WO2016029529A1 - 一种气体净化剂及其使用方法 - Google Patents

一种气体净化剂及其使用方法 Download PDF

Info

Publication number
WO2016029529A1
WO2016029529A1 PCT/CN2014/087834 CN2014087834W WO2016029529A1 WO 2016029529 A1 WO2016029529 A1 WO 2016029529A1 CN 2014087834 W CN2014087834 W CN 2014087834W WO 2016029529 A1 WO2016029529 A1 WO 2016029529A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
agent
gas purifying
purifying agent
bubble
Prior art date
Application number
PCT/CN2014/087834
Other languages
English (en)
French (fr)
Inventor
尹无忌
Original Assignee
尹无忌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410427745.6A external-priority patent/CN104174278B/zh
Priority claimed from CN201410427094.0A external-priority patent/CN104147888B/zh
Application filed by 尹无忌 filed Critical 尹无忌
Priority to US14/768,079 priority Critical patent/US9821271B2/en
Publication of WO2016029529A1 publication Critical patent/WO2016029529A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/04Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour through foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/502Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific solution or suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2221/00Applications of separation devices
    • B01D2221/16Separation devices for cleaning ambient air, e.g. air along roads or air in cities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Definitions

  • the invention relates to the technical field of environmental protection, in particular to a method for using a purifying agent for gas purification, which can desulfurize and agglomerate fine dust such as PM10 and PM2.5.
  • recognized and feasible treatment methods include: 1) filtration method using air conditioners, humidifiers, fresheners, etc. in a limited space; 2) adsorption methods for ultrasonic atomizers, water curtains, pools, fish tanks, etc.; 3) Plant uptake method using plant leaf absorption and adsorption; 4) Negative ion deposition method using electric energy negative ion generator in indoor space.
  • these treatment methods are effective for local space, they are very weak for solving the problem of atmospheric dust and smog pollution. How to solve the problem of atomic positive dust particles smog pollution, technical workers in various countries have been making unremitting efforts for more than 100 years.
  • the present invention provides a gas purifying agent capable of desulfurizing and agglomerating fine dust such as PM10 or PM2.5, and can be used as an air herbicide or a desulfurizing agent.
  • a first embodiment of the invention relates to a gas purifying agent comprising a negatively charged film former and a foaming agent.
  • the negative electrodepositing film forming agent in the gas purifying agent is 20 to 80% by weight, preferably 28 to 40% by weight; and the foaming agent is 20 to 80% by weight, preferably 60 to 72% by weight.
  • the gas purifying agent of the composition can be used as a herbicide to effectively remove fine dust particles such as PM10 and PM2.5 in the air.
  • a compound which does not exert an antagonistic effect on the negative charge, adhesion and stability of the water-soluble polymer bubble, such as a fragrance and/or a pigment, a flavor and the like may be added.
  • the amount of the pigment to be incorporated is 0.1 to 5% by weight based on the total amount of the film-forming agent and the foaming agent.
  • the gas purifying agent comprises a negatively charged film forming agent of 2.5 to 25% by weight, preferably 10 to 15% by weight; the blowing agent is 2.5 to 25% by weight, preferably 10 to 15% by weight;
  • the desulfurizing agent is 50 to 95% by weight, preferably 70 to 80% by weight.
  • the gas purifying agent of this composition can be used as a desulfurizing agent to remove sulfur compounds in industrial waste gas.
  • the negatively-charged film-forming agent is a water-soluble polymer compound or composite capable of forming a negatively-charged water-soluble film, preferably from at least one of the following: Cape resin (KEPS resin) (produced by Japan Daiichi Pharmaceutical Co., Ltd.), 2-acrylamide-2-methylpropanesulfonic acid (AMPS) salt and homopolymers and copolymers thereof, anionic starch, vegetable gum, methyl Cellulose (MC), sodium carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methyl Cellulose (HPMC), hydroxybutyl methyl cellulose (HBMC), ethyl hydroxyethyl cellulose (EHEC), polyanionic cellulose (PAC), anionic polyacrylamide, polyacrylic acid, polymethacrylic acid and copolymerization thereof , potassium polyacrylate, sodium methyl cellulose (CMC),
  • the negatively-charged film-forming agent is at least one selected from the group consisting of a Cape resin, sodium carboxymethyl cellulose (CMC), and hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methylcellulose (HPMC), anionic polyacrylamide, anionic starch, potassium polyacrylate, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone and polyethylene glycol.
  • a Cape resin sodium carboxymethyl cellulose (CMC), and hydroxyethyl methyl cellulose (HEMC), hydroxypropyl methylcellulose (HPMC), anionic polyacrylamide, anionic starch, potassium polyacrylate, sodium alginate, polyvinyl alcohol, polyvinylpyrrolidone and polyethylene glycol.
  • the foaming agent is at least one selected from the group consisting of an anionic surfactant, a zwitterionic surfactant, and a nonionic surfactant; preferably at least one of the following compounds: dodecane Sodium sulfonate, sodium dodecylbenzenesulfonate, dodecyl sulfate ethanolamine salt (K12EA), sodium lauryl sulfate (K12), F-873 blowing agent, fluorocarbon carboxylate, fluorocarbon sulfuric acid Fatty salt, fluorocarbon sulfonate, sodium o-xylylene sulfonate, sodium lauryl phthalate (PAS12), sodium N-lauroyl-L-glutamate, N-acyl glutamic acid Potassium salt (AGA salt), sodium isethionate, rosin soap (sodium rosinate), rosin hot polymer, sodium secondary alkyl sulfate
  • the foaming agent is selected from at least one of the following compounds: sodium dodecylbenzenesulfonate, sodium lauryl sulfate (K12), rosin soap (sodium rosinate) , rosin hot polymer, sodium sulphate (K14), sulfosuccinate 403, polyoxyethylene lauryl ether and alkylphenol ethoxylate (OP-1 ⁇ 18).
  • the desulfurizing agent is selected from at least one of the group consisting of lime, carbide slag, stone powder, soda ash, caustic soda, sodium metaaluminate and sodium silicate.
  • the gas purifying agent as a herbicide of the present invention is mainly composed of a negatively-charged film-forming agent and a foaming agent, and the mass percentage thereof is: 20 to 80% by weight, preferably 28 to 40% by weight;
  • the foaming agent is 20 to 80%, preferably 60 to 72% by weight.
  • the components are uniformly mixed, that is, a powdery or creamy negatively charged membrane removing agent is obtained. It can also be mixed with water evenly, that is, a liquid or paste negative electric film method for removing the cockroach. It is also possible to add the components and pack them separately, and mix them evenly in a practical manner, that is, a negatively charged membrane method for removing the mites.
  • a second embodiment of the present invention relates to a method of using the gas purifying agent as a herbicide, which is included in the above a gas purifying agent used as a herbicide is stirred with water to form a negative electrode polymer foam liquid containing 0.5 to 10% by mass of the gas purifying agent; and the foam liquid is formed into a film by using a bubble device.
  • the bubbles are caused to float and move the bubble in the atmosphere containing ruthenium.
  • the bubble may be scattered from the airborne space of the aircraft, or from a ground or high platform with a bubble ejector mechanism, and the blister bubble floats and moves in the atmosphere containing the sputum.
  • the gas purifying agent as the herbicide in the invention is converted into a polymer polymer water-soluble film phase carrier-bubble during the use of the negative electric film-forming agent and the foaming agent, and the generated a large amount of good mechanical strength and A negatively chargeable high molecular weight polymer bubble having an extremely high surface area.
  • the polymer bubble floats and floats in the atmosphere of the cerium-containing aerosol (positively charged PM10, PM2.5 fine dust particles).
  • the negatively charged electrostatic attraction of the water-soluble film concentrates the positively charged in the atmosphere.
  • Very fine dust particles (PM10, PM2.5 dust); on the other hand, the adsorption of fine dust particles (PM10, PM2.5) in the atmosphere by the adhesion of ultra-high surface area polymer water-soluble membrane Dust) and other floating pollutants such as fungal spores.
  • the floating polymer compound water-soluble membrane phase carrier-bubble solubilizes and absorbs the gaseous organic pollutants in the concentrated atmosphere, thereby coagulating extremely fine dust and pollutants in the atmosphere into coarse particles carried by the bubble.
  • the negatively charged water-soluble membrane phase carrier-bubble floating in the atmosphere is agglomerated into coarse particles with the aggregation and electrical neutralization of the fine dust, and the atmosphere defoams the bubble, and settles by gravity.
  • atmospheric pollutants are transferred to the surface microbial flora to be digested, thereby effectively removing pollutants such as dust and dust in the atmosphere.
  • a third embodiment of the present invention relates to a method of using the gas purifying agent as a desulfurizing agent, comprising: adding a water to the gas purifying agent as a desulfurizing agent to a mass of the gas purifying agent: 10% foaming liquid; the foaming liquid is made into a bubble using a bubble device, and the bubble is floated and moved in a sulfur-containing exhaust gas.
  • the amount of the gas purifying agent to be used as the desulfurizing agent or the herbicide in the present invention is adjusted, for example, according to the on-line detection of the concentration of SO 2 in the exhaust gas, the concentration of PM 10 or PM 2.5; for the production line provided with the precipitator, in the precipitator Continuously added to the gas pipe or the discharge pipe; for small furnaces without a dust collector, continuously added to the flue gas discharge pipe.
  • the gas purifying agent as a desulfurizing agent of the present invention utilizes a negatively charged film forming agent and a foaming agent (surfactant) to perform a function of dispersing and carrying a desulfurizing agent, and a 0.1% KEPS water-soluble resin can sufficiently disperse the desulfurizing agent. (such as lime, stone powder).
  • a foaming agent surfactant
  • KEPS water-soluble resin can sufficiently disperse the desulfurizing agent. (such as lime, stone powder).
  • the water-soluble polymer film phase carrier-bubble is formed by a critical amount of the film-forming agent and the foaming agent required to disperse the negative-carrying desulfurizing agent.
  • a large number of ultra-high surface area membranes with good mechanical strength and stability generated by the interaction between the negatively charged film former and the foaming agent during use are used as the main desulfurization carrier, which greatly expands the desulfurizing agent and the flue gas. Contact reaction area.
  • a large number of tough negative-charged membranes disturb the flue gas stream and greatly increase the drift contact time with flue gas to achieve high-efficiency desulfurization effect, and the desulfurization rate can reach 99.99%.
  • a large number of ultra-high surface area bubbles are in the smoke.
  • the negatively charged electrostatic attraction of the water-soluble membrane phase in the gas stream accumulates the positively charged fine dust particle aerosol (PM10, PM2.5 positively charged dust) in the flue gas, and at the same time, the water-soluble polymerization with ultra-high surface area
  • the adhesion of the bubble phase of the material adsorbs the fine dust particles (PM10, PM2.5 dust) in the flue gas, thereby agglomerating the fine dust into coarser particles with the bubble as a carrier.
  • the bubble is formed into a coarser mass with the formation and loading of sulfate, the agglomeration and electrical neutralization of the fine dust, and the dehumidification of the water-soluble polymer bubble by the flue gas.
  • Particles in order to collect by the dust collector, or settle in the flue gas stream or enter the atmosphere for gravity sedimentation (in the case of a small kiln without a dust collector), thereby effectively removing sulfur oxides and fine dust from the flue gas emitted from industrial furnaces. atmospheric pollutant.
  • the gas purifying agent for deodorizing gas of the invention has wide source of raw materials, easy to process the herbicide, simple method of removing the rake, and the application is efficient and economical, and provides a simple and feasible method for removing gas pollution, especially for removing atmospheric dust and dust.
  • the airborne bubble drift formed by the membrane degreasing agent of the present invention for the addition of a gas purifying agent and a odor freshener can produce a beautiful aerial landscape and a passion for excitement, and the environment and the air vehicle There is no conflict, which is conducive to promoting people to clean up the environmental air pollution.
  • the desulfurization process of the desulfurization gas purifying agent of the present invention has a simple control method, and has low operating cost due to high-efficiency desulfurization and dust collection, and is easy to popularize and apply;
  • the gas purifying agent for desulfurization of the invention has good adaptability, and is suitable for flue gas desulfurization of large industrial furnaces, purification of PM10, PM2.5 particles in flue gas, and secondary exhaust gas purification, and is also suitable for solving the quantity.
  • gas purifying agent of the present invention can provide a simple and feasible technical means for promoting the purification of the atmospheric environment and eliminating atmospheric dust mites.
  • the gas purifying agent for removing cerium of the present embodiment is mainly composed of a negatively-charged film forming agent and a foaming agent; 1205A and sodium carboxymethylcellulose are negatively charged film-forming agents.
  • Sodium dodecyl sulfate, rosin thermal polymer and alkylphenol ethoxylate OP-2 are used as foaming agents, and the percentage is negatively charged.
  • Membrane agent 29% (of which Cape Town resin 1205A type 10%, sodium carboxymethyl cellulose 19%), foaming agent 71% (including sodium lauryl sulfate 45%, rosin thermal polymer 10%, OP-2 16%) Proportioning ingredients, adding water equivalent to twice the mass of the above-mentioned raw materials, and mixing them uniformly to obtain a paste-like gas purifying agent.
  • the paste-like gas purifying agent obtained in the present embodiment was tested in a ravine landform area where a mining and simple smelting furnace and a coke oven were concentrated.
  • the ravine landform is surrounded by mountains on three sides, about 4 kilometers from east to west and about 1 kilometer from north to south.
  • the environmental protection measures only use cyclone dust collectors to collect dust.
  • the atmosphere in the ravine area is thick and dusty all day long. Odor, people feel uncomfortable, detecting PM2.5>500. It is proposed to apply a negatively charged foam water-soluble membrane phase carrier-bubble at two points on both sides of the high ground to remove dust mites.
  • Taking the gas purifying agent of the present embodiment adding water to make a foam liquid containing a gas purifying agent with a mass ratio of 1%, using a bubble device to obtain a polymer bubble and moving from two points on both sides of the north and south to the air in the ravine atmosphere Sprinkle the water-soluble bubble, visually observe the floating movement of the bubble in the entire ravine area, and the initial drift of the bubble is settled faster. As the air in the ravine becomes transparent, the bubble subsides slowly, and the air bubble is clear.
  • the negatively charged film-forming agent selects the lower molecular weight, the negatively charged group base, the membrane strength and the toughness.
  • the resin is compounded with sodium carboxymethyl cellulose, and its surfactant is compounded with a lipophilic alkylphenol ethoxylate OP-2 to enhance the solubilization and absorption of the water-soluble film relative to organic pollutants. ability.
  • the test shows that the gas purifying agent of the present embodiment has a good effect of capturing PM10, PM2.5 fine dust and organic pollutants in the atmosphere of the ravine region.
  • the degassing gas purifying agent of the present embodiment is mainly composed of a negatively-charged film-forming agent and a foaming agent.
  • Anionic polyacrylamide and sodium alginate are selected as negatively charged film-forming agents, and sodium sulfate (K14), sulfosuccinate 403 and alkylphenol ethoxylate OP-2 are used as foaming agents, by mass percentage.
  • foaming agent 40% in which anionic polyacrylamide 30%, sodium alginate 10%
  • foaming agent 60% including fatty alcohol sodium sulfate 40%, sulfosuccinate 40310%, OP-2 10 %)
  • Proportioning ingredients adding water equivalent to 3 times the mass of the above-mentioned raw materials, and uniformly mixing to obtain a paste-like gas purifying agent.
  • this experiment uses anionic polyacrylamide and sodium alginate for its negatively charged film forming agent, which has high membrane strength and good toughness.
  • the surfactant is formulated with a highly lipophilic OP-2 to enhance the solubilization, absorption and aggregation of the water-soluble film relative to organic pollutants.
  • the test shows that the gas purifying agent of the present embodiment has a good effect of capturing PM10, PM2.5 fine dust and organic pollutants in the atmosphere of the ravine region.
  • polyvinylpyrrolidone (PVP) and polyanionic cellulose are selected as negatively charged film-forming agents
  • sodium dodecylbenzenesulfonate is used as foaming agent
  • 38% by weight of negatively charged film forming agent including polyethylene) Pyrrolidone PVP-K 3018%, polyanionic cellulose 20%
  • foaming agent 62% sodium dodecyl benzene sulfonate 62%) proportioned ingredients, evenly mixed to obtain a powdery gas purifying agent.
  • the gas purifying agent of the present embodiment adding water to prepare a foam liquid containing a gas purifying agent with a mass ratio of 2%, using a bubble device to prepare a polymer bubble and spreading the film from the top of the high building to the regional atmospheric region.
  • Bubbles visual observation of the bubble movement in the whole town area, the initial drift of the bubble is settled faster, as the regional air becomes transparent, the bubble is slowly settled, the air bubble landscape is clear, within about five hours, the atmosphere within the area The middle bubble disappeared from the field of view, the air became transparent and fresh, and the PM2.5 was detected to be 10 on average.
  • the film capsules deposited to the surface were all covered by the dust, and some of the dust bubbles were concentrated by the fan. .
  • the test shows that the gas purifying agent of the present embodiment has a good effect of capturing PM10, PM2.5 dust and organic pollutants in the atmosphere of the county area.
  • hydroxyethyl methylcellulose and potassium polyacrylate are used as negatively charged film forming agents, and polyoxyethylene lauryl ether, rosin thermal polymer and alkylphenol ethoxylate OP-3 are used as foaming agents, according to the quality.
  • the percentage is negative electron filming agent 71% (including hydroxyethyl methylcellulose 40%, potassium polyacrylate 31%): foaming agent 29% (including polyoxyethylene lauryl ether 8%, rosin thermal polymer 15%, OP -3 6%) proportion of ingredients, combined with water accounting for 0.3% of the total mass of the film former and foam
  • the soluble pigment-carmine is added with water equivalent to twice the total mass of the raw material of the above raw materials, and uniformly mixed to obtain a paste-like gas purifying agent.
  • the gas purifying agent of the present embodiment adding water to make a foaming liquid having a gas purifying agent mass ratio of 1%, and arranging the bubble generating device on the hot air balloon hanging basket, and spraying the water-melting film in the air to the ravine air area at an altitude of about 3000 m.
  • Bubbles from the air and the ground visual observation of the entire ravine area floating moving bubble, the initial drift of the bubble sedimentation is faster, as the air in the ravine area becomes transparent, the bubble is disturbed in the atmosphere, the air purple red bubble landscape Bright, the air becomes transparent and fresh in about two hours.
  • the PM2.5 was detected to be 8 and the film capsules deposited to the surface were all covered by the dust particles, and some of the film dust sacs were concentrated by the fan to blow without dust.
  • the surfactant is compounded with lipophilic OP-3 to enhance the solubilization and absorption of water-soluble membrane relative to organic pollutants.
  • Kaip's resin type 1217A and polyethylene glycol are used as negatively charged film forming agent
  • sodium lauryl sulfate and rosin soap are used as foaming agents
  • the negative electrodepositive film forming agent is 35% by mass percentage.
  • the total amount of film-forming agent and foaming agent is 0.15. % of lemon essence, adding water equivalent to 3 times the mass of the above-mentioned raw materials, and uniformly mixing to obtain a paste-like gas purifying agent.
  • Example 3 Taking the gas purifying agent obtained in the present example, a second quenching test was carried out in a mountainous county town of Example 3.
  • the county town has many coal mining and coking enterprises, and the regional atmosphere is grayish all year round. There is odor in the air, and PM2.5>500 is detected.
  • the gas purifying agent as the desulfurizing agent of the present embodiment is composed of a negatively charged film forming agent, a foaming agent, and a desulfurizing agent.
  • Selection Cape's resin 1205A and sodium carboxymethylcellulose are negatively charged film-forming agents.
  • Sodium dodecyl sulfate and rosin soap are used as foaming agents.
  • Stone powder (1% in 80 ⁇ m sieve) and soda ash are used as desulfurizer.
  • the above-mentioned powdery gas purifying agent was stirred with water to prepare a foaming liquid containing the gas purifying agent of the present embodiment in a mass ratio of 5%; and the foaming liquid was added to the air inlet duct of the bag filter by a bubble device.
  • the foam liquid of the present embodiment is formed into a bubble by a bubble device and added into the air inlet pipe of the bag filter.
  • the SO 2 concentration in the exhaust gas is detected to be 8 mg/Nm 3
  • PM 2 . 5 is 7 mg/Nm 3
  • the discharged air stream is completely transparent and colorless.
  • the test shows that the gas purifying agent of the present embodiment has a good effect of SO 2 removal and PM2.5 dust collection in the exhaust gas of the dedusting system.
  • anionic polyacrylamide and hydroxyethyl cellulose are selected as negatively charged film forming agents
  • sodium dodecylbenzenesulfonate and rosin soap are used as foaming agents
  • lime is used as desulfurizing agent
  • negative mass is determined by mass percentage.
  • 10% film-forming agent 5% of anionic polyacrylamide, 5% of sodium hydroxyethylcellulose
  • 10% foaming agent including 6% sodium dodecylbenzenesulfonate, 4% rosin soap
  • desulfurizing agent 80% proportion of ingredients, evenly mixed to obtain a powdery gas purifier.
  • the exhaust gas of the kiln of the plant is collected by the electric dust collector and discharged into the atmosphere.
  • the adding device is installed on the air inlet pipe of the electric precipitator and commissioned for testing.
  • the above-mentioned powdery gas purifying agent was stirred with water to prepare a foaming liquid containing the gas purifying agent of the present embodiment in a mass ratio of 7%.
  • the SO 2 concentration in the kiln exhaust gas is detected to be 780 mg/Nm 3 and the PM 2.5 is 3200 mg/Nm 3 under normal conditions, and the discharged airflow is visible yellowish.
  • the foaming liquid of the present invention is formed into a bubble in the air inlet pipe of the electrostatic precipitator by a bubble device, and after being adjusted and stabilized, the SO 2 concentration in the exhaust gas is detected to be 3 mg/Nm 3 and the PM2.5 is 10 mg/Nm. 3 , the discharged airflow is completely transparent and colorless.
  • the test shows that the gas purifying agent of the present embodiment has a good effect of SO 2 removal and PM2.5 dust collection in the exhaust gas of the dedusting system.
  • Kaip's resin 1205A type and polyvinyl alcohol are used as negatively charged film forming agent, and F-873 foaming powder and fatty alcohol polyoxyethylene ether sulfosuccinate monoester ammonium salt (JHZ-120) are selected.
  • F-873 foaming powder and fatty alcohol polyoxyethylene ether sulfosuccinate monoester ammonium salt JHZ-120
  • the foaming agent sodium metaaluminate is used as the desulfurizing agent, and the negative electrodepositing film forming agent is 20% by mass (including 8% of Cape resin and 12% of polyvinyl alcohol): 22% of foaming agent (including F-873) Foam powder 12%, JHZ-120 agent 10%): 58% proportion of desulfurizing agent, adding water equivalent to twice the mass of the above raw materials, mixing evenly, that is, a paste-like gas purifying agent.
  • the flue gas of the stone coal power plant is collected by the dust collector and then discharged into the desulfurization tower for desulfurization and then discharged into the atmosphere.
  • a gas is placed on the discharge pipe of the desulfurization tower to be installed.
  • the gas purifying agent described above was stirred with water to form a foam liquid containing the gas purifying agent of the present embodiment in a mass ratio of 2.5%.
  • the foaming liquid of the present embodiment is formed into a bubble by a bubble device and added in a discharge pipe after the desulfurization tower. After being adjusted and stabilized, the SO 2 concentration in the exhaust gas is detected to be 6 mg/Nm 3 and the PM 2.5 is 7 mg/ Nm 3 , the airflow emitted is white smoke.
  • the test shows that the gas purifying agent of the present embodiment has a good effect of SO 2 removal and PM2.5 dust collection in the exhaust gas of the dedusting system.
  • sodium alginate and anionic starch are selected as negatively charged film forming agents
  • sodium dodecylbenzenesulfonate and sodium cetyl succinate monosulfonate are used as foaming agents
  • calcium carbide slag is used as desulfurizing agent.
  • 6% by mass of negatively charged film former including sodium alginate 2%, anionic potato starch 4%):
  • 6% foaming agent including sodium dodecylbenzenesulfonate 3%, hexadecanol succinic acid
  • Sodium monoester sulfonate 3%): 88% of the desulfurizer calcium carbide slag is packaged separately, that is, a gas purifying agent is obtained.
  • the components of the above-mentioned divided gas purifying agent were placed in a tub, and stirred with water to prepare a foaming liquid containing the gas purifying agent of the present example in a mass ratio of 2%.
  • the SO 2 concentration in the exhaust gas is detected to be 2700 mg/Nm 3 and the PM 2.5 is 4800 mg/Nm 3 under normal conditions, and the discharged airflow is visible grayish yellow with a pungent odor.
  • the foam liquid was made into a bubble by a bubble device and continuously added in the flue gas discharge pipe. After being stabilized, the SO 2 concentration in the exhaust gas was detected to be 43 mg/Nm 3 and the PM 2.5 was 28 mg/Nm 3 . The airflow emitted by the flue is white and the pungent smell disappears.
  • the test shows that the gas purifying agent of the present embodiment has a good effect on SO 2 removal and PM2.5 dust collection in the exhaust gas of the brick kiln flue.
  • the cooked rubber powder, potassium polyacrylate and sodium carboxymethyl cellulose are selected as negatively charged film forming agents, sodium dodecyl sulfate and rosin soap are used as foaming agents, and soda ash is used as desulfurizing agent, and the mass percentage is Negative film-forming agent 13% (including 5% of cooked rubber powder, 5% of potassium polyacrylate, 3% of carboxymethyl cellulose): 7% foaming agent (3% of sodium dodecyl sulfate, rosin soap 4) %): 80% proportion of the desulfurizer soda ash, and the water is mixed with water equivalent to 3 times the mass of the above raw materials to obtain a paste-like membrane gas purifying agent.
  • the lime kiln flue gas of the plant is not equipped with a dust collector to collect dust, and is directly discharged into the atmosphere through the flue.
  • a feeding device is set on the lime kiln flue gas discharge pipe to be commissioned for testing.
  • the above gas purifying agent was stirred with water to prepare a foam liquid containing a gas purifying agent in a mass ratio of 1.5%.
  • Example When a gas-purifying agent is not present embodiment, the normal state detecting emissions of SO 2 in the exhaust gas concentration of 1800mg / Nm 3, PM2.5 of 4300mg / Nm 3, the air flow discharged gray, with a pungent odor.
  • the foaming liquid was made into a bubble by a bubble device and added in the lower part of the lime kiln flue gas discharge pipe.
  • the SO 2 concentration in the exhaust gas was detected to be 29 mg/Nm 3 and the PM 2.5 was 31 mg/ Nm 3 , the airflow is white and has no pungent odor.
  • the test shows that the gas purifying agent of the present embodiment has a good effect on SO 2 removal and PM2.5 dust collection in the lime kiln flue gas.

Abstract

公开了气体净化剂,包括负电性成膜剂和泡沫剂。其中负电性成膜剂为20-80重量%,发泡剂为20-80重量%的气体净化剂可作为除霾剂使用;包括负电性成膜剂2.5-25重量%,发泡剂2.5-25重量%,脱硫剂50-95重量%的气体净化剂可作为脱硫剂使用,脱除工业废气中的含硫化合物。还公开了气体净化剂的使用方法。

Description

一种气体净化剂及其使用方法 技术领域
本发明涉及环保技术领域,具体涉及一种用于气体净化的净化剂使用方法,所述气体净化剂可以脱硫并凝聚PM10、PM2.5等微尘。
背景技术
当前,随着工业化技术的发展和人们生活水平的提高,人们生产和生活中及自然灾害中产生的带正电性的PM10、PM2.5极细微尘粒子为主导致的大气雾霾污染,已十分严重,并严重影响到人们的健康,大中型城市不得不迁移或关停燃煤工业窑炉企业,并实施更严格的企业与车辆限排,尽管如此,日趋严重的环境大气雾霾污染实际上仍难以有效控制,这些带正电性的霾微尘在空中飘移时间长、距离远,影响范围很大。
当前,公认可行的治理方法包括有:1)、有限空间内用空调、加湿器、清新器等的过滤法;2)、室内用超声雾化器、水帘、水池、鱼缸等的吸附法;3)、利用植物叶片吸收吸附的植物吸收法;4)、室内空间利用电力负离子发生器的负离子沉降法。这些治理方法虽然对局部空间有效,但对于解决大气微尘雾霾污染问题非常乏力。如何解决大气正电性的微尘粒子雾霾污染,各国技术工作者百多年来一直在进行不懈的努力。
现有技术中大气雾霾治理的方法,仍难以解决当前和未来中国人口密集、经济发达地区环境大气中高含量微尘雾霾高发的气象问题,世界范围PM2.5污染亦将面临严峻局面。因此,迫切需要一种全新的、简单直接的、经济的技术方法来解决环境大气PM10、PM2.5微尘雾霾的净化问题。
另外,国内外的工业窑炉烟气脱硫工艺大多采用烟气湿法脱硫技术,所采用的脱硫剂为石灰石粉、石灰、电石渣、纯碱,采用的装置为庞大的湿法脱硫塔系统;工业窑炉的干法脱硫工艺主要用在一些特殊产业上如煤制气生产线上,采用的脱硫剂为以氧化铁、氧化亚铁为主要成份的脱硫剂颗粒。这些脱硫技术投资大、运行费用高,政府不得不采取政策鼓励和对大企业实行财政补贴(如火电脱硫电价补贴),但对于量大面广的小型燃煤企业(如砖厂及小锅炉、小冶金等)来说,难以承受动辙上千万的烟气脱硫投资和高额的运行成本。为此,广大技术工作者进行了不断的创新。
发明内容
为了解决现有技术中存在的问题,本发明提供了一种气体净化剂,其能脱硫并凝聚PM10、PM2.5等微尘,能够作为空气除霾剂或脱硫剂来使用。
本发明的第一个实施方式涉及一种气体净化剂,包括负电性成膜剂和泡沫剂。
在本发明的一个优选实施方式中,所述气体净化剂中的负电性成膜剂为20~80重量%,优选28~40重量%;所述泡沫剂为20~80重量%,优选60~72重量%。该种组成的气体净化剂可作为除霾剂使用,可有效除去空气中的PM10、PM2.5等微尘粒子。
在上述作为除霾剂使用的气体净化剂中,还可加入对水溶性高分子膜泡的负电性、粘附性及稳定性不产生拮抗作用的化合物,如香精和/或色素等,香精和/或色素的配入量为成膜剂和泡沫剂总量的0.1~5重量%。
在本发明的一个优选实施方式中,所述气体净化剂包括负电性成膜剂2.5~25重量%,优选10~15重量%;发泡剂2.5~25重量%,优选10~15重量%;脱硫剂50~95重量%,优选70~80重量%。该种组成的气体净化剂可作为脱硫剂使用,脱除工业废气中的含硫化合物。
在本发明的一个优选实施方式中,所述负电性成膜剂为可形成带负电性水溶性膜的水溶性高分子化合物或复合物,优选自以下物质中的至少一种:开普氏树脂(KEPS树脂)(产自日本第一工业制药株式会社)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)盐及其均聚物和共聚物、阴离子型淀粉、植物胶、甲基纤维素(MC)、羧甲基纤维素钠(CMC)、羟乙基纤维素(HEC)、羟丙基纤维素(HPC)、羟乙基甲基纤维素(HEMC)、羟丙基甲基纤维素(HPMC)、羟丁基甲基纤维素(HBMC)、乙基羟乙基纤维素(EHEC)、聚阴离子纤维素(PAC)、阴离子型聚丙烯酰胺、聚丙烯酸、聚甲基丙烯酸及其共聚物、聚丙烯酸钾、聚丙烯酸钠、聚丙烯酸酯及其共聚物、黄原胶(XG)、海藻酸钠、聚乙二醇(PEG)、聚乙二醇酯、聚乙烯醇(PVA)、聚氧化乙烯(PEO)、聚乙烯基吡咯烷酮(PVP)、N-乙烯基吡咯烷酮(NVP)、聚马来酸酐、马来酸酐-丙烯酸共聚物(MBB)、聚苯乙烯磺酸钠、磺化苯乙烯-马来酸酐共聚物、水溶性氨基树脂、聚环氧琥珀酸盐和膦羧酸盐。
在本发明进一步的优选实施方式中,所述负电性成膜剂选自以下物质中的至少一种:开普氏树脂、羧甲基纤维素钠(CMC)、羟乙基甲基纤维素(HEMC)、羟丙基甲基纤维素(HPMC)、阴离子型聚丙烯酰胺、阴离子型淀粉、聚丙烯酸钾、海藻酸钠、聚乙烯醇、聚乙烯基吡咯烷酮和聚乙二醇。
在本发明的一个优选实施方式中,所述泡沫剂选自阴离子表面活性剂、两性离子表面活性剂和非离子表面活性剂中的至少一种;优选以下化合物中的至少一种:十二烷基磺酸钠、十二烷基苯磺酸钠、十二醇硫酸乙醇胺盐(K12EA)、十二烷基硫酸钠(K12)、F-873发泡剂、氟碳羧酸盐、氟碳硫酸脂盐、氟碳磺酸盐、邻二甲苯烷基磺酸钠、邻苯二甲酸单月桂醇酯钠盐(PAS12)、N-月桂酰-L-谷氨酸钠、N-酰基谷氨酸钾盐(AGA盐)、羟乙基磺酸钠、松香皂(松香酸钠)、松香热聚物、仲烷基硫酸钠(SAS)、脂肪醇硫酸铵(NAS)、十一烯基单乙醇酰胺琥珀酸酯磺酸钠、脂肪醇硫酸钠(K14)、十二烷基硫酸单乙醇胺、十二烷基硫酸二乙醇胺、十二烷基硫酸三乙醇胺、磺化平平加、烷基酚聚氧乙烯醚(OP-1~18)、N-酰基谷氨酸钾、油酸肌氨酸钠、C12~14脂肪醇聚氧乙烯醚羧酸盐(AEC)、C12脂肪醇聚氧乙烯醚硫酸铵(NAES)、C12~14脂肪醇硫酸铵(NAS)、烷氧基乙醇酰胺琥珀酸单酯钠盐、十二烷基二羟乙基甜菜碱、十二烷基二甲基甜菜碱(BS-12)、C16~18烷基二羟乙基甜菜碱、N-椰子酰基谷氨酸单钠盐(CGS-11)、N-混合脂肪酰基谷氨酸单钠盐(SGS-11)、N-月桂酰-L-天门冬氨酸钠(N-L-ASPS)、N-月桂酰-L-丙氨酸钠(N-L-Alas)、十六醇琥珀酸单酯磺酸钠(MS16)、椰油酰二乙醇胺氧化胺(GD-4501)、氧化椰油酰胺基丙基胺(CAO)、醇醚邻苯二甲酸单酯钠盐(PAES)、烷基二甲基氧化胺(OA)、醇醚磺基琥珀酸单酯二钠盐(SM系列)、脂肪醇聚氧乙烯醚磺基琥珀酸单酯铵盐(JHZ-120)、磺基琥珀酸酯403、磺基琥珀酸单月桂酯二钠(琥珀酸酯201)、脂肪酸聚氧乙烯酯、脂肪醇聚氧乙烯醚、聚氧乙烯月桂醚、失水山梨醇酯(Span)及聚氧乙烯醚(Tween)、聚氧乙烯聚氧丙烯共聚聚醚、烷基酚聚氧乙烯醚、烷基聚氧乙烯醚、烷基胺聚氧乙烯醚、硼酸单甘油脂肪酸酯、烷基磷酸酯盐和果胶酸钠。
在本发明进一步的优选实施方式中,所述泡沫剂选自以下化合物中的至少一种:十二烷基苯磺酸钠、十二烷基硫酸钠(K12)、松香皂(松香酸钠)、松香热聚物、脂肪醇硫酸钠(K14)、磺基琥珀酸酯403、聚氧乙烯月桂醚及烷基酚聚氧乙烯醚(OP-1~18)。
在本发明的一个优选实施方式中,所述脱硫剂选自以下物质中的至少一种:石灰、电石渣、石粉、纯碱、烧碱、偏铝酸钠和硅酸钠。
本发明的作为除霾剂的气体净化剂,主要由负电性成膜剂和泡沫剂组成,其质量百分比为:负电性成膜剂为20~80重量%,优选28~40重量%;所述泡沫剂为20~80%,优选60~72重量%。所述各组份混合均匀,即得粉状或膏状负电性膜法除霾剂。也可加水混合均匀,即得液状或膏状负电性膜法除霾剂。也可以加入各组份分装,实用时按比例混合均匀,即得负电性膜法除霾剂。
本发明的第二个实施方式涉及所述作为除霾剂的气体净化剂的使用方法,包括在上述 作为除霾剂使用的气体净化剂中加水搅拌制成含有所述气体净化剂的质量比为0.5~10%的负电性高分子聚合物泡沫液;使用膜泡装置将所述泡沫液制成膜泡,并使所述膜泡漂浮移动于含霾大气层中。
可将所述膜泡从飞行器上空中布撒,或从地面或高台上用膜泡高射机械,布撒膜泡漂浮移动于含霾大气区域。
本发明的作为除霾剂的气体净化剂,在使用过程中负电性成膜剂和泡沫剂多相作用转化为高分子聚合物水溶性膜相载体-膜泡,产生的大量有良好机械强度和稳定性、且有超高表面积的负电性高分子聚合物膜泡。所述聚合物膜泡在含霾气溶胶(带正电性的PM10、PM2.5微尘粒子)大气层中漂浮移动,一方面,以水溶性膜的负电性静电吸引聚集大气层中带正电性的极细微尘粒子(PM10、PM2.5微尘);另一方面,以超高表面积的高分子聚合物水溶性膜的粘附性吸附聚集大气中的极细微尘粒子(PM10、PM2.5微尘)和其它漂浮的污染物如真菌孢子等。同时,漂浮移动的高分子化合物水溶性膜相载体-膜泡增溶吸收聚集大气层中的气态有机污染物,从而将大气层中极细微尘和污染物凝聚成以膜泡载负的粗大颗粒。最终,在大气层中漂浮移动的负电性水溶性膜相载体-膜泡随着极细微尘的凝聚与电性中和,及大气对膜泡的脱湿而凝聚成粗大颗粒,受重力作用沉降至地表,使大气污染物转移至地表微生物菌群作业圈内而消解,从而有效清除大气层中的霾微尘等污染物。
本发明的第三个实施方式涉及所述作为脱硫剂的气体净化剂的使用方法,包括:在所述作为脱硫剂的气体净化剂中加水搅拌成含所述气体净化剂的质量含量为1~10%的泡沫液;使用膜泡装置将所述泡沫液制成膜泡,并将所述膜泡漂浮移动于含硫废气中。
本发明的作为脱硫剂或除霾剂的气体净化剂的加入量,例如根据在线检测排放废气中SO2浓度、PM10或PM2.5浓度调整;对于设置有除尘器的生产线,在除尘器的进气管道上或排放管道上连续加入;对于没有设置除尘器的小型窑炉,在其烟气排放管道上连续加入。
本发明的作为脱硫剂的气体净化剂,是利用负电性成膜剂和发泡剂(表面活性剂)对脱硫剂的分散载负功能,如0.1%的KEPS水溶性树脂即可充分分散脱硫剂(如石灰、石粉)。用超过分散载负脱硫剂所需成膜剂和发泡剂临界量形成水溶性高分子膜相载体--膜泡。一方面,以使用过程中负电性成膜剂和泡沫剂相互作用而产生的大量超高表面积的有良好机械强度和稳定性的膜泡作为主要脱硫载体,极大的扩大脱硫剂与烟气的接触反应面积。同时,大量有韧性的负电性膜泡扰动烟气流,并大幅增加与烟气的漂移接触时间,以达到高效脱硫的效果,脱硫率可以达到99.99%。另一方面,大量超高表面积的膜泡在烟 气流中以水溶性膜相的负电性静电吸引聚集烟气中带正电性的极细微尘粒子气溶胶(PM10、PM2.5正电性微尘),并同时以超高表面积的水溶性聚合物膜泡相的粘附性吸附聚集烟气中的极细微尘粒子(PM10、PM2.5微尘),从而将极细微尘凝聚成以所述膜泡为载体的较粗大颗粒。在烟气流中,膜泡随着硫酸盐的生成与载附,微尘的凝聚与电性中和,及烟气对水溶性高分子膜泡的脱湿而凝聚成较粗的较大质量颗粒,以便于除尘器收集,或在烟气流中沉降或进入大气中重力沉降(小型窑炉无除尘器状况下),从而有效清除工业窑炉排放烟气中的硫氧化物和微尘等大气污染物。
本发明的有益效果:
1)本发明的除霾用气体净化剂原料来源广,除霾剂加工容易,除霾方法较简单,应用高效而经济,为清除气体污染,尤其是清除环境大气尘霾污染提供了简便而可行的技术手段。
2)本发明的除霾用气体净化剂配入色素和/或气味清新剂的膜法除霾剂形成的空中膜泡漂移可产生精彩的空中景观及舒畅兴奋的激情,且对环境与空中飞行器无冲突影响,利于促进人们共同对环境大气污染的清理。
3)本发明的脱硫用气体净化剂的脱硫工艺操控方法简单,且因高效脱硫聚尘而运行费用较低,易于推广应用;
4)本发明的脱硫用气体净化剂适应性好,既适应于大型工业窑炉的烟气脱硫和净化排放烟气中的PM10、PM2.5微粒,及二次废气净化,也适宜于解决数量巨大、分布面广的小型工业窑炉(包括无除尘器设置的作坊式窑炉)的排放烟气的脱硫和PM2.5微尘污染问题;
3)使用本发明的气体净化剂,可以促进大气环境的净化、消除大气尘霾提供了简便而可行的技术手段。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
实施例1
本实施例的除霾用气体净化剂主要由负电性成膜剂、泡沫剂组成;选用开普氏树脂 1205A型和羧甲基纤维素钠为负电性成膜剂,选用十二烷基硫酸钠、松香热聚物、烷基酚聚氧乙烯醚OP-2为泡沫剂,按质量百分比为负电性成膜剂29%(其中开普氏树脂1205A型10%、羧甲基纤维素钠19%),泡沫剂71%(其中十二烷基硫酸钠45%、松香热聚物10%、OP-2 16%)比例配料,加入相当于上述原料质量2倍的水,混合均匀即得膏状气体净化剂。
取本实施例所得膏状气体净化剂到某采矿与简易冶炼炉、炼焦炉集中的山沟地貌区进行试验。该山沟地貌三面环山,东西约4公里,南北约1公里,有简易冶炼炉八台、炼焦炉2台,环保措施仅采用旋风除尘器收尘,山沟区域大气终日悬尘浓厚,空气中有异味,人感不适,检测PM2.5>500。拟定在两侧高地各2个点施放负电性泡沫水溶性膜相载体-膜泡以清除尘霾。
取本实施例的气体净化剂,加水制成含气体净化剂质量比为1%的泡沫液,用膜泡装置制得聚合物膜泡并从南北两侧各2个点向山沟大气区空中布撒泡沫水溶性膜泡,视觉观察整个山沟区域膜泡漂浮移动状况,初期漂移的膜泡沉降较快,随着山沟区域空气变得透明,膜泡沉降很慢,空中膜泡景观清澈,约四小时后,山沟区域大气中膜泡从视野中消失,空气透明,空气中异味消失,空气变得清新,检测PM2.5为12,检查沉降至地表的膜囊全部被微尘粘聚着包裹,将部分膜尘囊集中用风扇吹无扬尘现象。
本次试验为提高水溶性高分子膜相载体清除大气中有机污染物的能力,其负电性成膜剂选用了较低分子量、负电荷基团基数大、膜强度高、韧性大的开普氏树脂,并与羧甲基纤维素钠复配,其表面活性剂复配了亲油性极强的烷基酚聚氧乙烯醚OP-2,以强化水溶性膜相对有机污染物的增溶吸收聚集能力。试验显示本实施例的气体净化剂对此山沟区域大气层中的PM10、PM2.5微尘和有机污染物捕集效果很好。
实施例2
本实施例的除霾用气体净化剂主要由负电性成膜剂、发泡剂组成。选用阴离子型聚丙烯酰胺和海藻酸钠为负电性成膜剂,选用脂肪醇硫酸钠(K14)、磺基琥珀酸酯403、烷基酚聚氧乙烯醚OP-2为泡沫剂,按质量百分比为负电性成膜剂40%(其中阴离子型聚丙烯酰胺30%、海藻酸钠10%):泡沫剂60%(其中脂肪醇硫酸钠40%、磺基琥珀酸酯40310%、OP-2 10%)比例配料,加入相当于上述原料质量3倍的水,混合均匀即得膏状气体净化剂。
取本实施例气体净化剂到某山区镇进行试验。该镇因个体采矿、冶炼而繁荣,但该镇区域空气流动性偏差,区域大气常年灰朦朦的,检测PM2.5>500。拟定在镇两边高地各1个点施放负电性泡沫水溶性膜相载体-膜泡以清除尘霾。
取本实施例的气体净化剂,加水制成含气体净化剂质量比为0.8%的泡沫液,用膜泡装置制得聚合物膜泡并从东西两侧高地向镇区域大气区空中布撒所述膜泡,视觉观察全镇区域膜泡漂浮移动状况,初期漂移的膜泡沉降较快,随着区域空气变得透明,膜泡沉降很慢,空中膜泡景观清澈,约五小时后,全镇区域大气中膜泡从视野中消失,空气变得透明清新,检测PM2.5平均为19,检查沉降至地表的膜囊全部被微尘粘聚着包裹,将部分膜尘囊集中用风扇吹无扬尘现象。
本次试验为提高水溶性高分子膜相载体清除大气中有机污染物的能力,其负电性成膜剂选用了阴离子型聚丙烯酰胺与海藻酸钠,其膜强度较高、韧性良好,其所选表面活性剂复配了亲油性极强的OP-2,以强化水溶性膜相对有机污染物的增溶吸收聚集能力。试验显示本实施例的气体净化剂对此山沟区域大气层中的PM10、PM2.5微尘和有机污染物捕集效果很好。
实施例3
本实施例选用聚乙烯吡咯烷酮(PVP)和聚阴离子纤维素为负电性成膜剂,选用十二烷基苯磺酸钠为泡沫剂,按质量百分比为负电性成膜剂38%(其中聚乙烯吡咯烷酮PVP-K3018%、聚阴离子纤维素20%):泡沫剂62%(十二烷基苯磺钠62%)比例配料,混合均匀即得粉状气体净化剂。
取本实施例所得粉状气体净化剂,到某山区县城进行试验。该县城因周边采煤、炼焦个体企业多,区域大气常年灰朦朦的,空气中有异味,检测PM2.5>500。拟定在县城3栋高楼顶施放负电性水溶性膜相-膜泡载体以清除尘霾。
取本实施例的气体净化剂,加水制成含气体净化剂质量比为2%的泡沫液,用膜泡装置制得聚合物膜泡并从高楼顶向区域大气区空中布撒所述膜泡,视觉观察全镇区域膜泡漂浮移动状况,初期漂移的膜泡沉降较快,随着区域空气变得透明,膜泡沉降很慢,空中膜泡景观清澈,约五小时内,区域内大气中膜泡从视野中消失,空气变得透明清新,检测PM2.5平均为10,检查沉降至地表的膜囊全部被微尘粘聚着包裹,将部分膜尘囊集中用风扇吹无扬尘现象。试验显示本实施例的气体净化剂对此县城区域大气层中的PM10、PM2.5微尘和有机污染物捕集效果很好。
实施例4
本实施例选用羟乙基甲基纤维素和聚丙烯酸钾为负电性成膜剂,选用聚氧乙烯月桂醚、松香热聚物、烷基酚聚氧乙烯醚OP-3为泡沫剂,按质量百分比为负电性成膜剂71%(其中羟乙基甲基纤维素40%、聚丙烯酸钾31%):泡沫剂29%(其中聚氧乙烯月桂醚8%、松香热聚物15%、OP-3 6%)比例配料,另配入占成膜剂与泡沫剂总质量0.3%的水 溶性色素-胭脂红,加入相当于上述原料原料总质量2倍的水,混合均匀即得膏状气体净化剂。
取本实施例的气体净化剂,到实施例1的山沟区域进行第二次除霾试验。
取本实施例的气体净化剂,加水制成气体净化剂质量比为1%的泡沫液,将膜泡装置设置在热气球吊篮上,在约3000m高空向山沟大气区空中布撒水熔性膜泡,从空中和地面视觉观察整个山沟区域漂浮移动着膜泡,初期漂移的膜泡沉降较快,随着山沟区域空气变得透明,膜泡在大气层中有扰动状态,空中紫红色膜泡景观艳亮,约两小时内,空气变得透明清新。检测PM2.5为8,检查沉降至地表的膜囊全部被微尘粘聚着包裹,将部分膜尘囊集中用风扇吹无扬尘现象。
本次试验为提高水溶性高分子膜相载体清除大气中有机污染物的能力,其表面活性剂复配了亲油性极强的OP-3,以强化水溶性膜相对有机污染物的增溶吸收聚集能力。试验显示本实施例的气体净化剂对此山沟区域大气层中的PM10、PM2.5微尘和有机污染物捕集效果很好。
实施例5
本实施例选用开普氏树脂1217A型和聚乙二醇为负电性成膜剂,选用十二烷基硫酸钠、松香皂为泡沫剂,按质量百分比为负电性成膜剂35%(其中开普氏树脂20%、聚乙二醇15%):泡沫剂65%(其中十二烷基硫酸钠40%、松香皂25%)比例配料,另配入占成膜剂和泡沫剂总量0.15%的柠檬香精,加入相当于上述原料质量3倍的水,混合均匀即得膏状气体净化剂。
取本实施例所得气体净化剂,到实施例3的某山区县城进行第二次除霾试验。该县城因周边采煤、炼焦个体企业多,区域大气常年灰朦朦的,空气中有异味,检测PM2.5>500。
取上述膜法除霾剂,加水制成含本实施例的气体净化剂质量比为5%的泡沫液,将膜泡装置设置在热气球吊篮上,在约2500m高空在县城大气区空中布撒水熔性膜泡,从空中和地面视觉观察整个区域膜泡漂浮移动状况,初期漂移的膜泡沉降较快,随着区域空气变得透明,膜泡在大气层中有扰动状态,空中膜泡景观清澈,约一小时后,空气变得透明清新,大气中弥溢着柠檬清香,检测PM2.5为8,检查沉降至地表的膜囊全部被微尘粘聚着包裹,将部分膜尘囊集中用风扇吹无扬尘现象。试验显示本实施例的气体净化剂对此县城区域大气层中的PM10、PM2.5微尘和有机污染物捕集效果很好。
实施例6
本实施例的作为脱硫剂的气体净化剂,由负电性成膜剂、发泡剂、脱硫剂组成。选用 开普氏树脂1205A型和羧甲基纤维素钠为负电性成膜剂,选用十二烷基磺酸钠和松香皂为发泡剂,选用石粉(80μm筛余1%)和纯碱为脱硫剂,按质量百分比为负电性成膜剂3%(其中开普氏树脂1205A型1.5%、羧甲基纤维素1.5%):发泡剂4%(其中十二烷基磺酸钠3%、松香皂1%):脱硫剂93%(其中石粉50%纯碱43%)比例配料,混合均匀即得粉状气体净化剂。
取上述的粉状气体净化剂,到某焙烧石煤提钒的工厂进行试验。该厂提钒石煤焙烧炉烟气先经旋风收尘器再经布袋收尘器收尘后排入大气,在布袋收尘器进风管道上设置加入装置,委托检测。
将上述的粉状气体净化剂加水搅拌制成含本实施例的气体净化剂质量比为5%的泡沫液;用膜泡装置将泡沫液加入布袋收尘器进风管道上。
未用气体净化剂时,正常状态下检测排放废气中SO2浓度达2800mg/Nm3、PM2.5达3700mg/Nm3,排放的气流呈可见的淡灰色。
试验时,用膜泡装置将本实施例的泡沫液制成膜泡并在袋式除尘器进风管道内加入,经调整稳定后,检测排放废气中SO2浓度为8mg/Nm3、PM2.5为7mg/Nm3,排放的气流呈完全透明状无色。试验显示本实施例的气体净化剂对此除尘系统废气中SO2脱除和PM2.5微尘捕集效果很好。
实施例7
本实施例选用阴离子型聚丙烯酰胺和羟乙基纤维素为负电性成膜剂,选用十二烷基苯磺酸钠和松香皂为泡沫剂,选用石灰为脱硫剂,按质量百分比为负电性成膜剂10%(其中阴离子聚丙烯酰胺5%、羟乙基纤维素钠5%):发泡剂10%(其中十二烷基苯磺酸钠6%、松香皂4%):脱硫剂80%比例配料,混合均匀即得粉状气体净化剂。
取上述的粉状气体净化剂,到某新型干法水泥厂进行试验。该厂窑尾废气采用电收尘器收尘后排入大气,在电收尘器进风管道上设置加入装置,委托检测。
将上述的粉状气体净化剂加水搅拌制成含本实施例的气体净化剂质量比为7%的泡沫液。
未用本实施例的气体净化剂时,正常状态下检测窑尾排放废气中SO2浓度达780mg/Nm3、PM2.5达3200mg/Nm3,排放的气流呈可见的淡黄色。
用膜泡装置将本发明的泡沫液制成膜泡在在电除尘器进风管道内加入,经调整稳定后,检测排放废气中SO2浓度为3mg/Nm3、PM2.5为10mg/Nm3,排放的气流呈完全透明状无色。试验显示本实施例的气体净化剂对此除尘系统废气中SO2脱除和PM2.5微尘捕集效果很好。
实施例8
本实施例选用开普氏树脂1205A型和聚乙烯醇为负电性成膜剂,选用F-873发泡粉和脂肪醇聚氧乙烯醚磺基琥珀酸单酯铵盐(JHZ-120)为发泡剂,选用偏铝酸钠为脱硫剂,按质量百分比为负电性成膜剂20%(其中开普氏树脂8%、聚乙烯醇12%):发泡剂22%(其中F-873发泡粉12%、JHZ-120剂10%):脱硫剂58%比例配料,加相当于上述原料质量2倍的水,混合均匀,即得膏状气体净化剂。
取上述的气体净化剂,到某烧石煤的发电厂进行试验。该石煤发电厂烟气经收尘器收尘后进入脱硫塔脱硫后排入大气,在其脱硫塔后排放管道上设置加入装置,委托检测。
将上述的气体净化剂,使用时加水搅拌制成含本实施例的气体净化剂质量比为2.5%的泡沫液。
未用气体净化剂时,正常状态下检测排放废气中SO2浓度达280mg/Nm3、PM2.5达980mg/Nm3,排放的气流呈可见的淡灰色烟气。
用膜泡装置将本实施例的泡沫液制成膜泡并在脱硫塔后的排放管道内加入,经调整稳定后,检测排放废气中SO2浓度为6mg/Nm3、PM2.5为7mg/Nm3,排放的气流呈白色烟气。试验显示本实施例的气体净化剂对此除尘系统废气中SO2脱除和PM2.5微尘捕集效果很好。
实施例9
本实施例选用海藻酸钠和阴离子型淀粉为负电性成膜剂,选用十二烷基苯磺酸钠和十六醇琥珀酸单酯磺酸钠为发泡剂,选用电石渣为脱硫剂,按质量百分比为负电性成膜剂6%(其中海藻酸钠2%、阴离子型土豆淀粉4%):发泡剂6%(其中十二烷基苯磺酸钠3%、十六醇琥珀酸单酯磺酸钠3%):脱硫剂电石渣88%比例分开包装,即得气体净化剂。
取上述分装的气体净化剂到某24门砖窑红砖厂进行试验。该厂没有设置收尘器,砖窑废气经烟道直接排入大气,在垂直的排烟气管道上设置加入装置,委托检测。
将上述分装的气体净化剂各组份置于桶内,加水搅拌制成含本实施例的气体净化剂质量比为2%的泡沫液。
未用本实施例的气体净化剂时,正常状态下检测排放废气中SO2浓度达2700mg/Nm3、PM2.5达4800mg/Nm3,排放的气流呈可见的灰黄色,有刺鼻气味。
试验时,用膜泡装置将泡沫液制成膜泡并在烟气排放管道内连续加入,经调整稳定后,检测排放废气中SO2浓度为43mg/Nm3、PM2.5为28mg/Nm3,烟道排放的气流呈白色,刺鼻气味消失。试验显示本实施例的气体净化剂对此砖窑烟道排放废气中SO2脱除和PM2.5微尘捕集效果很好。
实施例10
本实施例选用熟胶粉、聚丙烯酸钾和羧甲基纤维素钠为负电性成膜剂,选用十二烷基磺酸钠和松香皂为泡沫剂,选用纯碱为脱硫剂,按质量百分比为负电性成膜剂13%(其中熟胶粉5%、聚丙烯酸钾5%、羧甲基纤维素3%):发泡剂7%(其中十二烷基磺酸钠3%、松香皂4%):脱硫剂纯碱80%比例配料,加相当于上述原料质量3倍的水混合均匀即得膏状膜气体净化剂。
取上述的气体净化剂,到某石灰厂进行试验。该厂石灰窑烟气没有设置收尘器收尘,直接经烟道排入大气,在石灰窑烟气排放管道上设置加入装置,委托检测。
将上述的气体净化剂,加水搅拌制成含气体净化剂质量比为1.5%的泡沫液。
未用本实施例气体净化剂时,正常状态下检测排放废气中SO2浓度达1800mg/Nm3、PM2.5达4300mg/Nm3,排放的气流呈灰色,有刺鼻气味。
试验时,用膜泡装置将泡沫液制成膜泡并在石灰窑烟气排放管道的下部加入,经调整稳定后,检测排放废气中SO2浓度为29mg/Nm3、PM2.5为31mg/Nm3,排放的气流呈白色,无刺鼻气味。试验显示本实施例气体净化剂对此石灰窑烟道废气中SO2脱除和PM2.5微尘捕集效果很好。

Claims (11)

  1. 一种气体净化剂,包括负电性成膜剂和泡沫剂。
  2. 根据权利要求1所述的气体净化剂,其特征在于,气体净化剂中的负电性成膜剂为20~80重量%,优选28~40重量%;所述泡沫剂为20~80重量%,优选60~72重量%。
  3. 根据权利要求2所述的气体净化剂,其特征在于,所述净化剂还包括对水溶性高分子膜泡的负电性、粘附性及稳定性不产生拮抗作用的化合物,优选香精和/或色素,且所述香精和/或色素的配入量为所述成膜剂和泡沫剂总重量的0.1~5重量%。
  4. 根据权利要求1所述的气体净化剂,其特征在于,所述气体净化剂包括负电性成膜剂2.5~25重量%,优选10~15重量%;发泡剂2.5~25重量%,优选10~15重量%;脱硫剂50~95重量%,优选70~80重量%。
  5. 根据权利要求1-4中任一项所述的气体净化剂,其特征在于,所述负电性成膜剂为可形成带负电性水溶性膜的水溶性高分子化合物或复合物,优选自以下物质中的至少一种:开普氏树脂、2-丙烯酰胺-2-甲基丙磺酸盐及其均聚物和共聚物、阴离子型淀粉、植物胶、甲基纤维素、羧甲基纤维素钠、羟乙基纤维素、羟丙基纤维素、羟乙基甲基纤维素、羟丙基甲基纤维素、羟丁基甲基纤维素、乙基羟乙基纤维素、聚阴离子纤维素、阴离子型聚丙烯酰胺、聚丙烯酸、聚甲基丙烯酸及其共聚物、聚丙烯酸钾、聚丙烯酸钠、聚丙烯酸酯及其共聚物、黄原胶、海藻酸钠、聚乙二醇、聚乙二醇酯、聚乙烯醇、聚氧化乙烯、聚乙烯基吡咯烷酮、N-乙烯基吡咯烷酮、聚马来酸酐、马来酸酐-丙烯酸共聚物、聚苯乙烯磺酸钠、磺化苯乙烯-马来酸酐共聚物、水溶性氨基树脂、聚环氧琥珀酸盐和膦羧酸盐。
  6. 根据权利要求1-5中任一项所述的气体净化剂,其特征在于,所述负电性成膜剂选自以下物质中的至少一种:开普氏树脂、羧甲基纤维素钠、羟乙基甲基纤维素、羟丙基甲基纤维素、阴离子型聚丙烯酰胺、阴离子型淀粉、聚丙烯酸钾、海藻酸钠、聚乙烯醇、聚乙烯基吡咯烷酮和聚乙二醇。
  7. 根据权利要求1-6中任一项所述的气体净化剂,其特征在于,所述泡沫剂选自阴离子表面活性剂、两性离子表面活性剂和非离子表面活性剂中的至少一种;优选以下化合物中的至少一种:十二烷基磺酸钠、十二烷基苯磺酸钠、十二醇硫酸乙醇胺盐、十二烷基硫酸钠、F-873发泡剂、氟碳羧酸盐、氟碳硫酸脂盐、氟碳磺酸盐、邻二甲苯烷基磺酸钠、邻苯二甲酸单月桂醇酯钠盐、N-月桂酰-L-谷氨酸钠、N-酰基谷氨酸钾盐、羟乙基磺酸钠、松香皂、松香热聚物、仲烷基硫酸钠、脂肪醇硫酸铵、十一烯基单乙醇酰胺琥珀酸酯磺酸钠、脂肪醇硫酸钠、十二烷基硫酸单乙醇胺、十二烷基硫酸二乙醇胺、十二烷 基硫酸三乙醇胺、磺化平平加、烷基酚聚氧乙烯醚、N-酰基谷氨酸钾、油酸肌氨酸钠、C12~14脂肪醇聚氧乙烯醚羧酸盐、C12脂肪醇聚氧乙烯醚硫酸铵、C12~14脂肪醇硫酸铵、烷氧基乙醇酰胺琥珀酸单酯钠盐、十二烷基二羟乙基甜菜碱、十二烷基二甲基甜菜碱、C16~18烷基二羟乙基甜菜碱、N-椰子酰基谷氨酸单钠盐、N-混合脂肪酰基谷氨酸单钠盐、N-月桂酰-L-天门冬氨酸钠、N-月桂酰-L-丙氨酸钠、十六醇琥珀酸单酯磺酸钠、椰油酰二乙醇胺氧化胺、氧化椰油酰胺基丙基胺、醇醚邻苯二甲酸单酯钠盐、烷基二甲基氧化胺、醇醚磺基琥珀酸单酯二钠盐、脂肪醇聚氧乙烯醚磺基琥珀酸单酯铵盐、磺基琥珀酸酯403、磺基琥珀酸单月桂酯二钠、脂肪酸聚氧乙烯酯、脂肪醇聚氧乙烯醚、聚氧乙烯月桂醚、失水山梨醇酯、聚氧乙烯醚、聚氧乙烯聚氧丙烯共聚聚醚、烷基酚聚氧乙烯醚、烷基聚氧乙烯醚、烷基胺聚氧乙烯醚、硼酸单甘油脂肪酸酯、烷基磷酸酯盐和果胶酸钠。
  8. 根据权利要求1-7中任一项所述的气体净化剂,其特征在于,所述泡沫剂选自以下化合物中的至少一种:十二烷基苯磺酸钠、十二烷基硫酸钠、松香皂、松香热聚物、脂肪醇硫酸钠、磺基琥珀酸酯403、聚氧乙烯月桂醚及烷基酚聚氧乙烯醚。
  9. 根据权利要求4-6中任一项所述的气体净化剂,其特征在于,所述脱硫剂选自以下物质中的至少一种:石灰、电石渣、石粉、纯碱、烧碱、偏铝酸钠和硅酸钠。
  10. 根据权利要求2、3以及5-9中任一项所述的气体净化剂的使用方法,包括在所述气体净化剂中加水搅拌制成含有所述气体净化剂的质量比为0.5~10%的负电性高分子聚合物泡沫液;使用膜泡装置将所述泡沫液制成膜泡,并使所述膜泡漂浮移动于含霾大气层中。
  11. 根据权利要求4-9中任一项所述的气体净化剂的使用方法,包括在所述气体净化剂中加水搅拌制成含所述气体净化剂的质量含量为1~10%的泡沫液;使用膜泡装置将所述泡沫液制成膜泡,并将所述膜泡漂浮移动于含硫废气中。
PCT/CN2014/087834 2014-08-28 2014-09-29 一种气体净化剂及其使用方法 WO2016029529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/768,079 US9821271B2 (en) 2014-08-28 2014-09-29 Gas purification agent and method of using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410427094.0 2014-08-28
CN201410427745.6A CN104174278B (zh) 2014-08-28 2014-08-28 一种膜法聚尘脱硫剂及半干式膜聚尘脱硫方法
CN201410427745.6 2014-08-28
CN201410427094.0A CN104147888B (zh) 2014-08-28 2014-08-28 一种负电性膜法除霾剂及环境大气除霾方法

Publications (1)

Publication Number Publication Date
WO2016029529A1 true WO2016029529A1 (zh) 2016-03-03

Family

ID=55398698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087834 WO2016029529A1 (zh) 2014-08-28 2014-09-29 一种气体净化剂及其使用方法

Country Status (2)

Country Link
US (1) US9821271B2 (zh)
WO (1) WO2016029529A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367286B2 (ja) * 2019-01-30 2023-10-24 株式会社アイセロ ポリビニルアルコール系樹脂フィルム
CN111925848B (zh) * 2020-07-10 2021-10-15 中国石油集团工程股份有限公司 一种羰基硫高效脱除溶剂及其制备方法
CN114632459B (zh) * 2022-02-23 2023-05-23 国能龙源环保有限公司 一种电石渣作为脱硫还原剂的制备装置及制备方法
CN114682085B (zh) * 2022-03-08 2024-01-02 天津水泥工业设计研究院有限公司 一种将危废、固废资源化利用制备水泥窑协同脱硫脱硝剂的方法
CN114917734A (zh) * 2022-05-23 2022-08-19 安徽海萃工业制剂有限公司 一种干法固化脱硫剂及其制备方法
WO2024023726A1 (en) * 2022-07-27 2024-02-01 Rubber Nano Products (Proprietary) Limited A process for removing particulate matter from a waste gas stream
CN116407946B (zh) * 2023-04-10 2023-09-26 山东莱克科技有限公司 一种低温车用尾气处理液及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101638A (zh) * 1987-02-25 1988-01-13 廖树汉 泡沫净化蒸馏装置及其方法
CN1046437A (zh) * 1989-04-03 1990-10-31 阿奎龙公司 稳定的可生物降解的泡沫
CN1077657A (zh) * 1992-04-17 1993-10-27 廖树汉 回收废气的综合利用方法及装置
CN1103605A (zh) * 1993-12-07 1995-06-14 煤炭科学研究总院抚顺分院 高稳定性泡沫的泡沫剂
CN104147888A (zh) * 2014-08-28 2014-11-19 尹无忌 一种负电性膜法除霾剂及环境大气除霾方法
CN104174278A (zh) * 2014-08-28 2014-12-03 尹无忌 一种膜法聚尘脱硫剂及半干式膜聚尘脱硫方法
CN104258656A (zh) * 2014-08-28 2015-01-07 尹无忌 一种环境大气膜法消毒净化剂及环境大气消毒净化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075068A1 (ja) * 2004-02-05 2005-08-18 Taiyo Kagaku Co., Ltd. 多孔質シリカを含有する吸着能付与剤
US20090127499A1 (en) 2004-05-14 2009-05-21 Tran Bo L Methods and compositions for dust control and freeze conditioning
CN101497782A (zh) 2008-01-29 2009-08-05 何勇 粉体材料抑尘剂及制备方法
CN101712861B (zh) 2009-11-25 2012-12-12 山东科技大学 一种湿润型降尘剂组合物及其使用方法
US9138684B2 (en) * 2013-01-03 2015-09-22 Milliken & Company Filter for removal of heavy metals
CN103184034B (zh) 2013-01-04 2014-08-20 北京阳光溢彩科技有限公司 生态环保型粉尘抑制剂
DE102013005497B4 (de) * 2013-03-28 2017-05-04 Fels-Werke Gmbh Granulat zur Absorption von Schadgasen und Verfahren zu dessen Herstellung
CN103861404B (zh) 2014-03-23 2015-06-24 景德镇陶瓷学院 一种快速净化城市雾霾的方法及实施装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87101638A (zh) * 1987-02-25 1988-01-13 廖树汉 泡沫净化蒸馏装置及其方法
CN1046437A (zh) * 1989-04-03 1990-10-31 阿奎龙公司 稳定的可生物降解的泡沫
CN1077657A (zh) * 1992-04-17 1993-10-27 廖树汉 回收废气的综合利用方法及装置
CN1103605A (zh) * 1993-12-07 1995-06-14 煤炭科学研究总院抚顺分院 高稳定性泡沫的泡沫剂
CN104147888A (zh) * 2014-08-28 2014-11-19 尹无忌 一种负电性膜法除霾剂及环境大气除霾方法
CN104174278A (zh) * 2014-08-28 2014-12-03 尹无忌 一种膜法聚尘脱硫剂及半干式膜聚尘脱硫方法
CN104258656A (zh) * 2014-08-28 2015-01-07 尹无忌 一种环境大气膜法消毒净化剂及环境大气消毒净化方法

Also Published As

Publication number Publication date
US9821271B2 (en) 2017-11-21
US20160236143A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
WO2016029529A1 (zh) 一种气体净化剂及其使用方法
CN104174278B (zh) 一种膜法聚尘脱硫剂及半干式膜聚尘脱硫方法
CN104147888B (zh) 一种负电性膜法除霾剂及环境大气除霾方法
CN107955583B (zh) 一种高效环保型抑尘剂及其制备方法、应用
CN105126561B (zh) 一种基于脱硫废水蒸发处理的燃煤烟气PM2.5/SO3/Hg联合脱除方法
Liu et al. Improving the removal of fine particles with an electrostatic precipitator by chemical agglomeration
CN109415618A (zh) 一种高效环保型抑尘剂及其制备方法、应用
CN101869805B (zh) 用来保护scr催化剂和控制多种排放物的系统和方法
CN104812464A (zh) 磁性吸附剂、用于制备磁性吸附剂的方法和从流体流中除去污染物的方法
CN109759233A (zh) 一种协同处理脱硫废水和强化细颗粒物团聚与脱除的系统及方法
CN103550999B (zh) 蒙脱石-硅溶胶改性膨润土pm2.5捕集剂及其应用
US11745135B2 (en) Heterogeneous agglomeration adsorbent for heavy metal adsorption, method for preparing same, and applications thereof
Lv et al. Investigation on activated carbon removing ultrafine particles and its harmful components in complex industrial waste gas
CN105771531B (zh) 一种化学团聚促进剂
CN106000073B (zh) 一种治理锅炉烟气的环保工艺
CN206838310U (zh) 等离子消白烟装置
CN108955278A (zh) 一种炭素阳极焙烧烟气处理方法
CN205252893U (zh) 玻璃烟气污染物协同净化装置
CN203060977U (zh) 袋式除尘器
CN104923001B (zh) 除尘组合物、脱硫组合物及用途
CN205252861U (zh) 一种玻璃窑炉烟气污染物协同净化装置
CN204469484U (zh) 一种化学实验用废气过滤装置
CN211411447U (zh) 一种静电除尘与布袋除尘耦合运行系统
Hao et al. Particle size distribution and speciation analysis of heavy metals in municipal solid waste incineration fly ash in Chongqing, China
Shepelev et al. Ecological engineering in the process of gas treatment from dust and prospects for its use in agriculture

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14768079

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14900597

Country of ref document: EP

Kind code of ref document: A1