WO2016029604A1 - 一种发电及制冷一体化的系统及方法 - Google Patents
一种发电及制冷一体化的系统及方法 Download PDFInfo
- Publication number
- WO2016029604A1 WO2016029604A1 PCT/CN2014/094990 CN2014094990W WO2016029604A1 WO 2016029604 A1 WO2016029604 A1 WO 2016029604A1 CN 2014094990 W CN2014094990 W CN 2014094990W WO 2016029604 A1 WO2016029604 A1 WO 2016029604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen
- methanol
- hydrogen production
- power generation
- heat
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B15/00—Sorption machines, plants or systems, operating continuously, e.g. absorption type
- F25B15/02—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
- F25B15/04—Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being ammonia evaporated from aqueous solution
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the invention belongs to the technical field of power generation and refrigeration, and relates to a power generation and refrigeration system, in particular to a system for integrating power generation and refrigeration. At the same time, the invention also relates to a method for integration of power generation and refrigeration.
- Hydrogen is a colorless gas. Burning one gram of hydrogen can release 142 kilojoules of heat, which is three times the calorific value of gasoline. The weight of hydrogen is extremely light. It is much lighter than gasoline, natural gas and kerosene. Therefore, it is easy to carry and transport. It is the most suitable fuel for high-speed flight vehicles such as aerospace and aviation. Hydrogen can be burned in oxygen, and the temperature of the hydrogen flame can be as high as 2,500 ° C, so people often use hydrogen to cut or weld steel materials.
- hydrogen is widely distributed.
- Water is the big "warehouse” of hydrogen, which contains 11% hydrogen. About 1.5% of the hydrogen in the soil; hydrogen, coal, natural gas, animals and plants contain hydrogen.
- the main body of hydrogen exists in the form of compound water, and about 70% of the earth's surface is covered by water, and the water storage capacity is large. Therefore, hydrogen can be said to be an "inexhaustible and inexhaustible” energy source. If hydrogen can be produced from water in a suitable way, then hydrogen will also be a relatively inexpensive energy source.
- Hydrogen has a wide range of uses and is highly adaptable. It can be used not only as a fuel, but also as a metal hydride that has the function of converting chemical, thermal and mechanical energy.
- hydrogen storage metals have the ability to absorb hydrogen exotherms and absorb heat and release hydrogen, which can be stored as heat and air conditioning in the room.
- Hydrogen is used as a gaseous fuel and is first used in automobiles.
- May 1976 the United States developed a car that uses hydrogen as a fuel; later, Japan also developed a car that uses liquid hydrogen as fuel; in the late 1970s, Mercedes-Benz, a former Federal Republic of Germany, tested hydrogen. They used only five kilograms of hydrogen to drive the car for 110 kilometers.
- the use of hydrogen as a fuel for automobiles is not only clean, but also easy to start at low temperatures, and has little corrosive effect on the engine, which can prolong the service life of the engine. Since the hydrogen and the air can be uniformly mixed, the vaporizer used in the general automobile can be completely omitted, thereby simplifying the construction of the existing automobile. Even more interesting is as long as 4% hydrogen is added to the gasoline. By using it as a fuel for a car engine, it can save 40% of fuel, and there is no need to improve the gasoline engine.
- Hydrogen can easily turn into a liquid at a certain pressure and temperature, so it is convenient to transport it by rail car, road trailer or ship.
- Liquid hydrogen can be used as fuel for automobiles and aircraft, as well as for rockets and missiles.
- the "Apollo" spacecraft that flies to the moon in the United States and the Long March launch vehicle that launches satellites in China use liquid hydrogen as fuel.
- the world's annual hydrogen production is about 36 million tons, most of which is made from oil, coal and natural gas, which consumes the already scarce fossil fuel; another 4% of hydrogen is electrolysis.
- the method of water is produced, but the electric energy consumed is too much, which is not cost-effective. Therefore, people are actively exploring new methods for hydrogen production.
- the reforming of hydrogen with methanol and water can reduce energy consumption and reduce costs in chemical production. It is expected to replace the process of "electrolytic water hydrogen production" called "electric tiger", using advanced methanol steam reforming - change
- the pressure adsorption technology produces a mixture of pure hydrogen and CO 2 -rich gas, and after further post-treatment, hydrogen and carbon dioxide gas can be simultaneously obtained.
- Methanol and water vapor pass through the catalyst under certain temperature and pressure conditions, and under the action of the catalyst, methanol cracking reaction and carbon monoxide shift reaction occur to generate hydrogen and carbon dioxide, which is a multi-component, multi-reaction gas-solid catalytic reaction. system.
- the reaction equation is as follows:
- the H 2 and CO 2 formed by the reforming are reformed, and then separated by a palladium membrane to separate H 2 and CO 2 to obtain high-purity hydrogen.
- the pressure swing adsorption method has high energy consumption, large equipment, and is not suitable for small-scale hydrogen production.
- the hydrogen generator will discharge a large amount of heat, causing the temperature of the generator to be as high as 276 ° C. Now there is no good cooling method, resulting in unstable generator operation and reduced service life.
- the hydrogen generator will also discharge some residual gas, mainly including hydrogen, oxygen, water vapor, etc. that have not been fully reacted. Now these gases are discharged, and the hydrogen is dangerous gas, which has certain safety hazards. At the same time, these gases have certain value.
- existing hydrogen power generation systems usually use the already prepared hydrogen to generate electricity, that is, the production of hydrogen and hydrogen are separated.
- hydrogen is produced by a hydrogen production facility, and the hydrogen is placed in a hydrogen buffer tank, and then hydrogen is generated by hydrogen in a hydrogen buffer tank.
- the hydrogen buffer tank is bulky, does not carry the belt, and has poor mobility, which restricts the hydrogen preparation and the portability of the power generation equipment.
- the technical problem to be solved by the present invention is to provide a system integrating power generation and refrigeration, which can utilize the heat of the hydrogen power generation equipment to cool, which not only reduces the temperature of the power generation equipment, but also effectively utilizes the heat.
- the present invention also relates to a method for integrating power generation and refrigeration, which can utilize the heat discharged from a hydrogen power generation device to cool, thereby reducing the temperature of the power generation device and effectively utilizing the heat.
- a system for power generation and refrigeration integration comprising: a methanol hydrogen production device, a hydrogen power generation device, a refrigeration air conditioning device or/and a mobile refrigerator device, a gas pressure regulation subsystem, a collection and utilization subsystem;
- the methanol hydrogen production device prepares hydrogen, and the produced hydrogen gas is sent to a hydrogen power generation device; the hydrogen power generation device uses hydrogen to generate electricity and releases heat energy; and the refrigeration air conditioner and the mobile refrigerator device use heat energy or/and methanol released by the hydrogen power generation device. Waste heat refrigeration for hydrogen production from reforming hydrogen production;
- the methanol hydrogen production device uses hydrogen and methanol to prepare a hydrogen gas
- the methanol hydrogen production device includes a solid hydrogen storage container, a liquid storage container, a raw material conveying device, a hydrogen production device, and a membrane separation device;
- the hydrogen production device comprises a heat exchanger, a gasification chamber and a reforming chamber; the membrane separation device is arranged in the separation chamber, and the separation chamber is arranged Inside the reforming chamber;
- the solid hydrogen storage container and the liquid storage container are respectively connected to a hydrogen production device; the liquid storage container stores liquid methanol and water;
- the solid hydrogen storage container stores solid hydrogen.
- the solid hydrogen is converted into gaseous hydrogen by the gasification module, and the gaseous hydrogen is heated by combustion to provide starting heat energy for the hydrogen production device, and is used as a hydrogen production device. Start energy
- the methanol and water in the liquid storage container are transported to the heat exchanger through the raw material conveying device for heat exchange, and then enter the gasification chamber for gasification after heat exchange;
- the vaporized methanol vapor and water vapor enter the reforming chamber, and the reforming chamber is provided with a catalyst, and the temperature of the lower part and the middle part of the reforming chamber is 300 ° C to 420 ° C;
- the temperature of the upper portion of the reforming chamber is 400 ° C to 570 ° C; the reforming chamber and the separation chamber are connected by a connecting pipe, and all or part of the connecting pipe is disposed at an upper portion of the reforming chamber, and can pass the high temperature of the upper portion of the reforming chamber Continuing to heat the gas output from the reforming chamber; the connecting line acts as a buffer between the reforming chamber and the separating chamber such that the temperature of the gas output from the reforming chamber is the same as or close to the temperature of the separating chamber;
- the temperature in the separation chamber is set to 350 ° C ⁇ 570 ° C; a membrane separator is provided in the separation chamber, and hydrogen gas is obtained from the gas producing end of the membrane separator;
- the raw material conveying device provides power to deliver the raw material in the liquid storage container to the hydrogen producing device; the raw material conveying device supplies a pressure of 0.15 to 5 MPa to the raw material, so that the hydrogen produced by the hydrogen producing device has a sufficient pressure;
- the hydrogen produced by the hydrogen production device is sent to a membrane separation device for separation, and the difference between the internal and external pressures of the membrane separation device for separating hydrogen is greater than or equal to 0.7 MPa;
- the membrane separation device is a membrane separation device for vacuum-plating palladium-silver alloy on a porous ceramic surface, the coating layer is a palladium-silver alloy, the palladium-silver alloy has a mass percentage of palladium of 75% to 78%, and silver accounts for 22% to 25%;
- the methanol hydrogen production device transmits the produced hydrogen to the hydrogen power generation device through the transmission pipeline in real time; the transmission pipeline is provided with a gas pressure adjustment subsystem for adjusting the gas pressure in the transmission pipeline; and the hydrogen power generation device utilizes Hydrogen power generation by methanol hydrogen production equipment;
- the air pressure adjusting subsystem includes a microprocessor, a gas pressure sensor, a valve controller, an air outlet valve, and an air outlet pipeline;
- the gas pressure sensor is disposed in the transmission pipeline to sense air pressure data in the transmission pipeline, and Transmitting the sensed air pressure data to a microprocessor;
- the microprocessor compares the air pressure data received from the gas pressure sensor with a set threshold interval; when the received pressure data is above a maximum value of the set threshold interval
- the microprocessor controls the valve controller to open the outlet valve set time, so that the air pressure in the transmission line is within the set range, and one end of the outlet line is connected to the outlet valve, and the other end is connected to the methanol hydrogen production equipment, and is combusted into methanol.
- the heating device of the hydrogen producing device performs heating; when the received pressure data is lower than the minimum value of the set threshold interval, the microprocessor controls the methanol hydrogen producing device to accelerate the conveying speed of the raw material;
- the collection and utilization subsystem is connected to the exhaust passage outlet of the hydrogen power generation device, and collects hydrogen, oxygen, and water separately from the exhausted gas, and uses the collected hydrogen and oxygen for the methanol hydrogen production equipment or/and the hydrogen power generation device to collect The water obtained is used as a raw material for methanol hydrogen production equipment, thereby being recycled;
- the collection and utilization subsystem includes a hydrogen-oxygen separator, a hydrogen water separator, a hydrogen check valve, an oxygen water separator, and an oxygen stop. Returning the valve, separating the hydrogen from the oxygen, and then separating the hydrogen from the water and separating the oxygen from the water;
- the refrigerating and air-conditioning apparatus and the mobile refrigerator apparatus each include a condenser, an evaporator, a plurality of throttle valves, a first adsorption generator, and a second adsorption generator; wherein the first adsorption generator and the second adsorption generator are provided
- the ammonia-containing mixed liquid, the ammonia-containing mixed liquid is an ammonia-ammonia complexing agent-water mixture or an ammonia-hydrogen phosphate ammonia-water mixture;
- the heat dissipation mechanism of the hydrogen power generation device is respectively connected to the first adsorption generator and the second adsorption generator; the first adsorption generator and the second adsorption generator are respectively connected and condensed through the first throttle valve and the second throttle valve.
- the first adsorption generator and the second adsorption generator are respectively connected to the evaporator through a third throttle valve and a fourth throttle valve; the condenser is connected to the evaporator through a fifth throttle valve;
- the flow valve, the second throttle valve, the third throttle valve, the fourth throttle valve, and the fifth throttle valve are controlled to be turned on and off by the throttle valve controller;
- the first adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the second adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex;
- the second adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the first adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex; this cycle.
- a system for power generation and refrigeration integration comprising: a methanol hydrogen production device, a hydrogen power generation device, a refrigeration air conditioning device, or/and a mobile refrigerator device;
- the methanol hydrogen production device prepares hydrogen, and the produced hydrogen gas is sent to a hydrogen power generation device; the hydrogen power generation device uses hydrogen to generate electricity and releases heat energy; and the refrigeration air conditioner or/and the mobile refrigerator device utilizes heat energy released by the hydrogen power generation device or/ And waste heat refrigeration for hydrogen production from methanol reforming equipment.
- the refrigerating and air-conditioning apparatus includes a condenser, an evaporator, a plurality of throttle valves, a first adsorption generator, and a second adsorption generator; the first adsorption generator and the second adsorption generation An ammonia-containing mixture is provided in the device;
- the heat dissipation mechanism of the hydrogen power generation device is respectively connected to the first adsorption generator and the second adsorption generator; the first adsorption generator and the second adsorption generator are respectively connected and condensed through the first throttle valve and the second throttle valve.
- the first adsorption generator and the second adsorption generator are respectively connected to the evaporator through a third throttle valve and a fourth throttle valve; the condenser is connected to the evaporator through a fifth throttle valve;
- the flow valve, the second throttle valve, the third throttle valve, the fourth throttle valve, and the fifth throttle valve are controlled to be turned on and off by the throttle valve controller;
- the first adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the second adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex;
- the second adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the first adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex; this cycle.
- the ammonia-containing mixed solution is an ammonia-ammonia complexing agent-water mixture or ammonia-ammonium hydrogen phosphate. - Water mixture.
- the methanol hydrogen production apparatus uses hydrogen and methanol to prepare a hydrogen
- the methanol hydrogen production apparatus includes a liquid storage container, a raw material conveying device, a hydrogen production device, and a membrane separation device;
- the hydrogen production device includes a heat exchanger, a gasification chamber, and a reforming chamber; the membrane separation device is disposed in the separation chamber, and the separation chamber is disposed inside the reforming chamber; the liquid storage container is respectively connected to the hydrogen production device; the liquid storage The liquid methanol and water are stored in the container;
- the methanol and water in the liquid storage container are transported to the heat exchanger through the raw material conveying device for heat exchange, and then enter the gasification chamber for gasification after heat exchange;
- the vaporized methanol vapor and water vapor enter the reforming chamber, and the reforming chamber is provided with a catalyst, and the temperature of the lower part and the middle part of the reforming chamber is 300 ° C to 420 ° C;
- the temperature of the upper portion of the reforming chamber is 400 ° C to 570 ° C; the reforming chamber and the separation chamber are connected by a connecting pipe, and all or part of the connecting pipe is disposed at an upper portion of the reforming chamber, and can pass the high temperature of the upper portion of the reforming chamber Continuing to heat the gas output from the reforming chamber; the connecting line acts as a buffer between the reforming chamber and the separating chamber such that the temperature of the gas output from the reforming chamber is the same as or close to the temperature of the separating chamber;
- the temperature in the separation chamber is set to 350 ° C ⁇ 570 ° C; a membrane separator is provided in the separation chamber, and hydrogen gas is obtained from the gas producing end of the membrane separator;
- the raw material conveying device provides power to deliver the raw material in the liquid storage container to the hydrogen producing device; the raw material conveying device supplies a pressure of 0.15 to 5 MPa to the raw material, so that the hydrogen produced by the hydrogen producing device has a sufficient pressure;
- the hydrogen produced by the hydrogen production device is sent to a membrane separation device for separation, and the difference between the internal and external pressures of the membrane separation device for separating hydrogen is greater than or equal to 0.7 MPa;
- the membrane separation device is a membrane separation device for vacuum-plating palladium-silver alloy on a porous ceramic surface, the coating layer is a palladium-silver alloy, the palladium-silver alloy has a mass percentage of palladium of 75% to 78%, and silver accounts for 22% to 25%;
- the methanol hydrogen production apparatus further includes a solid hydrogen storage container, and the solid hydrogen storage container is connected to the hydrogen production device;
- the solid hydrogen storage container stores solid hydrogen.
- the solid hydrogen is converted into gaseous hydrogen by the gasification module, and the gaseous hydrogen is heated by combustion to provide starting heat energy for the hydrogen production device, and is used as a hydrogen production device. Start energy.
- the methanol hydrogen production device transmits the produced hydrogen to the hydrogen power generation device through a transmission pipeline in real time; the transmission pipeline is provided with a gas pressure adjustment subsystem for adjusting the transmission pipeline.
- the hydrogen pressure generating device generates electricity by using hydrogen produced by a methanol hydrogen production facility;
- the air pressure adjusting subsystem includes a microprocessor, a gas pressure sensor, a valve controller, an air outlet valve, and an air outlet pipeline;
- the gas pressure sensor is disposed in the transmission pipeline to sense air pressure data in the transmission pipeline, and Transmitting the sensed air pressure data to a microprocessor;
- the microprocessor compares the air pressure data received from the gas pressure sensor with a set threshold interval; when the received pressure data is above a maximum value of the set threshold interval
- the microprocessor controls the valve controller to open the outlet valve set time, so that the air pressure in the transmission line is within the set range, and one end of the outlet line is connected to the outlet valve, and the other end is connected to the methanol hydrogen production equipment, and is combusted into methanol.
- the heating equipment of the hydrogen production equipment is heated; when received The pressure data is lower than the minimum value of the set threshold interval, and the microprocessor controls the methanol hydrogen production equipment to accelerate the conveying speed of the raw material.
- the collection and utilization subsystem is connected to the exhaust passage outlet of the hydrogen power generation device, and separately collects hydrogen, oxygen, and water from the discharged gas, and uses the collected hydrogen and oxygen to supply hydrogen to the methanol. Or/and use with a hydrogen power generation device, and the collected water is used as a raw material for a methanol hydrogen production facility, thereby being recycled;
- the collection and utilization subsystem comprises a hydrogen-oxygen separator, a hydrogen water separator, a hydrogen check valve, an oxygen water separator, an oxygen check valve, and separates hydrogen from oxygen, and then separates hydrogen from water and oxygen and water, respectively.
- Hydrogen preparation step the methanol hydrogen production device prepares hydrogen, and the produced hydrogen gas is sent to a hydrogen power generation device;
- Hydrogen power generation equipment uses hydrogen to generate electricity and release heat energy
- Refrigeration step The refrigerating and air-conditioning equipment or/and the mobile refrigerator equipment utilizes the heat energy released by the hydrogen power generation equipment or/and the waste heat of the methanol hydrogen production equipment to reform the hydrogen production.
- the refrigerating and air-conditioning apparatus includes a condenser, an evaporator, a plurality of throttle valves, a first adsorption generator, and a second adsorption generator; the first adsorption generator and the second adsorption generation An ammonia-containing mixture is provided in the device;
- the heat dissipation mechanism of the hydrogen power generation device is respectively connected to the first adsorption generator and the second adsorption generator; the first adsorption generator and the second adsorption generator are respectively connected and condensed through the first throttle valve and the second throttle valve.
- the first adsorption generator and the second adsorption generator are respectively connected to the evaporator through a third throttle valve and a fourth throttle valve; the condenser is connected to the evaporator through a fifth throttle valve;
- the flow valve, the second throttle valve, the third throttle valve, the fourth throttle valve, and the fifth throttle valve are controlled to be turned on and off by the throttle valve controller;
- the cooling step includes:
- the first adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the second adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex;
- the second adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the first adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex; this cycle.
- the utility model has the beneficial effects that the system and the method for integrating power generation and refrigeration proposed by the invention can utilize the heat discharged from the hydrogen power generation device to cool, thereby reducing the temperature of the power generation device and effectively utilizing the heat to cool; thereby improving The system works stably and improves the service life of the equipment.
- FIG. 1 is a schematic view showing the composition of a system for integrating power generation and refrigeration according to the present invention.
- FIG. 2 is a schematic view showing another composition of a system for integrating power generation and refrigeration according to the present invention.
- Figure 3 is a schematic diagram of the composition of the refrigeration and air conditioning equipment in the system.
- Figure 4 is a schematic diagram showing the composition of a methanol hydrogen production plant in the system.
- Fig. 5 is a schematic view showing the composition of a methanol hydrogen producing apparatus in the third embodiment.
- FIG. 6 is a schematic structural view of a first starting device in the third embodiment.
- the present invention discloses a system for integrating power generation and refrigeration (for example, it can be used in the field of automobiles, and of course, it can also be used in other fields), and the system includes: methanol hydrogen production equipment 100, hydrogen Power generation equipment 300, refrigeration and air conditioning equipment 500 (or/and mobile refrigerator equipment), air pressure regulation subsystem 200, and collection utilization subsystem 400.
- the methanol hydrogen production device prepares hydrogen, and the produced hydrogen gas is sent to a hydrogen power generation device; the hydrogen power generation device uses hydrogen to generate electric energy and releases heat energy; the refrigeration and air-conditioning device 500 and the mobile refrigerator device utilize heat energy or/and released by the hydrogen power generation device.
- the methanol hydrogen production equipment reforms the residual heat of the hydrogen production.
- the methanol hydrogen production device uses hydrogen to prepare hydrogen
- the methanol hydrogen production device includes a solid hydrogen storage container 80, a liquid storage container 10, a raw material conveying device 50, and a hydrogen production device 20.
- Membrane separation device 30 uses hydrogen to prepare hydrogen
- the methanol hydrogen production device includes a solid hydrogen storage container 80, a liquid storage container 10, a raw material conveying device 50, and a hydrogen production device 20.
- the solid hydrogen storage container 80 and the liquid storage container 10 are respectively connected to the hydrogen producing device 20; the liquid storage container 10 stores liquid methanol and water, and the solid hydrogen storage container 80 stores solid hydrogen.
- the solid hydrogen in the solid hydrogen storage container 80 is converted into gaseous hydrogen by the gasification module, and the gaseous hydrogen is exothermic through combustion to provide the startup heat energy to the hydrogen generation device 20 as the starting energy of the hydrogen generation device 20.
- the solid hydrogen storage container 80 is not a necessary device of the present invention, and the hydrogen generation unit 20 can be started by other energy sources.
- the raw material conveying device 50 provides power to deliver the raw materials in the liquid storage container 10 to the hydrogen producing device 20; the raw material conveying device 50 supplies a pressure of 0.15 to 5 MPa to the raw material (for example, providing 0.2 MPa or 1.1 MPa or 1.2 MPa or The pressure of 1.5 MPa or 5 MPa makes the hydrogen produced by the hydrogen producing device 20 have a sufficient pressure.
- the hydrogen production unit 20 starts hydrogen production, part of the hydrogen or/and residual gas produced by the hydrogen production unit 20 is maintained by the combustion to maintain the hydrogen production unit 20 (of course, the hydrogen production unit 20 can also operate through other energy sources).
- the hydrogen produced by the hydrogen production unit 20 is sent to the membrane separation unit 30 for separation, and the difference between the internal and external pressures of the membrane separation unit 30 for separating hydrogen is 0.7 MPa or more (for example, the internal and external pressure of the membrane separation unit 30 is 0.7 MPa or 1.1 MPa or 1.2 MPa or 1.5 MPa or 5 MPa).
- the membrane separation device 30 is a membrane separation device for vacuum-plating palladium-silver alloy on a porous ceramic surface, the coating layer is a palladium-silver alloy, and the palladium-silver alloy has a mass percentage of palladium of 75% to 78%, and silver accounts for 22%. % ⁇ 25%.
- the preparation process of the membrane separation device 30 includes the following steps:
- Step 1 The porous ceramic is placed in a vacuum chamber of the magnetron sputtering device;
- Step 2 The magnetic field generating mechanism of the magnetron sputtering device generates a magnetic field, so that the metal target generates a bias current, and the metal target serves as a negative electrode, so that the porous ceramic surface has a magnetic layer body;
- the metal target material is a sputtering precious metal
- the precious metal is a palladium-silver alloy, the mass percentage of palladium accounts for 75% to 78%, and the silver accounts for 22% to 25%;
- Step 3 while the metal target generates a bias current, the vacuum chamber of the magnetron sputtering device is heated, and the temperature is controlled at 350 ° C to 800 ° C;
- Step 4 extracting the gas in the vacuum chamber, when the vacuum degree in the vacuum chamber is less than 10 -2 Pa, charging the vacuum chamber with a set concentration of argon gas;
- Step 5 a current is applied to the metal target to perform sputtering coating; ions generated by the metal target accelerate to fly under the action of the electric field During the process of porous ceramic surface, it collides with argon atoms, ionizes a large amount of argon ions and electrons, and electrons fly to the surface of porous ceramics; argon ions accelerate the bombardment of metal targets under the action of electric field, and sputter a large number of metal target target atoms or a molecule, a neutral target atom or molecule deposited on the surface of the porous ceramic to form a precious metal film of 1-15 ⁇ m;
- the argon gas concentration detecting step is further included in the process of sputter coating; the argon gas concentration in the vacuum chamber is detected in real time or at set time intervals, and the argon gas inflating valve is automatically opened when the argon gas concentration is lower than the set threshold value, The vacuum chamber is filled with argon gas until the argon concentration in the vacuum chamber meets a set threshold range;
- the air pressure detecting step is further included; the air pressure in the vacuum chamber is detected in real time or at set time intervals, and when the air pressure in the vacuum chamber is not within the set threshold interval, the air pressure in the vacuum chamber is adjusted to a set threshold interval;
- Step 6 Pass the atmosphere into the vacuum chamber and take out the workpiece.
- the hydrogen production apparatus includes a heat exchanger, a gasification chamber, and a reforming chamber; the membrane separation device is disposed in the separation chamber, and the separation chamber is disposed at an upper portion of the reforming chamber.
- the methanol and water in the liquid storage container are transported to the heat exchanger through the raw material conveying device for heat exchange, and then enter the gasification chamber for gasification after heat exchange; the vaporized methanol vapor and water vapor enter the reforming chamber, and the reforming chamber is set.
- the temperature of the lower part and the middle part of the reforming chamber is 350 ° C ⁇ 409 ° C; the temperature of the upper part of the reforming chamber is 400 ° C ⁇ 570 ° C; the reforming chamber and the separation chamber are connected by a connecting pipe, connecting all or Partially disposed at an upper portion of the reforming chamber, the gas output from the reforming chamber can be continuously heated by the high temperature of the upper portion of the reforming chamber; the connecting conduit acts as a buffer between the reforming chamber and the separation chamber, so that the output from the reforming chamber is outputted
- the temperature of the gas is the same as or close to the temperature of the separation chamber; the temperature in the separation chamber is set to 400 ° C to 570 ° C; a membrane separator is provided in the separation chamber, and hydrogen gas is obtained from the gas producing end of the membrane separator.
- composition of the methanol water hydrogen production equipment and the invention also discloses a hydrogen production method using the above methanol water hydrogen production equipment, the hydrogen production method comprising:
- the solid hydrogen storage container stores solid hydrogen.
- the solid hydrogen is converted into gaseous hydrogen by the gasification module, and the gaseous hydrogen is heated by combustion to provide start-up heat energy for the hydrogen production device.
- the raw material conveying device supplies power to deliver the raw material in the liquid storage container to the hydrogen producing device; the raw material conveying device supplies a pressure of 0.15 to 5 MPa to the raw material, so that the hydrogen produced by the hydrogen producing device has sufficient hydrogen pressure;
- Step 2 Hydrogen production equipment prepares hydrogen; specifically includes:
- the methanol and water in the liquid storage container are transported to the heat exchanger through the raw material conveying device for heat exchange, and then enter the gasification chamber for gasification after heat exchange;
- the vaporized methanol vapor and water vapor enter the reforming chamber, and the reforming chamber is provided with a catalyst, and the temperature of the lower part and the middle part of the reforming chamber is 300 ° C to 420 ° C;
- the temperature of the upper portion of the reforming chamber is 400 ° C to 570 ° C; the reforming chamber and the separation chamber are connected by a connecting pipe, and all or part of the connecting pipe is disposed at an upper portion of the reforming chamber, and can pass the high temperature of the upper portion of the reforming chamber Continuing to heat the gas output from the reforming chamber; the connecting line acts as a buffer between the reforming chamber and the separating chamber such that the temperature of the gas output from the reforming chamber is the same as or close to the temperature of the separating chamber;
- the temperature in the separation chamber is set to 350 ° C to 570 ° C; a membrane separator is provided in the separation chamber, and hydrogen gas is obtained from the gas producing end of the membrane separator.
- Step 3 The hydrogen produced by the hydrogen production device is sent to a membrane separation device for separation, and the difference between the internal and external pressures of the membrane separation device for separating hydrogen is greater than or equal to 0.7 MPa;
- the methanol hydrogen production device has a separation chamber disposed at an upper portion of the reforming chamber, and the upper portion of the reforming chamber has a higher temperature than the middle portion and the lower portion, and the reforming chamber and the separation chamber are connected through the connecting pipeline, and the connecting pipeline is
- the gas conveyed by the high temperature in the upper part of the reforming chamber can be used to preheat, and the heating method is very convenient.
- the pipeline between the reforming chamber and the separation chamber serves as a preheating temperature control mechanism, and the gas output from the reforming chamber can be heated such that the temperature of the gas output from the reforming chamber is the same as or close to the temperature of the separation chamber; Therefore, the low temperature requirement of the catalyst in the reforming chamber and the high temperature requirement of the separation chamber can be ensured separately, thereby improving the hydrogen production efficiency.
- the refrigerating and air-conditioning apparatus 500 or/and the mobile refrigerator apparatus are cooled by the heat energy released by the hydrogen power generation apparatus or/and the residual heat released by the methanol hydrogen production apparatus reforming hydrogen production.
- the residual heat released by hydrogen production from methanol hydrogen production equipment is particularly important, accounting for about 30% of the total energy consumption (the temperature of reforming and releasing residual gas is usually above 230 °C). If it cannot be effectively utilized, it will inevitably bring a lot of waste.
- the refrigerating and air-conditioning apparatus 500 includes a condenser 51, an evaporator 52, a first adsorption generator 53, a second adsorption generator 54, a reversible pump body 55, and a plurality of throttle valves 561, 562, 563, 564;
- An adsorption generator 53 and a second adsorption generator 54 are provided with an ammonia-containing mixed liquid, and the ammonia-containing mixed liquid is an ammonia-ammonia complexing agent-water mixture or an ammonia-hydrogen phosphate ammonia-water mixture.
- the heat dissipation mechanism of the hydrogen power generation device 300 is connected to the first adsorption generator 53 and the second adsorption generator 54, respectively; the first adsorption generator 53 and the second adsorption generator 54 respectively pass through the first throttle valve 561,
- the second throttle valve 562 is connected to the condenser 51; the first adsorption generator 53 and the second adsorption generator 54 are connected to the evaporator 52 through the third throttle valve 563 and the fourth throttle valve 564, respectively;
- the five throttle valve 565 is connected to the evaporator 52; the first adsorption generator 53 and the second adsorption generator 54 are connected by two pipes to form a circuit; and a reversible pump body 55 is disposed in one of the pipes.
- the first throttle valve 561, the second throttle valve 562, the third throttle valve 563, the fourth throttle valve 564, and the fifth throttle valve 565 are controlled to open and close by a throttle controller.
- the first adsorption generator 53 is subjected to thermal energy from the heat dissipation mechanism of the hydrogen power generation device 300, desorbed into gaseous ammonia, condensed into liquid ammonia through the condenser 51, and releases heat, which is carried out by the cooling medium;
- the ammonia enters the evaporator 52 through the fifth throttle valve 55 to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the second adsorption generator 54, and undergoes a complex reaction with the ammonia-containing mixture under cooling to form ammonia. Complex.
- the second adsorption generator 54 is subjected to thermal energy from the heat dissipating mechanism of the hydrogen power generation device 300, desorbed into gaseous ammonia, condensed into liquid ammonia through the condenser 51, and releases heat, which is carried out by the cooling medium;
- the ammonia enters the evaporator 52 through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the first adsorption generator 53, and undergoes a complex reaction with the ammonia-containing mixture under cooling conditions to generate an ammonia network. Compound; such a cycle.
- system may further include an in-vehicle refrigerator device that utilizes thermal energy released by the hydrogen power generation device or/and waste heat of the methanol hydrogen production equipment to reform the hydrogen release.
- the air pressure adjusting subsystem 200 includes a microprocessor 21, a gas pressure sensor 22, a valve controller 23, an air outlet valve 24, and an air outlet line 25.
- the gas pressure sensor 22 is disposed in the transmission line for sensing the air pressure data in the transmission line and transmitting the sensed air pressure data to the microprocessor 21; the microprocessor 21 will receive the gas pressure sensor 22 The air pressure data is compared with a set threshold interval, and thereby the switch of the air outlet valve 24 is controlled. When the received pressure data is higher than the maximum value of the set threshold interval, the microprocessor 21 controls the valve controller 23 to open the outlet valve set time so that the air pressure in the transmission line is within the set range.
- the outlet line 25 One end is connected to the outlet valve 24, another One end is connected to the methanol hydrogen production apparatus 100, and is heated by heating to a heating device (such as a reforming chamber) of the methanol hydrogen production apparatus 100; when the received pressure data is lower than a minimum value of the set threshold interval, the microprocessor 21 Controlling the methanol hydrogen production apparatus 100 accelerates the transportation speed of the raw material, thereby increasing the hydrogen production rate.
- a heating device such as a reforming chamber
- the collection utilization subsystem 400 includes a hydrogen water separator 401 and a hydrogen check valve 402.
- the exhaust passage outlet of the hydrogen power generation apparatus 300 is connected to the inlet of the hydrogen water separator 401, and the hydrogen water separator 401 is connected.
- a hydrogen check valve 402 is provided in the connected pipeline to prevent hydrogen from being poured; the hydrogen water separator 401 is used to separate hydrogen and water.
- the collection and utilization subsystem further includes a hydrogen-oxygen separator for separating hydrogen and oxygen; and a hydrogen-oxygen separator disposed between the outlet of the hydrogen power generation device exhaust passage and the hydrogen water separator.
- the collection and utilization subsystem 400 further includes an oxygen water separator 411 and an oxygen check valve 412 for collecting oxygen.
- the hydrogen and oxygen collected by the collection and utilization subsystem 400 are used by the methanol hydrogen production facility 100, and may also be used by the hydrogen power generation facility 300.
- the collected oxygen can be stored in a set container for people to breathe oxygen; the collected water can be used for drinking.
- the collection and utilization subsystem includes a gas water separator (such as the above-described hydrogen water separator, oxygen water separator), water can be collected (a few times more than the moisture in the raw material because methanol also contains hydrogen atoms).
- the hydrogen is produced and reacted with oxygen to obtain water), and the water is sent to the methanol hydrogen production facility 100, and the raw water can be recycled without additional addition.
- the system of the present invention can collect useful substances such as hydrogen, oxygen, water, and the like from the residual gas of the hydrogen power generation equipment, thereby improving the power generation efficiency of the system while saving raw materials (water).
- the present invention also discloses a power generation and cooling method using the above-described integrated power generation and refrigeration system, the method comprising the following steps:
- Step S1 Hydrogen preparation step: The methanol hydrogen production equipment prepares hydrogen gas, and the produced hydrogen gas is sent to a hydrogen power generation facility.
- Step S2 Power generation step: The hydrogen power generation device generates electricity by using hydrogen gas and releases heat energy.
- Step S3 Refrigeration step: The refrigerating and air-conditioning apparatus or/and the mobile refrigerator apparatus are cooled by the heat energy released by the hydrogen power generation apparatus or/and the waste heat released by the methanol hydrogen production apparatus reforming hydrogen production.
- the cooling steps specifically include:
- the first adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the second adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex.
- the second adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the first adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex; this cycle.
- the system for integrating power generation and refrigeration includes: a methanol hydrogen production facility, a hydrogen power generation facility, and a refrigeration and air conditioning facility.
- the methanol hydrogen production device prepares hydrogen, and the produced hydrogen gas is sent to a hydrogen power generation device; the hydrogen power generation device uses hydrogen gas to generate The electric energy is discharged and the heat energy is released; the refrigerating air-conditioning device or/and the mobile refrigerator device utilizes the heat energy released by the hydrogen power generation device or/and the waste heat of the methanol hydrogen production device to reform the hydrogen release.
- the refrigerating and air-conditioning apparatus includes a condenser, an evaporator, a plurality of throttle valves, a first adsorption generator, and a second adsorption generator; wherein the first adsorption generator and the second adsorption generator are provided with an ammonia-containing mixed liquid;
- the ammonia-containing mixed liquid may be an ammonia-ammonia complexing agent-water mixture or an ammonia-hydrogen phosphate-water mixture.
- the heat dissipation mechanism of the hydrogen power generation device is respectively connected to the first adsorption generator and the second adsorption generator; the first adsorption generator and the second adsorption generator are respectively connected and condensed through the first throttle valve and the second throttle valve.
- the first adsorption generator and the second adsorption generator are respectively connected to the evaporator through a third throttle valve and a fourth throttle valve; the condenser is connected to the evaporator through a fifth throttle valve;
- the flow valve, the second throttle valve, the third throttle valve, the fourth throttle valve, and the fifth throttle valve are controlled to be turned on and off by the throttle valve controller.
- the first adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the second adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex;
- the second adsorption generator is subjected to thermal energy from a heat dissipating mechanism of the hydrogen power generation device or/and residual heat after hydrogen production from a methanol hydrogen production device, desorbed into gaseous ammonia, and condensed into liquid ammonia through a condenser.
- the heat is released, and the heat is taken out by the cooling medium;
- the liquid ammonia enters the evaporator through the fifth throttle valve to evaporate into gaseous ammonia, and absorbs heat to cool;
- the gaseous ammonia enters the first adsorption generator and is mixed with the ammonia contained therein under cooling conditions.
- the liquid undergoes a complexation reaction to form an ammonia complex; this cycle.
- the methanol hydrogen production device is not provided with the solid hydrogen storage container 80.
- the methanol hydrogen production device includes: the liquid storage container 10, the raw material conveying device 50, and the fast The starting device, the hydrogen producing device 20, and the membrane separating device 30.
- the quick start device provides a starting energy source for the hydrogen producing device; the quick starting device includes a first starting device 40 and a second starting device 60.
- the first starting device 40 includes a housing 41 , a first heating mechanism 42 , and a first gasification pipeline 43 .
- the first gasification pipeline 43 has an inner diameter of 1 to 2 mm, and the first gasification is performed.
- the pipeline 43 is tightly wound around the first heating mechanism 42.
- the first heating mechanism 42 may be an electric heating rod, and may be an alternating current or a battery or a dry battery.
- One end of the first gasification line 43 is connected to the liquid storage container 10, and methanol is sent to the first gasification line 43; the other end of the first gasification line 43 outputs vaporized methanol, and then passes through the ignition.
- the mechanism is ignited and burned; or the other end of the first gasification line 43 outputs the vaporized methanol, and the output methanol reaches the self-ignition point, and the methanol is directly self-ignited after being output from the first gasification line 43.
- the second starting device 60 includes a second gasification pipeline, the main body of the second gasification pipeline is disposed in the reforming chamber, and the second gasification pipeline is heated by the reforming chamber (may also be a hydrogen production system Unit heating).
- the methanol outputted from the first gasification line 43 or/and the second gasification line heats the second gasification line while heating the reforming chamber, and vaporizes the methanol in the second gasification line.
- the methanol outputted by the first gasification line 43 is required to heat the second gasification pipeline.
- the set time is set, and the first startup device 40 can be selectively closed.
- the methanol output from the second gasification line is heated by the second gasification line; this further reduces the dependence on external energy sources.
- heating is provided in the reforming chamber wall of the hydrogen producing apparatus 20.
- a catalyst is placed in the heating pipeline 21 (for example, the heating temperature can be controlled at 380 ° C to 480 ° C); the quick start device 40 heats the reforming chamber by heating the heating conduit 21 to improve heating. effectiveness.
- the hydrogen production system supplies the energy required for operation through the hydrogen produced by the hydrogen production facility; at this time, the quick start device can be turned off.
- composition of the methanol water hydrogen production system of the present invention is described above. While the above hydrogen production system is disclosed, the present invention also discloses a hydrogen production method for the above methanol water hydrogen production system, the method comprising the following steps:
- Step S1 A quick start step; the hydrogen production system provides a startup energy start using a quick start device. Specifically include:
- the first heating mechanism of the first starting device is energized for a set time, and after the first heating mechanism reaches the set temperature, methanol is introduced into the first gasification pipeline; since the first gasification pipeline is tightly wound around the first heating mechanism The methanol temperature is gradually increased; the first gasification line outputs the vaporized methanol, and then is ignited and burned by the ignition mechanism; or the first gasification line outputs the vaporized methanol, and the output methanol reaches the spontaneous combustion temperature. Point, methanol is directly self-ignited after being output from the first gasification pipeline;
- the vaporized methanol is heated by combustion to provide a starting energy for the hydrogen production equipment; meanwhile, the methanol combustion outputted by the first gasification line is also heated by the second gasification line of the second starting device, and the second gasification tube is Methanol gasification in the road;
- the first starting device After outputting the vaporized methanol in the second gasification pipeline, the first starting device is turned off, and the methanol outputted from the second gasification pipeline of the second startup device is heated by the reforming chamber while heating the second gasification pipeline.
- Charging the methanol in the second gasification pipeline; the reforming chamber wall is provided with a heating pipeline, and the heating pipeline is provided with a catalyst; and the quick start device is a reforming chamber by heating the heating pipeline heating.
- Step S2 After the system is started, the hydrogen production system supplies the energy required for operation through the hydrogen produced by the hydrogen production equipment; the hydrogen production system is operated to obtain sufficient hydrogen, and the quick start device is turned off; the portion produced by the hydrogen production equipment Hydrogen or/and residual gas is maintained by combustion to maintain hydrogen production equipment.
- the integrated power generation and refrigeration system and method proposed by the present invention can utilize the heat discharged from the hydrogen power generation device to reduce the temperature of the power generation device and effectively utilize the heat to cool; thereby improving system operation. Stability, increasing the life of the equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
一种发电及制冷一体化的系统及方法,包括甲醇制氢设备(100)、氢发电设备(300)、制冷空调设备(500);甲醇制氢设备(100)制备氢气,将制得的氢气输送至氢发电设备(300);氢发电设备(300)利用氢气发出电能,并释放热能;制冷空调设备(500)利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。制冷空调设备(500)包括冷凝器(51)、蒸发器(52)、若干节流阀、第一吸附发生器(53)、第二吸附发生器(54),两吸附发生器内设有含氨混合液。该系统及方法可有效利用氢发电设备(300)排放的热量制冷,能降低发电设备温度、提高系统工作稳定性、提升设备使用寿命。
Description
本发明属于发电及制冷技术领域,涉及一种发电及制冷系统,尤其涉及一种发电及制冷一体化的系统;同时,本发明还涉及一种发电及制冷一体化的方法。
在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。
氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。
在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。
氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。
氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。
用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。
氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。
另外,使用氢-氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。
现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能
太多,很不划算,因此,人们正在积极探索研究制氢新方法。而用甲醇、水重整制氢可减少化工生产中的能耗和降低成本,有望替代被称为“电老虎”的“电解水制氢”的工艺,利用先进的甲醇蒸气重整——变压吸附技术制取纯氢和富含CO2的混合气体,经过进一步的后处理,可同时得到氢气和二氧化碳气。
甲醇与水蒸气在一定的温度、压力条件下通过催化剂,在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢和二氧化碳,这是一个多组份、多反应的气固催化反应系统。反应方程如下:
CH3OH→CO+2H2 (1)
H2O+CO→CO2+H2 (2)
CH3OH+H2O→CO2+3H2 (3)
重整反应生成的H2和CO2,再经过钯膜分离将H2和CO2分离,得到高纯氢气。变压吸附法的耗能高、设备大,且不适合小规模的氢气制备。
现有的氢气制备及发电系统中,氢气发电机会排出大量的热量,致使发电机的温度高达276℃,如今还没有很好的降温方法,导致发电机工作不稳定,减少使用寿命。
同时,氢气发电机还会排出一些余气,主要包括尚未充分反应的氢气、氧气、水蒸气等,如今是将这些气体排出,而其中的氢气是危险气体,存在一定的安全隐患。同时,这些气体是有一定利用价值的。
此外,现有的氢气发电系统,通常是利用已经制备好的氢气发电,即制备氢气与氢气发电是分离的。首先利用制氢设备制备氢气,将氢气放置于氢气缓冲罐中,而后通过氢气缓冲罐中的氢气发电。氢气缓冲罐的体积较为庞大,不便携带,移动性较差,从而制约了氢气制备及发电设备的便携性。
有鉴于此,如今迫切需要设计一种新的氢气发电系统,以便克服现有氢气发电系统的上述缺陷。
发明内容
本发明所要解决的技术问题是:提供一种发电及制冷一体化的系统,可利用氢发电设备排放的热量制冷,既降低了发电设备的温度,又有效利用了该热量。
此外,本发明还涉及一种发电及制冷一体化的方法,可利用氢发电设备排放的热量制冷,既降低了发电设备的温度,又有效利用了该热量。
为解决上述技术问题,本发明采用如下技术方案:
一种发电及制冷一体化的系统,所述系统包括:甲醇制氢设备、氢发电设备、制冷空调设备或/和移动冰箱设备、气压调节子系统、收集利用子系统;
所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;氢发电设备利用氢气发出电能,并释放热能;制冷空调设备、移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷;
所述甲醇制氢设备利用甲醇及水制备氢气,所述甲醇制氢设备包括固态氢气储存容器、液体储存容器、原料输送装置、制氢装置、膜分离装置;
所述制氢装置包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置
于重整室的里面;
所述固态氢气储存容器、液体储存容器分别与制氢装置连接;液体储存容器中储存有液态的甲醇和水;
所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢装置提供启动热能,作为制氢装置的启动能源;
所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;
气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;
所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;
所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气;
所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢装置;所述原料输送装置向原料提供0.15~5MPa的压强,使得制氢装置制得的氢气具有足够的压强;
所述制氢装置启动制氢后,制氢装置制得的部分氢气或/和余气通过燃烧维持制氢装置运行;
所述制氢装置制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7MPa;
所述膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%;
所述甲醇制氢设备将制得的氢气通过传输管路实时传输至氢发电设备;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述氢发电设备利用甲醇制氢设备制得的氢气发电;
所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀、出气管路;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器将从气体压力传感器接收的该气压数据与设定阈值区间进行比对;当接收到的压力数据高于设定阈值区间的最大值,微处理器控制阀门控制器打开出气阀设定时间,使得传输管路中气压处于设定范围,同时出气管路的一端连接出气阀,另一端连接所述甲醇制氢设备,通过燃烧为甲醇制氢设备的需加热设备进行加热;当接收到的压力数据低于设定阈值区间的最小值,微处理器控制所述甲醇制氢设备加快原料的输送速度;
所述收集利用子系统连接氢发电设备的排气通道出口,从排出的气体中分别收集氢气、氧气、水,利用收集到的氢气、氧气供甲醇制氢设备或/和氢发电设备使用,收集到的水作为甲醇制氢设备的原料,从而循环使用;
所述收集利用子系统包括氢氧分离器、氢水分离器、氢气止回阀、氧水分离器、氧气止
回阀,将氢气与氧气分离,而后分别将氢气与水分离、氧气与水分离;
所述制冷空调设备、移动冰箱设备均包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液,含氨混合液为氨-氨络合剂-水混合液或为氨-磷酸氢氨-水混合液;
所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断;
第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;
第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
一种发电及制冷一体化的系统,所述系统包括:甲醇制氢设备、氢发电设备、制冷空调设备或/和移动冰箱设备;
所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;氢发电设备利用氢气发出电能,并释放热能;制冷空调设备或/和移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。
作为本发明的一种优选方案,所述制冷空调设备包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液;
所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断;
第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;
第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
作为本发明的一种优选方案,所述含氨混合液为氨-氨络合剂-水混合液或为氨-磷酸氢氨
-水混合液。
作为本发明的一种优选方案,所述甲醇制氢设备利用甲醇及水制备氢气,所述甲醇制氢设备包括液体储存容器、原料输送装置、制氢装置、膜分离装置;
所述制氢装置包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的里面;所述液体储存容器分别与制氢装置连接;液体储存容器中储存有液态的甲醇和水;
所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;
气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;
所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;
所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气;
所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢装置;所述原料输送装置向原料提供0.15~5MPa的压强,使得制氢装置制得的氢气具有足够的压强;
所述制氢装置启动制氢后,制氢装置制得的部分氢气或/和余气通过燃烧维持制氢装置运行;
所述制氢装置制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7MPa;
所述膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%;
作为本发明的一种优选方案,所述甲醇制氢设备还包括固态氢气储存容器,固态氢气储存容器与制氢装置连接;
所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢装置提供启动热能,作为制氢装置的启动能源。
作为本发明的一种优选方案,所述甲醇制氢设备将制得的氢气通过传输管路实时传输至氢发电设备;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述氢发电设备利用甲醇制氢设备制得的氢气发电;
所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀、出气管路;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器将从气体压力传感器接收的该气压数据与设定阈值区间进行比对;当接收到的压力数据高于设定阈值区间的最大值,微处理器控制阀门控制器打开出气阀设定时间,使得传输管路中气压处于设定范围,同时出气管路的一端连接出气阀,另一端连接所述甲醇制氢设备,通过燃烧为甲醇制氢设备的需加热设备进行加热;当接收到的
压力数据低于设定阈值区间的最小值,微处理器控制所述甲醇制氢设备加快原料的输送速度。
作为本发明的一种优选方案,所述收集利用子系统连接氢发电设备的排气通道出口,从排出的气体中分别收集氢气、氧气、水,利用收集到的氢气、氧气供甲醇制氢设备或/和氢发电设备使用,收集到的水作为甲醇制氢设备的原料,从而循环使用;
所述收集利用子系统包括氢氧分离器、氢水分离器、氢气止回阀、氧水分离器、氧气止回阀,将氢气与氧气分离,而后分别将氢气与水分离、氧气与水分离。
一种利用上述发电及制冷一体化的系统的发电及制冷方法,所述方法包括如下步骤:
氢气制备步骤:所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;
发电步骤:氢发电设备利用氢气发出电能,并释放热能;
制冷步骤:制冷空调设备或/和移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。
作为本发明的一种优选方案,所述制冷空调设备包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液;
所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断;
所述制冷步骤包括:
第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;
第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
本发明的有益效果在于:本发明提出的发电及制冷一体化的系统及方法,可利用氢发电设备排放的热量制冷,既降低了发电设备的温度,又有效利用了该热量制冷;从而可以提高系统工作稳定性,提升设备的使用寿命。
图1为本发明发电及制冷一体化的系统的组成示意图。
图2为本发明发电及制冷一体化的系统的另一组成示意图。
图3为系统中制冷空调设备的组成示意图。
图4为系统中甲醇制氢设备的组成示意图。
图5为实施例三中甲醇制氢设备的组成示意图。
图6为实施例三中第一启动装置的结构示意图。
下面结合附图详细说明本发明的优选实施例。
实施例一
请参阅图1、图2,本发明揭示了一种发电及制冷一体化的系统(如可以用于汽车领域,当然也可以用于其他领域),所述系统包括:甲醇制氢设备100、氢发电设备300、制冷空调设备500(或/和移动冰箱设备)、气压调节子系统200、收集利用子系统400。
所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;氢发电设备利用氢气发出电能,并释放热能;制冷空调设备500、移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。
【甲醇制氢设备】
请结合图4,本实施例中,所述甲醇制氢设备利用甲醇水制备氢气,所述甲醇制氢设备包括固态氢气储存容器80、液体储存容器10、原料输送装置50、制氢装置20、膜分离装置30。
所述固态氢气储存容器80、液体储存容器10分别与制氢装置20连接;液体储存容器10中储存有液态的甲醇和水,所述固态氢气储存容器80中储存固态氢气。
当制氢系统启动时,通过气化模块将固态氢气储存容器80中的固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢装置20提供启动热能,作为制氢装置20的启动能源。当然,固态氢气储存容器80不是本发明的必要设备,可以通过其他能源启动制氢装置20。
所述原料输送装置50提供动力,将液体储存容器10中的原料输送至制氢装置20;所述原料输送装置50向原料提供0.15~5MPa的压强(如提供0.2MPa或1.1MPa或1.2MPa或1.5MPa或5MPa的压强),使得制氢装置20制得的氢气具有足够的压强。所述制氢装置20启动制氢后,制氢装置20制得的部分氢气或/和余气通过燃烧维持制氢装置20运行(当然,制氢装置20的运行还可以通过其他能源)。
所述制氢装置20制得的氢气输送至膜分离装置30进行分离,用于分离氢气的膜分离装置30的内外压强之差大于等于0.7MPa(如膜分离装置30的内外压强为0.7MPa或1.1MPa或1.2MPa或1.5MPa或5MPa)。
本实施例中,所述膜分离装置30为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%。所述膜分离装置30的制备工艺包括如下步骤:
步骤1、将多孔陶瓷设置于磁控溅射装置的真空室内;
步骤2、利用磁控溅射装置的磁场产生机构产生磁场,使得金属靶产生偏差电流,金属靶作为负极,从而使多孔陶瓷表面带有磁层体;所述金属靶的材料为溅射贵重金属,所述贵重金属为钯银合金,质量百分比钯占75%~78%,银占22%~25%;
步骤3、在金属靶产生偏差电流的同时,对磁控溅射装置的真空室进行加热,温度控制在350℃~800℃;
步骤4、抽出真空室内的气体,当真空室内的真空度小于10-2Pa时,向真空室内充入设定浓度的氩气;
步骤5、向金属靶通入电流,进行溅射镀膜;金属靶产生的离子在电场的作用下加速飞向
多孔陶瓷表面的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向多孔陶瓷表面;氩离子在电场的作用下加速轰击金属靶,溅射出大量的金属靶靶材原子或分子,呈中性的靶原子或分子沉积在多孔陶瓷表面上,形成1~15μm的贵重金属薄膜;
其中,在溅射镀膜的过程中还包括氩气浓度检测步骤;实时或者以设定时间间隔检测真空室内的氩气浓度,当氩气浓度低于设定阈值时自动打开氩气充气阀门,向真空室内充入氩气,直至真空室内的氩气浓度符合设定阈值范围;
在溅射镀膜的过程中还包括气压检测步骤;实时或者以设定时间间隔检测真空室内的气压,当真空室内的气压不在设定阈值区间,调整真空室内的气压至设定阈值区间;
步骤6、向真空室内通入大气,取出工件。
优选地,所述制氢设备包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的上部。
所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为350℃~409℃;所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;所述分离室内的温度设定为400℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气。
以上介绍了甲醇水制氢设备的组成,本发明还揭示一种利用上述甲醇水制氢设备的制氢方法,所述制氢方法包括:
【步骤0】所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢设备提供启动热能,作为制氢设备的启动能源;
【步骤1】所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢设备;所述原料输送装置向原料提供0.15~5MPa的压强,使得制氢设备制得的氢气具有足够的压强;
【步骤2】制氢设备制备氢气;具体包括:
所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;
气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;
所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;
所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气。
【步骤3】所述制氢设备制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7MPa;
本实施例中,甲醇制氢设备将分离室设置于重整室的上部,重整室上部相比中部及下部的温度较高,通过连接管路连接重整室与分离室,连接管路在输送的过程中能利用重整室上部的高温加热输送的气体,起到预热作用,同时加热方式非常便捷。在重整室与分离室之间的管路作为预热控温机构,可以对从重整室输出的气体进行加热,使得从重整室输出的气体的温度与分离室的温度相同或接近;从而可以分别保证重整室内催化剂的低温要求,以及分离室的高温要求,进而提高氢气制备效率。
【制冷空调设备】
制冷空调设备500或/和移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。其中,甲醇制氢设备重整制氢释放的余热尤其重要,占总能耗的约30%(重整释放余气温度通常在230℃以上),若不能有效利用,势必带来大量浪费。
所述制冷空调设备500包括冷凝器51、蒸发器52、第一吸附发生器53、第二吸附发生器54、可逆泵体55,以及若干节流阀561、562、563、564;所述第一吸附发生器53、第二吸附发生器54内设有含氨混合液,含氨混合液为氨-氨络合剂-水混合液或为氨-磷酸氢氨-水混合液。
所述氢发电设备300的散热机构分别连接第一吸附发生器53、第二吸附发生器54;所述第一吸附发生器53与第二吸附发生器54分别通过第一节流阀561、第二节流阀562连接冷凝器51;所述第一吸附发生器53与第二吸附发生器54分别通过第三节流阀563、第四节流阀564连接蒸发器52;冷凝器51通过第五节流阀565与蒸发器52连接;第一吸附发生器53与第二吸附发生器54通过两个管路连接,形成回路;在其中一个管路中设置可逆泵体55。所述第一节流阀561、第二节流阀562、第三节流阀563、第四节流阀564、第五节流阀565通过节流阀控制器控制其通断。
第一工作周期中,第一吸附发生器53受到来自氢发电设备300的散热机构的热能,脱附为气态氨,经过冷凝器51冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀55进入蒸发器52蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器54,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物。
第二工作周期中,第二吸附发生器54受到来自氢发电设备300的散热机构的热能,脱附为气态氨,经过冷凝器51冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器52蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器53,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
当然,所述系统还可以包括车载冰箱设备,利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。
【气压调节子系统】
如图1所示,所述气压调节子系统200包括微处理器21、气体压力传感器22、阀门控制器23、出气阀24、出气管路25。所述气体压力传感器22设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器21;所述微处理器21将从气体压力传感器22接收的该气压数据与设定阈值区间进行比对,并以此控制出气阀24的开关。当接收到的压力数据高于设定阈值区间的最大值,微处理器21控制阀门控制器23打开出气阀设定时间,使得传输管路中气压处于设定范围.优选地,出气管路25的一端连接出气阀24,另
一端连接所述甲醇制氢设备100,通过燃烧为甲醇制氢设备100的需加热设备(如重整室)进行加热;当接收到的压力数据低于设定阈值区间的最小值,微处理器21控制所述甲醇制氢设备100加快原料的输送速度,从而提高制氢速度。
【收集利用子系统】
如图2所示,所述收集利用子系统400包括氢水分离器401、氢气止回阀402,氢发电设备300的排气通道出口连接氢水分离器401的入口,氢水分离器401出口处连接的管路内设有氢气止回阀402,防止氢气倒灌;所述氢水分离器401用于分离氢气与水。此外,所述收集利用子系统还包括氢氧分离器,用于分离氢气及氧气;氢氧分离器设置于所述氢发电设备排气通道出口与氢水分离器之间。
本实施例中,所述收集利用子系统400还包括氧水分离器411、氧气止回阀412,用于收集氧气。所述收集利用子系统400收集的氢气与氧气供甲醇制氢设备100使用,也可以供氢发电设备300使用。此外,收集到的氧气可以存放于设定容器中,供人们吸氧;收集到的水可以供人们饮用。
由于所述收集利用子系统包括气水分离器(如上述氢水分离器、氧水分离器),因此可以收集到水(比原料中的水分还要多若干倍,因为甲醇中也含有氢原子,制得氢气后与氧气反应得到水),将水输送至甲醇制氢设备100,原料水可以循环利用,无需另外添加。
因此,本发明系统可以从氢发电设备的余气中收集氢气、氧气、水等有用物质,可以提高系统的发电效率,同时节省原料(水)。
以上介绍了本发明发电及制冷一体化系统的组成,本发明在揭示上述系统的同时,还揭示一种利用上述发电及制冷一体化的系统的发电及制冷方法,所述方法包括如下步骤:
【步骤S1】氢气制备步骤:所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备。
【步骤S2】发电步骤:氢发电设备利用氢气发出电能,并释放热能。
【步骤S3】制冷步骤:制冷空调设备或/和移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。制冷步骤具体包括:
第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物。
第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
实施例二
本实施例中,发电及制冷一体化的系统包括:甲醇制氢设备、氢发电设备、制冷空调设备。所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;氢发电设备利用氢气发
出电能,并释放热能;制冷空调设备或/和移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。
所述制冷空调设备包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液;所述含氨混合液可以为氨-氨络合剂-水混合液或为氨-磷酸氢氨-水混合液。
所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断。
第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;
第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
实施例三
本实施例与实施例一的区别在于,本实施例中,甲醇制氢设备不设置固态氢气储存容器80,请参阅图5,甲醇制氢设备包括:液体储存容器10、原料输送装置50、快速启动装置、制氢装置20、膜分离装置30。所述快速启动装置为制氢设备提供启动能源;所述快速启动装置包括第一启动装置40、第二启动装置60。
如图6所示,所述第一启动装置40包括壳体41、第一加热机构42、第一气化管路43,第一气化管路43的内径为1~2mm,第一气化管路43紧密地缠绕于第一加热机构42上;第一加热机构42可以为电加热棒,利用交流电或蓄电池、干电池即可。
所述第一气化管路43的一端连接液体储存容器10,甲醇被送入第一气化管路43中;第一气化管路43的另一端输出被气化的甲醇,而后通过点火机构点火燃烧;或者,第一气化管路43的另一端输出被气化的甲醇,且输出的甲醇温度达到自燃点,甲醇从第一气化管路43输出后直接自燃。
所述第二启动装置60包括第二气化管路,第二气化管路的主体设置于所述重整室内,第二气化管路为重整室加热(还可以为制氢系统其他单元加热)。第一气化管路43或/和第二气化管路输出的甲醇为重整室加热的同时加热第二气化管路,将第二气化管路中的甲醇气化。
首先,需要第一气化管路43输出的甲醇加热第二气化管路,待第二气化管路可以持续产生气化的甲醇后设定时间,可以选择关闭第一启动装置40,而由第二气化管路输出的甲醇为第二气化管路加热;这样可以进一步减少对外部能源的依赖。
请参阅图6,为了提高制氢设备的加热速度,在所述制氢装置20的重整室内壁设有加热
管路21,加热管路21内放有催化剂(如可以将加热温度控制在380℃~480℃);所述快速启动装置40通过加热所述加热管路21为重整室加热,可以提高加热效率。
所述制氢系统启动后,制氢系统通过制氢设备制得的氢气提供运行所需的能源;此时,可以关闭快速启动装置。
以上介绍了本发明甲醇水制氢系统的组成,本发明在揭示上述制氢系统的同时,还揭示一种上述甲醇水制氢系统的制氢方法,所述方法包括如下步骤:
【步骤S1】快速启动步骤;所述制氢系统利用快速启动装置提供启动能源启动。具体包括:
第一启动装置的第一加热机构通电设定时间,待第一加热机构达到设定温度后向第一气化管路通入甲醇;由于第一气化管路紧密地缠绕于第一加热机构上,甲醇温度逐步升高;第一气化管路输出被气化的甲醇,而后通过点火机构点火燃烧;或者,第一气化管路输出被气化的甲醇,且输出的甲醇温度达到自燃点,甲醇从第一气化管路输出后直接自燃;
气化的甲醇通过燃烧放热,为制氢设备提供启动能源;同时,第一气化管路输出的甲醇燃烧还为第二启动装置的第二气化管路加热,将第二气化管路中的甲醇气化;
待第二气化管路中输出气化的甲醇后,关闭第一启动装置,由第二启动装置的第二气化管路输出的甲醇为重整室加热,同时加热第二气化管路,将第二气化管路中的甲醇气化;所述重整室内壁设有加热管路,加热管路内放有催化剂;所述快速启动装置通过加热所述加热管路为重整室加热。
【步骤S2】系统启动后,制氢系统通过制氢设备制得的氢气提供运行所需的能源;待制氢系统运行制得足够的氢气,关闭快速启动装置;由制氢设备制得的部分氢气或/和余气通过燃烧维持制氢设备运行。
综上所述,本发明提出的发电及制冷一体化的系统及方法,可利用氢发电设备排放的热量制冷,既降低了发电设备的温度,又有效利用了该热量制冷;从而可以提高系统工作稳定性,提升设备的使用寿命。
这里本发明的描述和应用是说明性的,并非想将本发明的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本发明的精神或本质特征的情况下,本发明可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本发明范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。
Claims (10)
- 一种发电及制冷一体化的系统,其特征在于,所述系统包括:甲醇制氢设备、氢发电设备、制冷空调设备、移动冰箱设备、气压调节子系统、收集利用子系统;所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;氢发电设备利用氢气发出电能,并释放热能;制冷空调设备、移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷;所述甲醇制氢设备利用甲醇及水制备氢气,所述甲醇制氢设备包括固态氢气储存容器、液体储存容器、原料输送装置、制氢装置、膜分离装置;所述制氢装置包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的里面;所述固态氢气储存容器、液体储存容器分别与制氢装置连接;液体储存容器中储存有液态的甲醇和水;所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢装置提供启动热能,作为制氢装置的启动能源;或者,所述甲醇制氢设备利用快速启动装置提供启动能源启动;快速启动装置包括加热机构、气化管路,气化管路的内径为1~2mm,气化管路紧密地缠绕于加热机构上;所述气化管路的一端连接液体储存容器,将甲醇送入气化管路中;气化管路的另一端输出被气化的甲醇,而后通过点火机构点火燃烧;或者,气化管路的另一端输出被气化的甲醇,且输出的甲醇温度达到自燃点,甲醇从气化管路输出后直接自燃;所述快速启动装置为制氢装置提供启动能源;所述重整室内壁设有加热管路,加热管路内放有催化剂;所述快速启动装置通过加热所述加热管路为重整室加热;所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气;所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢装置;所述原料输送装置向原料提供0.15~5MPa的压强,使得制氢装置制得的氢气具有足够的压强;所述制氢装置启动制氢后,制氢装置制得的部分氢气或/和余气通过燃烧维持制氢装置运行;所述制氢装置制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7M Pa;所述膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%;所述甲醇制氢设备将制得的氢气通过传输管路实时传输至氢发电设备;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述氢发电设备利用甲醇制氢设备制得的氢气发电;所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀、出气管路;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器将从气体压力传感器接收的该气压数据与设定阈值区间进行比对;当接收到的压力数据高于设定阈值区间的最大值,微处理器控制阀门控制器打开出气阀设定时间,使得传输管路中气压处于设定范围,同时出气管路的一端连接出气阀,另一端连接所述甲醇制氢设备,通过燃烧为甲醇制氢设备的需加热设备进行加热;当接收到的压力数据低于设定阈值区间的最小值,微处理器控制所述甲醇制氢设备加快原料的输送速度;所述收集利用子系统连接氢发电设备的排气通道出口,从排出的气体中分别收集氢气、氧气、水,利用收集到的氢气、氧气供甲醇制氢设备或/和氢发电设备使用,收集到的水作为甲醇制氢设备的原料,从而循环使用;所述收集利用子系统包括氢氧分离器、氢水分离器、氢气止回阀、氧水分离器、氧气止回阀,将氢气与氧气分离,而后分别将氢气与水分离、氧气与水分离;所述制冷空调设备、移动冰箱设备均包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液,含氨混合液为氨-氨络合剂-水混合液或为氨-磷酸氢氨-水混合液;所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断;第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
- 一种发电及制冷一体化的系统,其特征在于,包括:甲醇制氢设备、氢发电设备、制冷空调设备或/和移动冰箱设备;所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;氢发电设备利用氢气发出电能,并释放热能;制冷空调设备或/和移动冰箱设备利用氢发电设备释放的热能或/ 和甲醇制氢设备重整制氢释放的余热制冷。
- 根据权利要求2所述的发电及制冷一体化的系统,其特征在于:所述制冷空调设备、移动冰箱设备均包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液;所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断;第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
- 根据权利要求3所述的发电及制冷一体化的系统,其特征在于:所述含氨混合液为氨-氨络合剂-水混合液或为氨-磷酸氢氨-水混合液。
- 根据权利要求2所述的发电及制冷一体化的系统,其特征在于:所述甲醇制氢设备利用甲醇及水制备氢气,所述甲醇制氢设备包括液体储存容器、原料输送装置、制氢装置、膜分离装置;所述制氢装置包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的里面;所述液体储存容器分别与制氢装置连接;液体储存容器中储存有液态的甲醇和水;所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产 气端得到氢气;所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢装置;所述原料输送装置向原料提供0.15~5MPa的压强,使得制氢装置制得的氢气具有足够的压强;所述制氢装置启动制氢后,制氢装置制得的部分氢气或/和余气通过燃烧维持制氢装置运行;所述制氢装置制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7M Pa;所述膜分离装置为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%。
- 根据权利要求2所述的发电及制冷一体化的系统,其特征在于:所述甲醇制氢设备还包括固态氢气储存容器,固态氢气储存容器与制氢装置连接;所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢装置提供启动热能,作为制氢装置的启动能源。
- 根据权利要求2所述的发电及制冷一体化的系统,其特征在于:所述甲醇制氢设备将制得的氢气通过传输管路实时传输至氢发电设备;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述氢发电设备利用甲醇制氢设备制得的氢气发电;所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀、出气管路;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器将从气体压力传感器接收的该气压数据与设定阈值区间进行比对;当接收到的压力数据高于设定阈值区间的最大值,微处理器控制阀门控制器打开出气阀设定时间,使得传输管路中气压处于设定范围,同时出气管路的一端连接出气阀,另一端连接所述甲醇制氢设备,通过燃烧为甲醇制氢设备的需加热设备进行加热;当接收到的压力数据低于设定阈值区间的最小值,微处理器控制所述甲醇制氢设备加快原料的输送速度。
- 根据权利要求2所述的发电及制冷一体化的系统,其特征在于:所述发电及制冷一体化的系统还包括气压调节子系统、收集利用子系统所述收集利用子系统连接氢发电设备的排气通道出口,从排出的气体中分别收集氢气、氧气、水,利用收集到的氢气、氧气供甲醇制氢设备或/和氢发电设备使用,收集到的水作为甲醇制氢设备的原料,从而循环使用;所述收集利用子系统包括氢氧分离器、氢水分离器、氢气止回阀、氧水分离器、氧气止回阀,将氢气与氧气分离,而后分别将氢气与水分离、氧气与水分离。
- 一种利用权力要求1至8之一所述发电及制冷一体化的系统的发电及制冷方法,其特征在 于,所述方法包括如下步骤:氢气制备步骤:所述甲醇制氢设备制备氢气,将制得的氢气输送至氢发电设备;发电步骤:氢发电设备利用氢气发出电能,并释放热能;制冷步骤:制冷空调设备或/和移动冰箱设备利用氢发电设备释放的热能或/和甲醇制氢设备重整制氢释放的余热制冷。
- 根据权利要求9所述的发电及制冷方法,其特征在于:所述制冷空调设备、移动冰箱设备均包括冷凝器、蒸发器、若干节流阀、第一吸附发生器、第二吸附发生器;所述第一吸附发生器、第二吸附发生器内设有含氨混合液;所述氢发电设备的散热机构分别连接第一吸附发生器、第二吸附发生器;所述第一吸附发生器与第二吸附发生器分别通过第一节流阀、第二节流阀连接冷凝器;所述第一吸附发生器与第二吸附发生器分别通过第三节流阀、第四节流阀连接蒸发器;冷凝器通过第五节流阀与蒸发器连接;所述第一节流阀、第二节流阀、第三节流阀、第四节流阀、第五节流阀通过节流阀控制器控制其通断;所述制冷步骤包括:第一工作周期中,第一吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第二吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;第二工作周期中,第二吸附发生器受到来自氢发电设备的散热机构的热能或/和甲醇制氢设备重整制氢后的余热,脱附为气态氨,经过冷凝器冷凝为液态氨,释放热,热由冷却介质带出;液态氨通过第五节流阀进入蒸发器蒸发为气态氨,同时吸收热量制冷;气态氨进入第一吸附发生器,在冷却条件下与其中的含氨混合液发生络合反应,生成氨络合物;如此循环。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410428203.0A CN105371521B (zh) | 2014-08-27 | 2014-08-27 | 一种发电及制冷一体化的系统及方法 |
CN201410428203.0 | 2014-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016029604A1 true WO2016029604A1 (zh) | 2016-03-03 |
Family
ID=55373947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/094990 WO2016029604A1 (zh) | 2014-08-27 | 2014-12-25 | 一种发电及制冷一体化的系统及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105371521B (zh) |
WO (1) | WO2016029604A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108258786A (zh) * | 2016-12-28 | 2018-07-06 | 广东能态科技投资有限公司 | 一种能利用自然能源的基站 |
CN110255497A (zh) * | 2019-07-31 | 2019-09-20 | 合肥宝利来环保技术合伙企业(有限合伙) | 甲醇制氢器 |
CN113745609A (zh) * | 2021-10-11 | 2021-12-03 | 哈尔滨工业大学(深圳) | 一种从空气中取水的自产氢发电装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2364409Y (zh) * | 1999-01-06 | 2000-02-16 | 李定宇 | 海洋渔船柴油机尾气制冰机 |
WO2008016216A1 (en) * | 2006-08-02 | 2008-02-07 | Fuelcell Power, Inc. | Fuel cell system and cooling control method thereof |
CN101576330A (zh) * | 2009-06-10 | 2009-11-11 | 北京航空航天大学 | 全电飞行器的机载冷热电联产系统和方法 |
CN101844621A (zh) * | 2009-06-10 | 2010-09-29 | 北京航空航天大学 | 多电飞行器的机载冷热电联产系统 |
US20130034783A1 (en) * | 2002-04-17 | 2013-02-07 | Hibbs Bart D | Energy storage system |
CN203589149U (zh) * | 2013-11-18 | 2014-05-07 | 上海合既得动氢机器有限公司 | 一种利用即时制得的氢气进行发电的系统 |
CN204176957U (zh) * | 2014-08-27 | 2015-02-25 | 上海合既得动氢机器有限公司 | 汽车发电及制冷一体化的系统 |
CN204176956U (zh) * | 2014-08-27 | 2015-02-25 | 上海合既得动氢机器有限公司 | 一种发电及制冷一体化的系统 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4390681B2 (ja) * | 2004-10-29 | 2009-12-24 | 三洋電機株式会社 | 吸収冷凍機 |
CN101737995B (zh) * | 2009-12-23 | 2012-05-30 | 南京工业大学 | 微正压运行的吸附制冷系统 |
CN102340016A (zh) * | 2011-08-10 | 2012-02-01 | 濮阳市宇宙生物能源有限公司 | 零碳一体机及工作方法 |
CN103618099B (zh) * | 2013-11-18 | 2016-01-20 | 上海合既得动氢机器有限公司 | 利用即时制得的氢气进行发电的系统及方法 |
CN103940185B (zh) * | 2014-04-10 | 2017-06-16 | 上海合既得动氢机器有限公司 | 一种甲醇水重整发电冰箱系统及控制方法 |
-
2014
- 2014-08-27 CN CN201410428203.0A patent/CN105371521B/zh active Active
- 2014-12-25 WO PCT/CN2014/094990 patent/WO2016029604A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2364409Y (zh) * | 1999-01-06 | 2000-02-16 | 李定宇 | 海洋渔船柴油机尾气制冰机 |
US20130034783A1 (en) * | 2002-04-17 | 2013-02-07 | Hibbs Bart D | Energy storage system |
WO2008016216A1 (en) * | 2006-08-02 | 2008-02-07 | Fuelcell Power, Inc. | Fuel cell system and cooling control method thereof |
CN101576330A (zh) * | 2009-06-10 | 2009-11-11 | 北京航空航天大学 | 全电飞行器的机载冷热电联产系统和方法 |
CN101844621A (zh) * | 2009-06-10 | 2010-09-29 | 北京航空航天大学 | 多电飞行器的机载冷热电联产系统 |
CN203589149U (zh) * | 2013-11-18 | 2014-05-07 | 上海合既得动氢机器有限公司 | 一种利用即时制得的氢气进行发电的系统 |
CN204176957U (zh) * | 2014-08-27 | 2015-02-25 | 上海合既得动氢机器有限公司 | 汽车发电及制冷一体化的系统 |
CN204176956U (zh) * | 2014-08-27 | 2015-02-25 | 上海合既得动氢机器有限公司 | 一种发电及制冷一体化的系统 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108258786A (zh) * | 2016-12-28 | 2018-07-06 | 广东能态科技投资有限公司 | 一种能利用自然能源的基站 |
CN108258786B (zh) * | 2016-12-28 | 2024-02-23 | 广东能态科技投资有限公司 | 一种能利用自然能源的基站 |
CN110255497A (zh) * | 2019-07-31 | 2019-09-20 | 合肥宝利来环保技术合伙企业(有限合伙) | 甲醇制氢器 |
CN113745609A (zh) * | 2021-10-11 | 2021-12-03 | 哈尔滨工业大学(深圳) | 一种从空气中取水的自产氢发电装置 |
CN113745609B (zh) * | 2021-10-11 | 2023-12-19 | 哈尔滨工业大学(深圳) | 一种从空气中取水的自产氢发电装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105371521B (zh) | 2018-05-08 |
CN105371521A (zh) | 2016-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015070802A1 (zh) | 利用即时制得的氢气进行发电的系统及方法 | |
CN103618100B (zh) | 即时制氢发电系统及方法 | |
WO2015070803A1 (zh) | 一种能快速启动的甲醇水制氢系统及其制氢方法 | |
CN103618098B (zh) | 一种利用即时制得的氢气进行发电的系统及方法 | |
WO2015127815A1 (zh) | 小型甲醇水制氢设备及其制氢方法 | |
CN104596001B (zh) | 基于甲醇水制氢发电系统的空调系统及其控制方法 | |
CN103387210B (zh) | 甲醇水制氢系统及方法 | |
JP6078547B2 (ja) | アンモニアから水素を製造する方法 | |
ES2392939T3 (es) | Sistema de generación in situ de hidrógeno bajo demanda usando un reactivo metálico líquido reciclable, y el método utilizado en el sistema | |
CN103579654B (zh) | 一种即时制氢发电系统及方法 | |
CN103569964A (zh) | 利用甲醇水制备氢气的设备 | |
CN103579653B (zh) | 甲醇水即时制氢发电系统及其控制方法 | |
WO2016029604A1 (zh) | 一种发电及制冷一体化的系统及方法 | |
WO2016029603A1 (zh) | 汽车发电及制冷一体化的系统及方法 | |
CN107191289A (zh) | 纯氧富氧燃烧原动机装置及使用该装置的交通工具和系统 | |
CN203589149U (zh) | 一种利用即时制得的氢气进行发电的系统 | |
CN204404423U (zh) | 基于甲醇水制氢发电系统的空调系统 | |
HUT69861A (en) | Dviring device for using hydrogen and/or other gas or gasified fuel | |
CN203589147U (zh) | 一种即时制氢发电系统 | |
CN204176956U (zh) | 一种发电及制冷一体化的系统 | |
CN204176957U (zh) | 汽车发电及制冷一体化的系统 | |
CN103807130B (zh) | 醇氢动力泵及其驱动方法 | |
CN103738919B (zh) | 富氢机及其制备富氢的方法 | |
CN203589151U (zh) | 即时制氢发电系统 | |
CN105070930A (zh) | 甲醇水蒸气制氢发电系统及其燃料电池系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14900438 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14900438 Country of ref document: EP Kind code of ref document: A1 |