CN203589147U - 一种即时制氢发电系统 - Google Patents

一种即时制氢发电系统 Download PDF

Info

Publication number
CN203589147U
CN203589147U CN201320672881.2U CN201320672881U CN203589147U CN 203589147 U CN203589147 U CN 203589147U CN 201320672881 U CN201320672881 U CN 201320672881U CN 203589147 U CN203589147 U CN 203589147U
Authority
CN
China
Prior art keywords
hydrogen
air pressure
power generation
subsystem
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201320672881.2U
Other languages
English (en)
Inventor
向华
向得夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Hejide Dynamic Hydrogen Machine Co Ltd
Original Assignee
Shanghai Hejide Dynamic Hydrogen Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hejide Dynamic Hydrogen Machine Co Ltd filed Critical Shanghai Hejide Dynamic Hydrogen Machine Co Ltd
Priority to CN201320672881.2U priority Critical patent/CN203589147U/zh
Application granted granted Critical
Publication of CN203589147U publication Critical patent/CN203589147U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

本实用新型揭示了一种即时制氢发电系统,所述系统包括制氢子系统、气压调节子系统、发电子系统;制氢子系统利用甲醇水制备氢气,将制得的氢气通过传输管路实时传输至发电子系统;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述发电子系统利用制氢子系统制得的氢气发电;气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀;气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;微处理器根据所述气体压力传感器感应的气压数据控制出气阀的开关。本实用新型可利用即时制备的氢气发电,无需氢气缓冲罐,能提高制氢发电系统的便携性、可移动性。

Description

一种即时制氢发电系统
技术领域
本实用新型属于氢气制备及氢气发电技术领域,涉及一种发电系统,尤其涉及一种即时制氢发电系统。
背景技术
在众多的新能源中,氢能将会成为21世纪最理想的能源。这是因为,在燃烧相同重量的煤、汽油和氢气的情况下,氢气产生的能量最多,而且它燃烧的产物是水,没有灰渣和废气,不会污染环境;而煤和石油燃烧生成的是二氧化碳和二氧化硫,可分别产生温室效应和酸雨。煤和石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地产生氢气,永远不会用完。
氢是一种无色的气体。燃烧一克氢能释放出142千焦尔的热量,是汽油发热量的3倍。氢的重量特别轻,它比汽油、天然气、煤油都轻多了,因而携带、运送方便,是航天、航空等高速飞行交通工具最合适的燃料。氢在氧气里能够燃烧,氢气火焰的温度可高达2500℃,因而人们常用氢气切割或者焊接钢铁材料。
在大自然中,氢的分布很广泛。水就是氢的大“仓库”,其中含有11%的氢。泥土里约有1.5%的氢;石油、煤炭、天然气、动植物体内等都含有氢。氢的主体是以化合物水的形式存在的,而地球表面约70%为水所覆盖,储水量很大,因此可以说,氢是“取之不尽、用之不竭”的能源。如果能用合适的方法从水中制取氢,那么氢也将是一种价格相当便宜的能源。
氢的用途很广,适用性强。它不仅能用作燃料,而且金属氢化物具有化学能、热能和机械能相互转换的功能。例如,储氢金属具有吸氢放热和吸热放氢的本领,可将热量储存起来,作为房间内取暖和空调使用。
氢作为气体燃料,首先被应用在汽车上。1976年5月,美国研制出一种以氢作燃料的汽车;后来,日本也研制成功一种以液态氢为燃料的汽车;70年代末期,前联邦德国的奔驰汽车公司已对氢气进行了试验,他们仅用了五千克氢,就使汽车行驶了110公里。
用氢作为汽车燃料,不仅干净,在低温下容易发动,而且对发动机的腐蚀作用小,可延长发动机的使用寿命。由于氢气与空气能够均匀混合,完全可省去一般汽车上所用的汽化器,从而可简化现有汽车的构造。更令人感兴趣的是,只要在汽油中加入4%的氢气。用它作为汽车发动机燃料,就可节油40%,而且无需对汽油发动机作多大的改进。
氢气在一定压力和温度下很容易变成液体,因而将它用铁罐车、公路拖车或者轮船运输都很方便。液态的氢既可用作汽车、飞机的燃料,也可用作火箭、导弹的燃料。美国飞往月球的“阿波罗”号宇宙飞船和我国发射人造卫星的长征运载火箭,都是用液态氢作燃料的。
另外,使用氢—氢燃料电池还可以把氢能直接转化成电能,使氢能的利用更为方便。目前,这种燃料电池已在宇宙飞船和潜水艇上得到使用,效果不错。当然,由于成本较高,一时还难以普遍使用。
现在世界上氢的年产量约为3600万吨,其中绝大部分是从石油、煤炭和天然气中制取的,这就得消耗本来就很紧缺的矿物燃料;另有4%的氢是用电解水的方法制取的,但消耗的电能太多,很不划算,因此,人们正在积极探索研究制氢新方法。而用甲醇、水重整制氢可减少化工生产中的能耗和降低成本,有望替代被称为“电老虎”的“电解水制氢”的工艺,利用先进的甲醇蒸气重整──变压吸附技术制取纯氢和富含CO2的混合气体,经过进一步的后处理,可同时得到氢气和二氧化碳气。
甲醇与水蒸气在一定的温度、压力条件下通过催化剂,在催化剂的作用下,发生甲醇裂解反应和一氧化碳的变换反应,生成氢和二氧化碳,这是一个多组份、多反应的气固催化反应系统。反应方程如下:
CH3OH→CO+2H2       (1)
H2O+CO→CO2+H2     (2)
CH3OH+H2O→CO2+3H2  (3)
重整反应生成的H2和CO2,再经过钯膜分离将H2和CO2分离,得到高纯氢气。变压吸附法的耗能高、设备大,且不适合小规模的氢气制备。
现有的氢气发电系统,通常是利用已经制备好的氢气发电,即制备氢气与氢气发电是分离的。首先利用制氢设备制备氢气,将氢气放置于氢气缓冲罐中,而后通过氢气缓冲罐中的氢气发电。氢气缓冲罐的体积较为庞大,不便携带,移动性较差,从而制约了氢气制备及发电设备的便携性。
有鉴于此,如今迫切需要设计一种新的氢气发电系统,以便克服现有氢气发电系统的上述缺陷。
实用新型内容
本实用新型所要解决的技术问题是:提供一种即时制氢发电系统,可利用即时制备的氢气发电,无需氢气缓冲罐,进一步提高制氢发电系统的便携性、可移动性。
为解决上述技术问题,本实用新型采用如下技术方案:
一种即时制氢发电系统,所述系统包括:制氢子系统、气压调节子系统、发电子系统,制氢子系统、气压调节子系统、发电子系统依次连接;
所述制氢子系统利用甲醇水制备氢气,将制得的氢气通过传输管路实时传输至发电子系统;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述发电子系统利用制氢子系统制得的氢气发电;
所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器根据所述气体压力传感器感应的气压数据控制出气阀的开关。
作为本实用新型的一种优选方案,所述出气阀处设有出气管路,出气管路的一端连接出气阀,另一端连接所述制氢子系统,通过燃烧为制氢子系统的需加热设备进行加热。
作为本实用新型的一种优选方案,所述制氢子系统包括:储存有液态甲醇和水的液体储存容器、原料输送装置、制氢设备、膜分离装置;
所述原料输送装置分别连接液体储存容器、制氢设备,所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢设备;制氢设备连接膜分离装置。
本实用新型的有益效果在于:本实用新型提出的即时制氢发电系统,可利用即时制备的氢气发电,无需氢气缓冲罐,通过气压调节子系统调整传输管路中的氢气气压;由于气压调节子系统的体积很小,因而能够进一步提高制氢发电系统的便携性、可移动性。
附图说明
图1为本实用新型即时制氢发电系统的组成示意图。
图2为制氢子系统的组成示意图。
具体实施方式
下面结合附图详细说明本实用新型的优选实施例。
实施例一
请参阅图1,本实用新型揭示了一种即时制氢发电系统,所述系统包括:制氢子系统1、气压调节子系统2、发电子系统3,制氢子系统1、气压调节子系统2、发电子系统3依次连接。所述制氢子系统1利用甲醇水制备氢气,将制得的氢气通过传输管路实时传输至发电子系统3;所述传输管路设有气压调节子系统2,用于调整传输管路中的气压;所述发电子系统3利用制氢子系统制得的氢气发电。
所述制氢子系统利用甲醇水制备氢气,所述制氢子系统包括固态氢气储存容器、液体储存容器、原料输送装置、制氢设备、膜分离装置。
如图1所示,所述气压调节子系统2包括微处理器21、气体压力传感器22、阀门控制器23、出气阀24、出气管路25。所述气体压力传感器22设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器21;所述微处理器21将从气体压力传感器22接收的该气压数据与设定阈值区间进行比对,并以此控制出气阀24的开关。当接收到的压力数据高于设定阈值区间的最大值,微处理器21控制阀门控制器23打开出气阀设定时间,使得传输管路中气压处于设定范围.优选地,出气管路25的一端连接出气阀24,另一端连接所述制氢子系统10,通过燃烧为制氢子系统10的需加热设备(如重整室)进行加热;当接收到的压力数据低于设定阈值区间的最小值,微处理器21控制所述制氢子系统10加快原料的输送速度,从而提高制氢速度。
以上介绍了本实用新型即时制氢发电系统,本实用新型在揭示上述即时制氢发电系统的同时,还揭示一种上述即时制氢发电系统的发电方法,所述发电方法包括:
【步骤S1】所述制氢子系统利用甲醇水制备氢气,将制得的氢气通过传输管路实时传输至发电子系统。
所述制氢子系统制备氢气的过程包括:
固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢设备提供启动热能,作为制氢设备的启动能源;
所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢设备;所述原料输送装置向原料提供0.15~5M Pa的压强,使得制氢设备制得的氢气具有足够的压强;
制氢设备制备氢气;
所述制氢设备制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7M Pa(如1.1MPa)。
【步骤S2】所述传输管路设有气压调节子系统,调整传输管路中的气压;所述气体压力传感器设置于传输管路中,感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器根据所述气体压力传感器感应的气压数据控制出气阀的开关。
所述气压调节子系统进行气压调节时具体包括:所述微处理器将所述气体压力传感器感应的气压数据与设定阈值区间进行比对;当接收到的压力数据高于设定阈值区间的最大值,微处理器控制阀门控制器打开出气阀设定时间,使得传输管路中气压处于设定范围;当接收到的压力数据低于设定阈值区间的最小值,微处理器控制所述制氢子系统加快原料的输送速度。
【步骤S3】所述发电子系统利用制氢子系统制得的氢气发电。
实施例二
本实施例与实施例一的区别在于,本实施例中,请参阅图2,所述制氢子系统利用甲醇水制备氢气,所述制氢子系统包括固态氢气储存容器40、液体储存容器10、原料输送装置50、制氢设备20、膜分离装置30。
所述固态氢气储存容器40、液体储存容器10分别与制氢设备20连接;液体储存容器10中储存有液态的甲醇和水,所述固态氢气储存容器40中储存固态氢气。
当制氢系统启动时,通过气化模块将固态氢气储存容器40中的固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢设备20提供启动热能,作为制氢设备20的启动能源。当然,固态氢气储存容器40不是本实用新型的必要设备,可以通过其他能源启动制氢设备20。
所述原料输送装置50提供动力,将液体储存容器10中的原料输送至制氢设备20;所述原料输送装置50向原料提供0.15~5M Pa的压强(如提供0.2M Pa或1.1M Pa或1.2M Pa或1.5M Pa或5M Pa的压强),使得制氢设备20制得的氢气具有足够的压强。所述制氢设备20启动制氢后,制氢设备20制得的部分氢气或/和余气通过燃烧维持制氢设备20运行(当然,制氢设备20的运行还可以通过其他能源)。
所述制氢设备20制得的氢气输送至膜分离装置30进行分离,用于分离氢气的膜分离装置30的内外压强之差大于等于0.7M Pa(如膜分离装置30的内外压强为0.7M Pa或1.1M Pa或1.2M Pa或1.5M Pa或5M Pa)。
本实施例中,所述膜分离装置30为在多孔陶瓷表面真空镀钯银合金的膜分离装置,镀膜层为钯银合金,钯银合金的质量百分比钯占75%~78%,银占22%~25%。所述膜分离装置30的制备工艺包括如下步骤:
步骤1、将多孔陶瓷设置于磁控溅射装置的真空室内;
步骤2、利用磁控溅射装置的磁场产生机构产生磁场,使得金属靶产生偏差电流,金属靶作为负极,从而使多孔陶瓷表面带有磁层体;所述金属靶的材料为溅射贵重金属,所述贵重金属为钯银合金,质量百分比钯占75%~78%,银占22%~25%;
步骤3、在金属靶产生偏差电流的同时,对磁控溅射装置的真空室进行加热,温度控制在350℃~800℃;
步骤4、抽出真空室内的气体,当真空室内的真空度小于10-2Pa时,向真空室内充入设定浓度的氩气;
步骤5、向金属靶通入电流,进行溅射镀膜;金属靶产生的离子在电场的作用下加速飞向多孔陶瓷表面的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向多孔陶瓷表面;氩离子在电场的作用下加速轰击金属靶,溅射出大量的金属靶靶材原子或分子,呈中性的靶原子或分子沉积在多孔陶瓷表面上,形成1~15μm的贵重金属薄膜;
其中,在溅射镀膜的过程中还包括氩气浓度检测步骤;实时或者以设定时间间隔检测真空室内的氩气浓度,当氩气浓度低于设定阈值时自动打开氩气充气阀门,向真空室内充入氩气,直至真空室内的氩气浓度符合设定阈值范围;
在溅射镀膜的过程中还包括气压检测步骤;实时或者以设定时间间隔检测真空室内的气压,当真空室内的气压不在设定阈值区间,调整真空室内的气压至设定阈值区间;
步骤6、向真空室内通入大气,取出工件。
优选地,所述制氢设备包括换热器、气化室、重整室;膜分离装置设置于分离室内,分离室设置于重整室的上部。
所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为350℃~409℃;所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;所述分离室内的温度设定为400℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气。
以上介绍了甲醇水制氢子系统的组成,本实用新型还揭示一种利用上述甲醇水制氢子系统的制氢方法,所述制氢方法包括:
【步骤0】所述固态氢气储存容器中储存固态氢气,当制氢系统启动时,通过气化模块将固态氢气转换为气态氢气,气态氢气通过燃烧放热,为制氢设备提供启动热能,作为制氢设备的启动能源;
【步骤1】所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢设备;所述原料输送装置向原料提供0.15~5M Pa的压强,使得制氢设备制得的氢气具有足够的压强;
【步骤2】制氢设备制备氢气;具体包括:
所述液体储存容器中的甲醇和水通过原料输送装置输送至换热器换热,换热后进入气化室气化;
气化后的甲醇蒸气及水蒸气进入重整室,重整室内设有催化剂,重整室下部及中部温度为300℃~420℃;
所述重整室上部的温度为400℃~570℃;重整室与分离室通过连接管路连接,连接管路的全部或部分设置于重整室的上部,能通过重整室上部的高温继续加热从重整室输出的气体;所述连接管路作为重整室与分离室之间的缓冲,使得从重整室输出的气体的温度与分离室的温度相同或接近;
所述分离室内的温度设定为350℃~570℃;分离室内设有膜分离器,从膜分离器的产气端得到氢气。
【步骤3】所述制氢设备制得的氢气输送至膜分离装置进行分离,用于分离氢气的膜分离装置的内外压强之差大于等于0.7M Pa;
本实施例中,制氢子系统将分离室设置于重整室的上部,重整室上部相比中部及下部的温度较高,通过连接管路连接重整室与分离室,连接管路在输送的过程中能利用重整室上部的高温加热输送的气体,起到预热作用,同时加热方式非常便捷。在重整室与分离室之间的管路作为预热控温机构,可以对从重整室输出的气体进行加热,使得从重整室输出的气体的温度与分离室的温度相同或接近;从而可以分别保证重整室内催化剂的低温要求,以及分离室的高温要求,进而提高氢气制备效率。
综上所述,本实用新型提出的即时制氢发电系统,可利用即时制备的氢气发电,无需氢气缓冲罐,通过气压调节子系统调整传输管路中的氢气气压;由于气压调节子系统的体积很小,因而能够进一步提高制氢发电系统的便携性、可移动性。
这里本实用新型的描述和应用是说明性的,并非想将本实用新型的范围限制在上述实施例中。这里所披露的实施例的变形和改变是可能的,对于那些本领域的普通技术人员来说实施例的替换和等效的各种部件是公知的。本领域技术人员应该清楚的是,在不脱离本实用新型的精神或本质特征的情况下,本实用新型可以以其它形式、结构、布置、比例,以及用其它组件、材料和部件来实现。在不脱离本实用新型范围和精神的情况下,可以对这里所披露的实施例进行其它变形和改变。

Claims (3)

1.一种即时制氢发电系统,其特征在于,所述系统包括:制氢子系统、气压调节子系统、发电子系统,制氢子系统、气压调节子系统、发电子系统依次连接;
所述制氢子系统利用甲醇水制备氢气,将制得的氢气通过传输管路实时传输至发电子系统;所述传输管路设有气压调节子系统,用于调整传输管路中的气压;所述发电子系统利用制氢子系统制得的氢气发电;
所述气压调节子系统包括微处理器、气体压力传感器、阀门控制器、出气阀;所述气体压力传感器设置于传输管路中,用以感应传输管路中的气压数据,并将感应的气压数据发送至微处理器;所述微处理器根据所述气体压力传感器感应的气压数据控制出气阀的开关。
2.根据权利要求1所述的即时制氢发电系统,其特征在于:
所述出气阀处设有出气管路,出气管路的一端连接出气阀,另一端连接所述制氢子系统,通过燃烧为制氢子系统的需加热设备进行加热。
3.根据权利要求1所述的即时制氢发电系统,其特征在于:
所述制氢子系统包括:储存有液态甲醇和水的液体储存容器、原料输送装置、制氢设备、膜分离装置;
所述原料输送装置分别连接液体储存容器、制氢设备,所述原料输送装置提供动力,将液体储存容器中的原料输送至制氢设备;制氢设备连接膜分离装置。
CN201320672881.2U 2013-10-29 2013-10-29 一种即时制氢发电系统 Withdrawn - After Issue CN203589147U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201320672881.2U CN203589147U (zh) 2013-10-29 2013-10-29 一种即时制氢发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201320672881.2U CN203589147U (zh) 2013-10-29 2013-10-29 一种即时制氢发电系统

Publications (1)

Publication Number Publication Date
CN203589147U true CN203589147U (zh) 2014-05-07

Family

ID=50587011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201320672881.2U Withdrawn - After Issue CN203589147U (zh) 2013-10-29 2013-10-29 一种即时制氢发电系统

Country Status (1)

Country Link
CN (1) CN203589147U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579654A (zh) * 2013-10-29 2014-02-12 上海合既得动氢机器有限公司 一种即时制氢发电系统及方法
CN106121922A (zh) * 2016-07-28 2016-11-16 全球能源互联网研究院 一种风力发电耦合氢储能发电系统及其测试方法和装置
CN113412550A (zh) * 2018-12-20 2021-09-17 Hps家庭电源解决方案有限公司 能量系统和用于调整在能量系统中的压力的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579654A (zh) * 2013-10-29 2014-02-12 上海合既得动氢机器有限公司 一种即时制氢发电系统及方法
CN106121922A (zh) * 2016-07-28 2016-11-16 全球能源互联网研究院 一种风力发电耦合氢储能发电系统及其测试方法和装置
CN113412550A (zh) * 2018-12-20 2021-09-17 Hps家庭电源解决方案有限公司 能量系统和用于调整在能量系统中的压力的方法

Similar Documents

Publication Publication Date Title
CN103618100B (zh) 即时制氢发电系统及方法
CN103618099B (zh) 利用即时制得的氢气进行发电的系统及方法
CN103618098B (zh) 一种利用即时制得的氢气进行发电的系统及方法
CN103579654B (zh) 一种即时制氢发电系统及方法
CN103387210B (zh) 甲醇水制氢系统及方法
CN103613069B (zh) 能快速启动的甲醇水制氢系统及方法
US10322933B2 (en) Quick-start system for preparing hydrogen via aqueous methanol and hydrogen preparation method
CN103569964B (zh) 利用甲醇水制备氢气的设备
CN103579653B (zh) 甲醇水即时制氢发电系统及其控制方法
CN105390719A (zh) 一种醇氢发电设备及其存储装置
CN203589149U (zh) 一种利用即时制得的氢气进行发电的系统
CN105070931A (zh) 甲醇水蒸气制氢发电系统
CN203589147U (zh) 一种即时制氢发电系统
CN105371521B (zh) 一种发电及制冷一体化的系统及方法
CN203589151U (zh) 即时制氢发电系统
CN203582463U (zh) 一种能快速启动的甲醇水制氢系统
CN105444455A (zh) 汽车发电及制冷一体化的系统及方法
CN203820445U (zh) 小型甲醇水制氢设备
CN204176957U (zh) 汽车发电及制冷一体化的系统
CN204176956U (zh) 一种发电及制冷一体化的系统
CN105070930A (zh) 甲醇水蒸气制氢发电系统及其燃料电池系统
CN203589148U (zh) 甲醇水即时制氢发电系统
CN203589150U (zh) 利用即时制得的氢气进行发电的系统
CN204927425U (zh) 甲醇水蒸气制氢发电系统及其燃料电池系统
CN204033156U (zh) 一种富氢烧烤炉

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20140507

Effective date of abandoning: 20160120

C25 Abandonment of patent right or utility model to avoid double patenting