WO2016027465A1 - 液圧ポンプの駆動システム - Google Patents

液圧ポンプの駆動システム Download PDF

Info

Publication number
WO2016027465A1
WO2016027465A1 PCT/JP2015/004129 JP2015004129W WO2016027465A1 WO 2016027465 A1 WO2016027465 A1 WO 2016027465A1 JP 2015004129 W JP2015004129 W JP 2015004129W WO 2016027465 A1 WO2016027465 A1 WO 2016027465A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
injection amount
fuel injection
actual
calculation unit
Prior art date
Application number
PCT/JP2015/004129
Other languages
English (en)
French (fr)
Inventor
博英 松嶋
孝志 陵城
英泰 村岡
陽治 弓達
和也 岩邊
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2016027465A1 publication Critical patent/WO2016027465A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a drive system for a hydraulic pump that rotates a rotating shaft by an engine and an electric motor to drive the hydraulic pump.
  • Construction machines and the like are provided with a hydraulic pump, and a hydraulic actuator such as a hydraulic cylinder is operated by pressure oil discharged from the hydraulic pump to move an arm, a boom, and the like.
  • the hydraulic pump is connected to the engine and the electric motor via a rotating shaft, and is rotated by the engine and the electric motor.
  • a construction machine configured in this way, for example, a construction machine disclosed in Patent Document 1 is known.
  • the engine is controlled by the control device so that the rotational speed becomes the rotational speed command.
  • the hydraulic pump is loaded, such as when a hydraulic actuator is driven, the rotational speed decreases.
  • the control device increases the fuel injection amount in order to return the engine speed to the engine speed command value.
  • the control device assists the engine by moving the electric motor.
  • the drive control of the electric motor is performed based on the deviation between the rotation speed and the rotation speed command value. Therefore, when the deviation of the rotational speed becomes large regardless of the combustion state of the engine, the motor assists the engine. Therefore, even when the decrease in the output torque of the engine is small and the increase in the fuel injection amount is relatively small, the engine is assisted by the electric motor. When the increase in the fuel injection amount is relatively small, the combustion state of the engine is stable. Therefore, even if the engine is assisted by the electric motor, improvement in the combustion state cannot be expected so much, and fuel efficiency cannot be improved by improving the combustion state. Nevertheless, the assistance by the electric motor is forcibly performed, and electric power is wasted.
  • an object of the present invention is to provide a drive system for a hydraulic pump that can reduce power consumption.
  • a drive system for a hydraulic pump includes an engine that rotationally drives a rotary shaft of a hydraulic pump, an electric motor that rotates the rotary shaft by receiving power supply, and assists the engine, and an actual implementation of the rotary shaft.
  • a rotation speed sensor for detecting the rotation speed; and a control device for determining a fuel injection amount of the engine and controlling the electric motor, the control device comprising: a torque command calculation unit; a fuel injection amount calculation unit; A torque change estimation unit; an assist torque determination unit; an assist determination unit; and a drive control unit; wherein the torque command calculation unit is configured to return the actual rotation speed to a predetermined target rotation speed.
  • An engine torque command is calculated based on a rotational speed deviation that is a deviation between the engine speed and the target rotational speed, and the fuel injection amount calculating unit calculates the engine torque command calculated by the torque command calculating unit and the actual rotation.
  • the actual fuel injection amount is calculated based on the number, and the torque change estimation unit changes the output torque of the engine based on the actual fuel injection amount calculated by the fuel injection amount calculation unit and the actual rotational speed.
  • the assist torque determining unit determines an assist torque to be output to the electric motor based on the rotation speed deviation, and the assist determining unit is a change value of the output torque estimated by the torque change estimating unit.
  • the assist torque command is set to zero, and when the change value of the output torque is equal to or greater than the predetermined threshold, the torque corresponding to the assist torque is set as the assist torque command, and the drive
  • the control unit outputs an assist torque based on the assist torque command determined by the assist output determination unit from the electric motor.
  • the control device determines whether the assist torque command is set to zero or assist torque based on the estimated change value of the output torque. Therefore, the electric motor can be controlled according to the change value of the output torque. That is, when the change value of the output torque is less than the threshold value, the motor can be stopped, and when the change value of the output torque is equal to or more than the threshold value, the motor can assist the engine.
  • the change value of the output torque is small, the change of the fuel injection amount is small and the combustion state of the engine is relatively stable. In such a stable state, since the effect of suppressing the change in output torque by the electric motor is small, it is possible to suppress wasteful consumption of the electric power stored in the battery by stopping the electric motor.
  • the power consumption consumed by the electric motor can be reduced.
  • the change value of the output torque is large, the change of the fuel injection amount is large, and the combustion state of the engine is unstable.
  • the combustion state can be stabilized by assisting the engine with the electric motor in such an unstable state, and the fuel consumption can be improved.
  • the assist torque determination unit sets the assist torque to zero when the rotation speed deviation, which is a value obtained by subtracting the target rotation speed from the actual rotation speed, is zero or more, and the rotation speed deviation is less than zero.
  • the assist torque may be set to a preset torque value.
  • the electric motor when the actual rotational speed is greater than the target rotational speed, the electric motor is not operated in order to reduce the actual rotational speed of the engine to the target rotational speed even if the change value of the output torque increases. It has become. In other words, since the motor is not regenerated to reduce the actual engine speed to the target speed, avoid the situation where the energy efficiency is low such that the motor performs the regenerative operation while consuming excess fuel. Can improve fuel efficiency.
  • the preset torque value in the assist torque determining unit may be a torque that the electric motor can output with an efficiency of 80% or more and 95% or less.
  • the assist determination unit includes a correction coefficient calculation unit and an assist torque correction unit, and the correction coefficient calculation unit has a change value of the output torque estimated by the torque change estimation unit in advance.
  • the correction coefficient is set to zero when it is less than a predetermined threshold value, and is set to a predetermined positive value when the change value of the output torque is greater than or equal to the threshold value.
  • the assist torque correction unit is calculated by the correction coefficient calculation unit.
  • the assist torque command may be calculated by correcting the assist torque using a correction coefficient.
  • the assist torque correction unit can move or stop the motor by correcting the assist torque with the correction coefficient and calculating the assist torque command.
  • a storage amount sensor that detects a storage amount of a capacitor that supplies electric power to the electric motor is provided, and the assist determination unit decreases the correction coefficient as the storage amount detected by the storage amount sensor decreases. You may come to do.
  • the torque change estimation unit includes a pseudo-differential calculation unit including a first-order lag element whose time constant can be changed, and a time constant calculation unit that calculates a time constant of the first-order lag element according to the actual rotational speed.
  • the pseudo-differential calculation unit calculates a rate of change of the actual fuel injection amount per unit revolution of the engine by pseudo-differentiation using the time constant calculated by the time-constant calculation unit, and the real fuel injection
  • the torque change estimator may estimate the change value of the output torque per unit revolution of the engine based on the rate of change of the amount.
  • the fuel injection amount calculation unit has a target fuel injection amount calculation part and an injection amount restriction part, and the target fuel injection amount calculation part is an engine torque command calculated by the torque command calculation part. And a target fuel injection amount that is a target based on the actual rotational speed, and the injection amount limiting portion is configured to calculate the actual fuel injection amount based on the target fuel injection amount calculated in the target fuel injection amount calculation portion.
  • the fuel injection amount is determined, and the control device includes an actual torque calculation unit, a target torque calculation unit, and a differential torque calculation unit, and the actual torque calculation unit is detected by the rotational speed sensor.
  • Rotation speed and injection amount limit The actual torque output by the engine is calculated based on the actual fuel injection amount determined in minutes, and the target torque calculation unit calculates the actual rotation speed detected by the rotation speed sensor and the target fuel injection amount.
  • a target torque which is a target torque to be output to the engine, is calculated based on the target fuel injection amount calculated in a portion, and the differential torque calculation unit is configured to calculate a target torque calculated by the target torque calculation unit.
  • the difference torque that is insufficient in the actual torque calculated by the actual torque calculation unit is calculated, and the drive control unit adds a torque obtained by adding the difference torque calculated by the difference torque calculation unit to the assist torque command. You may make it output to an electric motor.
  • the control device limits the increase rate of the actual fuel injection amount when the target fuel injection amount increases rapidly. By limiting the increase rate in this way, it is possible to prevent instability of the combustion state of the engine due to a rapid increase in the target fuel injection amount, and to improve fuel efficiency.
  • the actual torque actually output becomes smaller than the target torque by limiting the increase rate, that is, insufficient torque is generated, the shortage can be output to the motor. Thereby, it can prevent that the rotation speed of the engine E accompanying torque shortage falls too much.
  • FIG. 3 is a functional block diagram illustrating a torque change estimation unit of the control device of FIG. 2 in more detail. It is a graph which shows the time-dependent change of various values when the hydraulic pump drive system of FIG. 1 is driven. 2 is a graph showing changes over time of various values when a regenerative operation is performed in the hydraulic pump drive system of FIG. 1. It is the functional block diagram which showed the function which the control apparatus with which the hydraulic pump drive system of 2nd Embodiment of this invention has was shown as a block. It is the functional block diagram shown in order to demonstrate a part of control apparatus of FIG. 6 in detail.
  • Construction machines are equipped with various attachments such as buckets, loaders, blades and hoisting machines, and are moved by hydraulic actuators such as hydraulic cylinders and hydraulic motors (electro-hydraulic motors).
  • a hydraulic excavator that is a kind of construction machine includes a bucket, an arm, and a boom, and can perform operations such as excavation while moving these three members.
  • Each of the bucket, arm, and boom is provided with hydraulic cylinders 11 to 13, and the bucket, arm, and boom are moved by supplying pressure oil to each cylinder 11-13.
  • the hydraulic excavator has a traveling device, and a revolving body is mounted on the traveling device so as to be capable of turning.
  • a boom is attached to the revolving structure so as to be swingable in the vertical direction.
  • a hydraulic turning motor 14 is attached to the turning body, and the turning body is turned by supplying pressure oil to the turning motor 14.
  • a hydraulic traveling motor 15 is attached to the traveling device, and the traveling device 15 moves forward or backward by supplying pressure oil to the traveling motor 15.
  • the hydraulic actuators 11 to 15 (that is, the hydraulic cylinders 11 to 13 and the hydraulic motors 14 and 15) are connected to the hydraulic supply device 16 and are operated by receiving the supply of pressure oil from the hydraulic supply device 16. Yes.
  • the hydraulic pressure supply device 16 has a hydraulic pump 17 and a control valve 18.
  • the hydraulic pump 17 is a swash plate pump, for example, and has a rotating shaft 17a, and discharges pressure oil by rotating the rotating shaft 17a.
  • the discharged pressure oil is guided to the control valve 18, and the control valve 18 controls the flow of the discharged pressure oil.
  • the hydraulic excavator is provided with a plurality of operating tools (for example, operating levers and operating buttons) in association with the hydraulic actuators 11 to 15, and the control valve 18 is operated when the operating tools are operated.
  • Pressure oil is allowed to flow through the hydraulic actuators 11 to 15 corresponding to the operation tools. By flowing the pressure oil in this way, the hydraulic actuators 11 to 15 are operated according to the operation of the operation tool, and the bucket, the arm, the boom, and the like are moved.
  • the rotary shaft 17a of the hydraulic pump 17 is connected to the hydraulic pump drive system 1, and the rotary shaft 17a is driven to rotate by the hydraulic pump drive system 1.
  • the hydraulic pump drive system 1 is a hybrid drive system including an engine E and an electric motor 20, and both the engine E and the electric motor 20 are connected to a rotating shaft 17 a of the hydraulic pump 17.
  • the engine E is, for example, a diesel engine having a plurality of cylinders, and a fuel injection device 21 is provided in association with each cylinder.
  • the fuel injection device 21 includes, for example, a fuel pump and an electromagnetic control valve, and injects an amount of fuel corresponding to an input injection command into the combustion chamber of the corresponding cylinder.
  • the engine E burns the fuel injected from the fuel injection device 21 and reciprocates a piston (not shown) to rotate the rotating shaft 17a and discharge the hydraulic oil from the hydraulic pump 17.
  • the engine E is a diesel engine, but may be a gasoline engine.
  • the rotating shaft 17a is provided with an electric motor 20 that assists in driving the engine E.
  • the electric motor 20 is an AC motor, for example, and is connected to the inverter 22.
  • the inverter 22 is connected to the battery 24, converts a direct current supplied from the battery 24 into an alternating current, and supplies the alternating current to the electric motor 20.
  • a voltage sensor 25 (electric storage amount sensor) for detecting the electric storage amount of the battery 24 is connected to the battery 24 (electric storage device).
  • the voltage sensor 25 is connected to a control device 30 described later, and outputs a signal corresponding to the output voltage of the battery 24 to the control device 30.
  • the inverter 22 supplies an alternating current having a frequency and voltage according to the input assist torque command to the electric motor 20, and outputs torque corresponding to the assist torque command from the electric motor 20 to the rotating shaft 17a.
  • a rotation speed sensor 23 is attached to the rotation shaft 17a, and the rotation speed sensor 23 outputs a signal corresponding to the rotation speed of the rotation shaft 17a.
  • the rotation speed sensor 23 is electrically connected to the control device 30 together with the voltage sensor 25, the inverter 22, and the electromagnetic control valve of the fuel injection device 21.
  • the control device 30 has a functional part that calculates various values as shown in FIG. 2. In the following, each functional part that calculates various values and controls the movement of the above-described configuration is divided into blocks. Separately described.
  • the control device 30 includes a target rotation speed determination unit 31, a rotation speed difference calculation unit 32, a torque command calculation unit 33, a fuel injection amount calculation unit 34, and a fuel injection drive unit 35. Each functional unit calculates various values at a predetermined interval or controls the movement of the configuration at a predetermined interval.
  • the target rotation speed determination unit 31 determines the target rotation speed of the engine based on the rotation speed input from the input means (dial, button, touch panel, etc.) or set in advance.
  • the rotational speed difference calculation unit 32 calculates the actual rotational speed of the rotating shaft 17a based on the signal input from the rotational speed sensor 23, and the target rotational speed determined by the calculated actual rotational speed and the target rotational speed determination unit 31.
  • Rotational speed deviation which is the difference from the number, is calculated.
  • the rotational speed deviation is a value obtained by subtracting the target rotational speed from the actual rotational speed.
  • the torque command calculator 33 calculates an engine torque command based on the rotation speed deviation calculated by the rotation speed difference calculator 32.
  • the engine torque command is a command indicating the torque of the engine E to be output in order to return the actual rotation speed of the engine E to the target rotation speed.
  • the fuel injection amount calculation unit 34 calculates the actual fuel injection amount to be injected from the fuel injection device 21 based on the engine torque command calculated by the torque command calculation unit 33 and the actual rotational speed.
  • the fuel injection drive unit 35 controls the fuel injection device 21 based on the actual fuel injection amount calculated by the fuel injection amount calculation unit 34 and injects the fuel of the actual fuel injection amount from the fuel injection device 21. Yes.
  • control device 30 includes an assist torque determination unit 36, a torque change estimation unit 37, a correction coefficient calculation unit 38, an assist torque correction unit 39, and a drive control unit 40 in order to drive the electric motor 20.
  • Each functional unit described above also calculates various values at predetermined intervals or controls the movement of the configuration at predetermined intervals.
  • the assist torque determination unit 36 determines the assist torque value from the electric motor 20 based on the rotation speed deviation calculated by the rotation speed difference calculation unit 32. This will be specifically described. When the rotational speed deviation (a value obtained by subtracting the target rotational speed from the actual rotational speed) is equal to or greater than zero, the assist torque determining unit 36 sets the assist torque to zero. On the other hand, when the rotational speed deviation is less than zero, the assist torque determination unit 36 sets the assist torque to a preset positive torque value. In the present embodiment, the set positive torque value is the maximum torque that can be output by the electric motor 20 that is used, and is the torque that can be output with the highest efficiency.
  • the set torque value does not necessarily need to be the maximum torque, and is set to a torque that can be output by the electric motor 20 with a high efficiency of 80% or more and 95% or less.
  • the assist torque determined in this manner is corrected according to the change value of the output torque of the engine E, and the change value of the output torque of the engine E is estimated by the torque change estimation unit 37.
  • the torque change estimation unit 37 estimates a change value of the output torque of the engine E, that is, a reduction coefficient, based on the actual fuel injection amount and the actual rotational speed calculated by the fuel injection amount calculation unit 34.
  • the combustion state becomes unstable due to a change in the actual fuel injection amount, and a response delay occurs in the output torque.
  • the combustion state of the engine E changes every revolution (in the case of a 4-stroke engine, every cycle of intake-compression-expansion-exhaust), and the unstable combustion state is improved as the number of combustion passes.
  • the torque change estimation unit 37 calculates a decrease in the output torque at every unit revolution of the engine E (preferably every revolution). It is supposed to be.
  • the torque change estimation unit 37 estimates the change in the output torque of the engine E by numerically modeling the engine E using a transfer function including a pseudo-derivative, which will be described later, and is a first-order lag element included in the pseudo-differential. The constant is changed according to the actual rotational speed. Thereby, it is possible to artificially calculate the output torque drop for each unit rotation speed.
  • the output torque characteristic of the engine E in which the response delay of the torque changes according to the actual rotational speed can be estimated by the transfer function described above.
  • the calculation of the torque change estimation unit 37 is performed at a predetermined interval. The torque change estimation unit 37 that estimates the change in output torque in this way will be described in more detail with reference to FIG.
  • the torque change estimation unit 37 includes a time constant calculation unit 41, a pseudo-differentiation calculation unit 42, and a torque reduction coefficient calculation unit 43 as functional parts for estimating a change in output torque.
  • the time constant calculation unit 41 calculates a time constant from the actual rotational speed using a time constant map.
  • the time constant map is a map in which the time constant is associated with the actual rotation.
  • the correspondence between the time constant of the time constant map and the actual rotation is set based on data obtained from experiments and the like.
  • the displacement of the engine E, accessories (supercharger, EGR, etc.), and structure It depends on the pipe diameter and length. That is, the correspondence is different for each model of the engine E, and is set for each model of the engine E with reference to the experimental result.
  • the correspondence relationship may be set not only for each model but also for each individual.
  • the time constant calculated by the time constant calculating unit 41 is used together with the actual fuel injection amount by the pseudo-differential calculating unit 42 in order to calculate a differential value of the actual fuel injection amount.
  • the pseudo-differential calculation unit 42 calculates a differential value of the actual fuel injection amount by a transfer function obtained by numerically modeling the engine E.
  • the fuel injection amount corresponds to the torque
  • the differential value of the actual fuel injection amount corresponds to the rate of change of the torque. ing.
  • the pseudo differential operation unit 42 will be described in more detail.
  • the transfer function of the pseudo differential operation unit 42 includes a pseudo differential (also referred to as incomplete differential) including a first-order lag element.
  • the pseudo differential operation unit 42 uses this transfer function to differentiate the actual fuel injection amount. The value is calculated.
  • the pseudo-differentiation, the Laplace variable and s, the differential gain and T D, when the constant is T time represented by the following formula (1).
  • the differential value of the actual fuel injection amount by the pseudo differential including the first-order lag element a value corresponding to the rate of change of the output torque considering the response delay due to the deterioration of the combustion state (that is, the actual fuel injection)
  • the differential value of the quantity is calculated.
  • the time constant calculated by the time constant calculation unit 41 is used as the time constant T of the first-order lag element included in the pseudo differentiation. That is, the pseudo-differential calculation unit 42 calculates the differential value of the actual fuel injection amount by changing the time constant every time it is calculated.
  • the pseudo-differential calculation unit 42 calculates the time constant based on the actual rotational speed and changes it every time it is calculated, so that the output torque of each unit rotational speed (preferably, every rotational speed) is changed.
  • the rate of change can be calculated in a pseudo manner.
  • the differential value of the actual fuel injection amount calculated in this way corresponds to the rate of change per unit revolution of the output torque of the engine E, and a torque reduction coefficient described later is calculated by the torque reduction coefficient calculation unit 43. Used for.
  • the torque reduction coefficient calculator 43 calculates a torque reduction coefficient based on the differential value of the actual fuel injection amount calculated by the pseudo-differential calculator 42.
  • the torque reduction coefficient which is a change value of the output torque, is a coefficient indicating how much the torque changes with respect to the engine torque command (actual torque).
  • the torque reduction coefficient calculation unit 43 first calculates the absolute value of the differential value of the actual fuel injection amount, and then calculates the torque reduction coefficient from the absolute value of the differential value of the actual fuel injection amount using the torque reduction coefficient map 43a.
  • the torque reduction coefficient map 43a is a map in which the absolute value of the differential value of the actual fuel injection amount is associated with the torque reduction coefficient.
  • the torque reduction coefficient map 43a is set so that the torque reduction coefficient increases as the absolute value of the differential value increases.
  • the correspondence between the absolute value of the differential value of the actual fuel injection amount in the torque reduction coefficient map 43a and the torque reduction coefficient is set based on data obtained from experiments or the like, and the time constant map and Similarly, it is set for each model of the engine E. It should be noted that the correspondence relationship between the absolute value of the differential value of the actual fuel injection amount and the torque reduction coefficient is not necessarily a correspondence relationship as shown in FIG. Note that the value calculated as the change value of the output torque of the engine E does not necessarily have to be a torque reduction coefficient, and the torque change amount may be directly calculated. The calculated torque reduction coefficient is used in the correction coefficient calculation unit 38.
  • the correction coefficient calculation unit 38 calculates a correction coefficient based on the torque reduction coefficient calculated by the torque reduction coefficient calculation unit 43.
  • the correction coefficient is a coefficient for correcting the assist torque determined by the assist torque determination unit 36 according to the change value of the output torque of the engine E.
  • the assist determination unit 44 is set not to output assist torque when the torque reduction coefficient is small.
  • the correction coefficient calculation unit 38 calculates a correction coefficient from the torque reduction coefficient using the correction coefficient map 38a.
  • the correction coefficient map 38a is a map in which a torque reduction coefficient and a correction coefficient are associated with each other.
  • the assist torque correction unit 39 corrects the assist torque determined by the assist torque determination unit 36 with the correction coefficient calculated by the correction coefficient calculation unit 38. This will be specifically described.
  • the assist torque correction unit 39 corrects the assist torque by multiplying the determined assist torque by a correction coefficient, and calculates an assist torque command that is the corrected assist torque.
  • the calculated assist torque command is used by the drive control unit 40, and the drive control unit 40 controls the inverter 22 to output the assist torque command from the electric motor 20 to drive the electric motor 20.
  • an assist determination unit 44 is configured by the correction coefficient calculation unit 38 and the assist torque correction unit 39.
  • the control device 30 configured in this way increases the actual fuel injection amount of the engine E so as to compensate for the reduced rotational speed when the load on the hydraulic pump 17 increases and the rotational speed of the engine E decreases.
  • the electric motor 20 is driven as required to assist the engine E.
  • FIG. 4 shows the pump load (load of the hydraulic pump 17), engine rotation speed (actual rotation speed) engine torque command, assist torque, torque reduction coefficient, and change over time of the assist torque command in order from the top of the drawing. ing.
  • the horizontal axis represents time and the vertical axis represents various values. The same applies to FIG. 5 described later.
  • the hydraulic pump 17 When the operation tool is operated and the control valve 18 is activated, the hydraulic pump 17 is switched from the unloaded state to the on-loaded state, and a large load is applied to the hydraulic pump 17 (from time t1 on the pump load graph of FIG. 4). t4).
  • the load on the hydraulic pump 17 increases, the actual rotational speed of the engine E decreases (see times t1 to t2 in the engine rotational speed graph in FIG. 4), and the actual rotational speed becomes smaller than the target rotational speed.
  • a difference occurs between the actual engine speed of the engine E and the target engine speed, and the engine speed deviation calculated by the engine speed difference calculator 32 becomes a negative value.
  • the torque command calculation unit 33 calculates an engine torque command based on this rotational speed deviation, and the torque command calculation unit 33 calculates an engine torque command that increases in response to an increase in pump load (FIG. 4). (See times t1 to t4 in the engine torque command graph).
  • the fuel injection amount calculation unit 34 calculates the actual fuel injection amount based on the calculated engine torque command and the actual rotational speed.
  • the fuel injection drive unit 35 further controls the fuel injection device 21 based on the calculated actual fuel injection amount. As a result, the calculated actual fuel injection amount of fuel is injected from the fuel injection device 21.
  • the assist torque determination unit 36 determines the assist torque to be output from the electric motor 20, and the torque change estimation unit 37 calculates a torque reduction coefficient so as to estimate the change value of the output torque. That is, the assist torque determination unit 36 determines the assist torque based on the rotation speed deviation calculated by the rotation speed difference calculation unit 32. In the present embodiment, since the actual rotational speed is smaller than the target rotational speed and the rotational speed deviation is less than zero at times t1 to t2, the assist torque determining unit 36 sets the assist torque to a preset torque value (FIG. 4). (See times t1 to t2 in the assist torque graph).
  • the time constant calculating unit 41 calculates the time constant from the actual rotational speed using the time constant map.
  • the pseudo differential calculation unit 42 calculates a differential value of the actual fuel injection amount from the actual fuel injection amount calculated by the fuel injection amount calculation unit 34 using the calculated time constant.
  • the torque reduction coefficient calculation unit 43 calculates the absolute value of the differential value of the actual fuel injection amount, and the torque reduction coefficient calculation unit 43 uses the torque reduction coefficient map 43a to calculate the torque from the absolute value of the differential value of the actual fuel injection amount. Calculate the reduction factor.
  • the calculated torque reduction coefficient is calculated based on the value including the element of the first-order lag calculated by the pseudo-differential calculation unit 42, the first-order lag as shown in the graph of the torque reduction coefficient in FIG. (See times t1 to t3 in the graph of the torque reduction coefficient in FIG. 4). Note that the calculated torque reduction coefficient is expressed as a positive value.
  • the pseudo-differential calculation unit 42 calculates the rate of change of the actual fuel injection amount for each unit speed by changing the time constant for each calculation, and the torque reduction coefficient calculation unit 43 calculates the change rate. Based on this, a reduction coefficient (that is, a reduction rate) of the output torque for each unit rotational speed is calculated.
  • the change in the actual fuel injection amount affects the combustion state of the engine E not only at the time of combustion immediately after supply but also over several subsequent combustions. That is, the influence on the combustion state due to the change in the actual fuel injection amount is reduced by passing the number of combustions instead of the time.
  • the pseudo-differential calculation unit 42 calculates the rate of change of the actual fuel injection amount for each unit speed. Further, by using the pseudo differentiation when calculating the rate of change of the actual fuel injection amount, the torque reduction coefficient becomes a value larger than zero even after the engine speed reaches the target speed.
  • the torque reduction coefficient decreases toward zero (see times t2 to t3 in the graph of torque reduction coefficient in FIG. 4). That is, the torque change estimation unit 37 takes into account the torque reduction coefficient after the engine speed reaches the target speed. Thus, since the rate of change of the output torque is calculated not in time units but in rotation speed units, the torque reduction coefficient can be estimated more accurately than in the case of calculation in time units.
  • the correction coefficient calculation unit 38 calculates a correction coefficient from the torque reduction coefficient estimated by the torque change estimation unit 37 using the correction coefficient map 38a.
  • the correction coefficient calculation unit 38 sets the correction coefficient to zero at times t1 to t11 and times t2 to t3 when the torque reduction coefficient is less than a predetermined threshold.
  • the assist torque correction unit 39 corrects the assist torque based on the correction coefficient calculated in this way, and calculates an assist torque command. That is, the assist torque correction unit 39 calculates the assist torque command value by multiplying the assist torque by the correction coefficient.
  • the assist torque command is calculated as a value equal to or greater than zero from time t11 to time t2, and the drive control unit 40 performs inverter 22 based on the calculated assist torque command. To control. Thereby, from time t11 to time t2, torque corresponding to the assist torque command is output from the electric motor 20, and the engine E is assisted.
  • the hydraulic pump drive system 1 calculates the correction coefficient based on the estimated torque reduction coefficient, and calculates the assist torque command by correcting the assist torque using the correction coefficient. Therefore, an assist torque command corresponding to the torque reduction coefficient is calculated, and the electric motor 20 can be controlled in accordance with the torque reduction of the engine E. That is, when the torque reduction coefficient is small as in the present embodiment, the movement of the electric motor 20 is stopped (see times t1 to t11), and when the torque reduction coefficient is large, the electric motor 20 can assist the engine E (time). t11 to t2). When the torque reduction coefficient is small, the change in the fuel injection amount is small, and the combustion state of the engine E is relatively stable.
  • the torque command calculation unit 33 calculates an engine torque command based on the calculated rotation speed deviation. Then, an engine torque command that decreases in accordance with the decrease in pump load is calculated by the torque command calculation unit 33 (see times t4 to t5 in the graph of the engine torque command in FIG. 4).
  • the fuel injection amount calculation unit 34 calculates the actual fuel injection amount based on the calculated engine torque command and the actual rotational speed.
  • the fuel injection drive unit 35 controls the fuel injection device 21 based on the actual fuel injection amount calculated by the fuel injection amount calculation unit 34. Thereby, the calculated fuel injection amount of fuel is injected from the fuel injection device 21.
  • the assist torque determination unit 36 determines the assist torque based on the rotation speed deviation calculated by the rotation speed difference calculation unit 32.
  • the assist torque determination unit 36 sets the assist torque to zero (see the assist torque graph in FIG. 4). (See times t4 to t5).
  • the assist torque command calculated by the assist torque correction unit 39 becomes zero regardless of the torque reduction coefficient estimated by the torque change estimation unit 37. That is, in the hydraulic pump drive system 1, the motor 20 is operated to reduce the actual rotational speed of the engine E to the target rotational speed when the load is lost, specifically, the motor 20 is not regenerated. Since the electric motor 20 is not regeneratively operated when the load is lost, it is possible to avoid a low energy efficiency situation in which the regenerative operation is performed by the electric motor 20 while consuming excess fuel in the engine E, and fuel efficiency can be improved. .
  • the assist torque determination unit 36 of the control device 30 it is not always necessary to set the assist torque to zero when the rotation speed deviation is zero or more. For example, when the rotational speed deviation becomes zero or more, the assist torque determination unit 36 sets a predetermined regenerative braking torque, that is, a predetermined negative torque value, as the assist torque. Then, as shown at times t6 to t7 in the assist torque graph of FIG. 5, when the load is released, the assist torque determination unit 36 sets the assist torque to a negative torque value. The assist torque is corrected by the assist torque correction unit 39 using a correction coefficient.
  • the hydraulic pump drive system 1A of the second embodiment is similar in configuration to the hydraulic pump drive system 1 of the first embodiment. Below, about the hydraulic pump drive system 1A, only a different structure from the structure of the hydraulic pump drive system 1 of 1st Embodiment is demonstrated, and description is abbreviate
  • the fuel injection amount calculation unit 34A of the control device 30A shown in FIG. 6 increases or decreases while limiting the change rate of the actual fuel injection amount. Further details will be described.
  • the fuel injection amount calculation unit 34 ⁇ / b> A has a target fuel injection amount calculation part 51 and an injection amount restriction part 52.
  • the target fuel injection amount calculation part 51 calculates a target fuel injection amount that is a target fuel injection amount to be injected from the fuel injection device 21 based on the engine torque command calculated by the torque command calculation unit 33 and the actual rotational speed. To do. This target fuel injection amount is used in the injection amount restriction portion 52.
  • the injection amount limiting portion 52 has a rate limit function with an increase rate limitation and without a decrease rate limitation, and the actual fuel injection amount is calculated based on the target fuel injection amount by this rate limit function. . That is, when the target fuel injection amount increase rate exceeds a predetermined value when the target fuel injection amount is increased, the injection amount limiting portion 52 performs an actual operation while limiting the change rate or the change amount based on a predetermined change rule. The fuel injection amount is changed stepwise up to the target fuel injection amount. On the other hand, when the target fuel injection amount decreases, the injection amount restriction portion 52 sets the target fuel injection amount as the actual fuel injection amount without restricting the reduction rate.
  • the injection amount limiting portion 52 internally holds (ie, stores) the target fuel injection amount calculated by the target fuel injection amount calculation portion 51, and holds the target fuel injection amount and the target fuel injection calculated immediately thereafter. Compare the amount. When the target fuel injection amount immediately after the held target fuel injection amount is small, that is, when the target fuel injection amount is decreasing, the target fuel injection amount is calculated as the actual fuel injection amount. On the other hand, when the target fuel injection amount immediately after the held target fuel injection amount is large, that is, when the target fuel injection amount is increasing, the rate of increase (the difference between the two target fuel injection amounts in this embodiment) is It is determined whether or not a predetermined value is exceeded. If it is less than the predetermined value, the target fuel injection amount is calculated as the actual fuel injection amount.
  • the actual fuel injection amount is gradually increased to the target fuel injection amount while limiting the increase rate based on a change rule that sets the increase rate to a predetermined value or less. That is, when it exceeds the predetermined value, the actual fuel injection amount is increased stepwise to the target fuel injection amount in proportion to the time based on a proportional constant equal to or less than the predetermined value.
  • the injection amount limiting portion 52 may be a filter.
  • the target fuel injection amount may be increased based on a transfer function having a first-order lag element (that is, a lag element). In the fuel injection drive unit 35 and the torque change estimation unit 37, the actual fuel injection amount calculated in this way is used.
  • control device 30A further includes a target torque calculation unit 53, an actual torque calculation unit 54, and a differential torque calculation unit 55.
  • the target torque calculation unit 53 calculates a target torque based on the target fuel injection amount calculated by the target fuel injection amount calculation part 51 of the fuel injection amount calculation unit 34A and the actual rotational speed.
  • the target torque is a torque output from the engine E when the target fuel injection amount is injected.
  • the target torque calculator 53 will be described in more detail.
  • the target torque calculation unit 53 has a target torque map, and the target torque map is a map in which the target torque is associated with the target fuel injection amount and the actual rotational speed.
  • the target torque calculator 53 calculates the target torque from the target torque map based on the calculated target fuel injection amount and the actual rotational speed.
  • the actual torque calculation unit 54 calculates the actual torque based on the actual fuel injection amount and the actual rotational speed calculated by the injection amount limiting part 52 of the fuel injection amount calculation unit 34A.
  • the actual torque is a torque output from the engine E when the actual fuel injection amount is injected. This will be specifically described.
  • the actual torque calculation unit 54 has an actual torque map, and the actual torque map is a map in which the actual torque is associated with the actual fuel injection amount and the actual rotation speed.
  • the actual torque calculator 54 calculates the actual torque from the actual torque map based on the calculated actual fuel injection amount and the actual rotation speed. The actual torque calculated in this way is used by the differential torque calculator 55 together with the target torque.
  • the differential torque calculator 55 calculates a differential torque that is a shortage of torque obtained by subtracting the actual torque from the target torque.
  • the calculated differential torque is added to the assist torque command by the drive control unit 40A.
  • the drive control unit 40 ⁇ / b> A controls the inverter 22 so that torque obtained by adding the differential torque to the assist torque command is output from the electric motor 20.
  • the increase rate of the actual fuel injection amount is limited when the target fuel injection amount suddenly increases.
  • the increase rate in this way, it is possible to prevent instability of the combustion state of the engine E due to a rapid increase in the target fuel injection amount, and to improve fuel efficiency.
  • the actual torque actually output becomes smaller than the target torque by being limited, that is, an insufficient differential torque is generated, the shortage can be output to the electric motor 20. Thereby, it can prevent that the rotation speed of the engine E accompanying torque shortage falls too much.
  • the hydraulic pump drive system 1A has the same effects as the hydraulic pump drive system 1 of the first embodiment.
  • the assist determination unit 44 may change the correction coefficient according to the torque reduction coefficient when the torque reduction coefficient estimated by the torque change estimation unit 37 is greater than or equal to a threshold value.
  • a predetermined value may be changed according to the charge amount of the battery 24 detected based on the signal output from the voltage sensor 25. Good. For example, when the charge amount of the battery 24 decreases, the predetermined value is made smaller than 1. Thereby, it is possible to prevent a large current from flowing in the inverter 22.
  • a change in the torque of the engine E per unit speed (for example, torque per speed) is changed by changing the time constant of pseudo differentiation based on the actual speed.
  • the rate is calculated in a pseudo manner.
  • the hydraulic pump drive systems 1 and 1A of the present embodiment may actually perform a pseudo-differential calculation for each unit rotational speed to actually determine the torque change rate for each unit rotational speed. . That is, as the actual rotational speed increases, the interval for calculating the torque change rate becomes shorter, and as the actual rotational speed decreases, the interval for calculating the torque change rate becomes longer.
  • the hydraulic pump drive systems 1 and 1A of the present embodiment can estimate the rate of change of torque per unit rotation speed.
  • the torque change estimation unit 37 is not limited to the estimation method as described above, but may be any method that can estimate a reduction coefficient of the output torque of the engine E due to a change in the actual fuel injection amount.
  • the construction machine on which the hydraulic pump drive systems 1 and 1A are mounted is not limited to a hydraulic excavator, and may be another construction machine such as a crane or a dozer, as long as it is a construction machine provided with a hydraulic actuator. Good.
  • the hydraulic pump is described as an example of the hydraulic pump.
  • the hydraulic pump is not limited to the hydraulic pump and may be a pump that discharges liquid such as water.
  • E Engine 1 1A Hydraulic pump drive system 17 Hydraulic pump 17a Rotating shaft 20 Electric motor 23 Rotational speed sensor 24 Battery (capacitor) 25 Voltage sensor (charge storage sensor) 30, 30A Control device 31 Target speed determination unit 32 Speed difference calculation unit 33 Torque command calculation unit 34, 34A Fuel injection amount calculation unit 36 Assist torque determination unit 37 Torque change estimation unit 38 Correction coefficient calculation unit 39 Assist torque correction unit 40, 40A Drive control unit 41 Time constant calculation unit 42 Pseudo-differentiation calculation unit 44 Assist determination unit 51 Target fuel injection amount calculation part 52 Injection amount restriction part 53 Target torque calculation part 54 Actual torque calculation part 55 Differential torque calculation part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 油圧ポンプ駆動システムは、制御装置によって電動機を制御して油圧ポンプの回転軸を回転駆動してエンジンEをアシストするようになっている。制御装置は、回転数差演算部で演算される回転数偏差に基づいてトルク指令演算部でエンジントルク指令を演算し、更に燃料噴射量演算部でエンジントルク指令に基づいて実燃料噴射量を演算する。また、アシストトルク決定部でアシストトルクを決定すると共にトルク変化推定部でトルク低下係数を推定する。アシスト判定部では、トルク低下係数に基づいてアシストトルク指令の値をゼロかアシストトルクに応じたトルクかに決定し、駆動制御部がアシストトルク指令に応じて電動機を制御する。

Description

液圧ポンプの駆動システム
 本発明は、エンジンと電動機とによって回転軸を回転して液圧ポンプを駆動する液圧ポンプの駆動システムに関する。
 建設機械等は、油圧ポンプを備えており、油圧ポンプから吐出される圧油によって油圧シリンダ等の油圧アクチュエータを作動させてアームやブーム等を動かすようになっている。油圧ポンプは、回転軸を介してエンジン及び電動機と連結されており、エンジン及び電動機によって回転駆動されるようになっている。このように構成されている建設機械として、例えば特許文献1の建設機械が知られている。
 特許文献1の建設機械では、エンジンは、回転数が回転数指令となるように制御装置によって制御されているが、油圧アクチュエータを駆動する場合など、油圧ポンプに負荷がかかると回転数が低下する。そうすると、制御装置は、エンジンの回転数を回転数指令値に戻すため燃料噴射量を増加させる。この際、制御装置は、電動機を動かしてエンジンをアシストするようになっている。
国際公開2013/031525号
 特許文献1の建設機械では、電動機の駆動制御が回転数と回転数指令値との偏差に基づいて行われている。そのため、エンジンの燃焼状態に関係なく回転数の偏差が大きくなると、電動機によってエンジンのアシストが行われる。それ故、エンジンの出力トルクの低下が小さく、燃料噴射量の増加が比較的小さい場合でも電動機によってエンジンがアシストされる。燃料噴射量の増加が比較的小さい場合は、エンジンの燃焼状態が安定している。それ故、電動機によってエンジンをアシストしても燃焼状態の改善をあまり期待することができず、燃焼状態の改善による燃費向上を図ることができなかった。にもかかわらず、電動機によるアシストが強制的に行われており、無駄に電力が消費されている。
 そこで本発明は、消費電力を低減することができる液圧ポンプの駆動システムを提供することを目的としている。
 本発明の液圧ポンプの駆動システムは、液圧ポンプの回転軸を回転駆動するエンジンと、電力供給を受けて前記回転軸を回転駆動し、前記エンジンをアシストする電動機と、前記回転軸の実回転数を検出する回転数センサと、前記エンジンの燃料噴射量を決定し、且つ前記電動機を制御する制御装置とを備え、前記制御装置は、トルク指令演算部と、燃料噴射量演算部と、トルク変化推定部と、アシストトルク決定部と、アシスト判定部と、駆動制御部とを有し、前記トルク指令演算部は、前記実回転数を予め定められる目標回転数に戻すように前記実回転数と前記目標回転数との偏差である回転数偏差に基づいてエンジントルク指令を演算し、前記燃料噴射量演算部は、前記トルク指令演算部で演算されるエンジントルク指令と前記実回転数とに基づいて実燃料噴射量を演算し、前記トルク変化推定部は、前記燃料噴射量演算部で演算される実燃料噴射量と前記実回転数とに基づいて前記エンジンの出力トルクの変化値を推定し、前記アシストトルク決定部は、前記回転数偏差に基づいて前記電動機に出力させるアシストトルクを決定し、前記アシスト判定部は、前記トルク変化推定部で推定される出力トルクの変化値が予め定められた閾値未満であるときにアシストトルク指令をゼロとし、前記出力トルクの変化値が予め定められた閾値以上であるときに前記アシストトルクに応じたトルクをアシストトルク指令とし、前記駆動制御部は、前記アシスト出力判定部で決定されたアシストトルク指令に基づいたアシストトルクを前記電動機から出力させるものである。
 本発明に従えば、制御装置は、推定される出力トルクの変化値に基づいてアシストトルク指令をゼロとするかアシストトルクとするかを決定している。それ故、出力トルクの変化値に応じて電動機を制御することができる。即ち、出力トルクの変化値が閾値未満である場合に電動機を止め、また出力トルクの変化値が閾値以上である場合に電動機にエンジンをアシストさせることができる。出力トルクの変化値が小さい場合は、燃料噴射量の変化が小さく、エンジンの燃焼状態が比較的安定している。このような安定的な状態では、電動機による出力トルクの変化に対する抑制効果が小さいので、電動機を停止することによって蓄電器に蓄えられる電力を無駄に消費することを抑えることができる。即ち、電動機で消費される消費電力を低減することができる。他方、出力トルクの変化値が大きい場合には、燃料噴射量の変化が大きくなってエンジンの燃焼状態が不安定になっている。このような不安定な状態において電動機によってエンジンをアシストすることによって燃焼状態の安定化を図ることができ、燃費向上を図ることができる。
 上記発明において、前記アシストトルク決定部は、前記実回転数から前記目標回転数を減算した値である前記回転数偏差がゼロ以上の場合に前記アシストトルクをゼロとし、前記回転数偏差がゼロ未満の場合に前記アシストトルクを予め設定されたトルク値とするようになっていてもよい。
 上記構成に従えば、実回転数が目標回転数より大きくなった場合には、出力トルクの変化値が大きくなってもエンジンの実回転数を目標回転数まで低下させるために電動機に動作させないようになっている。即ち、エンジンの実回転数を目標回転数まで低下させるために電動機を回生動作させることがないので、エンジンで余分な燃料を消費しつつ電動機で回生動作を行うというエネルギー効率が低い状況を避けることができ、燃費向上を図ることができる。
 上記発明において、前記アシストトルク決定部において前記予め設定されたトルク値は、前記電動機が80%以上95%以下の効率で出力できるトルクであってもよい。
 上記構成に従えば、電動機を高効率で駆動させることができるので、蓄電器に蓄電されている電力の消費を抑えることができる。
 上記発明において、前記アシスト判定部は、補正係数演算部と、アシストトルク補正部と、を有し、前記補正係数演算部は、前記トルク変化推定部で推定される出力トルクの変化値が前記予め定められた閾値未満の場合に補正係数をゼロとし、前記出力トルクの変化値が前記閾値以上の場合に予め定められた正の値とし、前記アシストトルク補正部は、前記補正係数演算部で演算される補正係数によって前記アシストトルクを補正して前記アシストトルク指令を演算してもよい。
 上記構成に従えば、アシストトルク補正部は、補正係数によってアシストトルクを補正してアシストトルク指令を演算することで、電動機を動かしたり止めたりすることができる。
 上記発明において、前記電動機に電力を供給する蓄電器の蓄電量を検出する蓄電量センサを備え、前記アシスト判定部は、前記蓄電量センサで検出される蓄電量の減少に伴って前記補正係数を小さくするようになっていてもよい。
 上記構成に従えば、蓄電器の蓄電量が減少して電動機の駆動系に大きな電流が流れることを防ぐことができる。
 上記発明において、前記トルク変化推定部は、時定数を変えられる一次遅れ要素を含む疑似微分演算部と、前記実回転数に応じて前記一次遅れ要素の時定数を演算する時定数演算部とを有し、前記時定数演算部によって演算された時定数を用いた疑似微分によって前記エンジンの単位回転数当たりにおける前記実燃料噴射量の変化率を前記擬似微分演算部が算出し、前記実燃料噴射量の変化率に基づいて前記エンジンの単位回転数当たりにおける前記出力トルクの変化値を前記トルク変化推定部が推定してもよい。
 上記構成に従えば、一次遅れ要素を含む疑似微分を用い、且つその一次遅れ要素を実回転数に応じて変えることにより、単位回転数毎の出力トルクの変化値を実用的に演算することができる。
 上記発明において、前記燃料噴射量演算部は、目標燃料噴射量演算部分と、噴射量制限部分とを有し、前記目標燃料噴射量演算部分は、前記トルク指令演算部で演算されるエンジントルク指令と前記実回転数とに基づいて目標となる目標燃料噴射量を演算し、前記噴射量制限部分は、前記目標燃料噴射量演算部分で演算される目標燃料噴射量に基づいて前記実燃料噴射量を演算する際に前記目標燃料噴射量まで段階的に前記実燃料噴射量を増加させる機能を有し、増加させる際の前記実燃料噴射量の時間変化率が所定値以下となるように前記実燃料噴射量を決定し、前記制御装置は、実トルク演算部と、目標トルク演算部と、差分トルク演算部と、を有し、前記実トルク演算部は、前記回転数センサで検出される実回転数と前記噴射量制限部分で決定される実燃料噴射量とに基づいて前記エンジンで出力される実トルクを演算し、前記目標トルク演算部は、前記回転数センサで検出される実回転数と前記目標燃料噴射量演算部分で演算される前記目標燃料噴射量とに基づいて前記エンジンに出力させる目標のトルクである目標トルクを演算し、前記差分トルク演算部は、前記目標トルク演算部で演算される目標トルクに対して前記実トルク演算部で演算される前記実トルクで不足する差分トルクを演算し、前記駆動制御部は、前記差分トルク演算部で演算された差分トルクを前記アシストトルク指令に加えたトルクを前記電動機に出力させてもよい。
 上記構成に従えば、制御装置は、目標燃料噴射量が急激に増加したときに実燃料噴射量の増加率を制限するようになっている。このように増加率を制限することによって、目標燃料噴射量の急激な増加に起因するエンジンの燃焼状態の不安定化を防ぐことができ、燃費向上を図ることができる。他方、増加率が制限されることで実際に出力される実トルクが目標トルクより小さくなる、即ち不足するトルクが生じるので、不足分を電動機に出力させることができる。これにより、トルク不足に伴うエンジンEの回転数が過度に低下することを防ぐことができる。
 本発明によれば、消費電力を低減することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本件発明の第1及び第2実施形態に係る油圧ポンプ駆動システムを示すブロック図である。 本件発明の第1実施形態の油圧ポンプ駆動システムに備わる制御装置が有する機能をブロックにして示した機能ブロック図である。 図2の制御装置のトルク変化推定部を更に詳細に説明すべく示した機能ブロック図である。 図1の油圧ポンプ駆動システムを駆動したときの各種値の経時変化を示すグラフである。 図1の油圧ポンプ駆動システムにおいて回生動作を行わせたときの各種値の経時変化を示すグラフである。 本件発明の第2実施形態の油圧ポンプ駆動システムに備わる制御装置が有する機能をブロックにして示した機能ブロック図である。 図6の制御装置の一部分を更に詳細に説明すべく示した機能ブロック図である。
 以下、本発明に係る実施形態の油圧ポンプ駆動システム1について図面を参照して説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等をその方向に限定するものではない。また、以下に説明する油圧ポンプ駆動システム1は、本発明の一実施形態に過ぎない。従って、本発明は実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 建設機械は、バケット、ローダ、ブレード、巻上機等の種々のアタッチメントを備え、油圧シリンダや油圧モータ(電油モータ)等の油圧アクチュエータによって動かすようになっている。例えば、建設機械の1種である油圧ショベルは、バケット、アーム及びブームを備えており、これら3つの部材を動かしながら掘削等の作業を行うことができるようになっている。バケット、アーム、及びブームの各々には油圧シリンダ11~13が設けられており、各シリンダ11~13に圧油を供給することでバケット、アーム、及びブームが動くようになっている。
 また、油圧ショベルは、走行装置を有しており、更に走行装置の上には、旋回体が旋回可能に取り付けられている。旋回体には、ブームが上下方向に揺動可能に取り付けられている。旋回体には、油圧式の旋回用モータ14が取り付けられており、旋回用モータ14に圧油を供給することで旋回体が旋回するようになっている。また、走行装置には、油圧式の走行用モータ15が取り付けられており、走行用モータ15に圧油を供給することで前進又は後退するようになっている。油圧アクチュエータ11~15(即ち、油圧シリンダ11~13及び油圧モータ14,15)は、油圧供給装置16に接続されており、油圧供給装置16から圧油の供給を受けて作動するようになっている。
 油圧供給装置16は、油圧ポンプ17と、コントロールバルブ18とを有している。油圧ポンプ17は、例えば斜板ポンプであって回転軸17aを有しており、回転軸17aを回転させることで圧油を吐出するようになっている。吐出された圧油は、コントロールバルブ18に導かれるようになっており、コントロールバルブ18は、吐出された圧油の流れを制御するようになっている。
 また、油圧ショベルには、複数の操作具(例えば、操作レバーや操作ボタン等)が油圧アクチュエータ11~15の各々に対応付けて設けられており、コントロールバルブ18は、操作具が操作されると操作具に対応する油圧アクチュエータ11~15に圧油を流すようになっている。このようにして圧油を流すことで、操作具の操作に応じて油圧アクチュエータ11~15が作動し、バケット、アーム、及びブーム等が動くようになっている。また、油圧ポンプ17の回転軸17aは、油圧ポンプ駆動システム1と連結されており、油圧ポンプ駆動システム1によって回転軸17aが回転駆動されるようになっている。
 油圧ポンプ駆動システム1は、エンジンE及び電動機20を備えるハイブリッド式の駆動システムであり、エンジンE及び電動機20が共に油圧ポンプ17の回転軸17aに連結されている。エンジンEは、例えば複数の気筒を有するディーゼルエンジンであり、気筒毎に燃料噴射装置21が対応付けて設けられている。燃料噴射装置21は、例えば燃料ポンプと電磁制御弁とによって構成されており、入力される噴射指令に応じた量の燃料を対応する気筒の燃焼室に噴射するようになっている。エンジンEは、燃料噴射装置21から噴射された燃料を燃焼させて図示しないピストンを往復運動させることで回転軸17aを回転させ、油圧ポンプ17から圧油を吐出させるようになっている。なお、本実施形態では、エンジンEがディーゼルエンジンであるが、ガソリンエンジンであってもよい。また、回転軸17aには、エンジンEの駆動をアシストする電動機20が設けられている。
 電動機20は、例えばACモータであって、インバータ22に接続されている。インバータ22は、バッテリ24と繋がっており、バッテリ24から供給される直流電流を交流電流に変換して交流電流を電動機20に供給するようになっている。バッテリ24(蓄電器)には、バッテリ24の蓄電量を検出する電圧センサ25(蓄電量センサ)が接続されている。電圧センサ25は、後述する制御装置30に接続されており、バッテリ24の出力電圧に応じた信号を制御装置30に出力するようになっている。
 また、インバータ22は、入力されるアシストトルク指令に応じた周波数及び電圧の交流電流を電動機20に供給し、アシストトルク指令に応じたトルクを電動機20から回転軸17aに出力させるようになっている。回転軸17aには、回転数センサ23が取り付けられており、回転数センサ23は、回転軸17aの回転数に応じた信号を出力するようになっている。回転数センサ23は、電圧センサ25、インバータ22、及び燃料噴射装置21の電磁制御弁と共に制御装置30に電気的に接続されている。
 制御装置30は、図2に示すような各種値を演算する機能部分を有しており、以下では、各種値を演算したり、前述する構成の動きを制御したりする機能部分毎にブロックに分けて説明する。制御装置30は、目標回転数決定部31と、回転数差演算部32と、トルク指令演算部33、燃料噴射量演算部34と、燃料噴射駆動部35とを有している。なお、各機能部は、各種値を所定の間隔で演算し、又は構成の動きを所定の間隔で制御するようになっている。
 目標回転数決定部31は、入力手段(ダイヤル、ボタン、及びタッチパネル等)から入力された又は予め設定された回転数に基づいてエンジンの目標回転数を決定する。回転数差演算部32は、回転数センサ23から入力される信号に基づいて回転軸17aの実回転数を算出し、算出された実回転数と目標回転数決定部31で決定された目標回転数との差である回転数偏差を演算する。本実施形態において、回転数偏差は、実回転数から目標回転数を減算した値である。トルク指令演算部33は、回転数差演算部32で演算された回転数偏差に基づいてエンジントルク指令を演算する。エンジントルク指令は、エンジンEの実回転数を目標回転数に戻すために出力すべきエンジンEのトルクを示す指令である。燃料噴射量演算部34は、トルク指令演算部33で演算されたエンジントルク指令と実回転数とに基づいて燃料噴射装置21から噴射すべき実燃料噴射量を演算する。燃料噴射駆動部35は、燃料噴射量演算部34で演算された実燃料噴射量に基づいて燃料噴射装置21を制御し、燃料噴射装置21から実燃料噴射量の燃料を噴射させるようになっている。
 また、制御装置30は、電動機20を駆動するために、アシストトルク決定部36、トルク変化推定部37、補正係数演算部38、アシストトルク補正部39、及び駆動制御部40を有している。なお、前述する各機能部もまた、各種値を所定の間隔で演算し、又は構成の動きを所定の間隔で制御するようになっている。
 アシストトルク決定部36は、回転数差演算部32で演算された回転数偏差に基づいて電動機20からアシストトルクの値を決定する。具体的に説明する。アシストトルク決定部36は、回転数偏差(実回転数から目標回転数を減算した値)がゼロ以上である場合、アシストトルクをゼロとする。他方、回転数偏差がゼロ未満の場合、アシストトルク決定部36は、アシストトルクを予め設定された正のトルク値とする。本実施形態において、前記設定される正のトルク値は、使用される電動機20で出力可能な最大トルクであって、最も高い効率で出力可能なトルクである。なお、前記設定されるトルク値は、必ずしも最大トルクである必要はなく、80%以上95%以下の高い効率で電動機20が出力可能なトルクに設定される。このようにして決定されるアシストトルクは、エンジンEの出力トルクの変化値に応じて補正されるようになっており、トルク変化推定部37でエンジンEの出力トルクの変化値が推定される。
 トルク変化推定部37は、燃料噴射量演算部34で演算された実燃料噴射量と実回転数とに基づいてエンジンEの出力トルクの変化値、即ち低下係数を推定するようになっている。エンジンEは、実燃料噴射量の変化により燃焼状態が不安定となり、出力トルクに応答遅れが生じる。また、エンジンEの燃焼状態は、一回転数毎(4ストロークエンジンの場合、吸気-圧縮-膨張-排気の一サイクル毎)に変化し、燃焼の不安定状態は、燃焼回数を経るにつれて改善される。従って、実回転数が大きければ大きい程、単位時間当たりの燃焼回数が多くなるので、エンジンEの燃焼状態の不安定化がより早く改善し、エンジンEのトルクの低下が小さくなる。
 燃焼状態が一回転毎に変化するというエンジンEの出力トルクの特性を鑑みて、トルク変化推定部37は、エンジンEの単位回転数毎(好ましくは、一回転毎)に出力トルクの低下を演算するようになっている。本実施形態において、トルク変化推定部37では、後述する疑似微分を含む伝達関数によってエンジンEを数値モデル化してエンジンEの出力トルクの変化を推定し、更に疑似微分に含まれる一次遅れ要素の時定数を実回転数に応じて変化させる。これにより、単位回転数毎の出力トルク低下を疑似的に演算することができる。そうすると、実回転数が大きい程エンジンEの燃焼状態がより早く改善してトルク低下が抑えられ、且つ実回転数が小さい程エンジンEの燃焼状態の改善が遅くなってトルク低下が大きくなることが考慮される。即ち、実回転数に応じてトルクの応答遅れが変化するエンジンEの出力トルク特性が前述する伝達関数によって推定できる。なお、トルク変化推定部37の演算は、予め定められた間隔で行われる。このように出力トルクの変化を推定するトルク変化推定部37について、図3を参照しながら更に詳細に説明する。
 トルク変化推定部37は、出力トルクの変化を推定する機能部分として、時定数演算部41と、疑似微分演算部42と、トルク低下係数演算部43とを有している。時定数演算部41は、時定数マップを用いて実回転数から時定数を演算する。本実施形態において、時定数マップは、時定数と実回転とが対応付けられているマップである。時定数マップの時定数と実回転との対応関係は、実験等から得られたデータに基づいて設定されており、エンジンEの排気量、付属品(過給機やEGR等)、及び構造(配管の径や長さ等)等によって異なる。即ち、前記対応関係は、エンジンEの機種毎に異なっており、エンジンEの機種毎に実験結果を参考にして設定される。なお、前記対応関係は、機種毎だけでなく個体毎に設定されてもよい。時定数演算部41で演算される時定数は、実燃料噴射量の微分値を演算するために疑似微分演算部42で実燃料噴射量と共に用いられる。
 疑似微分演算部42は、エンジンEを数値モデル化した伝達関数によって実燃料噴射量の微分値を演算する。なお、エンジンEでは、燃料噴射量とトルクとが対応しており、実燃料噴射量の微分値(実燃料噴射量の単位回転数当たりの変化率に相当)は、トルクの変化率に対応している。疑似微分演算部42について更に詳細に説明する。疑似微分演算部42の伝達関数には、一次遅れ要素を含む疑似微分(不完全微分ともいう)が含まれており、疑似微分演算部42は、この伝達関数を用いて実燃料噴射量の微分値を演算するようになっている。本実施形態において、疑似微分は、ラプラス変数をsとし、微分ゲインをTとし、時定数をTとすると、下記の式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 このように一次遅れ要素を含む疑似微分によって実燃料噴射量の微分値を演算することで、燃焼状態の悪化による応答遅れが考慮された出力トルクの変化率に対応する値(即ち、実燃料噴射量の微分値)が演算される。また、疑似微分に含まれる一次遅れ要素の時定数Tは、時定数演算部41で演算された時定数を用いる。即ち、疑似微分演算部42は、演算する度に時定数を変化させて実燃料噴射量の微分値を演算する。このように疑似微分演算部42は時定数を実回転数に基づいて演算して、それを演算する度に変更することで、単位回転数毎(好ましくは、一回転数毎)の出力トルクの変化率を疑似的に演算することができる。このようにして演算される実燃料噴射量の微分値は、エンジンEの出力トルクの単位回転数当たりの変化率に対応しており、後述するトルク低下係数をトルク低下係数演算部43で演算するために用いられる。
 トルク低下係数演算部43は、疑似微分演算部42で演算された実燃料噴射量の微分値に基づいてトルク低下係数を演算するようになっている。出力トルクの変化値であるトルク低下係数は、エンジントルク指令(実トルク)に対してどの程度トルクが変化するかを示す係数である。トルク低下係数演算部43は、まず実燃料噴射量の微分値の絶対値を演算し、次にトルク低下係数マップ43aを用いて実燃料噴射量の微分値の絶対値からトルク低下係数を演算する。トルク低下係数マップ43aは、実燃料噴射量の微分値の絶対値とトルク低下係数とが対応付けられているマップであり、例えば微分値の絶対値が大きくなるとトルク低下係数が大きくなるように設定されている。本実施形態において、トルク低下係数マップ43aの実燃料噴射量の微分値の絶対値とトルク低下係数との対応関係は、実験等から得られたデータに基づいて設定されており、時定数マップと同様にエンジンEの機種毎に設定されている。なお、実燃料噴射量の微分値の絶対値とトルク低下係数との対応関係は、必ずしも図3に示されるような対応関係である必要はない。なお、エンジンEの出力トルクの変化値として演算される値は、必ずしもトルク低下係数でなくてもよく、トルクの変化量を直接演算してもよい。演算されたトルク低下係数は、補正係数演算部38で用いられる。
 アシスト判定部44では、補正係数演算部38が、トルク低下係数演算部43で演算されたトルク低下係数に基づいて補正係数を演算するようになっている。補正係数は、アシストトルク決定部36で決定されたアシストトルクをエンジンEの出力トルクの変化値に応じて補正するための係数である。アシスト判定部44はトルク低下係数が小さい場合にアシストトルクを出力させないように設定されている。
 補正係数演算部38は、補正係数マップ38aを用いてトルク低下係数から補正係数を算出する。補正係数マップ38aは、トルク低下係数と補正係数とが対応付けられているマップである。本実施形態において、補正係数マップ38aは、トルク低下係数が予め定められた閾値未満において補正係数がゼロとなり、トルク低下係数が前記閾値以上において補正係数が予め定められた値(=1)となるように設定されている。このようにして演算される補正係数は、図2に示すアシストトルク補正部39で用いられる。
 アシストトルク補正部39は、アシストトルク決定部36で決定されたアシストトルクを補正係数演算部38で演算された補正係数によって補正するようになっている。具体的に説明する。アシストトルク補正部39は、決定されたアシストトルクに補正係数を乗算することでアシストトルクを補正し、補正されたアシストトルクであるアシストトルク指令を演算する。演算されたアシストトルク指令は、駆動制御部40で用いられ、駆動制御部40は、アシストトルク指令を電動機20から出力させるようにインバータ22を制御して電動機20を駆動するようになっている。なお、本実施形態では、補正係数演算部38とアシストトルク補正部39とによってアシスト判定部44が構成されている。
 このように構成されている制御装置30は、油圧ポンプ17の負荷が大きくなってエンジンEの回転数が低下した際に、低下した回転数を補うようにエンジンEの実燃料噴射量を増加させると共に、必要に応じて電動機20を駆動してエンジンEをアシストするようになっている。以下では、まず、油圧アクチュエータ11~15の何れかを作動させて油圧ポンプ17の負荷が増大した場合(即ち、負荷入り時)の油圧ポンプ駆動システム1の動きを図4のグラフを参照しながら説明する。なお、図4には、紙面の上から順にポンプ負荷(油圧ポンプ17の負荷)、エンジン回転数(実回転数)エンジントルク指令、アシストトルク、トルク低下係数、及びアシストトルク指令の経時変化を示している。図4では、横軸が時間であり、縦軸が各種値を示している。なお、後述する図5においても同様である。
 操作具が操作されてコントロールバルブ18が作動すると、油圧ポンプ17は、アンロード状態からオンロード状態に切替り、油圧ポンプ17に大きな負荷が作用する(図4のポンプ負荷のグラフの時刻t1~t4参照)。油圧ポンプ17の負荷が大きくなるとエンジンEの実回転数が低下し(図4のエンジン回転数のグラフの時刻t1~t2参照)、実回転数が目標回転数より小さくなる。これにより、エンジンEの実回転数と目標回転数とに差が生じ、回転数差演算部32で演算される回転数偏差が負の値となる。トルク指令演算部33は、この回転数偏差に基づいてエンジントルク指令を演算し、ポンプ負荷の増加に対応させて増加するようなエンジントルク指令がトルク指令演算部33で演算される(図4のエンジントルク指令のグラフの時刻t1~t4参照)。燃料噴射量演算部34は、演算されたエンジントルク指令と実回転数とに基づいて実燃料噴射量を演算する。燃料噴射駆動部35は、更に演算された実燃料噴射量に基づいて燃料噴射装置21を制御する。これより、演算された実燃料噴射量の燃料が燃料噴射装置21から噴射される。
 また、制御装置30では、アシストトルク決定部36が電動機20から出力すべきアシストトルクを決定すると共に、出力トルクの変化値を推定すべくトルク変化推定部37がトルク低下係数を演算する。即ち、アシストトルク決定部36は、回転数差演算部32で演算された回転数偏差に基づいてアシストトルクを決定する。本実施形態では、時刻t1~t2において実回転数が目標回転数より小さく回転数偏差がゼロ未満であるので、アシストトルク決定部36がアシストトルクを予め設定されたトルク値とする(図4のアシストトルクのグラフの時刻t1~t2参照)。
 他方、図3に示すように、トルク変化推定部37では、時定数演算部41が時定数マップを用いて実回転数から時定数を演算する。次に、疑似微分演算部42は、算出された時定数を用いて、燃料噴射量演算部34で演算される実燃料噴射量から実燃料噴射量の微分値を演算する。トルク低下係数演算部43は、実燃料噴射量の微分値の絶対値を演算し、更にトルク低下係数演算部43がトルク低下係数マップ43aを用いて実燃料噴射量の微分値の絶対値からトルク低下係数を演算する。演算されたトルク低下係数は、疑似微分演算部42によって演算された一次遅れの要素を含む値に基づいて演算されているため、図4のトルク低下係数のグラフに示されているように一次遅れの応答性をもって増減する(図4のトルク低下係数のグラフの時刻t1~t3参照)。なお、演算されたトルク低下係数は、正の値として表される。
 このように疑似微分演算部42は、演算の度に時定数を変更することによって、単位回転数毎の実燃料噴射量の変化率を演算し、トルク低下係数演算部43は、この変化率に基づいて単位回転数毎の出力トルクの低下係数(即ち、低下率)を演算している。実燃料噴射量の変化は、供給直後の燃焼時だけでなくその後の数回の燃焼にわたってエンジンEの燃焼状態に影響を与える。即ち、時間ではなく燃焼回数を経ることによって、実燃料噴射量の変化による燃焼状態への影響が小さくなる。従って、実回転数が目標回転数に達して実燃料噴射量が一定になった後も燃焼状態の悪化が止まらずにトルクが低下し、エンジンEにて所定回数の燃焼(即ち、所定回数の回転)が行われた後、燃焼状態が改善される。このように、エンジンEの燃焼状態は、時間よりも燃焼回数(即ち、回転数)に応じて変化している。これを鑑みて、疑似微分演算部42は、単位回転数毎の実燃料噴射量の変化率を演算している。また、実燃料噴射量の変化率を演算する際に疑似微分が用いられることによって、エンジン回転数が目標回転数に到達した後も、トルク低下係数もゼロより大きい値となる。その後トルク低下係数がゼロに向かって減少している(図4のトルク低下係数のグラフの時刻t2~t3参照)。つまり、トルク変化推定部37は、エンジン回転数が目標回転数に到達した後のトルク低下係数まで考慮している。このように時間単位ではなく回転数単位で出力トルクの変化率を演算するので、時間単位で演算する場合に比べてトルク低下係数をより正確に推定することができる。
 補正係数演算部38は、補正係数マップ38aを用いてトルク変化推定部37で推定されたトルク低下係数から補正係数を演算する。本実施形態では、トルク低下係数が予め定められる閾値未満となっている時刻t1~t11及び時刻t2~t3において、補正係数演算部38は、補正係数をゼロとする。他方、トルク低下係数が前記閾値以上になっている時刻t11~t2において、補正係数演算部38は、補正係数を予め定められた値(=1)とする。アシストトルク補正部39は、このようにして演算された補正係数に基づいてアシストトルクを補正し、アシストトルク指令を演算する。即ち、アシストトルク補正部39は、アシストトルクに補正係数を乗算してアシストトルク指令値を演算する。その結果、図4のアシストトルク指令のグラフに示すように、時刻t11~時刻t2においてアシストトルク指令がゼロ以上の値として演算され、演算されたアシストトルク指令に基づいて駆動制御部40がインバータ22を制御する。これにより、時刻t11~時刻t2において、アシストトルク指令に相当するトルクが電動機20から出力され、エンジンEがアシストされる。
 このように、油圧ポンプ駆動システム1は、推定されるトルク低下係数に基づいて補正係数を演算し、この補正係数によってアシストトルクを補正してアシストトルク指令を演算している。それ故、トルク低下係数に応じたアシストトルク指令が演算され、エンジンEのトルクの低下に応じて電動機20を制御することができる。即ち、本実施形態のようにトルク低下係数が小さい場合に電動機20の動きを止め(時刻t1~t11参照)、またトルク低下係数が大きい場合に電動機20によってエンジンEをアシストさせることができる(時刻t11~t2参照)。トルク低下係数が小さい場合は、燃料噴射量の変化が小さく、エンジンEの燃焼状態が比較的安定している。このような安定的な状態では、電動機20によるエンジンEのトルク変化抑制効果が小さいので、電動機20を停止することによってバッテリ24に蓄えられる電力が無駄に消費されることを抑えることができる。即ち、電動機20で消費される消費電力を低減することができる。他方、トルク低下係数が大きい場合は、燃料噴射量の変化が大きくなってエンジンEの燃焼状態が不安定になっている。このような不安定な状態において、電動機20によってエンジンEをアシストすることで燃焼状態の安定化を図ることができ、燃費向上を改善することができる。
 次に、操作具の操作が止まって(即ち、操作具が中立位置まで戻されて)油圧ポンプ17がオンロード状態からアンロード状態に切替わり、油圧ポンプ17の負荷が小さくなる場合(即ち、負荷抜け時)について説明する。油圧ポンプ17では、いわゆる負荷抜けが生じる(図4のポンプ負荷のグラフの時刻t4参照)。負荷抜けが生じた際、エンジンEの実回転数が増加し(図4のエンジン回転数のグラフの時刻t4~t5参照)、実回転数が目標回転数より大きくなる。これにより、エンジンEの実回転数と目標回転数とに差が生じ、回転数差演算部32で演算される回転数偏差が正の値となる。トルク指令演算部33は、演算される回転数偏差に基づいてエンジントルク指令を演算する。そうすると、ポンプ負荷の減少に対応させて減少させるようなエンジントルク指令がトルク指令演算部33で演算される(図4のエンジントルク指令のグラフの時刻t4~t5参照)。燃料噴射量演算部34は、演算されたエンジントルク指令と実回転数とに基づいて実燃料噴射量を演算する。燃料噴射駆動部35は、燃料噴射量演算部34で演算された実燃料噴射量に基づいて燃料噴射装置21を制御する。これにより、演算された実燃料噴射量の燃料が燃料噴射装置21から噴射される。
 また、制御装置30では、アシストトルク決定部36が回転数差演算部32で演算された回転数偏差に基づいてアシストトルクを決定する。本実施形態では、時刻t4~t5において実回転数が目標回転数より大きく回転数偏差がゼロ以上であるので、アシストトルク決定部36がアシストトルクをゼロとする(図4のアシストトルクのグラフの時刻t4~t5参照)。そのため、トルク変化推定部37で推定されるトルク低下係数に関わらずアシストトルク補正部39で演算されるアシストトルク指令がゼロとなる。即ち、油圧ポンプ駆動システム1では、負荷抜け時にエンジンEの実回転数を目標回転数まで低下させるために電動機20に動作させる、具体的には電動機20を回生動作させることがない。負荷抜け時に電動機20を回生動作させることがないので、エンジンEで余分な燃料を消費しつつ電動機20で回生動作を行うというエネルギー効率が低い状況を避けることができ、燃費向上を図ることができる。
 なお、制御装置30のアシストトルク決定部36では、必ずしも回転数偏差がゼロ以上である場合にアシストトルクをゼロとする必要はない。例えば、アシストトルク決定部36は、回転数偏差がゼロ以上になると、アシストトルクとして予め定められた回生制動トルク、即ち予め定められた負のトルク値を設定する。そうすると、図5のアシストトルクのグラフの時刻t6~t7に示すように負荷抜け時において、アシストトルク決定部36がアシストトルクを負のトルク値とする。このアシストトルクは、アシストトルク補正部39で補正係数によって補正される。補正係数は、トルク低下係数が閾値未満となる時刻t6~t61においてゼロとなり、トルク低下係数が閾値以上となる時刻t61~t7において予め定められた値(=1)となる(図5のトルク低下係数のグラフ参照)。それ故、アシストトルク補正部39で演算されるアシストトルク指令は、時刻t6~t61においてゼロとなり、時刻t61~t7において負の値(即ち、回生制動トルク指令)となる。これによって、電動機20が回生動作をするようになり、負荷抜け時に大きくなった実回転数を目標回転数へと素早く低下させることができる。
 <第2実施形態>
 第2実施形態の油圧ポンプ駆動システム1Aは、第1実施形態の油圧ポンプ駆動システム1と構成が類似している。以下では、油圧ポンプ駆動システム1Aについて、第1実施形態の油圧ポンプ駆動システム1の構成と異なる構成についてだけ説明し、同一の構成については説明を省略する。
 油圧ポンプ駆動システム1Aでは、図6に示す制御装置30Aの燃料噴射量演算部34Aが実燃料噴射量の変化率を制限しながら増減するようになっている。更に詳細に説明する。図7に示すように、燃料噴射量演算部34Aは、目標燃料噴射量演算部分51と、噴射量制限部分52とを有している。目標燃料噴射量演算部分51は、トルク指令演算部33で演算されたエンジントルク指令と実回転数とに基づいて燃料噴射装置21から噴射すべき目標の燃料噴射量である目標燃料噴射量を演算する。この目標燃料噴射量は噴射量制限部分52で用いられる。
 噴射量制限部分52は、増加率制限あり且つ減少率制限なしのレートリミット機能を有しており、このレートリミット機能により目標燃料噴射量に基づいて実燃料噴射量を演算するようになっている。即ち、噴射量制限部分52は、目標燃料噴射量を増加させる際に目標燃料噴射量の増加率が所定値を超えると、予め定められる変化規則に基づいて変化率又は変化量を制限しながら実燃料噴射量を前記目標燃料噴射量まで段階的に変化させるようになっている。他方、目標燃料噴射量が減少する場合、噴射量制限部分52は、減少率を制限せずに目標燃料噴射量を実燃料噴射量とするようになっている。
 更に具体的に説明する。噴射量制限部分52は、目標燃料噴射量演算部分51で演算された目標燃料噴射量を内部に保持(即ち、記憶)し、保持している目標燃料噴射量と直後に演算された目標燃料噴射量とを比較するようになっている。保持している目標燃料噴射量より直後の目標燃料噴射量が小さい、即ち目標燃料噴射量が減少している場合、目標燃料噴射量を実燃料噴射量として算出する。他方、保持している目標燃料噴射量より直後の目標燃料噴射量が大きい、即ち目標燃料噴射量が増加している場合、増加率(本実施形態では、2つの目標燃料噴射量の差)が所定値を超えているか否かを判定する。所定値以下の場合は、標燃料噴射量を実燃料噴射量として算出する。他方、所定値を超えている場合、増加率を所定値又はそれ以下とする変化規則に基づいて増加率を制限しながら実燃料噴射量を目標燃料噴射量まで段階的に増加させる。即ち、所定値を超えている場合、所定値又はそれ以下の比例定数に基づいて時間に比例させて実燃料噴射量を目標燃料噴射量まで段階的に増加させる。なお、噴射量制限部分52は、フィルターであってもよく、例えば一次遅れ要素(即ち、遅れ要素)を有する伝達関数に基づいて目標燃料噴射量を増加させるようにしてもよい。燃料噴射駆動部35及びトルク変化推定部37では、このようにして演算された実燃料噴射量が用いられる。
 また、制御装置30Aは、目標トルク演算部53と、実トルク演算部54と、差分トルク演算部55を更に有している。目標トルク演算部53は、燃料噴射量演算部34Aの目標燃料噴射量演算部分51で演算される目標燃料噴射量と実回転数とに基づいて目標トルクを演算するようになっている。目標トルクとは、目標燃料噴射量を噴射した際にエンジンEから出力されるトルクである。目標トルク演算部53について更に詳細に説明する。目標トルク演算部53は、目標トルクマップを有しており、目標トルクマップは、目標トルクが目標燃料噴射量及び実回転数に対応付けられているマップである。目標トルク演算部53は、演算された目標燃料噴射量及び実回転数に基づいて目標トルクマップから目標トルクを算出するようになっている。
 また、実トルク演算部54は、燃料噴射量演算部34Aの噴射量制限部分52で演算される実燃料噴射量と実回転数とに基づいて実トルクを演算するようになっている。実トルクとは、実燃料噴射量を噴射した際にエンジンEから出力されるトルクである。具体的に説明する。実トルク演算部54は、実トルクマップを有しており、実トルクマップは、実トルクが実燃料噴射量及び実回転数に対応付けられているマップである。実トルク演算部54は、演算された実燃料噴射量及び実回転数に基づいて実トルクマップから実トルクを算出するようになっている。このようにして演算された実トルクは、目標トルクと共に差分トルク演算部55で用いられる。
 差分トルク演算部55は、目標トルクから実トルクを差し引いた不足分のトルクである差分トルクを演算するようになっている。演算された差分トルクは、駆動制御部40Aでアシストトルク指令に加算される。駆動制御部40Aは、アシストトルク指令に差分トルクを加算したトルクを電動機20から出力させるようにインバータ22を制御するようになっている。
 このように、油圧ポンプ駆動システム1Aでは、目標燃料噴射量が急激に増加したときに実燃料噴射量の増加率を制限するようになっている。このように増加率を制限することによって、目標燃料噴射量の急激な増加に起因するエンジンEの燃焼状態の不安定化を防ぐことができ、燃費向上を図ることができる。他方、制限されることで実際に出力される実トルクが目標トルクより小さくなる、即ち不足する差分トルクが生じるので、不足分を電動機20に出力させることができる。これにより、トルク不足に伴うエンジンEの回転数が過度に低下することを防ぐことができる。
 その他、油圧ポンプ駆動システム1Aは、第1実施形態の油圧ポンプ駆動システム1と同様の作用効果を奏する。
 <その他の実施形態>
 本実施形態の油圧ポンプ駆動システム1,1Aでは、補正係数演算部38で演算される補正係数がゼロか予め定められた値(=1)の2つの値から選択されるようになっているが、必ずしもこのような構成である必要はない。例えば、アシスト判定部44では、トルク変化推定部37で推定されるトルク低下係数が閾値以上である場合に、補正係数をトルク低下係数に応じて変化させるようにしてもよい。また、補正係数演算部38が補正係数を演算する際、電圧センサ25からの出力される信号に基づいて検出されるバッテリ24の充電量に応じて予め定められた値を変更するようにしてもよい。例えば、バッテリ24の充電量が減少すると、予め定められた値を1より小さくする。これにより、インバータ22内で大きな電流が流れることを防ぐことができる。
 本実施形態の油圧ポンプ駆動システム1,1Aでは、実回転数に基づいて疑似微分の時定数を変化させることで単位回転数当たりのエンジンEのトルク(例えば、1回転数当たりのトルク)の変化率を疑似的に演算している。この方法以外に、本実施形態の油圧ポンプ駆動システム1,1Aは、実際に単位回転数毎に疑似微分の演算を行って、実際に単位回転毎のトルクの変化率を求めるようにしてもよい。即ち、実回転数が大きくなればなるほどトルクの変化率を演算する間隔が短くなり、実回転数が小さくなればなるほどトルクの変化率を演算する間隔が長くなる。これにより、本実施形態の油圧ポンプ駆動システム1,1Aは、単位回転数当たりのトルクの変化率を推定することができる。また、トルク変化推定部37は、前述のような推定方法に限らず、実燃料噴射量の変化によるエンジンEの出力トルクの低下係数を推定できる方法であればよい。
 また、油圧ポンプ駆動システム1,1Aが実装される建設機械は、油圧ショベルに限定されず、クレーンやドーザ等の他の建設機械であってもよく、油圧アクチュエータを備えている建設機械であればよい。また、油圧ポンプ駆動システム1,1Aでは、液圧ポンプの例として油圧ポンプを挙げたが、液圧ポンプは、油圧ポンプに限定されず水等の液体を吐出するポンプであればよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 E エンジン
 1,1A 油圧ポンプ駆動システム
 17 油圧ポンプ
 17a 回転軸
 20 電動機
 23 回転数センサ
 24 バッテリ(蓄電器)
 25 電圧センサ(蓄電量センサ)
 30,30A 制御装置
 31 目標回転数決定部
 32 回転数差演算部
 33 トルク指令演算部
 34,34A 燃料噴射量演算部
 36 アシストトルク決定部
 37 トルク変化推定部
 38 補正係数演算部
 39 アシストトルク補正部
 40,40A 駆動制御部
 41 時定数演算部
 42 疑似微分演算部
 44 アシスト判定部
 51 目標燃料噴射量演算部分
 52 噴射量制限部分
 53 目標トルク演算部
 54 実トルク演算部
 55 差分トルク演算部

Claims (7)

  1.  液圧ポンプの回転軸を回転駆動するエンジンと、
     電力供給を受けて前記回転軸を回転駆動し、前記エンジンをアシストする電動機と、
     前記回転軸の実回転数を検出する回転数センサと、
     前記エンジンの燃料噴射量を決定し、且つ前記電動機を制御する制御装置とを備え、
     前記制御装置は、トルク指令演算部と、燃料噴射量演算部と、トルク変化推定部と、アシストトルク決定部と、アシスト判定部と、駆動制御部とを有し、
      前記トルク指令演算部は、前記実回転数を予め定められる目標回転数に戻すように前記実回転数と前記目標回転数との偏差である回転数偏差に基づいてエンジントルク指令を演算し、
      前記燃料噴射量演算部は、前記トルク指令演算部で演算されるエンジントルク指令と前記実回転数とに基づいて実燃料噴射量を演算し、
      前記トルク変化推定部は、前記燃料噴射量演算部で演算される前記実燃料噴射量と前記実回転数とに基づいて前記エンジンの出力トルクの変化値を推定し、
      前記アシストトルク決定部は、前記回転数偏差に基づいて前記電動機に出力させるアシストトルクを決定し、
      前記アシスト判定部は、前記トルク変化推定部で推定される前記出力トルクの変化値が予め定められた閾値未満であるときにアシストトルク指令をゼロとし、前記出力トルクの変化値が予め定められた閾値以上であるときに前記アシストトルクに応じたトルクをアシストトルク指令とし、
      前記駆動制御部は、前記アシスト判定部で決定されたアシストトルク指令に基づいたアシストトルクを前記電動機から出力させる、液圧ポンプの駆動システム。
  2.  前記アシストトルク決定部は、前記実回転数から前記目標回転数を減算した値である前記回転数偏差がゼロ以上の場合に前記アシストトルクをゼロとし、前記回転数偏差がゼロ未満の場合に前記アシストトルクを予め設定されたトルク値とするようになっている、請求項1に記載の液圧ポンプの駆動システム。
  3.  前記アシストトルク決定部において前記予め設定されたトルク値は、前記電動機が80%以上95%以下の効率で出力できるトルクである、請求項2に記載の液圧ポンプの駆動システム。
  4.  前記アシスト判定部は、補正係数演算部と、アシストトルク補正部と、を有し、
     前記補正係数演算部は、前記トルク変化推定部で推定される前記出力トルクの変化が前記予め定められた閾値未満の場合に補正係数をゼロとし、前記出力トルクの変化が前記閾値以上の場合に予め定められた正の値とし、
     前記アシストトルク補正部は、前記補正係数演算部で演算される補正係数によって前記アシストトルクを補正して前記アシストトルク指令を演算する、請求項1乃至3の何れか1つに記載の液圧ポンプの駆動システム。
  5.  前記電動機に電力を供給する蓄電器の蓄電量を検出する蓄電量センサを備え、
     前記アシスト判定部は、前記蓄電量センサで検出される蓄電量の減少に伴って前記補正係数を小さくするようになっている、請求項4に記載の液圧ポンプの駆動システム。
  6.  前記トルク変化推定部は、時定数を変えられる一次遅れ要素を含む疑似微分演算部と、前記実回転数に応じて前記一次遅れ要素の時定数を演算する時定数演算部とを有し、
     前記時定数演算部によって演算された時定数を用いた疑似微分によって前記エンジンの単位回転数当たりにおける前記実燃料噴射量の変化率を前記擬似微分演算部が算出し、前記実燃料噴射量の変化率に基づいて前記エンジンの単位回転数当たりにおける前記出力トルクの変化を前記トルク変化推定部が推定する、請求項1乃至5の何れか1つに記載の液圧ポンプの駆動システム。
  7.  前記燃料噴射量演算部は、目標燃料噴射量演算部分と、噴射量制限部分とを有し、
     前記目標燃料噴射量演算部分は、前記トルク指令演算部で演算されるエンジントルク指令と前記実回転数とに基づいて目標となる目標燃料噴射量を演算し、
     前記噴射量制限部分は、前記目標燃料噴射量演算部分で演算される目標燃料噴射量に基づいて前記実燃料噴射量を演算する際に前記目標燃料噴射量まで段階的に前記実燃料噴射量を増加させる機能を有し、増加させる際の前記実燃料噴射量の時間変化率が所定値以下となるように前記実燃料噴射量を決定し、
     前記制御装置は、実トルク演算部と、目標トルク演算部と、差分トルク演算部と、を有し、
     前記実トルク演算部は、前記回転数センサによって検出される前記実回転数と前記噴射量制限部分で決定される前記実燃料噴射量とに基づいて前記エンジンで出力される実トルクを演算し、
     前記目標トルク演算部は、前記回転数センサによって検出される前記実回転数と前記目標燃料噴射量演算部分で演算される前記目標燃料噴射量とに基づいて前記エンジンに出力させる目標のトルクである目標トルクを演算し、
     前記差分トルク演算部は、前記目標トルク演算部で演算される目標トルクに対して前記実トルク演算部で演算される前記実トルクで不足する差分トルクを演算し、
     前記駆動制御部は、前記差分トルク演算部で演算された差分トルクを前記アシストトルク指令に加えたトルクを前記電動機に出力させる、請求項1乃至6の何れか1つに記載の液圧ポンプの駆動システム。
PCT/JP2015/004129 2014-08-20 2015-08-19 液圧ポンプの駆動システム WO2016027465A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014167549A JP6336855B2 (ja) 2014-08-20 2014-08-20 液圧ポンプの駆動システム
JP2014-167549 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027465A1 true WO2016027465A1 (ja) 2016-02-25

Family

ID=55350427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004129 WO2016027465A1 (ja) 2014-08-20 2015-08-19 液圧ポンプの駆動システム

Country Status (2)

Country Link
JP (1) JP6336855B2 (ja)
WO (1) WO2016027465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166392A (ja) * 2016-03-15 2017-09-21 日本車輌製造株式会社 エンジン制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110461A (ja) * 2003-10-02 2005-04-21 Toyota Motor Corp パラレルハイブリッド車両におけるモータジェネレータの制御方法
WO2010147121A1 (ja) * 2009-06-19 2010-12-23 住友重機械工業株式会社 ハイブリッド型建設機械及びハイブリッド型建設機械の制御方法
JP2011063089A (ja) * 2009-09-16 2011-03-31 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2012180683A (ja) * 2011-03-01 2012-09-20 Hitachi Constr Mach Co Ltd 建設機械の制御装置
JP2013203234A (ja) * 2012-03-28 2013-10-07 Kubota Corp ハイブリッド作業車

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110461A (ja) * 2003-10-02 2005-04-21 Toyota Motor Corp パラレルハイブリッド車両におけるモータジェネレータの制御方法
WO2010147121A1 (ja) * 2009-06-19 2010-12-23 住友重機械工業株式会社 ハイブリッド型建設機械及びハイブリッド型建設機械の制御方法
JP2011063089A (ja) * 2009-09-16 2011-03-31 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2012180683A (ja) * 2011-03-01 2012-09-20 Hitachi Constr Mach Co Ltd 建設機械の制御装置
JP2013203234A (ja) * 2012-03-28 2013-10-07 Kubota Corp ハイブリッド作業車

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166392A (ja) * 2016-03-15 2017-09-21 日本車輌製造株式会社 エンジン制御装置

Also Published As

Publication number Publication date
JP2016043734A (ja) 2016-04-04
JP6336855B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP5913592B2 (ja) 建設機械
US8439139B2 (en) Method of controlling hybrid construction machine and hybrid construction machine
KR101716943B1 (ko) 하이브리드식 건설 기계
KR101714948B1 (ko) 건설 기계
US9067586B2 (en) Hybrid working machine
EP2770119B1 (en) Hybrid-driven hydraulic work machine
EP3067473B1 (en) Hybrid work machine
US20160340871A1 (en) Engine and Pump Control Device and Working Machine
US10053835B2 (en) Shovel
KR20140009132A (ko) 하이브리드 건설 기계
KR101804433B1 (ko) 건설 기계
KR20150088969A (ko) 엔진 제어 장치 및 건설 기계
JP5824071B2 (ja) 内燃機関の制御装置、作業機械及び内燃機関の制御方法
JP6336854B2 (ja) 液圧ポンプの駆動システム
JP6378577B2 (ja) 液圧駆動システム
WO2014087978A1 (ja) 作業機械
JP6336855B2 (ja) 液圧ポンプの駆動システム
KR101998379B1 (ko) 하이브리드 쇼벨 및 하이브리드 쇼벨의 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833817

Country of ref document: EP

Kind code of ref document: A1