λ),S(λ),S(λ))から三刺激値X,Y,Zに変換し、色度座標ヒストグラムを計算し、指数値を計算する(S140)、その内容を表示装置4に送信する(表示処理S150)。撮像装置2からデータ受信S120に従い、変換処理S130から表示処理S150の一連の処理が連続的に行われる。
 演算処理S140は、撮像された画像の指数値を演算し視覚化処理する工程であり、表示装置4に表示するために必要な場合は、色情報をRGB等に変換処理する。
 前記の表示処理S150は、視覚化処理された指数を画像表示装置に表示する工程であり、処理をリターンする。
 図6のS140のサブフローチャートを説明する。予め基準となる第1画像を予め撮像しておき、次に対比すべき対象物の第2画像を順次撮像し、以下のとおり指数を順次計算する。この指数により色度の類似性を判定する。
[規則91に基づく訂正 28.11.2014] 
 撮像した画像から切り出した領域aの第1画素数を計数する(S141)。この第1画素数は、図7(c)に示す重複領域Aの画素カウント数である。また、Lab値も算出する。
 つぎに基準となる画像の第2画素数を計数する(S142)。この第2画素数は、総画素カウント数であり、図7(d)に示す重複演算をしない領域Aもしくは領域Bに対応するカウント数である。また、Lab空間のLab値も算出する。Lab色空間は補色空間の一種で、明度を意味する次元Lと補色次元のaおよびbを持ち、CIE XYZ 色空間の座標を非線形に圧縮したものに基づいている。
 指数を計数する(S143)。この指数は、下式により計算する。
 指数=重複領域Aの画素カウント数/重複演算をしない領域Aもしくは領域Bの画素カウント数×100%
 指数が100%であれば、完全に一致し、100%を下回れば下回るほどに色度の相違度が大きくなる。これにより、一定以上の数値であると判定された場合に、適合品であると判定することができる。
 最後に、表示のための送信処理を行い(S144)、処理をリターンする。
 なお、比較のアルゴリズムであるが、xy平面に投影したものであるが、xyz(XYZを正規化した空間)や、XYZ(正規化していない3次元空間)でも同様の重なり度の指標を用いても良い。
 次に、本実施形態1を用いたタイル色検出の結果を説明する。ここではD65照明を採用する。
1.撮影実験 
 タイルのOK 品・NG 品判別のため撮影ならびに解析テストを行った。撮影は専用の撮影台にて行い、照明はD65 照明とPanasonic(登録商標) 社製D50 照明を用いた。D65 照明下の撮影でOK・NG 品の差が出なかった際、D50 を使用した。照明ムラを軽減するため、照明にトレーシングペーパーを掛け、拡散をさせた。撮影の際はタイルを置いた位置にマーキングをし、比較対象も同じ位置で撮影できるようにした。撮影した画像から関心領域として中央部を切り出し、そこの平均Lab値、または色度分布の比較を行った。 
専用の撮影台と撮影状況。部屋は暗室状態である。
2.撮影結果ならびに数値
[規則26に基づく補充 11.09.2014] 
 [A](D65) 
各タイルのLab 値 
・A-1: 34.5 , 22.76 , 17.14 
・A-2: 39.57 , 17.88 , 14.06 
色度図上の分布 
・A-1:白 
・A-2:黒 
分布が重なっているところは灰色である。
色度図上の分布 
No.1 が白、No.2 が黒、重なっている所は灰色とする。
[規則26に基づく補充 11.09.2014] 
 [B](D65) 
各タイルのLab 値 
・B-1: 36.32 , 16.96 , 12.51 
・B-2: 40.21 , 14.85 , 12.29 
色度図上の分布
[規則26に基づく補充 11.09.2014] 
 [C](D65) 
各タイルのLab 値 
・C-1: 32.67 , 12.5 , 10.1 
・C-2: 37.94 , 9.69 , 10.93 
色度図上の分布
[規則26に基づく補充 11.09.2014] 
 [D](D65 65 65) 
各タイルのLab 値 
・D-1: 33.44, 3.38, 2.03 
・D-2: 36.22, 3.22, 1.73 
各タイルのX,Y,Z のSt.Dev 値 
・D-1: 368.27, 387.62, 412.15 
・D-2: 433.86, 455.93, 485.29 
X,Y,Z のSt.Dev 値の結果は、色度図上の違いとよく一致している。 
色度図上の分布
 3.実験結果のまとめ 
 今回は2つの色温度の照明(D65,D50)を使い実験を行った。物によっては僅かながら結果に差が出たが、概ね良好な結果を得た。この結果を受け、対象物によっては照明の色温度を変えた方が、より選別しやすくなる可能性を示した。また、撮影の際、安定的な環境が必要となり、照明の安定性を考慮すると、撮影前に白色校正板にて校正を行ってからの撮影が必要となる。
 本発明の実施形態1による画像色分布検査装置1の効果を説明する。これによれば、人の眼の感度に忠実な色情報を取得し、これを適宜、任意に視覚化された形態で表示することができる。
 画像について、第一次的に得られる色情報はXYZ等色関数と等価な関数による三つの分光感度(S(λ),S(λ),S(λ))であるため、RGBにより取得する場合と比べて人の眼の感度に忠実で高精度である。また、これらの分光感度(S(λ),S(λ),S(λ))の重なり合いは小さく、S/Nも十分にとれ、分光感度の曲線におけるカーブも自然に変化するため、測色における誤差は最低限に留められる。
 画像の色情報である輝度、色度の指数値を算出しているため、色のテキスチャー(まだら模様や色パターン、ごつごつ感等)の違いを反映することにより、タイル等の微妙な色合いの違いまで判定できる。
 次の本実施形態2の画像色分布検査装置101を図8,図9を参照して説明する。対応する同様な要素については100番台として説明を援用し、主として、相違点を説明する。
 色判定対象の車105を撮像するカメラ102、カメラ102からの信号をスイッチ106を介して接続する演算処理装置103と、演算処理装置103と接続し指数表示を行う表示装置104とを備えている。
 図8に示す通り、演算処理装置103は、基準となる刺激値XYZ1を計算する演算部103Aと、判定対象となる刺激値XYZ2を計算する演算部103Bと、演算部103Aと演算部103Bと接続し、車の色一致度指数を演算する演算部103Cと、演算部103CからのOK信号またはNG信号を表示部104に送信したり、外部に送信するものである。なお、スイッチ106は、刺激値XYZ1と刺激値XYZ2を選択的に入力するものである。なお、対象物の車は例示である。
 図9は2つの画像A,Bから色分布比較による色分布一致度の計算のフローチャートである。図9に示す通り、プログラムが起動すると、画像Aから特定の領域(調べたい領域)を切り出す(S201)。次に画像Bから画像Aと同様の領域を切り出す(S202)。画像A,Bより色度値の計算を行う(S203)。変換したxyz値よりxy色度座標ヒストグラムを計算する(S204)。重なり度を二次元空間(xy色度値)或いは3次元空間(xyz色度値)で差分データを取る(S205)。xyヒストグラムを計算する(S206)。重ねあわせ指数=TotalAカウント-{(A-B)のプラス成分}/TotalAカウントを計算し(S207)、リターンする。
 図10に示す通り、色判定対象は顔の頬の領域であり、カメラ202が人間の頭を撮像する。演算処理装置203は、基準となる刺激値XYZ1を計算する演算部203Aと、判定対象となる刺激値XYZ2を計算する演算部203Bと、演算部203Aと演算部203Bと接続し色一致度指数を演算する演算部203Cと、演算部203Cからの指数値を着色装置207に送信するものである。指数値に応じて人が画面を見ながら、適正な化粧の色になっているかどうかを、画面を見て判定し、さらに着色処理207を行うものである。なお、スイッチ206は、基準XYZと対象XYZを選択的に入力するものである。主要な処理は概ね図9に示すフローチャートと同様であるので、説明は援用する。
 なお、本発明の実施形態は、上記の実施形態に何ら限定されるものではなく、本発明の技術的思想を逸脱しない範囲において、改変等を加えることができるものであり、それらの改変、均等物等も本発明の技術的範囲に含まれ、該技術的範囲に属する限り種々の形態を採り得ることは言うまでもない。例えば、三つの分光感度(S(λ),S(λ),S(λ))に従って画像情報を取得する方式について、本実施形態において挙げた方式は具体例に過ぎないものであって、これらに限られず、その他の方式によっても本発明の技術的思想は実施されるものである。
 画像色分布検査装置1は、タイルの製造現場における色ムラ等の検査、服飾の色検査、織物の色検査、印刷色の正確な色検査、病理検査における検体の正確な色合いの判別、美術工芸品の画像検査、その他の汎用的な利用用途がある。
1,101,201・・・画像色分布検査装置
2・・・撮像装置
3・・・演算処理装置
4・・・表示装置
21・・・撮影レンズ
22a,22b,22c・・・光学フィルタ
23・・・撮像素子
22a´,22c´・・・ダイクロイックミラー
23a,23b,23c・・・撮像素子
24・・・演算処理部
25・・・画像表示装置
27・・・フィルタターレット
102・・・カメラ
103・・・演算処理装置
104・・・表示装置
105・・・人物
106,206・・・スイッチ
103A,103B,103C,203A,203B,203C・・・演算部
202・・・カメラ
207・・・着色装置

Claims (5)

  1.  CIE XYZ等色関数と等価に線形変換された三つの分光感度(S(λ),S(λ),S(λ))を有する撮像装置と、
     該撮像装置により取得した第1画像の関心領域の正規化された二次元または三次元の第1の色度図分布を生成し、前記撮像装置により取得した第2画像の関心領域の正規化された二次元または三次元の第2の色度図分布を生成し、
     前記第1の色度図分布と、第2の色度図分布とを対比し、
     第1の色度図分布と第2の色度図分布の重複領域を検出し、
     前記関心領域の第1画素数を検出し、
     前記重複領域の第2画素数を検出し、
     前記第1画素数に対する第2画素数の割合を演算する画像色分布検査装置。
  2.  前記撮像装置が前記撮像装置により取得した三つの分光感度をCIE XYZ表色系における三刺激値X,Y,Zに変換する演算処理部を備える請求項1の画像色分布検査装置。
  3.  前記表示装置の前記演算処理部が前記撮像装置により取得した三つの分光感度を任意の表色系に変換処理する請求項1または2の画像色分布検査装置。
  4.  前記画像を任意の位置、数ないし形状にブロック分けし、個々の該ブロックにおける輝度、色度または色差を視覚化処理して該ブロックの位置に対応する前記画像の位置に表示する請求項1の画像色分布検査装置。
  5.  CIE XYZ等色関数と等価に線形変換された三つの分光感度(S(λ),S(λ),S(λ))を有する撮像装置を利用する画像色分布検査方法において、
     該撮像装置により取得した第1画像の関心領域の正規化された第1の色度図分布を生成するステップと、
     前記撮像装置により取得した第2画像の関心領域の正規化された第2の色度図分布を生成するステップと、
     前記第1の色度図分布と、第2の色度図分布とを対比するステップと、
     第1の色度図分布と第2の色度図分布の重複領域を検出するステップと、
     前記関心領域の第1画素数を検出するステップと、
     前記重複領域の第2画素数を検出するステップと、
     前記第1画素数に対する第2画素数の割合を演算するステップと、
     を備える画像色分布検査方法。
PCT/JP2014/004372 2014-08-26 2014-08-26 画像色分布検査装置および画像色分布検査方法 WO2016030919A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004372 WO2016030919A1 (ja) 2014-08-26 2014-08-26 画像色分布検査装置および画像色分布検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/004372 WO2016030919A1 (ja) 2014-08-26 2014-08-26 画像色分布検査装置および画像色分布検査方法

Publications (1)

Publication Number Publication Date
WO2016030919A1 true WO2016030919A1 (ja) 2016-03-03

Family

ID=55398868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004372 WO2016030919A1 (ja) 2014-08-26 2014-08-26 画像色分布検査装置および画像色分布検査方法

Country Status (1)

Country Link
WO (1) WO2016030919A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203664A (ja) * 1996-01-25 1997-08-05 C G A Kk 色合い検査装置
JPH09231362A (ja) * 1996-02-27 1997-09-05 Fuji Electric Co Ltd 外観検査装置及びその方法
JP2005238817A (ja) * 2004-01-27 2005-09-08 Fuji Xerox Co Ltd 印刷結果検査装置、画像形成装置、印刷結果検査方法、プログラム
JP2014109562A (ja) * 2012-12-04 2014-06-12 Paparabo:Kk 色彩輝度表示装置および色彩輝度表示方法
JP2014187558A (ja) * 2013-03-23 2014-10-02 Paparabo:Kk 画像色分布検査装置および画像色分布検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203664A (ja) * 1996-01-25 1997-08-05 C G A Kk 色合い検査装置
JPH09231362A (ja) * 1996-02-27 1997-09-05 Fuji Electric Co Ltd 外観検査装置及びその方法
JP2005238817A (ja) * 2004-01-27 2005-09-08 Fuji Xerox Co Ltd 印刷結果検査装置、画像形成装置、印刷結果検査方法、プログラム
JP2014109562A (ja) * 2012-12-04 2014-06-12 Paparabo:Kk 色彩輝度表示装置および色彩輝度表示方法
JP2014187558A (ja) * 2013-03-23 2014-10-02 Paparabo:Kk 画像色分布検査装置および画像色分布検査方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAKOTO KATO: "Nijigen Shikisaikei o Mochiita Iro Shitsukan Kensaho", PLASTICS, July 2014 (2014-07-01), pages 24 - 28 *

Similar Documents

Publication Publication Date Title
JP6039109B2 (ja) 着色検査装置および着色検査方法
JP6039008B2 (ja) 着色評価装置及び着色評価方法
JP6113319B2 (ja) 画像色分布検査装置および画像色分布検査方法
Leon et al. Color measurement in L∗ a∗ b∗ units from RGB digital images
JP5841091B2 (ja) 画像色分布検査装置および画像色分布検査方法
JP7076760B2 (ja) 色判定装置及び色判定方法
JP6371237B2 (ja) 着色評価装置および着色評価方法
WO1996034259A1 (fr) Dispositif de mesure en vision chromatique
Smagina et al. Multiple light source dataset for colour research
JP2015166682A (ja) 分光放射輝度計
JP2019020311A (ja) 色彩測定方法及び色彩測定装置
JP2020012668A (ja) 評価装置、計測装置、評価方法および評価プログラム
JP4987045B2 (ja) 色票処理装置、色票処理方法及び色票処理プログラム
JP2010139324A (ja) 色ムラ測定方法、および色ムラ測定装置
JP2014109562A (ja) 色彩輝度表示装置および色彩輝度表示方法
JP4174707B2 (ja) 分光測定システム、色再現システム
JP2016194449A (ja) 着色検査装置および着色検査方法
Zhu et al. Color calibration for colorized vision system with digital sensor and LED array illuminator
CN113758683B (zh) 一种基于平均色彩饱和度的相机系统辐照后光谱退化评估方法
JP5895094B1 (ja) 画像色分布検査装置および画像色分布検査方法
WO2016030919A1 (ja) 画像色分布検査装置および画像色分布検査方法
US11825211B2 (en) Method of color inspection by using monochrome imaging with multiple wavelengths of light
CN107340296A (zh) 变化程度导出设备、变化程度导出系统和已知颜色体
JP2002350355A (ja) 光沢ムラ評価装置、光沢ムラ評価方法及び該方法を実行するためのプログラムを格納したコンピュータ読み取り可能な記憶媒体
JP2017153054A (ja) 着色検査装置および着色検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14900863

Country of ref document: EP

Kind code of ref document: A1