WO2016026192A1 - 低延伸率多层软管及其制造方法 - Google Patents

低延伸率多层软管及其制造方法 Download PDF

Info

Publication number
WO2016026192A1
WO2016026192A1 PCT/CN2014/086910 CN2014086910W WO2016026192A1 WO 2016026192 A1 WO2016026192 A1 WO 2016026192A1 CN 2014086910 W CN2014086910 W CN 2014086910W WO 2016026192 A1 WO2016026192 A1 WO 2016026192A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
manufacturing
elongation
hose
multilayer hose
Prior art date
Application number
PCT/CN2014/086910
Other languages
English (en)
French (fr)
Inventor
沙月华
周杉鸿
刘鸣
王东辉
Original Assignee
五行材料科技(江苏)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五行材料科技(江苏)有限公司 filed Critical 五行材料科技(江苏)有限公司
Publication of WO2016026192A1 publication Critical patent/WO2016026192A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D23/00Producing tubular articles
    • B29D23/001Pipes; Pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/22Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/005Hoses, i.e. flexible

Definitions

  • the invention relates to a low elongation multilayer hose and a manufacturing method thereof, in particular to a low elongation fluid transport multilayer hose and a manufacturing method thereof, and more particularly to a low elongation shale oil and gas opening method.
  • the fracturing fluid conveying multi-layer hose and the manufacturing method thereof belong to the technical field of fluid conveying equipment.
  • the hose has high pressure, large conveying flow, convenient connection, good weather resistance and chemical resistance, can adapt to different topography and landforms, is flat in non-use state, easy to wind up, and has small storage and transportation volume.
  • the existing fluid delivery hoses are usually composed of multiple layers, the outermost layer is in contact with the ground for protection; the intermediate layer, also called the reinforcement layer, is usually woven from fibers to enhance the strength of the pipeline; the innermost layer
  • the liquid contact that is delivered is usually made of a corrosion resistant material.
  • Existing hose manufacturing methods can be selected by coextrusion or tumbling.
  • the tumbling method is relatively simple to produce, has a high output per unit time, and has less equipment investment.
  • the produced hose has good dimensional stability and good resilience after use. In use, the pressure of the fluid typically increases the length of the hose produced by the turn-over method.
  • the object of the present invention is to provide a low elongation multilayer hose and a manufacturing method thereof, which can Effectively reduce the elongation of the produced hose while maintaining its resilience, thereby improving the performance of the multi-layer hose.
  • the length of the hose is the initial length when not subjected to the pressure of the fluid in the tube, and the elongation of the hose refers to the ratio of the difference between the length of the hose and the initial length to the initial length when subjected to a force.
  • first layer when describing a multi-layered hose structure, the terms “first layer”, “second layer”, and “third layer” are used. These nouns only indicate the order in which the components are referred to in the text. Is not limited to its position in the hose, and the terms “first layer”, “second layer”, “third layer” are not themselves express or implied that the layer is a single structure, the layer It can also be a composite structure.
  • a method of manufacturing a low elongation multilayer hose comprising the steps of:
  • the first layer of the raw material may be a polymer plastic, natural rubber, synthetic rubber or the like.
  • the first layer can be fabricated by methods well known to those skilled in the art including, but not limited to, extrusion.
  • the layer may be accompanied by an adhesive;
  • the second layer of the manufacturing hose may be a polymer plastic, a natural rubber, a synthetic rubber or the like, and the specific chemical composition may be the same as or different from the first layer.
  • the second layer can be fabricated using methods well known to those skilled in the art, including but Not limited to extrusion.
  • the layer may be accompanied by an adhesive;
  • the surface treatment methods of the first layer and the second layer may be the same or different;
  • the third layer can be manufactured by the method of weaving, heat-bonding, chemical bonding, etc., wherein the fiber can be selected from natural fibers such as cotton fiber, hemp fiber, wool fiber or nylon fiber, polyester. Synthetic fibers such as fibers and aramid fibers;
  • the first layer after the surface treatment in the step (3) is introduced into the third layer by using a tractor or other traction means to make the first layer
  • the outer surface is in contact with the inner surface of the third layer, and the first layer and the third layer are vulcanized.
  • the vulcanization may be at room temperature vulcanization, or may be thermal vulcanization or cold vulcanization, etc., and the operation mode is the same as the first layer and the first layer.
  • the chemical composition and properties of the three layers vary, and the high temperature gas here may be hot air, high pressure water vapor or other gases. In this step, you can choose to stretch the hose;
  • the product of the step (5) may be internally and externally turned over so that the first layer is changed from the inner layer to the outer layer, and the manner of inversion may be by fluid pressure, mechanical traction or other means. After tumbling, the product can be surface rolled as needed.
  • the second layer subjected to the surface treatment in the step (3) is introduced into the product obtained in the step (6) by using a tractor or other traction means, and vulcanization.
  • the vulcanization method may be the same as or different from the vulcanization method in the step (5).
  • the vulcanization method may be room temperature vulcanization, or may be thermal vulcanization or cold vulcanization, etc., and the specific operation mode varies depending on the chemical composition and properties of the second layer and the third layer, where
  • the high temperature gas can be hot air, high pressure water vapor or other gases. In this step, the hose can be stretched as needed.
  • the stretching of the tubular body may be carried out in any one of the steps (5) and (7), or may be carried out in both the step (5) and the step (7). In these two steps, the steps and the manner of stretching may be the same or different.
  • the specific steps of stretching may be various, including but not limited to the following examples: presetting the elongation of the tube after stretching, stretching once until the tube reaches the length value, and optionally maintaining after the stretching is stopped. For a period of time; pre-set the elongation and total elongation of the pipe in multiple stretches, and then through multiple stretches until the pipe body reaches the total elongation, after the stretch is stopped, it can be selected for a period of time. Connect one end of the pipe body to an object, pre-set a value of the pulling force acting on the pipe body, keep the tension force constant, and stretch the pipe body through the object until the pipe body is no longer elongated, stop pulling This length can be maintained for a while after stretching.
  • the manner of stretching can be mechanical traction, extrusion or other methods.
  • Mechanical traction can be achieved by a tractor or by other means. When the tractor is used, one end of the pipe body may be fixed, and the other end of the pipe body and the pipe body may be connected, and the traction force may be applied to the pipe body through the traction machine; or the traction force may be applied to the pipe body at both ends through the traction machine; Traction is applied simultaneously at multiple locations on the tubular body; traction can also be applied in an approximately uniform manner over the entire or nearly the entire tubular body.
  • the method of squeezing may be to use a rigid object to generate pressure on the pipe, resulting in an increase in length, for example, by installing one or more objects outside the pipe, the object defining a hole having a size smaller than the diameter of the pipe body. By passing the tube through the aperture, the stretching of the tube is achieved by the friction between the object and the tube.
  • Other methods include applying a force other than the form of traction and friction to the tube, and the result It is caused by an increase in the length of the pipe body.
  • the technical solution can effectively reduce the elongation of the multilayer hose during work.
  • a multilayer hose that has not been produced by a stretching process may have an elongation at working pressure of ⁇ 4%
  • a multilayer hose manufactured according to the present technical solution may have an elongation at working pressure of ⁇ 1%.
  • the multi-layer hose manufactured according to the technical solution has good caliber resilience performance, and the multi-layer hose has stability in use, and can basically recover to the original caliber after the liquid pressure is removed.
  • Extrusion manufacturing of the first layer with an adhesive layer the first layer of pellets and the binder pellets are extruded through a two extruder into a co-extrusion mold, and the coextruded composite layer is cooled.
  • the flattened flat tube is a first layer with an adhesive layer, wherein the thickness of the adhesive layer is 0.10-0.35 mm, the thickness of the first layer is 0.5-4.0 mm, and the first layer is TPU (thermoplastic) Polyurethane) pellets or TPU/PVC (polyvinyl chloride) alloys, said TPU/PVC
  • step (1) and the step (2) Surface treatment of the semi-finished product obtained in the step (1) and the step (2), respectively: immersed in diphenylmethane diisocyanate (abbreviated as MDI, BASF M20S in this example) as a curing agent and ethyl acetate Physically infiltrated as a solvent in a solution of 10-30:70-90 by weight;
  • MDI diphenylmethane diisocyanate
  • BASF M20S ethyl acetate
  • the warp and weft are woven into a tubular third layer, and the third layer has a thickness of 1.5-5.0 mm, wherein the warp and weft are made of one of polyester, nylon and aramid. a combination of the two;
  • the first layer with the adhesive layer after the surface treatment in the step (3) is drawn into the third layer of the tube, and the pressure is fixed at both ends.
  • the pressure is fixed at both ends.
  • the hose is stretched by a tractor, and the elongation of stretching is 5%.
  • the steam is cooled by air pressure. To the required temperature;
  • step (3) Bonding between the second layer and the third layer: surface treatment in step (3) After the second layer with the adhesive layer is pulled into the product obtained in the step (6), the steam is fixed at a pressure of 0.10-0.35 MPa at both ends, and after 4-10 minutes, the steam is discharged, and the air is kept under pressure. , cooled to the required temperature.
  • Extrusion manufacturing of the first layer with an adhesive layer the first layer of pellets and the binder pellets are extruded through a two extruder into a co-extrusion mold, and the coextruded composite layer is cooled.
  • step (1) and the step (2) Surface treatment of the semi-finished product obtained in the step (1) and the step (2), respectively: immersed in diphenylmethane diisocyanate (abbreviated as MDI, BASF M20S in this example) as a curing agent and ethyl acetate Physically infiltrated as a solvent in a solution of 10-30:70-90 by weight;
  • MDI diphenylmethane diisocyanate
  • BASF M20S ethyl acetate
  • the warp and weft are woven into a tubular third layer, and the third layer has a thickness of 1.5-5.0 mm, wherein the warp and weft are made of one of polyester, nylon and aramid. a combination of the two;
  • This embodiment is different from Embodiment 1 in that this embodiment further includes a step of performing surface roll holes after the step (6).
  • This embodiment differs from the first embodiment in that the third layer in the present embodiment is made of natural fibers such as cotton fibers, hemp fibers, and wool fibers.
  • the manufacturing method of the low-elongation multilayer hose of the embodiment is: when the steam is vulcanized between the first layer and the third layer, in the hose table After the surface temperature reached 125 ° C, the hose was stretched and the elongation of stretching was 3%.
  • the difference between the embodiment and the embodiment 1 is that the low elongation multilayer hose of the embodiment is manufactured by the method of: when the steam is vulcanized between the first layer and the third layer, the surface temperature of the hose is reached. After 126 ° C, the hose was stretched and the elongation of stretching was 1%.
  • the difference between the embodiment and the embodiment 1 is that the low elongation multilayer hose of the embodiment is manufactured by the method of: when the steam is vulcanized between the first layer and the third layer, the surface temperature of the hose is reached. After 125 ° C, the hose was stretched and the elongation at stretch was 5%.
  • the difference between the embodiment and the embodiment 1 is that the low elongation multilayer hose of the embodiment is manufactured by the method of: when the steam is vulcanized between the first layer and the third layer, the surface temperature of the hose is reached. After 122 ° C, the hose was stretched and the elongation at stretch was 2%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

提供了一种低延伸率多层软管及其制造方法。该方法包括以下步骤:制造软管的第一层、第二层和第三层;将第一层引入第三层内;对第一层与第三层硫化,沿大致平行于其长度的方向对第一层与第三层进行拉伸;将第二层引入已硫化的第一层与第三层内,硫化。可以有效地降低多层软管的延伸率,同时保持其回弹性能,从而提升多层软管的使用性能。

Description

低延伸率多层软管及其制造方法 技术领域:
本发明涉及一种低延伸率多层软管及其制造方法,特别的涉及一种低延伸率流体输送多层软管及其制造方法,更特别的涉及一种低延伸率页岩油气开采用压裂液输送多层软管及其制造方法,属于流体传送装备技术领域。
背景技术:
目前开采页岩油气通常使用的是水力压裂技术,此技术是利用压裂液压裂岩石层,以释放页岩油气。运输压裂液需要使用中长距离的输送管道,目前常用的输送管道主要是软管。
软管具有承压高,输送流量大,连接方便,耐候性耐化学性好,能适应不同地形地貌,在非使用状态时呈扁平状,易收卷,贮藏运输体积小等优点。现有的流体输送软管通常由多层构成,最外层与地面接触,起保护作用;中间层,也叫增强层,通常由纤维编织而成,起增强管道强度的作用;最内层与所输送的液体接触,通常由耐腐蚀的材料所制造。
发明内容:
现有的软管制造方法可以选择共挤法或者翻带法。翻带法制作相对简单,单位时间产量高,设备投资较少,生产出的软管尺寸稳定性好,在使用后具有良好的回弹性能。在使用中,流体的压力通常会使翻带法所制造的软管的长度增加。
本发明的目的是提供一种低延伸率多层软管及其制造方法,可以 有效地降低生产的软管的延伸率,同时保持其回弹性能,从而提升多层软管的使用性能。
以未受到管内流体压力作用时软管长度为初始长度,软管的延伸率是指,在受到力的作用时,软管长度与初始长度的差值与初始长度的比值。
如本说明书和贯穿下面的权利要求书中所使用的那样,“一”、“一个”和“一种”和“该”也旨在包括复数形式,除非上下文明确指示其他情形。此处使用了术语“包括”与“包含”旨在包括已标识的方法的步骤或元素,但是这样的步骤或元素不构成排它性的列表,方法或设备可以包含额外的步骤或元素。
以下,为不失一般性,描述多层软管结构时,使用“第一层”、“第二层”、“第三层”这些名词,这些名词仅表示所指代部件在文中出现的次序,并非限定其在软管中的位置,同时,“第一层”、“第二层”、“第三层”类似的名词本身并不明示或暗示所述的该层为单一结构,该层也可以为复合结构。
低延伸率多层软管的制造方法,该方法包括以下步骤:
(1)制造软管的第一层:第一层的原料可以使用高分子塑料、天然橡胶、合成橡胶等。第一层的制造可以采用本领域技术人员所熟知的方法,包括但不限于挤出法。可选的,该层可附带胶黏剂;
(2)制造软管的第二层:第二层的原料可以使用高分子塑料、天然橡胶、合成橡胶等,其具体化学组分可以与第一层一样,也可以不同。第二层的制造可以采用本领域技术人员所熟知的方法,包括但 不限于挤出法。可选的,该层可附带胶黏剂;
(3)分别将步骤(1)和步骤(2)中得到的第一层与第二层进行表面处理:第一层与第二层的表面处理方法可以相同也可以不同;
(4)制造第三层:第三层可以由纤维通过编织、热粘、化学粘合等在内的方法制造,其中纤维可选用棉纤维、麻纤维、羊毛纤维等天然纤维或尼龙纤维、涤纶纤维、芳纶纤维等合成纤维等;
(5)第一层和第三层之间的粘接:将步骤(3)中进行表面处理后的第一层通过使用牵引机或其他牵引方式,引入第三层内部,使第一层的外表面与第三层的内表面接触,并对第一层与第三层进行硫化,硫化的方式可以是室温硫化,也可以是热硫化或者冷硫化等,其操作方式随第一层与第三层的化学组分与性质变化而变化,这里高温气体可以为热空气、高压水蒸汽或其他气体。在这一步骤中,可以选择对软管进行拉伸;
(6)翻带:根据需要,可以选择对步骤(5)的产物进行内外翻转,使第一层由内层变成外层,翻转的方式可以是通过流体的压力、机械牵引或其他方式。在翻带后,可以根据需要,选择将产物进行表面辊孔。
(7)第二层和第三层之间的粘接:将步骤(3)中进行表面处理后的第二层通过使用牵引机或其他牵引方式,引入步骤(6)得到的产物中,并硫化。硫化的方式可以与步骤(5)中的硫化方式相同或不同。硫化方式可以是室温硫化,也可以是热硫化或者冷硫化等,其具体操作方式随第二层与第三层的化学组分与性质变化而变化,这里 高温气体可以为热空气、高压水蒸汽或其他气体。这一步骤中,可以根据需要,对软管进行拉伸。
对管体进行拉伸的操作可以在步骤(5)与步骤(7)中的任何一个步骤中进行,也可在步骤(5)与步骤(7)中都进行。在这两个步骤中,拉伸的步骤与方式可以相同,也可以不同。
拉伸的具体步骤可以有多种,包括但不限于以下示例:预先设定管体在拉伸后的伸长量,一次性拉伸直到管体到达该长度值,停止拉伸后可选择维持一段时间;预先设定管体在多次拉伸中的每次伸长量与总伸长量,然后通过多次拉伸直到管体到达总伸长量,停止拉伸后可选择维持一段时间;将管体一端与一个物体连接,预先设定一个作用在管体上的拉力的数值,保持该拉力大小不变,通过该物体拉伸管体,直到管体不再被拉长,停止拉伸后可维持该长度一段时间。
拉伸的方式可以是机械牵引、挤压或其他方法。机械牵引可以是通过牵引机实现,也可通过其他方式。当使用牵引机时,可以固定管体的一端,连接牵引机与管体的另一端,通过牵引机对管体施加牵引力;也可以在两端通过牵引机同时对管体施加牵引力;也可以在管体上的多个位置同时施加牵引力;也可以在整个或几乎整个管体上以近似均匀的方式施加牵引力。挤压的方式可以是利用刚性的物体,对管道产生压力,导致其长度增加,例如通过下述方法实现:在管体外安装一个或多个物体,该物体定义了一个尺寸小于管体口径的孔隙,通过使管体穿过该孔隙,利用物体与管体之间的摩擦力实现管体的拉伸。其他方法包括对管体施加牵引力、摩擦力形式以外的力,其结果 是导致管体的长度增加。
以上对拉伸操作的描述仅仅是具体的示例,不应被视为是唯一可行的实施方案。显然,对于本领域的专业人员来说,在了解拉伸操作的基本原理后,可能在不背离这一原理的情况下,对实施拉伸的具体步骤与方式进行形式和细节上的各种修正和改变,但是这些修正和改变仍在以上描述的范围之内。
有益效果:
1.本技术方案可以有效地降低多层软管在工作中的延伸率。例如,未采用拉伸方法制造的多层软管,在工作压力下的延伸率可能≥4%,而根据本技术方案制造的多层软管,在工作压力下的延伸率可≤1%。
2.根据本技术方案制造的多层软管具有良好的口径回弹性能,使用中多层软管口径具有稳定性,在撤除液体压力后,可以基本恢复到原始口径。
具体实施方式:
实施例1:
本实施例的低延伸率多层软管的制造方法包括以下步骤:
(1)挤出制造带有胶黏剂层的第一层:第一层粒料和胶黏剂粒料经由两台挤出机挤出到一共挤模具中,共挤出来的复合层经过冷却,牵引压扁而成扁平管即为带有胶黏剂层的第一层,其中胶黏剂层厚度为0.10-0.35mm,第一层厚度为0.5-4.0mm,第一层采用TPU(热塑性聚氨酯)粒料或者TPU/PVC(聚氯乙烯)合金,所述的TPU/PVC 合金中重量比例TPU:PVC=100:0-70;
(2)挤出制造带有胶黏剂层的第二层:第二层粒料和胶黏剂粒料经由两台挤出机挤出到一共挤模具中,共挤出来的复合层经过冷却,牵引压扁而成扁平管即为带有胶黏剂层的第二层,其中胶黏剂层厚度为0.10-0.35mm,第二层厚度为0.5-4.0mm,第二层采用TPU粒料或者TPU/PVC合金或者PVC或者PVC/丁腈橡胶,所述的TPU/PVC合金中以重量计TPU:PVC=100:0-70;所述的PVC/丁腈橡胶中以重量计PVC:丁腈橡胶=100:0-70;
(3)分别将步骤(1)和步骤(2)中得到的半成品进行表面处理:将其浸入二苯基甲烷二异氰酸酯(简称MDI,本实施例中采用巴斯夫M20S)作为固化剂和乙酸乙酯作为溶剂按10-30:70-90的重量比例配成的溶液中进行物理渗透后备用;
(4)制造第三层:按产品设计规格,将经线和纬线编织为管状的第三层,第三层厚度1.5-5.0mm,其中经线和纬线采用涤纶、尼龙、芳纶中的一种或者两种的组合;
(5)第一层和第三层之间的粘接:将步骤(3)中进行表面处理后的带有胶黏剂层的第一层牵引进管状第三层,两端固定通入压力为0.10-0.35MPa的蒸汽,在软管表面温度达到120℃后,通过牵引机对软管进行拉伸,拉伸的延伸率为5%,4-10分钟后,排蒸汽通空气保压冷却至要求的温度;
(6)翻带:使步骤(5)的产品内层变成外层;
(7)第二层和第三层之间的粘接:将步骤(3)中进行表面处理 后的带有胶黏剂层的第二层牵引进步骤(6)得到的产品中,两端固定通入压力为0.10-0.35MPa的蒸汽,4-10分钟后,排蒸汽,通空气保压,冷却至要求的温度。
实施例2:
本实施例的低延伸率多层软管的制造方法包括以下步骤:
(1)挤出制造带有胶黏剂层的第一层:第一层粒料和胶黏剂粒料经由两台挤出机挤出到一共挤模具中,共挤出来的复合层经过冷却,牵引压扁而成扁平管即为带有胶黏剂层的第一层,其中胶黏剂层厚度为0.10-0.35mm,第一层厚度为0.5-4.0mm,第一层采用TPU(热塑性聚氨酯)粒料或者TPU/PVC(聚氯乙烯)合金,所述的TPU/PVC合金中重量比例TPU:PVC=100:0-70;
(2)挤出制造带有胶黏剂层的第二层:第二层粒料和胶黏剂粒料经由两台挤出机挤出到一共挤模具中,共挤出来的复合层经过冷却,牵引压扁而成扁平管即为带有胶黏剂层的第二层,其中胶黏剂层厚度为0.10-0.35mm,第二层厚度为0.5-4.0mm,第二层采用TPU粒料或者TPU/PVC合金或者PVC或者PVC/丁腈橡胶,所述的TPU/PVC合金中以重量计TPU:PVC=100:0-70;所述的PVC/丁腈橡胶中以重量计PVC:丁腈橡胶=100:0-70;
(3)分别将步骤(1)和步骤(2)中得到的半成品进行表面处理:将其浸入二苯基甲烷二异氰酸酯(简称MDI,本实施例中采用巴斯夫M20S)作为固化剂和乙酸乙酯作为溶剂按10-30:70-90的重量比例配成的溶液中进行物理渗透后备用;
(4)制造第三层:按产品设计规格,将经线和纬线编织为管状的第三层,第三层厚度1.5-5.0mm,其中经线和纬线采用涤纶、尼龙、芳纶中的一种或者两种的组合;
(5)第一层和第三层之间的粘接:将步骤(3)中进行表面处理后的带有胶黏剂层的第一层牵引进管状第三层,两端固定通入压力为0.10-0.35MPa的蒸汽,4-10分钟后,排蒸汽通空气保压冷却至要求的温度;
(6)翻带:使步骤(5)的产品内层变成外层;
(7)第二层和第三层之间的粘接:将步骤(3)中进行表面处理后的带有胶黏剂层的第二层牵引进步骤(6)得到的产品中,两端固定通入压力为0.10-0.35MPa的蒸汽,在软管表面温度达到120℃后,通过牵引机对软管进行拉伸,拉伸的延伸率为5%,4-10分钟后,排蒸汽,通空气保压,冷却至要求的温度。
实施例3:
本实施例与实施例1的不同之处在于:本实施例还包括在步骤(6)之后进行表面辊孔的步骤。
实施例4:
本实施例与实施例1的不同之处在于:本实施例中的第三层是采用棉纤维、麻纤维、羊毛纤维等天然纤维制造的。
实施例5:
本实施例与实施例1的不同之处在于:本实施例的低延伸率多层软管的制造方法为:当第一层和第三层之间通蒸汽硫化时,在软管表 面温度达到125℃后,对软管进行拉伸,拉伸的延伸率为3%。
实施例6:
本实施例与实施例1的不同之处在于:本实施例的低延伸率多层软管的制造方法为:当第一层和第三层之间通蒸汽硫化时,在软管表面温度达到126℃后,对软管进行拉伸,拉伸的延伸率为1%。
实施例7:
本实施例与实施例1的不同之处在于:本实施例的低延伸率多层软管的制造方法为:当第一层和第三层之间通蒸汽硫化时,在软管表面温度达到125℃后,对软管进行拉伸,拉伸的延伸率为5%。
实施例8:
本实施例与实施例1的不同之处在于:本实施例的低延伸率多层软管的制造方法为:当第一层和第三层之间通蒸汽硫化时,在软管表面温度达到122℃后,对软管进行拉伸,拉伸的延伸率为2%。
可以理解,上文所描述的优点可以涉及一个实施例或可以涉及多个实施例。各实施例不限于解决所述问题中的任一个或全部的实施例或具有所述好处和优点中的任一个或全部的实施例。
此处所描述的方法的步骤可以在适当的情况下以任何合适的顺序,或同时实现。另外,在不偏离此处所描述的主题的精神和范围的情况下,可以从任何一个方法中删除各单独的步骤。上文所描述的任何示例的各方面可以与所描述的其他示例中的任何示例的各方面相结合,以构成进一步的示例,而不会丢失寻求的效果。
以上的描述仅仅是本发明的具体实施例,不应被视为是唯一的实 施例。显然,对于本领域的专业人员来说,在了解本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些修正和改变仍在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种低延伸率多层软管的制造方法,其特征是:该方法包括以下步骤:
    (1)制造软管的第一层、第二层和第三层;
    (2)将第一层引入第三层内;
    (3)对第一层与第三层硫化,沿其长度的方向对第一层与第三层进行拉伸;
    (4)将第二层引入已硫化的第一层与第三层内,硫化。
  2. 根据权利要求1所述的低延伸率多层软管的制造方法,其特征是:所述的拉伸是采用牵引拉伸的方法完成。
  3. 根据权利要求1或2所述的低延伸率多层软管的制造方法,其特征是:该制造方法还包括在对第一层与第三层硫化的步骤之后进行内外翻转的步骤。
  4. 根据权利要求3所述的低延伸率多层软管的制造方法,其特征是:该制造方法还包括在对第一层与第三层进行内外翻转的步骤之后进行表面辊孔的步骤。
  5. 根据权利要求1或2或4所述的低延伸率多层软管的制造方法,其特征是:第一层与第二层中的至少一层是通过挤出方法制造的。
  6. 根据权利要求1或2或4所述的低延伸率多层软管的制造方法,其特征是:第一层和/或第二层包含TPU、PVC、天然橡胶与合成橡胶中的至少一种材料。
  7. 根据权利要求1或2或4所述的低延伸率多层软管的制造方法, 其特征是:第三层包含天然纤维、合成纤维或其混合物。
  8. 一种采用权利要求1-7之一的方法所制得的低延伸率多层软管,其特征是:所述的多层软管的延伸率不大于1%。
  9. 一种低延伸率多层软管的制造方法,其特征是:该方法包括以下步骤:
    (1)制造软管的第一层、第二层和第三层;
    (2)将第一层引入第三层内,对第一层与第三层硫化;
    (3)将第二层引入已硫化的第一层与第三层内;
    (4)对第二层、第一层与第三层硫化,沿大致平行于其长度的方向进行拉伸。
  10. 根据权利要求9所述的低延伸率多层软管的制造方法,其特征是:拉伸后多层软管所增加的长度相对于未拉伸时长度的比例为1%至5%。
PCT/CN2014/086910 2014-08-22 2014-09-19 低延伸率多层软管及其制造方法 WO2016026192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410416798.8 2014-08-22
CN201410416798.8A CN104385647B (zh) 2014-08-22 2014-08-22 低延伸率多层软管及其制造方法

Publications (1)

Publication Number Publication Date
WO2016026192A1 true WO2016026192A1 (zh) 2016-02-25

Family

ID=52603645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086910 WO2016026192A1 (zh) 2014-08-22 2014-09-19 低延伸率多层软管及其制造方法

Country Status (2)

Country Link
CN (1) CN104385647B (zh)
WO (1) WO2016026192A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187796A (ja) * 1995-01-11 1996-07-23 Yokohama Rubber Co Ltd:The ゴムホース及びその製造方法
US20040261877A1 (en) * 2001-12-06 2004-12-30 Steffen Buck Plastic tube, especially a pneumatic tube
JP2007217580A (ja) * 2006-02-17 2007-08-30 Mitsui Chemicals Inc 軟質プロピレン重合体からなる中空成形体、積層中空成形体
CN101070936A (zh) * 2006-03-28 2007-11-14 东海橡胶工业株式会社 树脂复合燃料软管
CN102124040A (zh) * 2008-02-05 2011-07-13 电气化学工业株式会社 丙烯酸酯橡胶
CN103612377A (zh) * 2013-12-10 2014-03-05 五行材料科技(江苏)有限公司 压裂液输送软管及其制造方法及共挤模具
WO2014070040A1 (en) * 2012-11-01 2014-05-08 Alyavdin Dmitry Vyacheslavovich The multilayered intellectual heat expand sleeve of thermoplastic polymer
CN203600577U (zh) * 2013-12-10 2014-05-21 五行材料科技(江苏)有限公司 压裂液输送软管生产用共挤设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA005484B1 (ru) * 2000-06-12 2005-02-24 Би Эйч Пи БИЛЛИТОН ПЕТРОЛЕУМ ПТИ ЛТД. Шланг (варианты), концевое соединение шланга и способ изготовления шланга
CN1287917A (zh) * 2000-10-23 2001-03-21 甘国工 拉伸定向的高强度复合塑料管
ES2358021T3 (es) * 2003-11-07 2011-05-04 Insituform Holdings (Uk) Limited Forro curado in situ, reforzado longitudinalmente.
CN102729501B (zh) * 2012-06-28 2016-04-27 安徽都邦电器有限公司 一种硅橡胶增强软管的生产方法
CN103612376B (zh) * 2013-10-18 2015-04-15 五行材料科技(江苏)有限公司 页岩油气开采用压裂液输送软管及其制造方法及共挤模具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08187796A (ja) * 1995-01-11 1996-07-23 Yokohama Rubber Co Ltd:The ゴムホース及びその製造方法
US20040261877A1 (en) * 2001-12-06 2004-12-30 Steffen Buck Plastic tube, especially a pneumatic tube
JP2007217580A (ja) * 2006-02-17 2007-08-30 Mitsui Chemicals Inc 軟質プロピレン重合体からなる中空成形体、積層中空成形体
CN101070936A (zh) * 2006-03-28 2007-11-14 东海橡胶工业株式会社 树脂复合燃料软管
CN102124040A (zh) * 2008-02-05 2011-07-13 电气化学工业株式会社 丙烯酸酯橡胶
WO2014070040A1 (en) * 2012-11-01 2014-05-08 Alyavdin Dmitry Vyacheslavovich The multilayered intellectual heat expand sleeve of thermoplastic polymer
CN103612377A (zh) * 2013-12-10 2014-03-05 五行材料科技(江苏)有限公司 压裂液输送软管及其制造方法及共挤模具
CN203600577U (zh) * 2013-12-10 2014-05-21 五行材料科技(江苏)有限公司 压裂液输送软管生产用共挤设备

Also Published As

Publication number Publication date
CN104385647A (zh) 2015-03-04
CN104385647B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
US10808463B2 (en) Fracturing liquid delivery hose for recovery of shale oil and gas, and manufacturing method and co-extrusion mold thereof
US20170159850A1 (en) Fracturing liquid delivery hose for recovery of shale oil and gas, and manufacturing method thereof
CN107107432B (zh) 可伸缩挠性软管及其连续制造方法及生产线
WO2017096580A1 (zh) 一种耐温连续复合内衬软管及其制造方法
WO2017020432A1 (zh) 一种软管及其制造方法
EP3368805B1 (en) Flexible hose
WO2018000713A1 (zh) 一种柔性丁腈双面胶消防水带的制备工艺
CN111306384A (zh) 一种低刚度抗冲击高可靠性的弧形挠性接管
JP6267069B2 (ja) 燃料ホース
CN101780720B (zh) 三元乙丙消防水带的生产方法
WO2016026192A1 (zh) 低延伸率多层软管及其制造方法
WO2016026193A1 (zh) 多层软管的制造方法
ITTO20080657A1 (it) Tubo comprendente uno strato comprendente un plastomero fluorurato e un materiale elastomerico
WO2011146813A4 (en) High-temperature flexible composite hose
CN109721020A (zh) 一种纤维增强软管及其制造方法
CN205350605U (zh) 一种低温韧性强的抗菌给水管材
JP4976017B2 (ja) 高圧ホース
CN109651731B (zh) 一种伸缩软管及其制备方法
CN209800894U (zh) 一种输送新型环保制冷剂的复合空调软管
CN204300540U (zh) 加气站加气/泄气柱用cng输送软管
DE202013104869U1 (de) Mehrschichtiger, intelligenter, thermisch ausdehnbarer Schlauch aus thermoplastischem Polymer
CN202158288U (zh) 高压大长度可扁平盘卷液体输送软管
JP2013129149A (ja) 更生用織物ホースおよびこれを用いた更生パイプの施工方法
RU132033U1 (ru) Многослойный интеллектуальный терморасширяемый рукав из термопластичного полимера
WO2020087905A1 (zh) 一种输送新型环保制冷剂的复合空调软管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900179

Country of ref document: EP

Kind code of ref document: A1