WO2016027866A1 - 血液循環システム - Google Patents

血液循環システム Download PDF

Info

Publication number
WO2016027866A1
WO2016027866A1 PCT/JP2015/073425 JP2015073425W WO2016027866A1 WO 2016027866 A1 WO2016027866 A1 WO 2016027866A1 JP 2015073425 W JP2015073425 W JP 2015073425W WO 2016027866 A1 WO2016027866 A1 WO 2016027866A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
blood flow
flow rate
control
unit
Prior art date
Application number
PCT/JP2015/073425
Other languages
English (en)
French (fr)
Inventor
能成 新見
田中 克宜
正博 木原
宗宏 岸
拓 丸屋
政規 吉原
神谷 勝弘
Original Assignee
泉工医科工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015053600A external-priority patent/JP5839212B1/ja
Application filed by 泉工医科工業株式会社 filed Critical 泉工医科工業株式会社
Priority to EP15832993.8A priority Critical patent/EP3165246B1/en
Priority to US15/502,091 priority patent/US10751463B2/en
Priority to CN201580044082.2A priority patent/CN106794298B/zh
Publication of WO2016027866A1 publication Critical patent/WO2016027866A1/ja
Priority to US17/001,122 priority patent/US11992594B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • A61M60/279Peristaltic pumps, e.g. roller pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3666Cardiac or cardiopulmonary bypass, e.g. heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • A61M60/113Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems in other functional devices, e.g. dialysers or heart-lung machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/30Medical purposes thereof other than the enhancement of the cardiac output
    • A61M60/36Medical purposes thereof other than the enhancement of the cardiac output for specific blood treatment; for specific therapy
    • A61M60/38Blood oxygenation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate

Definitions

  • the present invention relates to a blood circulation system for circulating blood that has been removed by a blood pump.
  • This application is filed on August 20, 2014 on Japanese Patent Application Nos. 2014-167559 and March 17, 2015 filed in Japan, and on Japanese Patent Application Nos. 2015-53600 and June 4, 2015 filed in Japan. Claims priority based on Japanese Patent Application No. 2015-114037 filed in Japan, the contents of which are incorporated herein by reference.
  • a cardiopulmonary or auxiliary blood circulation system is used to circulate blood as needed. Has been.
  • the blood removal line 501 transfers the blood received from the vein of the patient (human body) P to the reservoir 502.
  • the blood removal line 501 is configured by a tube formed of a resin such as polyvinyl chloride, for example.
  • the reservoir 502 has a tank inside, and temporarily stores the transferred blood.
  • the blood pump 504 is stored in the reservoir 502 via a blood line 503 that connects the reservoir 502 and the blood pump 504 and a first blood line 505 that connects the blood pump 504 and the artificial lung 506.
  • the collected blood is transferred to the artificial lung 506.
  • a roller pump or a centrifugal pump is used as the blood pump 504, and the blood pump 504 is controlled by a signal output from the blood pump controller 540.
  • the artificial lung 506 includes, for example, a hollow fiber membrane or a flat membrane excellent in gas permeability, and has a function of discharging carbon dioxide in blood and adding oxygen.
  • the second blood supply line 507 receives blood added with oxygen by discharging carbon dioxide in the oxygenator 506 and transfers it to the artery of the patient P.
  • the blood removal line 501 is clamped with forceps and the blood flow rate in the blood removal line 501 is determined. Need to be adjusted with forceps.
  • Patent Document 1 discloses a technique for adjusting the blood flow rate by deforming the blood removal line 501 in order to accurately and easily operate the adjustment of the blood flow rate by the oxygenator. Has been.
  • the artificial heart-lung machine described in Patent Document 1 sandwiches the blood removal line 501 by operating the blood removal regulator 521 having a clamper and a servo motor including a pair of clamp members by the blood removal regulator operation unit 520, for example. To adjust the amount of blood removed from the blood through the blood removal line 501.
  • Patent Document 2 a blood removal regulator control unit and a blood supply regulator control unit are interlocked, and either one of these control units is operated to simultaneously control the blood removal amount and the blood flow rate.
  • a technique for efficiently adjusting the blood flow rate in the oxygenator is disclosed.
  • the amount of blood to be deflated may vary depending on the situation of surgery, etc., and a blood circulation system that can stably deliver blood even if the amount of deflated blood varies greatly is required.
  • the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide a blood circulation system that can stably deliver blood and can circulate blood efficiently.
  • a first aspect according to the present invention is a blood circulation system that is connectable to a human body and sends blood that has been removed to a human body using a blood pump, and the blood supply pump and the blood that has been removed from blood
  • a blood removal line directed to the blood feed pump a blood feed line for transferring the blood sent from the blood feed pump toward the human body, a blood removal rate measuring means provided in the blood removal line, and a blood flow delivered by the blood feed pump
  • a control unit that controls the blood pump in conjunction with the blood flow rate so that the blood flow pump is within the specific range of the blood flow rate measured by the blood flow measuring means
  • the blood flow pump includes a blood flow rate instruction means for instructing the target blood flow rate
  • the blood flow rate instruction means includes a blood flow rate adjustment unit
  • the operation amount can be input from any position, and the input operation amount And an operation amount input unit that outputs a pulse signal, and a counter that adds and subtracts the
  • the control unit controls the blood pump in conjunction with the blood flow removal amount so that the blood flow amount is within the specific range of the blood flow removal amount. Blood can be circulated stably.
  • the position of the blood flow rate adjusting unit when the shift to the normal control is performed is used as a reference regardless of the previous operation amount before the shift to the interlock control. Therefore, for example, when the operation amount is mechanically set such as a volume, it is generally difficult to automatically reset the reference position. Therefore, in the blood circulation system, it is desirable to manually reset the volume or the like (for example, to a reference position such as zero) when shifting to the normal control without continuing the interlocking control.
  • the effort which resets a volume etc. manually can be saved.
  • the blood flow rate can be adjusted from an arbitrary position of the blood flow rate adjustment unit, when the interlock control is not continued and the control is shifted to the normal control, the blood flow is set based on the position after the shift to the normal control. The flow rate can be adjusted. Therefore, since it is not necessary to manually reset the volume or the like, the blood flow in normal control can be adjusted efficiently without stopping the blood circulation system.
  • the blood flow rate in the interlock control is significantly smaller than the blood flow rate in the normal control set by the blood flow rate adjustment unit before the shift to the interlock control, the previous blood flow rate is transferred after the shift to the normal control.
  • the blood flow set by the blood flow adjustment unit can be suppressed from being sent, and blood can be stably circulated.
  • the blood removal line is a blood line formed on the side of the blood line constituting the blood circulation system where the blood removed from the human body is directed to the blood pump, and more specifically, the reservoir.
  • a blood supply line means the blood line which goes to a human body side from a blood supply pump.
  • a blood line that is located downstream of a site (for example, a reservoir) where blood is released into the space and continually loses its blood flow continuity is a blood removal line or a delivery line. May not apply to blood line.
  • a blood removal line and the blood supply line it may be described as a blood line for convenience.
  • the interlock control means that blood supply by the blood pump is controlled in conjunction with the blood removal amount, and the blood flow amount by the blood pump is within a specific range with respect to the blood removal amount. It means being controlled. Further, the fact that the blood flow rate is within a specific range with respect to the blood flow loss means that the blood flow rate is within a range of conditions set in advance with respect to the blood flow loss. Or a lower limit flow rate difference) or a ratio.
  • to synchronize the blood flow rate with the blood removal rate means to make the blood flow rate by the blood pump equal to the blood flow rate, and when the blood flow rate is completely equal to the blood flow rate, Including the case of almost matching. For example, an error caused by a time lag of the control signal output to the blood pump and the response time of the blood pump is allowed.
  • the blood supply pump supplies a blood amount equal to the blood removal amount with a delay of a preset time.
  • the normal control refers to the case where the blood flow rate by the blood pump is controlled independently of the blood flow rate and is not controlled in conjunction with the blood flow rate.
  • the case where the control is performed based on an instruction regarding the blood flow rate by manual operation includes the case where the control is performed based on preset data (for example, including data stored in the storage unit).
  • the blood removal rate measurement means includes, of course, measurement means for measuring the blood removal amount itself, but for measuring various blood removal volume parameters for specifying the blood removal amount.
  • Measurement means the blood removal volume parameter is a parameter that varies in correspondence with the blood removal volume, and includes the blood removal volume itself.
  • the blood flow rate of blood that has been removed when the cross-sectional area of the blood removal line is known, and parameters for specifying the flow rate (for example, changes in the frequency of ultrasound), etc. Contains various parameters for specifying the flow rate.
  • the blood flow rate by the blood pump is within the specific range of the blood flow rate measured by the blood removal rate measuring means, the blood flow rate is not calculated and the blood flow rate is measured based on the measured value of the blood flow rate parameter. This includes the case where the blood pump is controlled directly within the specified range.
  • an operation amount can be input from an arbitrary position
  • an operation amount input unit that outputs a pulse signal according to the input operation amount may have the following configuration.
  • the instruction output and the circumferential position (rotation position) are not fixed one-to-one, This corresponds to an encoder that can be used as a reference (zero) for inputting the operation amount.
  • the blood flow rate adjustment unit may not include an encoder.
  • the position of the input unit means, for example, a circumferential position (rotation angle) in a rotary knob, and has, for example, a pair of (+) push switch and ( ⁇ ) push switch, This means the number of times the push switch is pressed when the operation amount is increased or decreased depending on the number of times of pressing.
  • the reference blood flow rate instruction means stores data relating to the interlocked blood flow rate when transitioning from the interlock control to the normal control. A part. Further, the control unit controls the blood flow rate based on the data related to the interlocked blood flow rate stored in the interlocked blood flow rate storage unit when the control is shifted from the interlock control to the normal control.
  • the blood flow rate instructing means includes the interlocked blood flow rate storage unit, and can store data related to the interlocked blood flow rate when the control is shifted from the interlock control to the normal control. it can. Therefore, when shifting from the interlock control to the normal control, the blood flow rate instruction means can control the blood flow rate based on the data related to the interlocked blood flow rate stored in the interlocked blood flow rate storage unit. As a result, for example, even if the blood removal rate fluctuates during interlocking control and deviates from the blood flow rate set before interlocking control, it is efficient with reference to the blood flow rate when transitioning from interlocking control to normal control. Can be adjusted.
  • the blood flow adjustment unit includes an encoder having a knob that can be input from an arbitrary position.
  • the blood flow rate adjustment unit includes the encoder having a knob that can be input from an arbitrary position (circumferential position), so the structure is simple and the blood flow rate is efficient. Can be adjusted.
  • the control shifts from linked control to normal control
  • blood flow can be adjusted in normal control without manually setting the knob to a specific reference position, thus eliminating the need to return the knob to a specific reference position.
  • it is possible to efficiently instruct the blood flow rate after shifting from the interlock control to the normal control.
  • blood can be stably supplied and blood can be efficiently circulated.
  • the blood flow rate can be adjusted from an arbitrary circumferential position of the encoder, when shifting to normal control without continuing interlock control, blood flow is based on the circumferential position after shifting to normal control. The flow rate can be adjusted. Therefore, the blood flow rate in the normal control can be adjusted efficiently without stopping the blood circulation system.
  • the blood flow rate in the interlock control is significantly smaller than the blood flow rate in the normal control set by the blood flow rate adjustment unit before the shift to the interlock control, The set blood flow rate can be suppressed from being sent and blood can be circulated stably.
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of a heart-lung machine according to a first embodiment of the present invention. It is a block diagram explaining the schematic structure of the control part of the heart-lung machine concerning the 1st Embodiment of this invention. It is a flowchart explaining an example of the blood-flow rate calculation process in the normal control of the heart-lung machine concerning the 1st Embodiment of this invention. It is a flowchart explaining an example of the operation
  • FIG. 1 is a circuit diagram illustrating a schematic configuration of a heart-lung machine according to a first embodiment of the present invention.
  • Reference numeral 100 denotes a heart-lung machine
  • reference numeral 111 denotes a blood removal rate sensor
  • reference numeral 120 denotes a roller pump.
  • Reference numeral 140 denotes a control unit
  • reference numeral 160 denotes a blood flow rate adjustment unit (blood flow rate instruction means)
  • reference numeral 170 denotes an interlocking blood flow rate storage unit.
  • the oxygenator 100 includes, for example, a blood removal line 101, a reservoir 102, a blood line 103, a first blood supply line (blood supply line) 104, an oxygenator 105, 2 blood supply line (blood supply line) 106, blood removal rate sensor (blood removal rate measurement means) 111, roller pump (blood supply pump) 120, blood removal regulator (flow rate adjustment means) 121, and control unit 140, a blood flow adjustment unit 160, an interlocked blood flow storage unit 170, an interlock control display unit 180, and a blood supply control switching unit 190.
  • the blood flow rate adjustment unit 160 and the interlocked blood flow rate storage unit 170 constitute a blood flow rate instruction unit.
  • the blood removal line 101, the reservoir 102, the blood line 103, the roller pump 120, the first blood supply line 104, the oxygenator 105, and the second blood supply line 106 are connected in this order, and the blood removal line 101
  • the blood removal regulator 121 and the blood removal volume sensor 111 are arranged in this order.
  • the blood removed through the blood removal line 101 is circulated to the patient (human body) P via the first blood supply line 104 and the second blood supply line 106.
  • the blood removal line 101 is composed of, for example, a tube formed of a resin such as polyvinyl chloride. One end of the blood removal line 101 can be connected to the patient P, and the blood received from the vein is transferred to the reservoir 102. Further, the blood removal line 101 is provided with a sensor or the like (not shown) for monitoring the blood concentration or oxygen concentration as necessary. Note that the above-described sensor or the like may be provided in the blood line 103 and the first blood supply line 104 instead of the blood removal line 101.
  • the reservoir 102 has a tank inside, and temporarily stores the transferred blood. Further, for example, a suction line (not shown) for sucking blood in the surgical field of the patient P and a vent line (not shown) for sucking blood in the right heart chamber are connected to the reservoir 102. Yes.
  • the blood line 103 has the same configuration as the blood removal line 101, the upstream is connected to the reservoir 102 and the downstream is connected to the roller pump 120, and the blood received from the reservoir 102 is transferred to the roller pump 120.
  • the roller pump 120 includes, for example, a rotating roller and a tube formed of a flexible resin disposed outside the rotating roller.
  • the rotating roller rotates to squeeze the tube to suck and pump blood, thereby sucking blood stored in the reservoir 102 through the blood line 103 and artificial lung 105 through the first blood feeding line 104. To transport blood.
  • the roller pump 120 controls the rotation speed of the rotation roller by the rotation control signal output from the control unit 140, and sucks and delivers blood according to the rotation speed of the rotation roller.
  • the first blood supply line 104 has the same configuration as the blood removal line 101, and the upstream is connected to the roller pump 120, the downstream is connected to the oxygenator 105, and the blood sent from the roller pump 120. Is transferred to the oxygenator 105.
  • the artificial lung 105 includes, for example, a hollow fiber membrane or a flat membrane excellent in gas permeability, and discharges carbon dioxide in blood to add oxygen.
  • the oxygenator 105 is integrally formed with a heat exchanger for adjusting the temperature of blood, for example.
  • the second blood supply line 106 has the same configuration as the blood removal line 101, receives blood from which oxygen is added by discharging carbon dioxide from the oxygenator 105, and transfers it to the artery of the patient P.
  • the second blood supply line 106 is provided with a filter (not shown) for removing foreign substances in the blood such as thrombus and bubbles.
  • the blood removal regulator 121 is provided in the blood removal line 101 and includes, for example, a clamper 121A composed of a pair of clamp members, a servo motor (not shown) that operates the clamper 121A, and a blood removal regulator operation unit 121B.
  • the operator manually operates the blood removal regulator operation unit 121B, adjusts the clamp amount (clamping amount) of the clamper 121A with a servo motor, and changes the cross-sectional area of the blood removal line 101 to change the blood removal line 101. Adjust the flowing blood flow.
  • the blood removal rate sensor (blood removal rate measurement means) 111 is provided in the blood removal line 101 and uses, for example, an ultrasonic sensor that measures the flow velocity of blood using ultrasonic waves. (Blood flow parameter signal) is sent to the controller 140.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the control unit 140 according to the first embodiment.
  • the control unit 140 includes, for example, a blood flow adjustment data receiving unit 141, a blood removal signal input receiving unit 142, a blood flow calculating unit 143, a blood flow calculating unit 144, and a roller pump control amount calculating unit 145. And a roller pump control unit 146 and a blood supply control switching instruction receiving unit 191.
  • the control unit 140 is connected to the blood removal rate sensor 111, the blood flow adjustment unit 160, the interlocked blood flow storage unit 170, the interlock control display unit 180, the blood supply control switching unit 190, and the roller pump 120 through cables. Yes.
  • the blood flow rate adjusting unit 160 is used to input a blood flow rate (target blood flow rate, hereinafter simply referred to as a blood flow rate in the first embodiment) to the roller pump 120 in the heart-lung machine 100.
  • the configuration includes, for example, an encoder (operation amount input unit) and a counter.
  • the encoder can use a knob located at an arbitrary circumferential position (position) and rotate the knob based on the arbitrary circumferential position to input an increase / decrease in the operation amount.
  • a pulse signal is output according to the amount.
  • the counter adds / subtracts the pulse signal output by the encoder and outputs it as blood flow adjustment data.
  • the blood flow rate adjusting unit 160 is positioned in the circumferential direction of the encoder knob. Regardless of this, it is possible to adjust the blood flow rate by inputting a new increase / decrease in the operation amount based on the circumferential position.
  • the interlocking blood flow volume storage unit 170 is configured by, for example, an external memory, and in this embodiment, the blood flow rate at the time of interlocking control (data regarding the interlocking blood flow rate) calculated by the blood flow rate calculation unit 144 is used.
  • the blood flow rate at the time of interlocking control data regarding the interlocking blood flow rate
  • the interlock control display unit 180 is constituted by, for example, an LED lamp, and is lit by the output of the roller pump control unit 146 when the roller pump 120 is controlled in an interlocked manner, and the control state of the roller pump 120 (normal control, interlock control). To inform the operator.
  • the blood supply control switching unit 190 is configured to instruct whether the artificial heart-lung machine 100 is to supply blood by normal control or continuous control, and includes, for example, an alternative switch.
  • the blood transmission control switching unit 190 may include a plurality of components such as a sensor that detects an abnormality that has occurred in the heart-lung machine 100 and instructs the heart-lung machine 100 to shift to normal control. Good.
  • the blood flow adjustment data receiving unit 141 is connected to the blood flow adjustment unit 160 and receives the blood flow adjustment data (the increase or decrease in the blood flow) sent from the blood flow adjustment unit 160.
  • the blood removal rate signal input receiving unit 142 is connected to the blood removal rate sensor 111 and receives a blood removal rate signal (a blood removal rate parameter signal) sent from the blood removal rate sensor 111.
  • the blood removal amount calculation unit 143 calculates the blood removal amount based on the blood removal amount signal sent from the blood removal amount signal input reception unit 142. Specifically, for example, the blood removal amount is calculated by the product of the blood removal flow rate (flow rate parameter) calculated from the blood removal flow amount signal and the flow passage area of the blood removal line 101.
  • the blood flow rate calculation unit 144 calculates the blood flow rate (target blood flow rate) of the roller pump 120 in normal control and interlocking control.
  • the blood flow rate calculation in the normal control and the interlock control by the blood flow rate calculation unit 144 is switched based on, for example, a preset interlock control transition condition or a blood transfer control switching instruction signal received from the blood supply control switching instruction receiving unit 191. .
  • the blood flow rate calculation unit 144 calculates the blood flow rate in the normal control based on the blood flow rate adjustment data received from the blood flow rate adjustment data reception unit 141 and the blood flow rate read from the blood flow rate storage unit 170. calculate. In addition, in the case of interlock control, the blood flow rate calculation unit 144 stores the calculated blood flow rate (target blood flow rate) in the interlocking blood flow rate storage unit 170.
  • the blood flow rate to the roller pump 120 (target blood flow rate) is made to coincide with the blood flow rate to synchronize the blood flow rate with the blood flow rate.
  • synchronizing the blood flow with the blood removal by the roller pump 120 means that the blood flow is within a specific range with respect to the blood removal (for example, a range indicated by a ratio to the blood removal or a flow rate with respect to the blood removal) It is one mode of being controlled within the range indicated by the difference.
  • the normal control blood flow rate (target blood flow rate) calculation process in the blood flow rate calculation unit 144 is as follows.
  • FIG. 3 is a flowchart for explaining an example of normal control blood flow rate calculation processing in the blood flow rate calculation unit 144.
  • the blood flow calculating unit 144 determines whether or not there is linked blood flow data in the linked blood flow storage unit 170 (S111). If there is interlocking blood flow data (S111: Yes), the process proceeds to S112, and if there is no instruction to shift to interlocking control (S111: No), the process proceeds to S114.
  • the blood flow rate calculation unit 144 reads the interlocking blood flow rate data from the interlocking blood flow rate storage unit 170 (S112). (3) The blood flow rate calculation unit 144 sets the read linked blood flow rate data as a reference for calculating the blood flow rate (S113). When S113 is executed, the process proceeds to S115. (4) The blood flow rate calculation unit 144 sets “zero” as a reference for calculating the blood flow rate (S114). (5) Next, the blood flow rate calculation unit 144 receives the blood flow rate adjustment data (S115). (6) Next, the blood flow rate calculation unit 144 calculates a blood flow rate (target blood flow rate) based on the received blood flow rate adjustment data (S116).
  • the blood flow rate is calculated by adding (increasing or decreasing) the blood flow rate adjustment data to the reference set in S113 or S114.
  • the processes of S111 to S116 are repeatedly executed at a predetermined cycle while the heart-lung machine 100 is normally controlled, for example.
  • the roller pump control amount calculation unit 145 calculates, for example, the rotation speed (control amount) output to the roller pump 120 in the normal control and the interlock control based on the blood flow rate sent from the blood flow rate calculation unit 144. To do.
  • the rotational speed of the roller pump 120 is, for example, a reference to a data table indicating the relationship between the rotational speed of the roller pump 120 indicating the blood flow rate characteristic of the roller pump 120 and the blood flow rate, or the rotational speed of the roller pump 120 and blood flow. It is calculated by calculating a calculation formula showing the relationship with the flow rate.
  • the rotation speed of the roller pump 120 set in the case of the interlock control is, for example, the rotation speed for synchronizing the blood flow rate by the roller pump 120 with the blood removal rate.
  • the roller pump control unit 146 outputs a signal corresponding to the control amount received from the roller pump control amount calculation unit 145 to the roller pump 120. In addition, the roller pump control unit 146 turns on the interlock control display unit 180 when it is shifted to interlocking blood feeding.
  • FIG. 4 is a flowchart for explaining an example of an operation procedure in normal control of the oxygenator 100.
  • the operation procedure in the normal control of the heart-lung machine 100 is as follows. (1) First, the blood flow adjustment data receiving unit 141 receives blood flow adjustment data (S121). (2) Next, based on the received blood flow adjustment data, the blood flow calculator 144 calculates the blood flow (S122).
  • the roller pump control amount calculation unit 145 calculates, for example, a control amount (number of rotations) based on the blood flow rate characteristic of the roller pump 120 (S123). ).
  • the roller pump control unit 146 outputs a signal corresponding to the control amount to the roller pump 120 (S124).
  • the processes of S121 to S124 are repeatedly executed at a predetermined cycle until, for example, the heart-lung machine 100 is shifted to the interlock control.
  • FIG. 5 is a flowchart for explaining an example of an operation procedure in the interlock control of the oxygenator 100.
  • the blood removal amount signal input receiving unit 142 receives a blood removal amount signal (blood removal amount parameter signal) (S131).
  • the blood removal amount calculation unit 143 calculates the blood removal amount (S132).
  • the blood flow rate calculation unit 144 calculates the blood flow rate (S133).
  • the blood flow rate calculated based on the blood flow rate is made equal to the blood flow rate.
  • the blood flow rate may be set so that the absolute value of (blood flow rate minus blood flow rate) falls within a predetermined range.
  • the roller pump control amount calculation unit 145 calculates the control amount (rotation speed) of the roller pump 120 (S134).
  • the control amount (rotation speed) of the roller pump 120 based on the blood flow rate is calculated based on, for example, the blood flow rate characteristic of the roller pump 120.
  • the roller pump control unit 146 outputs a signal corresponding to the control amount to the roller pump 120 (S135).
  • the blood flow rate calculation unit 144 stores the blood flow rate calculated in S133 (data related to the interlocking blood flow rate) in the interlocking blood flow rate storage unit 170 (S136).
  • the processes of S131 to S136 are repeatedly executed at a predetermined cycle, for example, until the transition to the normal control or the operation is completed and the interlocking control is completed.
  • FIG. 6 is a flowchart for explaining switching between normal control and interlocking control in the oxygenator 100. Switching between normal control and interlocking control in the oxygenator 100 is performed, for example, according to the following procedure.
  • the blood transfer control switching unit 190 determines whether or not the blood transfer switching instruction is interlocked control (S141). If the blood transfer switching instruction is interlocking control (S141: Yes), the process proceeds to S142. If the blood transmission switching instruction is not interlocking control (normal control) (S141: No), the process proceeds to S149. (2) Next, the blood transfer control switching instruction receiving unit 191 determines whether or not the interlock control operation is being performed (S142). When the operation is not being performed by the interlock control (S142: No), the process proceeds to S143. When the operation is being performed by the interlock control (S142: Yes), the process proceeds to S148.
  • the determination as to whether or not the interlock control operation is in progress is made, for example, by setting a flag when the blood transfer control switching unit 190 is switched to the interlock control, and then deleting the flag when the blood transfer control shifts to S148. Do. (3) Next, the blood flow adjustment data receiving unit 141 receives the blood flow adjustment data (S143). (4) Next, based on the received blood flow adjustment data, the blood flow calculator 144 calculates the blood flow (S144). (5) Next, the blood removal amount signal input receiving unit 142 receives a blood removal amount signal (a blood removal amount parameter signal) (S145). (6) Next, the blood removal amount calculation unit 144 calculates the blood removal amount based on the received blood removal amount signal (S146).
  • the control unit 140 since the control unit 140 synchronizes the blood flow rate of the roller pump 120 with the blood removal rate, the blood circulation can be performed stably even when the blood flow rate fluctuates. be able to.
  • the blood flow rate adjustment part 160 is provided with the encoder which has a knob which can be input from arbitrary positions (circumferential direction position), a structure is simple. is there. That is, for example, when the control is shifted from the interlock control to the normal control, there is no need to manually reset the blood flow rate adjusting unit 160 to a specific reference position, and the adjustment in the normal control can be efficiently performed without the need for resetting.
  • the encoder which has a knob which can be input from arbitrary positions (circumferential direction position
  • the blood flow rate by the roller pump 120 in the interlock control is more than the blood flow rate set by the blood flow rate adjustment unit in the normal control before the shift to the interlock control. If the blood flow is too small, it is possible to suppress the blood flow set by the previous blood flow adjustment part after the normal control transition, and to circulate blood stably. Can do.
  • the normal control can be adjusted without stopping the blood circulation system, so that blood can be circulated efficiently.
  • the blood flow rate (data regarding the interlocking blood flow rate) of the roller pump 120 is stored in the interlocking blood flow rate storage unit. 170, and the blood flow rate stored in the interlocking blood flow rate storage unit 170 can be adjusted using the blood flow rate stored as a reference in the normal control. Therefore, even when the blood flow after the shift to the interlock control is greatly changed from the blood flow set before the shift to the interlock control, the blood flow after the shift to the normal control can be stably adjusted.
  • roller pump 120 since the roller pump 120 is provided as a blood pump, it is suppressed that it receives to the influence of a pressure and blood is supplied with the stable blood flow volume. be able to.
  • the blood removal regulator 121 is provided in the blood removal line 101, adjusting the blood flow rate which removes blood via the blood removal line 101 suitably. Can do.
  • FIG. 7 is a schematic configuration diagram illustrating the heart-lung machine according to the second embodiment.
  • Reference numeral 200 denotes an oxygenator
  • numeral 112 denotes a blood flow sensor (blood flow measuring means)
  • numeral 220 denotes a blood flow sensor.
  • Reference numeral 240 denotes a centrifugal pump (blood feeding pump), and reference numeral 240 denotes a control unit.
  • the oxygenator 200 includes, for example, a blood removal line 101, a reservoir 102, a blood line 103, a centrifugal pump 220, a first blood supply line (blood supply line) 104, an artificial line, and the like. Lung 105, second blood supply line (blood supply line) 106, blood removal rate sensor 111, blood flow rate sensor 112, blood removal regulator (flow rate adjusting means) 121, blood supply regulator 122, and control Unit 240, blood flow rate adjustment unit (blood flow rate instruction means) 160, interlocking blood flow rate storage unit 170, interlocking control display unit 180, and blood supply control switching unit 190.
  • the blood removal line 101, the reservoir 102, the blood line 103, the centrifugal pump 220, the first blood supply line 104, the oxygenator 105, and the second blood supply line 106 are connected in this order.
  • the blood removal regulator 121 and the blood flow sensor 111 are arranged in this order, and the blood supply regulator 122 and the blood flow sensor 112 are arranged in this order on the first blood supply line 104.
  • the blood flow sensor (blood flow measuring means) 112 for example, an ultrasonic sensor is used similarly to the blood flow sensor 111, and the measurement result is sent to the control unit 240.
  • the blood flow measurement means includes, of course, measurement means for measuring the blood flow itself, but is a measurement means for measuring various blood removal parameters for specifying the blood flow.
  • the blood flow parameter is a parameter that varies in accordance with the blood flow and includes the blood flow itself. For example, when the cross-sectional area of the blood flow line is known Various parameters for specifying the blood flow rate are included, such as the flow rate of the blood that has been sent to and the parameters for specifying this flow rate (for example, changes in the frequency of ultrasonic waves).
  • the comparison between the blood flow parameter and the blood flow parameter means that when the blood flow parameter and the blood flow parameter are of the same type, they are compared, and the blood flow parameter and the blood flow parameter are different. In the case of a kind, both of these are directly compared, or either or both are converted into a comparable form and compared.
  • the interlocking blood flow rate storage unit 170 is configured by, for example, an external memory, and in this embodiment, the blood flow rate (data related to the interlocking blood flow rate) by the centrifugal pump 220 measured by the blood flow rate sensor 112 is measured.
  • the blood flow rate data related to the interlocking blood flow rate
  • the centrifugal pump 220 rotates the impeller blades by, for example, an AC servo motor or a DC servo motor, sucks blood stored in the reservoir 102 through the blood line 103, and passes through the first blood supply line 104. Transfer to oxygenator 105.
  • the centrifugal pump 220 is controlled by a control signal output from the control unit 240, and the rotation speed of the centrifugal pump 220 in the normal control is controlled independently of the blood flow rate. Further, the rotational speed of the centrifugal pump 220 in the interlock control is controlled such that the blood flow rate measured by the blood flow rate sensor 112 is synchronized with the blood flow rate measured by the blood flow rate sensor 111, for example. In either case, feedback control is performed.
  • the blood supply regulator 122 is provided in the first blood supply line 104.
  • a clamper 122A composed of a pair of clamp members, a servo motor (not shown) that operates the clamper 122A, a blood supply regulator operation unit 122B, It has. Then, the operator manually operates the blood supply regulator operation unit 122B, adjusts the clamp amount (clamping amount) of the clamper 122A by a servo motor, and closes the first blood supply line 104, whereby the centrifugal pump Prevents backflow of blood when 220 is stopped.
  • FIG. 8 is a block diagram illustrating a schematic configuration of the control unit 240 according to the second embodiment.
  • the control unit 240 includes a blood flow adjustment data receiving unit 141, a blood removal signal input receiving unit 142, a blood flow calculating unit 143, a blood flow signal receiving unit 241, and a blood flow calculating unit 242.
  • the control unit 240 includes a blood removal rate sensor 111, a blood flow rate sensor 112, a blood flow rate adjustment unit 160, an interlocked blood flow rate storage unit 170, an interlocking control display unit 180, a blood supply control switching unit 190, and a centrifugal pump 220. And connected by a cable.
  • the blood flow adjustment data receiving unit 141, the blood flow removal signal input receiving unit 142, the blood flow removal calculating unit 143, and the blood flow control switching instruction receiving unit 191 are the same as those in the first embodiment and will be described. Omitted.
  • the blood flow rate signal receiving unit 241 is connected to the blood flow rate sensor 112 and receives the blood flow rate signal (blood flow rate parameter signal) sent from the blood flow rate sensor 112.
  • the blood flow rate calculation unit 242 calculates the blood flow rate based on the blood flow rate signal sent from the blood flow rate signal reception unit 241. Specifically, for example, the blood flow rate can be calculated from the blood flow rate (flow rate parameter) calculated from the blood flow rate signal and the flow area of the first blood flow line 104.
  • the target blood flow rate calculation unit 243 calculates the target blood flow rate of the centrifugal pump 220 in the normal control and the interlock control.
  • the target blood flow rate calculation in the normal control and the interlock control by the target blood flow rate calculation unit 243 is switched based on, for example, the interlock control transition condition or the blood transfer control switching instruction signal received from the blood supply control switching instruction reception unit 191.
  • the switching between the normal control and the interlocking control of the oxygenator 200 is the same as in the first embodiment shown in FIG. 3, and in the second embodiment, the blood flow shown in FIG.
  • the blood flow rate measured by the sensor 112 is used. Others are the same as in the first embodiment.
  • the target blood flow rate calculation unit 243 also performs target blood flow control in normal control based on the blood flow rate adjustment data received from the blood flow rate adjustment data reception unit 141 and the blood flow rate read from the blood flow rate storage unit 170. Calculate the flow rate.
  • the target blood flow rate calculation unit 243 calculates the target blood flow rate for the interlock control based on the blood flow rate received from the blood flow rate calculation unit 242. In addition, the target blood flow rate calculation unit 243 stores the blood flow rate received from the blood flow rate calculation unit 242 in the interlocking blood flow rate storage unit 170 in the case of the interlock control.
  • the blood flow rate by the centrifugal pump 220 that flows through the first blood feed line 104 and the second blood feed line 106 in the interlocking control is made to coincide with the blood flow rate, thereby reducing the blood flow rate. Synchronize with. Note that synchronizing the blood flow with the blood removal by the centrifugal pump 220 means that the blood flow is within a specific range with respect to the blood removal (for example, a range indicated by a ratio to the blood removal or a flow rate with respect to the blood removal) It is one mode of being controlled within the range indicated by the difference.
  • FIG. 9 is a flowchart for explaining an example of normal control target blood flow rate calculation processing in the target blood flow rate calculation unit 243.
  • the target blood flow rate calculation unit 243 determines whether or not there is linked blood flow rate data in the linked blood flow rate storage unit 170 (S211). If there is linked blood flow data (S211: Yes), the process proceeds to S212, and if there is no instruction to shift to linked control (S211: No), the process proceeds to S214.
  • the target blood flow rate calculation unit 243 reads the interlocking blood flow rate data from the interlocking blood flow rate storage unit 170 (S212). (3) The target blood flow rate calculation unit 243 sets the read linked blood flow rate data as a reference for calculating the blood flow rate (S213). If S213 is executed, the process proceeds to S215. (4) The target blood flow rate calculation unit 243 sets “zero” as a reference for calculating the target blood flow rate (S214). (5) Next, the target blood flow rate calculation unit 243 receives the blood flow rate adjustment data (S215). (6) Next, based on the received blood flow adjustment data, the target blood flow calculator 243 calculates the target blood flow (S216).
  • the blood flow rate is calculated by adding (increasing or decreasing) the blood flow rate adjustment data to the reference set in S213 or S214.
  • the processes of S211 to S216 are repeatedly executed at a predetermined cycle while the heart-lung machine 200 is normally controlled, for example.
  • the centrifugal pump control amount calculation unit 244 calculates the rotation speed (control amount) by feedback control by comparing the target blood flow rate and the blood flow rate sent from the target blood flow rate calculation unit 243.
  • the control amount for the centrifugal pump 220 in the interlock control is a control amount that synchronizes the blood flow rate with the blood removal rate.
  • the centrifugal pump control unit 245 outputs a signal corresponding to the control amount received from the centrifugal pump control amount calculation unit 244 to the centrifugal pump 220. Moreover, the centrifugal pump control part 245 makes the interlocking control display part 180 light, when it transfers to interlocking blood feeding.
  • FIG. 10 is a flowchart for explaining an example of an operation procedure in normal control of the oxygenator 200.
  • the blood flow adjustment data receiving unit 141 receives blood flow adjustment data (S221).
  • the target blood flow rate calculation unit 243 calculates the target blood flow rate based on the blood flow rate adjustment data (S222).
  • the blood flow rate signal input receiving unit 241 receives a blood flow rate signal (blood flow rate parameter signal) (S223).
  • the blood flow calculating unit 242 calculates the blood flow based on the received blood flow signal (S224).
  • the target blood flow rate calculated in S222 is compared with the blood flow rate calculated in S224, for example, (target blood flow rate ⁇ blood flow rate) is calculated, and (target flow rate) It is determined whether or not (blood flow rate ⁇ blood flow rate) (S225).
  • the centrifugal pump control amount calculation unit 245 proceeds to calculate a control amount (increase in rotation speed) for the centrifugal pump 220 (S226).
  • FIG. 11 is a flowchart for explaining an example of an operation procedure in the interlock control of the oxygenator 200.
  • the blood removal amount signal input receiving unit 142 receives a blood removal amount signal (blood removal amount parameter signal) (S231).
  • the blood removal amount calculation unit 143 calculates the blood removal amount (S232).
  • the target blood flow volume calculation unit 243 calculates the target blood flow volume (S233).
  • the blood flow rate signal receiving unit 241 receives a blood flow rate signal (blood flow rate parameter signal) (S234).
  • the blood flow calculating unit 242 calculates the blood flow based on the received blood flow signal (S235).
  • (6) Next, by comparing the target blood flow rate calculated in S233 with the blood flow rate calculated in S235, for example, (target blood flow rate ⁇ blood flow rate) is calculated, and (target flow rate) It is determined whether or not (blood flow rate ⁇ blood flow rate) (S236).
  • the control amount (incremental rotation speed) for the centrifugal pump 220 is calculated (S237), and (target blood flow rate ⁇ blood flow).
  • the process proceeds to calculation of the control amount (reduction speed) for the centrifugal pump 220 (S238).
  • the control amount incrementasing rotational speed
  • the centrifugal pump control unit 245 outputs a signal corresponding to the control amount calculated in S237 or S238 to the centrifugal pump 220 (S239).
  • the target blood flow rate calculation unit 243 stores the interlocked blood flow rate (data regarding the interlocked blood flow rate) by the centrifugal pump 220 in the interlocked blood flow rate storage unit 170 (S240).
  • the processes of S231 to S240 are repeatedly executed at a predetermined cycle, for example, until the transition to the normal control or the operation is completed and the interlocking control is completed.
  • the control unit 240 since the control unit 240 synchronizes the blood flow rate of the centrifugal pump 220 with the blood removal rate, the blood circulation can be performed stably even when the blood removal rate varies. be able to.
  • the blood flow rate adjusting unit 160 includes an encoder having a knob that can be input from an arbitrary position (circumferential position). Therefore, when shifting from the interlock control to the normal control, there is no need to manually return the blood flow rate adjusting unit 160 to the reference position and reset it, and the adjustment in the normal control can be made more efficient without the need for resetting. .
  • the blood flow rate by the centrifugal pump 220 in the interlock control is more than the blood flow rate set by the blood flow rate adjustment unit in the normal control before the interlock control transition. If the blood flow rate is too small, the blood flow rate set by the previous blood flow rate adjustment unit after the transition to normal control can be suppressed and blood can be stably circulated. it can. In addition, when the control is shifted to the normal control without continuing the interlock control, the normal control can be adjusted without stopping the blood circulation system, so that blood can be circulated efficiently.
  • the blood flow rate of the centrifugal pump 220 (data regarding the interlocked blood flow rate) is stored in the interlocked blood flow rate storage unit when the control is shifted from the interlock control to the normal control. 170, and the blood flow rate stored in the interlocking blood flow rate storage unit 170 can be adjusted using the blood flow rate stored as a reference in the normal control. Therefore, even when the blood flow after the shift to the interlock control is greatly changed from the blood flow set before the shift to the interlock control, the blood flow after the shift to the normal control can be stably adjusted.
  • the blood pump is constituted by the centrifugal pump 220, a stable blood flow can be rapidly fed.
  • the blood removal amount can be adjusted suitably.
  • the blood supply regulator 122 is provided in the first blood supply line 104, when the centrifugal pump 220 stops, the first blood supply line 104 is blocked to prevent blood from flowing backward. be able to.
  • the blood pump is constituted by the centrifugal pump 220, a stable blood flow can be rapidly fed.
  • the blood flow rate is synchronized with the blood removal rate in the oxygenators 100 and 200 .
  • the blood flow rate is within a specific range with respect to the blood flow loss. You may adjust.
  • the counter may be isolate
  • an operation amount input unit that outputs a pulse signal instead of an encoder, a (+) push switch, a device that indicates an increase / decrease amount using a ( ⁇ ) push switch, and the like may be applied.
  • the structure may be such that the heart-lung machine 100, 200 is stopped.
  • the blood flow rate may be adjusted based on the interlocked blood flow rate stored in the interlocked blood flow rate storage unit 170.
  • interlocking blood flow rate storage unit 170 is an external memory connected to the control units 140 and 240 .
  • the configuration and arrangement of the interlocking blood flow rate storage unit 170 are arbitrary. Can be set to
  • the interlocking blood flow rate storage unit 170 stores the blood flow rate (target blood flow rate) of the roller pump 120, and the second embodiment.
  • the case where the blood flow rate measured by the blood flow rate sensor 112 is stored has been described.
  • a parameter that can uniquely set the blood flow rate by the blood pump such as the blood removal rate and the control amount of the blood pump, may be used as the data related to the interlocking blood flow rate.
  • the blood removal rate sensor 111 and the blood flow rate sensor 112 that measure the blood flow velocity are used as the blood removal rate measurement unit and the blood flow rate measurement unit, respectively.
  • the case where an ultrasonic sensor is used as the blood removal rate sensor 111 and the blood flow rate sensor 112 has been described.
  • various known types using lasers, infrared rays, or the like are used.
  • the flow rate measuring means may be used.
  • the blood pump is the roller pump 120 and the centrifugal pump 220 has been described in the above embodiment, other blood pumps may be used.
  • the first blood flow line 104 and the second blood flow line 106 are flow sensors such as an ultrasonic sensor. (Flow parameter measurement means) may be provided as appropriate.
  • the blood removal regulator 121 is provided as the flow rate adjusting unit and the blood removal regulator 121 and the blood supply regulator 122 are provided in the second embodiment has been described.
  • the blood supply regulator 122 may not be provided, and when the flow rate adjusting means is provided, either the blood removal regulator 121 or the blood supply regulator 122 is provided, or both, or the blood removal regulator 121, The site where the blood supply regulator 122 is provided in the blood removal line or blood supply line can be set as appropriate.
  • a flow rate adjusting means other than the blood removal regulator 121 and the blood supply regulator 122 may be provided.
  • the case where the blood supply regulator 122 and the blood flow sensor 112 are arranged in this order on the first blood supply line 104 has been described.
  • the first blood supply line 104 is described.
  • the second blood supply line 106 may be arranged.
  • the blood flow sensor 112 and the blood regulator 122 may be arranged in this order.
  • control may be performed using a method (algorithm) other than the above flowchart.
  • the oxygenator 100, 200 includes the reservoir 102 .
  • an auxiliary circulation device blood circulation system
  • the blood flow rate for example, when the generation of excessive negative pressure is suppressed by adjusting the blood flow rate to be synchronized with the blood flow rate or within a specific range. May be used.
  • the blood circulation system when the blood flow rate by the blood pump is linked to the blood removal rate, blood can be stably fed and blood can be circulated efficiently.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

人工心肺装置(100)であって、ローラポンプ(120)と、脱血ライン(101)と、第1の送血ライン(104)と、脱血流量センサ(111)と、ローラポンプ(120)を脱血流量と対応させて連動制御する制御部(140)と、ローラポンプ(120)に送血流量を指示する送血流量調整部(160)とを備え、送血流量調整部(160)は、周方向任意の位置から操作量を入力可能とされ、入力された操作量に応じてパルス信号を出力する操作量入力部と、操作量入力部が出力したパルス信号を加算・減算して送血流量調整データとして出力するカウンタとを有し、カウンタは通常制御に移行されたときの操作量入力部の周方向位置を基準としてカウントする。

Description

血液循環システム
 本発明は、脱血された血液を、送血ポンプによって循環させるための血液循環システムに関する。
 本願は、2014年8月20日に、日本に出願された特願2014-167559号及び2015年3月17日に、日本に出願された特願2015-53600号及び2015年6月4日に、日本に出願された特願2015-114037号に基づき優先権を主張し、その内容をここに援用する。
 従来、心臓手術等の手術中や手術後においては、心臓を停止あるいは停止に近い状態にする際に、必要に応じて、人工心肺や補助的に血液を循環させるための血液循環システムが広く使用されている。
 従来の人工心肺を備えた人工心肺装置(血液循環システム)500は、例えば、図12に示すように、脱血ライン501と、リザーバ502と、血液ライン503と、送血ポンプ504と、第1の送血ライン505と、人工肺506と、第2の送血ライン507とを備えている。
 脱血ライン501は、患者(人体)Pの静脈から受け取った血液をリザーバ502に移送する。脱血ライン501は、例えば、ポリ塩化ビニルなどの樹脂により形成されたチューブにより構成されている。
 リザーバ502は、内部に槽を有していて、移送されてきた血液を一時的に貯留する。
 送血ポンプ504は、リザーバ502と送血ポンプ504とを接続する血液ライン503、及び送血ポンプ504と人工肺506とを接続する第1の送血ライン505を介して、リザーバ502に貯留された血液を人工肺506に移送する。例えば、送血ポンプ504として、ローラポンプや遠心ポンプなどが用いられ、送血ポンプ制御部540からの信号出力により送血ポンプ504は制御される。
 人工肺506は、例えば、気体透過性に優れた中空糸膜又は平膜などを備えていて、血液中の二酸化炭素を排出し酸素を付加する機能を有している。
 第2の送血ライン507は、人工肺506において二酸化炭素を排出して酸素を付加された血液を受け取って、患者Pの動脈に移送する。
 このように構成された人工心肺装置500を、操作するためには高度な知識、技術が必要とされ、一般的には、医師の指示に基づいて、臨床工学技士が手動操作によって血液流量を調整する。
 臨床工学技士が、手動操作によって血液流量を調整する際には、例えば、脱血の程度や患者の動脈圧を確認しながら、脱血ライン501を鉗子で挟んで、脱血ライン501における血液流量を鉗子で挟んで調整する必要がある。
 また、血液流量の調整に際しては、例えば、送血ポンプ(ローラポンプ、遠心ポンプ等)の回転数を手動で操作することによって、送血ポンプの吐出量を調整するため、各ラインの調整に加えて、複雑で高度な操作技術が必要である。
 そこで、例えば、特許文献1には、人工心肺装置による脱血流量の調整を正確かつ簡易に操作するために、脱血ライン501を挟んで変形させることにより、脱血流量を調整する技術が開示されている。
 特許文献1に記載の人工心肺装置は、例えば、脱血レギュレータ操作部520によって、一対のクランプ部材からなるクランパとサーボモータとを有する脱血レギュレータ521を操作することにより、脱血ライン501を挟んで変形させ、脱血ライン501を介して脱血される脱血流量を調整する。
 また、例えば、特許文献2には、脱血レギュレータ制御部と送血レギュレータ制御部とを連動させて、これら制御部のいずれか一方を操作して、脱血流量と送血流量を同時に制御することにより、人工心肺装置における血液流量を、効率的に調整する技術が開示されている。
日本国特開昭62-027966号公報 日本国特開2006-020712号公報
 しかしながら、脱血する血液の量は手術の状況等により変動する場合があり、脱血流量が大きく変動しても安定して送血することが可能な血液循環システムが求められる。
 また、安定して送血することが可能な血液循環システムにおいて、効率的に血液を循環させることができることが望ましい。
 本発明は、このような事情を考慮してなされ、安定して送血することができ、効率的に血液循環させることが可能な血液循環システムを提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明に係る第一の態様は、人体に接続可能とされ、脱血された血液を送血ポンプによって人体に送血する血液循環システムであって、送血ポンプと、脱血された血液が送血ポンプに向かう脱血ラインと、送血ポンプから送られる血液を人体に向かって移送する送血ラインと、脱血ラインに設けられた脱血流量測定手段と、送血ポンプによる送血流量を脱血流量測定手段が測定した脱血流量の特定範囲内とするように、送血ポンプを脱血流量と対応させて連動制御する制御部と、送血ポンプが脱血流量と独立して送血する通常制御において、送血ポンプが目標とする送血流量を指示する送血流量指示手段と、を備え、送血流量指示手段は送血流量調整部を備え、送血流量調整部は、任意の位置から操作量を入力可能とされ入力された操作量に応じてパルス信号を出力する操作量入力部と、操作量入力部が出力したパルス信号を加算・減算して送血流量調整データとして出力するカウンタとを有し、カウンタは通常制御に移行されたときの操作量入力部の位置を基準としてカウントする。
 この発明に係る血液循環システムによれば、制御部が、送血ポンプを脱血流量と連動制御して送血流量を脱血流量の特定範囲内とするので、脱血流量が変動した場合でも安定して血液循環させることができる。
 また、連動制御から通常制御に移行された際に、連動制御に移行される前の従前の操作量に拘わらず、通常制御に移行された際の送血流量調整部の位置を基準とする。従って、例えば、ボリュウム等のように操作量が機械的に設定される場合には、一般的には、基準位置を自動的にリセットすることは困難である。そのため、血液循環システムにおいて、連動制御が継続されずに通常制御に移行する場合には、ボリュウム等を手動でリセット(例えば、ゼロ等の基準位置に)することが望ましい。しかしながら、この発明における送血流量調整部では、手動でボリュウム等をリセットする手間を省くことができる。
 また、送血流量調整部の任意の位置から送血流量を調整することができるので、連動制御が継続されずに通常制御に移行する場合に、通常制御に移行後の位置を基準として送血流量を調整することができる。そのため、手動でボリュウム等をリセットする必要がないので、血液循環システムを停止させることなく、通常制御における送血流を効率的に調整することができる。
 また、例えば、連動制御における送血流量が、連動制御移行前の送血流量調整部によって設定された通常制御における送血流量に対し大幅に少量である場合に、通常制御移行後に、従前の送血流量調整部によって設定された送血流量が送血されるのを抑制することができ、安定して血液循環させることができる。
 本発明において、脱血ラインとは、血液循環システムを構成する血液ラインのうち、人体から脱血された血液が送血ポンプに向かう側に形成された血液ラインであり、より具体的にはリザーバ等に向かう血液ラインをいう。また、送血ラインとは、送血ポンプから人体側に向かう血液ラインをいう。
 なお、血液循環路において、血液が空間に開放される部位(例えば、リザーバ)等よりも下流側に位置されて、定常的に血液流量の連続性がなくなる血液ラインについては、脱血ライン又は送血ラインに該当しない場合がある。
 また、脱血ライン及び送血ラインのうちの一部分を指す場合においても、便宜上、血液ラインと記載する場合がある。
 また、本発明において、連動制御とは、送血ポンプによる送血が脱血流量と連動して制御されることをいい、送血ポンプによる送血流量が脱血流量に対して特定範囲内に制御されることをいう。
 また、送血流量が脱血流量に対して特定範囲内とは、脱血流量に対して予め設定された条件の範囲内であることをいい、脱血流量に対する流量差(例えば、上限流量差や下限流量差)や比率等により表すことができる。
 また、本発明において、送血流量が脱血流量と同期するとは、送血ポンプによる送血流量を脱血流量と等しくすることをいい、送血流量が脱血流量と完全に一致する場合、ほぼ一致する場合を含む。なお、例えば、送血ポンプに対する制御信号出力のタイムラグや送血ポンプのレスポンスタイムに起因する誤差は許容される。
 また、送血ポンプによって、予め設定された時間だけ遅れて脱血流量と等しい量の血液が送血される場合を含む。
 本発明において、通常制御とは、送血ポンプによる送血流量が脱血流量と独立して制御される場合であり、脱血流量と連動して制御されていない場合をいう。例えば、手動操作による送血流量に関する指示に基づいて制御される場合、予め設定されたデータ(例えば、記憶手段に格納されたデータを含む)に基づいて制御される場合を含む。
 また、本発明において、脱血流量測定手段とは、脱血流量そのものを測定する測定手段を含むことは勿論であるが、脱血流量を特定するための種々の脱血流量パラメータを測定するための測定手段を含む。
 ここで、脱血流量パラメータとは、脱血流量と対応して変動するパラメータであり、脱血流量そのものを含む。さらには、例えば、脱血ラインの流路断面積が既知である場合における脱血された血液の流速や、この流速を特定するためのパラメータ(例えば、超音波の周波数の変化)等、脱血流量を特定するための種々のパラメータを含む。
 また、送血ポンプによる送血流量を脱血流量測定手段が測定した脱血流量の特定範囲内とするとは、脱血流量が算出されることなく、脱血流量パラメータの測定値に基づいて送血ポンプを直接制御して特定範囲内とする場合を含む。
 本発明において、任意の位置から操作量を入力可能であり、入力された操作量に応じてパルス信号を出力する操作量入力部としては、以下のような構成が考えられる。例えば、つまみ等の位置(回転角度、周方向位置等を含む)に拘わらず、また、例えば、指示出力と周方向位置(回転位置)とが一対一で固定されておらず、任意の位置を操作量を入力する基準(ゼロ)とすることができるエンコーダ等が該当する。なお、送血流量調整部はエンコーダを備えていなくてもよい。
 また、入力部の位置とは、例えば、回転式のつまみにおける周方向位置(回転角度)等を意味し、また、例えば、一対の(+)押スイッチと(-)押スイッチとを有し、それぞれの押し回数により操作量を増減する場合における押スイッチを押した回数を意味している。
 本発明に係る第二の態様は、上記第一の態様において、標送血流量指示手段は、連動制御から通常制御に移行される際の連動送血流量に関するデータを記憶する連動送血流量記憶部を備える。また、制御部は、連動制御から通常制御に移行される場合に、連動送血流量記憶部に記憶した連動送血流量に関するデータに基づいて送血流量を制御する。
 この発明に係る血液循環システムによれば、送血流量指示手段が、連動送血流量記憶部を備えていて連動制御から通常制御に移行された際の連動送血流量に関するデータを記憶することができる。従って、連動制御から通常制御に移行される場合に、連動送血流量記憶部に記憶した連動送血流量に関するデータに基づいて、送血流量指示手段は送血流量を制御可能である。
 その結果、例えば、脱血流量が連動制御中に変動して、連動制御前に設定した送血流量から外れても、連動制御から通常制御に移行されたときの送血流量を基準として効率的に調整することができる。
 本発明に係る第三の態様は、上記第一又は第二の態様において、送血流量調整部は、任意の位置から入力可能なつまみを有するエンコーダを備えている。
 この発明に係る血液循環システムによれば、送血流量調整部が、任意の位置(周方向位置)から入力可能なつまみを有するエンコーダを備えているので、構造が簡単かつ送血流量を効率的に調整することができる。
 また、連動制御から通常制御に移行された場合に、つまみを手動で特定の基準位置に設定することなく通常制御における送血流量の調整が行えるので、つまみを特定の基準位置に戻す手間が省け、連動制御から通常制御に移行後の送血流量を効率的に指示することができる。
 この発明に係る血液循環システムによれば、安定して送血することができ、効率的に血液循環させることができる。
 また、エンコーダの任意の周方向位置から送血流量を調整することができるので、連動制御が継続されずに通常制御に移行する場合に、通常制御に移行後の周方向位置を基準として送血流量を調整することができる。従って、血液循環システムを停止させることなく、通常制御における送血流量を効率的に調整することができる。
 また、例えば、連動制御における送血流量が、連動制御移行前の送血流量調整部によって設定された通常制御における送血流量に対し大幅に少量となっている場合に、通常制御移行後に従前に設定された送血流量が送血されるのを抑制することができ、安定して血液循環させることができる。
本発明の第1の実施形態に係る人工心肺装置の概略構成を説明する回路図である。 本発明の第1の実施形態に係る人工心肺装置の制御部の概略構成を説明するブロック図である。 本発明の第1の実施形態に係る人工心肺装置の通常制御における送血流量算出処理の一例を説明するフローチャートである。 本発明の第1の実施形態に係る人工心肺装置の通常制御における作動手順の一例を説明するフローチャートである。 本発明の第1の実施形態に係る人工心肺装置の連動制御における作動手順の一例を説明するフローチャートである。 本発明の第1の実施形態に係る人工心肺装置の通常制御と連動制御の切換えを説明するフローチャートである。 本発明の第2の実施形態に係る人工心肺装置の概略構成を説明する回路図である。 本発明の第2の実施形態に係る人工心肺装置の制御部の概略構成を説明するブロック図である。 本発明の第2の実施形態に係る人工心肺装置の通常制御における目標送血流量算出処理の一例を説明するフローチャートである。 本発明の第2の実施形態に係る人工心肺装置の通常制御における作動手順の一例を説明するフローチャートである。 本発明の第2の実施形態に係る人工心肺装置の連動制御における作動手順の一例を説明するフローチャートである。 従来の人工心肺装置の概略構成を説明する図である。
<第1の実施形態>
 以下、図1~図6を参照して、本発明の第1の実施形態に係る人工心肺装置(血液循環システム)について説明する。
 図1は、本発明の第1の実施形態に係る人工心肺装置の概略構成を説明する回路図であり、符号100は人工心肺装置を、符号111は脱血流量センサを、符号120はローラポンプを、符号140は制御部を、符号160は送血流量調整部(送血流量指示手段)を、符号170は連動送血流量記憶部を示している。
 人工心肺装置100は、図1に示すように、例えば、脱血ライン101と、リザーバ102と、血液ライン103と、第1の送血ライン(送血ライン)104と、人工肺105と、第2の送血ライン(送血ライン)106と、脱血流量センサ(脱血流量測定手段)111と、ローラポンプ(送血ポンプ)120と、脱血レギュレータ(流量調整手段)121と、制御部140と、送血流量調整部160と、連動送血流量記憶部170と、連動制御表示部180と、送血制御切換部190とを備えている。
 この実施形態では、送血流量調整部160と、連動送血流量記憶部170は、送血流量指示手段を構成している。
 また、脱血ライン101、リザーバ102、血液ライン103、ローラポンプ120、第1の送血ライン104、人工肺105、第2の送血ライン106は、この順に接続されていて、脱血ライン101には脱血レギュレータ121、脱血流量センサ111がこの順に配置されている。
 そして、脱血ライン101を介して脱血された血液は、第1の送血ライン104、第2の送血ライン106を介して患者(人体)Pに循環される。
 脱血ライン101は、例えば、ポリ塩化ビニルなどの樹脂により形成されたチューブにより構成されていて、一端が患者Pに接続可能とされていて、静脈から受け取った血液をリザーバ102に移送する。
 また、脱血ライン101には、必要に応じて血液の濃度や酸素の濃度をモニターするためのセンサ等(不図示)が設けられている。なお、上記センサ等は、脱血ライン101に代えて、血液ライン103、第1の送血ライン104に設けてもよい。
 リザーバ102は、内部に槽を有していて、移送されてきた血液を一時的に貯留する。
 また、リザーバ102には、例えば、患者Pの手術野における血液を吸引するためのサクションライン(不図示)、及び右心腔内における血液を吸引するためのベントライン(不図示)が接続されている。
 血液ライン103は、脱血ライン101と同様の構成とされ、上流がリザーバ102に接続されて下流がローラポンプ120に接続されていて、リザーバ102から受け取った血液をローラポンプ120に移送する。
 ローラポンプ120は、例えば、回転ローラと、回転ローラの外方に配置され柔軟な樹脂により形成されたチューブとを備えている。回転ローラが回転してチューブをしごいて血液を吸引、送り出すことにより、リザーバ102に貯留された血液を血液ライン103を介して吸引するとともに、第1の送血ライン104を介して人工肺105に血液を移送する。
 また、ローラポンプ120は、制御部140が出力した回転制御信号によって回転ローラの回転数が制御され、回転ローラの回転数に応じた量の血液を吸引、送血する。
 第1の送血ライン104は、脱血ライン101と同様の構成とされていて、上流がローラポンプ120に接続され、下流が人工肺105に接続されていて、ローラポンプ120から送り出された血液を人工肺105に移送する。
 人工肺105は、例えば、気体透過性に優れた中空糸膜又は平膜などを備えており、血液中の二酸化炭素を排出して酸素を付加する。
 なお、人工肺105は、例えば、血液の温度を調整するための熱交換器が一体に形成されている。
 第2の送血ライン106は、脱血ライン101と同様の構成とされていて、二酸化炭素を排出して酸素を付加された血液を人工肺105から受け取って、患者Pの動脈に移送する。
 なお、第2の送血ライン106には、例えば、血栓や気泡など血液中の異物を取り除くためのフィルター(不図示)が設けられている。
 脱血レギュレータ121は、脱血ライン101に設けられ、例えば、一対のクランプ部材からなるクランパ121Aと、このクランパ121Aを動作させるサーボモータ(不図示)と、脱血レギュレータ操作部121Bとを備える。操作者が、脱血レギュレータ操作部121Bを手動操作して、サーボモータによりクランパ121Aのクランプ量(挟込量)を調整して、脱血ライン101の断面積を変化させて脱血ライン101を流れる脱血流量を調整する。
 脱血流量センサ(脱血流量測定手段)111は、脱血ライン101に設けられていて、例えば、超音波によって血液の流速を測定する超音波センサが用いられており、測定した脱血流量信号(脱血流量パラメータ信号)を制御部140に送る。
 次に、図2を参照して、制御部140の概略構成について説明する。図2は、第1の実施形態に係る制御部140の概略構成を説明するブロック図である。
 制御部140は、例えば、送血流量調整データ受付部141と、脱血流量信号入力受付部142と、脱血流量算出部143と、送血流量算出部144と、ローラポンプ制御量算出部145と、ローラポンプ制御部146と、送血制御切換指示受付部191とを備えている。
 また、制御部140は、脱血流量センサ111、送血流量調整部160、連動送血流量記憶部170、連動制御表示部180、送血制御切換部190、ローラポンプ120とケーブルによって接続されている。
 送血流量調整部160は、人工心肺装置100においてローラポンプ120に送血流量(目標とする送血流量、以下、第1の実施形態で単に送血流量という場合がある)を入力するための構成であり、例えば、エンコーダ(操作量入力部)と、カウンタとを有している。
 エンコーダは、任意の周方向位置(位置)に位置したつまみを用いて、この任意の周方向位置を基準としてつまみを回転させて操作量の増減を入力することが可能とされ、入力された操作量に応じてパルス信号を出力する。
 カウンタは、エンコーダが出力したパルス信号を加算・減算して送血流量調整データとして出力し、通常制御から連動制御に移行され一旦通常制御が中断されると、それまでの加算・減算した操作量がリセットされる。
 そして、送血流量調整部160は、例えば、連動制御から通常制御に移行された場合や人工心肺装置100が停止されて新たに通常制御が開始された場合には、エンコーダのつまみの周方向位置に拘わらず、その周方向位置を基準とした新たな操作量の増減を入力して送血流量を調整することができる。
 連動送血流量記憶部170は、例えば、外部メモリ等により構成されていて、この実施形態では、送血流量算出部144が算出した連動制御時における送血流量(連動送血流量に関するデータ)が記憶される。
 連動制御表示部180は、例えば、LEDランプにより構成され、ローラポンプ120が連動制御された場合にローラポンプ制御部146の出力によって点灯して、ローラポンプ120の制御状態(通常制御、連動制御)を表示して、操作者に知らせる。
 送血制御切換部190は、人工心肺装置100を、通常制御と連続制御のいずれで送血するかを指示する構成であり、例えば、二者択一のスイッチを備えている。
 なお、送血制御切換部190は、例えば、人工心肺装置100に生じた異常を検出して、人工心肺装置100を通常制御に移行させる指示をするセンサ等、複数の構成要素を備えていてもよい。
 送血流量調整データ受付部141は、送血流量調整部160と接続されていて、送血流量調整部160から送られた送血流量調整データ(送血流量の増減量)を受け取る。
 脱血流量信号入力受付部142は、脱血流量センサ111と接続されていて、脱血流量センサ111から送られた脱血流量信号(脱血流量パラメータ信号)を受け取る。
 脱血流量算出部143は、脱血流量信号入力受付部142から送られた脱血流量信号に基づいて脱血流量を算出する。具体的には、例えば、脱血流量信号から算出された脱血流速(流量パラメータ)と、脱血ライン101の流路面積の積により脱血流量が算出される。
 送血流量算出部144は、例えば、通常制御及び連動制御におけるローラポンプ120の送血流量(目標とする送血流量)を算出する。
 送血流量算出部144による通常制御と連動制御における送血流量算出は、例えば、予め設定した連動制御移行条件や送血制御切換指示受付部191から受取る送血制御切換指示信号に基づいて切換えられる。
 また、送血流量算出部144は、送血流量調整データ受付部141から受取った送血流量調整データと、送血流量記憶部170から読み取った送血流量に基づいて通常制御における送血流量を算出する。
 また、送血流量算出部144は、連動制御の場合に、算出された送血流量(目標とする送血流量)を連動送血流量記憶部170に記憶させる。
 この実施形態では、例えば、連動制御では、ローラポンプ120に対する送血流量(目標とする送血流量)を脱血流量と一致させて送血流量を脱血流量に同期させる。
 なお、ローラポンプ120によって送血流量を脱血流量と同期させるとは、送血流量が脱血流量に対して特定範囲内(例えば、脱血流量に対する比率で示される範囲や脱血流量に対する流量差で示される範囲内)に制御されることの一態様である。
 送血流量算出部144における通常制御の送血流量(目標とする送血流量)算出処理は、以下に示すとおりである。
<通常制御の送血流量算出処理>
 以下、図3を参照して、第1の実施形態に係る人工心肺装置100の通常制御における送血流量を算出する送血流量算出処理の一例を説明する。図3は、送血流量算出部144における通常制御の送血流量算出処理の一例を説明するフローチャートである。
(1)まず、送血流量算出部144は、連動送血流量記憶部170に連動送血流量データがあるかどうかを判断する(S111)。
 連動送血流量データがある場合(S111:Yes)はS112に移行され、連動制御への移行指示がない場合(S111:No)はS114に移行される。
(2)次に、送血流量算出部144は、連動送血流量記憶部170から連動送血流量データを読み取る(S112)。
(3)送血流量算出部144は、読み取った連動送血流量データを送血流量を算出する際の基準として設定する(S113)。S113が実行されたらS115に移行される。
(4)送血流量算出部144は、「ゼロ」を送血流量を算出する際の基準に設定する(S114)。
(5)次に、送血流量算出部144は、送血流量調整データを受取る(S115)。
(6)次に、送血流量算出部144は、受取った送血流量調整データに基づいて送血流量(目標とする送血流量)を算出する(S116)。
 送血流量の算出は、例えば、S113又はS114で設定した基準に送血流量調整データを加算(増減)する。
 上記S111~S116の処理は、例えば、人工心肺装置100が通常制御される間、所定の周期で繰り返し実行される。
 ローラポンプ制御量算出部145は、例えば、送血流量算出部144から送られた送血流量に基づいて、通常制御及び連動制御においてローラポンプ120に対して出力する回転数(制御量)を算出する。
 ローラポンプ120の回転数は、例えば、ローラポンプ120の送血流量特性を示すローラポンプ120の回転数と送血流量との関係を示すデータテーブルの参照や、ローラポンプ120の回転数と送血流量との関係を示す算出式を演算することにより算出される。
 また、連動制御の場合において設定されるローラポンプ120の回転数は、例えば、ローラポンプ120による送血流量を脱血流量と同期させるための回転数である。
 ローラポンプ制御部146は、ローラポンプ制御量算出部145から受け取った制御量と対応する信号をローラポンプ120に出力する。
 また、ローラポンプ制御部146は、連動送血に移行された場合に、連動制御表示部180を点灯する。
<通常制御>
 次に、図4を参照して、人工心肺装置100を送血流量調整部160を操作して送血流量を通常制御する場合の作動手順の一例を説明する。図4は、人工心肺装置100の通常制御における作動手順の一例を説明するフローチャートである。
 人工心肺装置100の通常制御における作動手順は、以下に示すとおりである。
(1)まず、送血量調整データ受付部141は、送血流量調整データを受け取る(S121)。
(2)次に、受取った送血流量調整データに基づいて、送血流量算出部144は、送血流量を算出する(S122)。
(3)次に、S122において算出された送血流量に基づいて、ローラポンプ制御量算出部145は、例えば、ローラポンプ120の送血流量特性に基づく制御量(回転数)を算出する(S123)。
(4)次に、ローラポンプ制御部146は、ローラポンプ120に対して制御量と対応する信号を出力する(S124)。
 上記S121~S124の処理は、例えば、人工心肺装置100が連動制御に移行されるまでの間、所定の周期で繰り返し実行される。
<連動制御>
 次に、図5を参照して、人工心肺装置100の連動制御における作動手順の一例を説明する。図5は、人工心肺装置100の連動制御における作動手順の一例を説明するフローチャートである。
(1)まず、脱血流量信号入力受付部142は、脱血流量信号(脱血流量パラメータ信号)を受け取る(S131)。
(2)次に、受取った脱血流量信号に基づいて、脱血流量算出部143は、脱血流量を算出する(S132)。
(3)次いで、算出された脱血流量に基づいて、送血流量算出部144は、送血流量を算出する(S133)。
 脱血流量に基づいて算出される送血流量は、例えば、送血流量を脱血流量と同期させる場合には、脱血流量と等しくする。なお、(送血流量-脱血流量)の絶対値が所定範囲内となるように送血流量を設定してもよい。
(4)次いで、算出された送血流量に基づいて、ローラポンプ制御量算出部145は、ローラポンプ120の制御量(回転数)を算出する(S134)。
 送血流量に基づくローラポンプ120の制御量(回転数)は、例えば、ローラポンプ120の送血流量特性に基づいて算出される。
(5)次に、ローラポンプ制御部146は、ローラポンプ120に対して制御量と対応する信号を出力する(S135)。
(6)次いで、送血流量算出部144は、S133で算出された送血流量(連動送血流量に関するデータ)を連動送血流量記憶部170に記憶させる(S136)。
 上記S131~S136の処理は、例えば、通常制御に移行又は手術が終了して連動制御が終了するまで、所定の周期で繰り返し実行される。
<通常制御と連動制御の切換え>
 以下、図6を参照して、第1の実施形態に係る人工心肺装置100における通常制御と連動制御の切換えについて説明する。図6は、人工心肺装置100における通常制御と連動制御の切換えを説明するフローチャートである。
 人工心肺装置100における通常制御と連動制御の切換えは、例えば、以下に示す手順で行われる。
(1)まず、送血制御切換部190は、送血切換え指示が連動制御かどうかを判断する(S141)。
 送血切換え指示が連動制御である場合(S141:Yes)はS142に移行され、送血切換え指示が連動制御でない(通常制御である)場合(S141:No)はS149に移行される。
(2)次に、送血制御切換指示受付部191は、連動制御運転中であるかどうかを判断する(S142)。
 連動制御で運転中でない場合(S142:No)はS143に移行され、連動制御で運転中である場合(S142:Yes)はS148に移行される。
 連動制御運転中かどうかの判断は、例えば、送血制御切換部190が連動制御に切換えられた際にフラグを設定し、その後、送血制御がS148に移行した場合にフラグを削除することにより行う。
(3)次に、送血流量調整データ受付部141は、送血流量調整データを受け取る(S143)。
(4)次いで、受取った送血流量調整データに基づいて、送血流量算出部144は、送血流量を算出する(S144)。
(5)次に、脱血流量信号入力受付部142は、脱血流量信号(脱血流量パラメータ信号)を受け取る(S145)。
(6)次いで、受取った脱血流量信号に基づいて、脱血流量算出部144は、脱血流量を算出する(S146)。
(7)次に、算出された送血流量が、算出された脱血流量に対して特定範囲内であるかどうかが判断される(S147)。
 具体的には、((送血流量)-(脱血流量))の絶対値が、特定範囲(血液流量)内であるかどうか判断される。
 |(送血流量)-(脱血流量)|≦K(特定範囲)である場合(S147:Yes)は、人工心肺装置100は連動制御する(S148)に移行され、|(送血流量)-(算出された脱血流量)|≦K(特定範囲)でない場合(S147:No)は、人工心肺装置100は通常制御する(S149)に移行される。
 上記S141~S149の処理は、例えば、人工心肺装置100が稼働している間、所定の周期で繰り返し実行される。
 第1の実施形態に係る人工心肺装置100によれば、制御部140が、ローラポンプ120の送血量を脱血流量と同期させるので、脱血流量が変動した場合でも安定して血液循環させることができる。
 また、第1の実施形態に係る人工心肺装置100によれば、送血流量調整部160が任意の位置(周方向位置)から入力可能なつまみを有するエンコーダを備えているので、構造が簡単である。つまり、例えば、連動制御から通常制御に移行された場合に、送血流量調整部160を手動で特定の基準位置に戻してリセットする必要がなく、リセットする手間を省いて通常制御における調整を効率化することができる。
 また、第1の実施形態に係る人工心肺装置100によれば、連動制御におけるローラポンプ120による送血流量が、連動制御移行前の通常制御において送血流量調整部により設定された送血流量よりも大幅に少量となっている場合に、通常制御移行後に従前の送血流量調整部によって設定された送血流量が送血されるのを抑制することができ、安定して血液を循環させることができる。
 また、連動制御が継続されずに通常制御に移行する場合に、血液循環システムを停止させることなく、通常制御が調整できるので、効率的に血液を循環させることができる。
 また、第1の実施形態に係る人工心肺装置100によれば、連動制御から通常制御に移行される際にローラポンプ120の送血流量(連動送血流量に関するデータ)を連動送血流量記憶部170に記憶させ、連動送血流量記憶部170が記憶した送血流量を通常制御における基準として送血流量を調整することができる。従って、連動制御移行後の脱血流量が連動制御移行前に設定された脱血流量から大きく変動している場合でも、通常制御移行後における送血流量を安定して調整することができる。
 また、第1の実施形態に係る人工心肺装置100によれば、送血ポンプとしてローラポンプ120を備えているので、圧力の影響を受けることが抑制されて、安定した送血流量で送血することができる。
 また、第1の実施形態に係る人工心肺装置100によれば、脱血ライン101に脱血レギュレータ121が設けられているので、脱血ライン101を介して脱血する血液流量を適宜調整することができる。
<第2の実施形態>
 次に、図7~図11を参照して、本発明の第2の実施形態に係る人工心肺装置(血液循環システム)について説明する。
 図7は、第2の実施形態に係る人工心肺装置を説明する概略構成図であり、符号200は人工心肺装置を、符号112は送血流量センサ(送血流量測定手段)を、符号220は遠心ポンプ(送血ポンプ)を、符号240は制御部を示している。
 人工心肺装置200は、図7に示すように、例えば、脱血ライン101と、リザーバ102と、血液ライン103と、遠心ポンプ220と、第1の送血ライン(送血ライン)104と、人工肺105と、第2の送血ライン(送血ライン)106と、脱血流量センサ111と、送血流量センサ112と、脱血レギュレータ(流量調整手段)121と、送血レギュレータ122と、制御部240と、送血流量調整部(送血流量指示手段)160と、連動送血流量記憶部170と、連動制御表示部180と、送血制御切換部190とを備えている。
 また、脱血ライン101、リザーバ102、血液ライン103、遠心ポンプ220、第1の送血ライン104、人工肺105、第2の送血ライン106は、この順に接続されていて、脱血ライン101には脱血レギュレータ121、脱血流量センサ111がこの順に配置され、第1の送血ライン104には、送血レギュレータ122、送血流量センサ112がこの順に配置されている。
 なお、脱血ライン101、リザーバ102、血液ライン103、第1の送血ライン104、人工肺105、第2の送血ライン106、脱血流量センサ111、脱血レギュレータ121、送血流量調整部160、連動制御表示部180、送血制御切換部190については、第1の実施形態と同様であるので説明を省略する。
 送血流量センサ(送血流量測定手段)112は、例えば、脱血流量センサ111と同様に超音波センサが用いられており、測定結果を制御部240に送る。
 ここで、送血流量測定手段とは、送血流量そのものを測定する測定手段を含むことは勿論であるが、送血流量を特定するための種々の脱血流量パラメータを測定するための測定手段を含む。
 また、送血流量パラメータとは、送血流量と対応して変動するパラメータであり、送血流量そのものを含むことは勿論であるが、例えば、送血ラインの流路断面積が既知である場合における送血された血液の流速や、この流速を特定するためのパラメータ(例えば、超音波の周波数の変化)等、送血流量を特定するための種々のパラメータを含む。
 また、送血流量パラメータと脱血流量パラメータとを対比するとは、送血流量パラメータと脱血流量パラメータが同じ種類である場合にこれらを対比すること、送血流量パラメータ、脱血流量パラメータが異なる種類である場合にこれらを直接的に対比すること、又はいずれか一方又は双方を変換して対比可能な形態にして対比することのいずれも含む。
 連動送血流量記憶部170は、例えば、外部メモリ等により構成されていて、この実施形態では、送血流量センサ112により測定された遠心ポンプ220による送血流量(連動送血流量に関するデータ)が記憶される。
 遠心ポンプ220は、例えば、ACサーボモータ又はDCサーボモータによりインペラ羽根を回転させて、リザーバ102に貯留された血液を、血液ライン103を介して吸引し、第1の送血ライン104を介して人工肺105に移送する。
 また、遠心ポンプ220は、制御部240から出力される制御信号により制御され、通常制御における遠心ポンプ220の回転数は血流量と独立して制御される。また、連動制御における遠心ポンプ220の回転数は、例えば、送血流量センサ112により測定される送血流量が脱血流量センサ111により測定された脱血流量と同期するように制御されている。いずれの場合も、フィードバック制御される。
 送血レギュレータ122は、第1の送血ライン104に設けられ、例えば、一対のクランプ部材からなるクランパ122Aと、このクランパ122Aを動作させるサーボモータ(不図示)と、送血レギュレータ操作部122Bとを備えている。そして、操作者が、送血レギュレータ操作部122Bを手動操作して、サーボモータによりクランパ122Aのクランプ量(挟込量)を調整して第1の送血ライン104を閉塞させることで、遠心ポンプ220が停止した際の血液の逆流を防止する。
 次に、図8を参照して、制御部240の概略構成について説明する。図8は、第2の実施形態に係る制御部240の概略構成を説明するブロック図である。
 制御部240は、例えば、送血流量調整データ受付部141と、脱血流量信号入力受付部142と、脱血流量算出部143と、送血流量信号受付部241と、送血流量算出部242と、目標送血流量算出部243と、遠心ポンプ制御量算出部244と、遠心ポンプ制御部245と、送血制御切換指示受付部191とを備えている。
 また、制御部240は、脱血流量センサ111、送血流量センサ112、送血流量調整部160、連動送血流量記憶部170、連動制御表示部180、送血制御切換部190、遠心ポンプ220と、ケーブルによって接続されている。
 なお、送血流量調整データ受付部141、脱血流量信号入力受付部142、脱血流量算出部143、送血制御切換指示受付部191については、第1の実施形態と同様であるので説明を省略する。
 送血流量信号受付部241は、送血流量センサ112と接続されていて、送血流量センサ112から送られた送血流量信号(送血流量パラメータ信号)を受け取る。
 送血流量算出部242は、送血流量信号受付部241から送られた送血流量信号に基づいて送血流量を算出する。具体的には、例えば、送血流量信号から算出された送血流速(流量パラメータ)と、第1の送血ライン104の流路面積により送血流量を算出することができる。
 目標送血流量算出部243は、例えば、通常制御及び連動制御における遠心ポンプ220の目標送血流量を算出する。
 目標送血流量算出部243による通常制御と連動制御における目標送血流量算出は、例えば、連動制御移行条件や送血制御切換指示受付部191から受取る送血制御切換指示信号に基づいて切換える。
 人工心肺装置200の通常制御と連動制御の切換えについては、図3に示す第1の実施形態の場合と同様であり、第2の実施形態では、送血流量として、図3に示す送血流量センサ112が測定した送血流量を用いる。その他は、第1の実施形態と同様である。
 また、目標送血流量算出部243は、送血流量調整データ受付部141から受取った送血流量調整データと、送血流量記憶部170から読み取った送血流量に基づいて通常制御における目標送血流量を算出する。
 また、目標送血流量算出部243は、送血流量算出部242から受取った送血流量に基づいて連動制御の目標送血流量を算出する。
 また、目標送血流量算出部243は、連動制御の場合に、送血流量算出部242から受取った送血流量を連動送血流量記憶部170に記憶させる。
 この実施形態では、例えば、連動制御において第1の送血ライン104、第2の送血ライン106を流れる遠心ポンプ220による送血流量を脱血流量と一致させて、送血流量を脱血流量に同期させる。
 なお、遠心ポンプ220によって送血流量を脱血流量と同期させるとは、送血流量が脱血流量に対して特定範囲内(例えば、脱血流量に対する比率で示される範囲や脱血流量に対する流量差で示される範囲内)に制御されることの一態様である。
<通常制御における目標送血流量(目標とする送血流量)算出処理>
 次に、図9を参照して、第2の実施形態に係る人工心肺装置200の通常制御における目標送血流量算出処理を説明する。図9は、目標送血流量算出部243における通常制御の目標送血流量算出処理の一例を説明するフローチャートである。
(1)まず、目標送血流量算出部243は、連動送血流量記憶部170に連動送血流量データがあるかどうかを判断する(S211)。
 連動送血流量データがある場合(S211:Yes)はS212に移行され、連動制御への移行指示がない場合(S211:No)はS214に移行される。
(2)次に、目標送血流量算出部243は、連動送血流量記憶部170から連動送血流量データを読み取る(S212)。
(3)目標送血流量算出部243は、読み取った連動送血流量データを送血流量を算出する際の基準に設定する(S213)。S213が実行されたら、S215に移行される。
(4)目標送血流量算出部243は、「ゼロ」を目標送血流量を算出する際の基準に設定する(S214)。
(5)次に、目標送血流量算出部243は、送血流量調整データを受取る(S215)。
(6)次に、受取った送血流量調整データに基づいて、目標送血流量算出部243は、目標送血流量を算出する(S216)。
 送血流量の算出は、例えば、S213又はS214で設定した基準に送血流量調整データを加算(増減)する。
 上記S211~S216の処理は、例えば、人工心肺装置200が通常制御される間、所定の周期で繰り返し実行される。
 遠心ポンプ制御量算出部244は、例えば、目標送血流量算出部243から送られた目標送血流量と送血流量を対比させてフィードバック制御による回転数(制御量)を算出する。
 連動制御における遠心ポンプ220に対する制御量は、送血流量を脱血流量と同期させる制御量である。
 遠心ポンプ制御部245は、遠心ポンプ制御量算出部244から受け取った制御量と対応する信号を遠心ポンプ220に出力する。
 また、遠心ポンプ制御部245は、連動送血に移行された場合に、連動制御表示部180を点灯させる。
<通常制御>
 次に、図10を参照して、第2の実施形態に係る人工心肺装置200において、送血流量調整部160の操作により送血流量を通常制御する場合の作動手順の一例を説明する。
 図10は、人工心肺装置200の通常制御における作動手順の一例を説明するフローチャートである。
(1)まず、送血流量調整データ受付部141は、送血流量調整データを受け取る(S221)。
(2)次いで、目標送血流量算出部243は、送血流量調整データに基づいて目標送血流量を算出する(S222)。
(3)次に、送血流量信号入力受付部241は、送血流量信号(送血流量パラメータ信号)を受け取る(S223)。
(4)次いで、送血流量算出部242は、受取った送血流量信号に基づいて送血流量を算出する(S224)。
(5)次いで、S222で算出された目標送血流量と、S224で算出された送血流量とを比較して、例えば、(目標送血流量-送血流量)が算出されて、(目標送血流量≧送血流量)であるかどうかが判断される(S225)。
 (目標送血流量≧送血流量)である場合(S225:Yes)は、遠心ポンプ制御量算出部245は、遠心ポンプ220に対する制御量(増加回転数)を算出する(S226)に移行され、(目標送血流量≧送血流量)でない場合(S225:No)は、遠心ポンプ制御量算出部245は、遠心ポンプ220に対する制御量(減少回転数)を算出する(S227)に移行される。
 なお、目標送血流量=送血流量である場合には、制御量(増加回転数)はゼロとする。
(6)次に、遠心ポンプ制御部245は、遠心ポンプ220に対してS226又はS227で算出された制御量と対応する信号を出力する(S228)。
 上記S221~S228の処理は、例えば、人工心肺装置200が連動制御に移行されるまでの間、所定の周期で繰り返し実行される。
<連動制御>
 次に、図11を参照して、人工心肺装置200の連動制御における作動手順の一例を説明する。図11は、人工心肺装置200の連動制御における作動手順の一例を説明するフローチャートである。
(1)まず、脱血流量信号入力受付部142は、脱血流量信号(脱血流量パラメータ信号)を受け取る(S231)。
(2)次に、受取った脱血流量信号に基づいて、脱血流量算出部143は、脱血流量を算出する(S232)。
(3)次いで、S232において算出された脱血流量に基づいて、目標送血量算出部243は、目標送血流量を算出する(S233)。
(4)次に、送血流量信号受付部241は、送血流量信号(送血流量パラメータ信号)を受け取る(S234)。
(5)次いで、送血流量算出部242は、受取った送血流量信号に基づいて送血流量を算出する(S235)。
(6)次いで、S233で算出された目標送血流量と、S235で算出された送血流量とを比較して、例えば、(目標送血流量-送血流量)が算出されて、(目標送血流量≧送血流量)であるかどうかが判断される(S236)。
 (目標送血流量≧送血流量)である場合(S236:Yes)は、遠心ポンプ220に対する制御量(増加回転数)が算出される(S237)に移行され、(目標送血流量≧送血流量)でない場合(S236:No)は、遠心ポンプ220に対する制御量(減少回転数)を算出する(S238)に移行される。
 なお、目標送血流量=送血流量である場合には、制御量(増加回転数)はゼロとする。
(7)次に、遠心ポンプ制御部245は、遠心ポンプ220に対してS237又はS238で算出された制御量と対応する信号を出力する(S239)。
(8)次いで、目標送血流量算出部243は、遠心ポンプ220による連動送血流量(連動送血流量に関するデータ)を連動送血流量記憶部170に記憶させる(S240)。
 上記S231~S240の処理は、例えば、通常制御に移行又は手術が終了して連動制御が終了するまで、所定の周期で繰り返し実行される。
<通常制御と連動制御の切換え>
 通常制御と連動制御の切換えについては、図6に示した第1の実施形態に係る人工心肺装置100の場合と同様であるので、説明を省略する。
 第2の実施形態に係る人工心肺装置200によれば、制御部240が、遠心ポンプ220の送血量を脱血流量と同期させるので、脱血流量が変動した場合でも安定して血液循環させることができる。
 また、第2の実施形態に係る人工心肺装置200によれば、送血流量調整部160が任意の位置(周方向位置)から入力可能なつまみを有するエンコーダを備えている。従って、連動制御から通常制御に移行する場合に、送血流量調整部160を手動で基準位置に戻してリセットする必要がなく、リセットする手間を省いて通常制御における調整を効率化することができる。
 また、第2の実施形態に係る人工心肺装置200によれば、連動制御における遠心ポンプ220による送血流量が、連動制御移行前の通常制御において送血流量調整部によって設定された送血流量よりも大幅に少量となっている場合に、通常制御移行後に従前の送血流量調整部によって設定された送血流量が送血されるのを抑制することができ、安定して血液循環させることができる。
 また、連動制御が継続されずに通常制御に移行される場合に、血液循環システムが停止されることなく、通常制御が調整できるので、効率的に血液を循環させることができる。
 また、第2の実施形態に係る人工心肺装置200によれば、連動制御から通常制御に移行される際に遠心ポンプ220の送血流量(連動送血流量に関するデータ)を連動送血流量記憶部170に記憶させ、連動送血流量記憶部170が記憶した送血流量を通常制御における基準として送血流量を調整することができる。従って、連動制御移行後の脱血流量が連動制御移行前に設定された脱血流量から大きく変動している場合でも、通常制御移行後における送血流量を安定して調整することができる。
 また、第2の実施形態に係る人工心肺装置200によれば、送血ポンプが、遠心ポンプ220により構成されているので、安定した送血流量を迅速に送血することができる。
 また、第2の実施形態に係る人工心肺装置200によれば、脱血ライン101に脱血レギュレータ121が設けられているので、脱血流量を適宜調整することができる。
 また、第1の送血ライン104に送血レギュレータ122が設けられているので、遠心ポンプ220が停止した際に、第1の送血ライン104を閉塞して、血液が逆流するのを防止することができる。
 また、第2の実施形態に係る人工心肺装置200によれば、送血ポンプが、遠心ポンプ220により構成されているので、安定した送血流量を迅速に送血することができる。
 なお、本発明は、上記実施形態に限定されず、発明の趣旨を逸脱しない範囲において、種々に変更することが可能である。
 例えば、上記実施の形態においては、人工心肺装置100、200において、送血流量を脱血流量と同期させる場合について説明したが、送血流量が脱血流量に対して特定範囲内となるように調整してもよい。
 上記実施の形態においては、送血流量調整部160がエンコーダとカウンタを備える場合について説明したが、例えば、カウンタがエンコーダから分離されて制御部140、240の一部として配置されていてもよい。
 また、パルス信号を出力する操作量入力部として、エンコーダに代えて、(+)押圧スイッチと、(-)押圧スイッチにより増減量を指示する機器等を適用してもよい。
 また、上記実施の形態においては、人工心肺装置100、200を停止させずに通常制御と連続制御を切り替える場合について説明したが、例えば、人工心肺装置100、200が停止した構成としてもよい。そして、このような場合に、人工心肺装置100、200が停止した後に再起動する場合に、連動送血流量記憶部170に記憶した連動送血流量を基準として送血流量を調整してもよい。
 また、上記実施の形態においては、人工心肺装置100、200が、連動送血流量記憶部170を備える場合について説明したが、連動送血流量記憶部170を備えるかどうかは任意に設定することができる。
 また、上記実施の形態においては、連動送血流量記憶部170が制御部140、240に接続された外部メモリである場合について説明したが、連動送血流量記憶部170の構成、配置については任意に設定することができる。
 また、第1の実施形態においては、連動送血流量に関するデータとして、連動送血流量記憶部170に、ローラポンプ120の送血流量(目標とする送血流量)を記憶させ、第2の実施形態では、送血流量センサ112が測定した送血流量を記憶させる場合について説明した。しかしながら、例えば、脱血流量や、送血ポンプの制御量等、送血ポンプによる送血流量を一義的に設定可能なパラメータを、連動送血流量に関するデータとしてもよい。
 また、上記実施の形態においては、脱血流量測定手段、送血流量測定手段として、それぞれ血液の流速を測定する脱血流量センサ111、送血流量センサ112を用いる場合について説明したが、脱血流速以外の脱血流量パラメータ(脱血流量を含む)、送血流速以外の送血流量パラメータ(送血流量を含む)を測定して、脱血流量、送血流量を測定してもよい。
 また、上記実施の形態においては、脱血流量センサ111、送血流量センサ112として、超音波センサを用いる場合について説明したが、超音波センサに代えて、レーザ、赤外線等を用いた周知の種々の流量測定手段を用いてもよい。
 例えば、上記実施の形態においては、送血ポンプが、ローラポンプ120、遠心ポンプ220である場合について説明したが、そのほかの送血ポンプを用いてもよい。
 また、上記第1の実施形態においては、送血ラインに流量調整手段を設けない場合について説明したが、第1の送血ライン104、第2の送血ライン106に超音波センサ等の流量センサ(流量パラメータ測定手段)を適宜設けてもよい。
 また、第1の実施形態において、流量調整手段として、脱血レギュレータ121を設け、第2の実施形態においては、脱血レギュレータ121、送血レギュレータ122を設ける場合について説明したが、脱血レギュレータ121、送血レギュレータ122のいずれも設けない構成としてもよいし、流量調整手段を設ける場合に、脱血レギュレータ121、送血レギュレータ122のいずれを設けるか双方を設けるか、また、脱血レギュレータ121、送血レギュレータ122を脱血ライン、送血ラインのどの部位に設けるかについては、適宜設定することができる。
 また、流量調整手段として、脱血レギュレータ121、送血レギュレータ122以外の流量調整手段を設けてもよい。
 また、上記第1、第2の実施形態においては、脱血ライン101に、脱血レギュレータ121、脱血流量センサ111がこの順に配置されている場合について説明したが、脱血流量センサ111、脱血レギュレータ121の順に配置してもよい。
 また、上記第2の実施形態においては、第1の送血ライン104に、送血レギュレータ122、送血流量センサ112がこの順に配置されている場合について説明したが、第1の送血ライン104に代えて第2の送血ライン106を配置してもよい。また、送血流量センサ112、送血レギュレータ122の順に配置してもよい。
 また、上記実施の形態においては、人工心肺装置100、200を制御するためのフローチャートの概略構成の例を説明したが、上記フローチャート以外の方法(アルゴリズム)を用いて制御してもよい。
 また、上記実施の形態においては、人工心肺装置100、200がリザーバ102を備える場合について説明した。しかしながら、例えば、送血流量を脱血流量と同期又は特定範囲内に調整することで過度の陰圧の発生が抑制される場合等に、リザーバ102を備えない補助循環装置(血液循環システム)として使用してもよい。
 この発明に係る血液循環システムによれば、送血ポンプによる送血流量を脱血流量と連動させる場合に、安定して送血することができ、効率的に血液循環させることができる。
P   患者(人体)
100、200 人工心肺装置(血液循環システム)
101 脱血ライン
102 リザーバ
104 第1の送血ライン(送血ライン)
105 人工肺
106 第2の送血ライン(送血ライン)
111 脱血流量センサ(脱血流量測定手段)
112 送血流量センサ(送血流量測定手段)
120 ローラポンプ(送血ポンプ)
121 脱血レギュレータ(流量調整手段)
122 送血レギュレータ(流量調整手段)
140、240 制御部
160 送血流量調整部(送血流量調整手段)
170 連動送血流量記憶部
190 送血制御切換部
220 遠心ポンプ(送血ポンプ)

Claims (3)

  1.  人体に接続可能とされ、脱血された血液を送血ポンプによって人体に送血する血液循環システムであって、
     送血ポンプと、
     脱血された血液が前記送血ポンプに向かう脱血ラインと、
     前記送血ポンプから送られる血液を人体に向かって移送する送血ラインと、
     前記脱血ラインに設けられた脱血流量測定手段と、
     前記送血ポンプによる送血流量を前記脱血流量測定手段が測定した脱血流量の特定範囲内とするように、前記送血ポンプを前記脱血流量と対応させて連動制御する制御部と、
     前記送血ポンプが前記脱血流量と独立して送血する通常制御において、前記送血ポンプが目標とする送血流量を指示する送血流量指示手段と、
    を備え、
     前記送血流量指示手段は送血流量調整部を備え、
     前記送血流量調整部は、
     任意の位置から操作量を入力可能とされ前記入力された操作量に応じてパルス信号を出力する操作量入力部と、前記操作量入力部が出力したパルス信号を加算・減算して送血流量調整データとして出力するカウンタとを有し、前記カウンタは前記通常制御に移行されたときの前記操作量入力部の位置を基準としてカウントする血液循環システム。
  2.  請求項1に記載の血液循環システムであって、
     前記送血流量指示手段は、
     前記連動制御から通常制御に移行された際の前記連動送血流量に関するデータを記憶する連動送血流量記憶部を備え、
     前記制御部は、
     前記連動制御から前記通常制御に移行される場合に、前記連動送血流量記憶部に記憶した連動送血流量に関するデータに基づいて送血流量を制御する血液循環システム。
  3.  請求項1又は2に記載の血液循環システムであって、
     前記送血流量調整部は、
     任意の位置から入力可能なつまみを有するエンコーダを備えている血液循環システム。
PCT/JP2015/073425 2014-08-20 2015-08-20 血液循環システム WO2016027866A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15832993.8A EP3165246B1 (en) 2014-08-20 2015-08-20 Blood circulation system
US15/502,091 US10751463B2 (en) 2014-08-20 2015-08-20 Blood circulation system
CN201580044082.2A CN106794298B (zh) 2014-08-20 2015-08-20 血液循环系统
US17/001,122 US11992594B2 (en) 2014-08-20 2020-08-24 Blood circulation system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014167559 2014-08-20
JP2014-167559 2014-08-20
JP2015053600A JP5839212B1 (ja) 2014-08-20 2015-03-17 血液循環システム
JP2015-053600 2015-03-17
JP2015114037A JP6484113B2 (ja) 2014-08-20 2015-06-04 血液循環システム
JP2015-114037 2015-06-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/502,091 A-371-Of-International US10751463B2 (en) 2014-08-20 2015-08-20 Blood circulation system
US17/001,122 Continuation-In-Part US11992594B2 (en) 2014-08-20 2020-08-24 Blood circulation system

Publications (1)

Publication Number Publication Date
WO2016027866A1 true WO2016027866A1 (ja) 2016-02-25

Family

ID=55350807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073425 WO2016027866A1 (ja) 2014-08-20 2015-08-20 血液循環システム

Country Status (1)

Country Link
WO (1) WO2016027866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538577B (en) * 2015-05-21 2017-08-23 Spectrum Medical Ltd Control system
WO2018115851A1 (en) * 2016-12-23 2018-06-28 Spectrum Medical Ltd. Flow control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143078A (ja) * 1986-12-03 1988-06-15 株式会社クラレ 呼吸補助装置
JP2000000299A (ja) * 1998-04-13 2000-01-07 Jms Co Ltd 制御機能を備えた体外循環装置
JP2006020712A (ja) * 2004-07-06 2006-01-26 Senko Medical Instr Mfg Co Ltd 人工心肺装置
JP2006325750A (ja) * 2005-05-24 2006-12-07 Senko Medical Instr Mfg Co Ltd 血液循環システム及びその制御装置
WO2012141756A2 (en) * 2011-04-09 2012-10-18 Merlini Patricia Voice control of automated heart-lung machine
WO2015041150A1 (ja) * 2013-09-20 2015-03-26 テルモ株式会社 表示装置及び表示方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143078A (ja) * 1986-12-03 1988-06-15 株式会社クラレ 呼吸補助装置
JP2000000299A (ja) * 1998-04-13 2000-01-07 Jms Co Ltd 制御機能を備えた体外循環装置
JP2006020712A (ja) * 2004-07-06 2006-01-26 Senko Medical Instr Mfg Co Ltd 人工心肺装置
JP2006325750A (ja) * 2005-05-24 2006-12-07 Senko Medical Instr Mfg Co Ltd 血液循環システム及びその制御装置
WO2012141756A2 (en) * 2011-04-09 2012-10-18 Merlini Patricia Voice control of automated heart-lung machine
WO2015041150A1 (ja) * 2013-09-20 2015-03-26 テルモ株式会社 表示装置及び表示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3165246A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2538577B (en) * 2015-05-21 2017-08-23 Spectrum Medical Ltd Control system
WO2018115851A1 (en) * 2016-12-23 2018-06-28 Spectrum Medical Ltd. Flow control system
GB2558263A (en) * 2016-12-23 2018-07-11 Spectrum Medical Ltd Flow control system
GB2558263B (en) * 2016-12-23 2019-02-06 Spectrum Medical Ltd Flow control system
US11241523B2 (en) 2016-12-23 2022-02-08 Spectrum Medical Ltd. Flow control system

Similar Documents

Publication Publication Date Title
JP6484113B2 (ja) 血液循環システム
US8298427B2 (en) Apparatus for extracorporeal blood treatment and method for managing such an apparatus
KR100238612B1 (ko) 혈액 투석 전도성 서보 배합 시스템
CA2707774C (en) Method and device for determining the transmembrane pressure in an extracorporeal blood treatment
US20030236490A1 (en) Apparatus for irrigating a body cavity with a liquid
US10532146B2 (en) Apparatus for extra-corporeal blood treatment and method of presetting an initial mode of treatment for an extra-corporeal blood treatment apparatus
WO2016027866A1 (ja) 血液循環システム
JP2016087438A (ja) フィードフォワード制御を用いた、体外血液治療時における柔軟なクエン酸抗凝血用のためのシステム及び方法
WO2016027852A1 (ja) 血液循環システム
US20200384181A1 (en) Blood circulation system
JP2020074912A (ja) 遠心ポンプ制御装置、遠心ポンプ及び遠心ポンプ制御方法
JP6890817B2 (ja) 血液循環システム
JP2018094243A (ja) 血液循環システム
CN111787965A (zh) 控制或调节装置
JP2020074811A (ja) 送血ポンプ制御装置、送血ポンプ、送血ポンプ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832993

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015832993

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015832993

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE