WO2016026110A1 - 多层金属涂层耐高温耐腐蚀光纤 - Google Patents
多层金属涂层耐高温耐腐蚀光纤 Download PDFInfo
- Publication number
- WO2016026110A1 WO2016026110A1 PCT/CN2014/084867 CN2014084867W WO2016026110A1 WO 2016026110 A1 WO2016026110 A1 WO 2016026110A1 CN 2014084867 W CN2014084867 W CN 2014084867W WO 2016026110 A1 WO2016026110 A1 WO 2016026110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- layer
- metal coating
- coating
- metal
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02395—Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/104—Coating to obtain optical fibres
- C03C25/1065—Multiple coatings
- C03C25/1068—Inorganic coatings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C25/00—Surface treatment of fibres or filaments made from glass, minerals or slags
- C03C25/10—Coating
- C03C25/48—Coating with two or more coatings having different compositions
- C03C25/52—Coatings containing inorganic materials only
Definitions
- the present invention relates to the field of optical fiber communication, optical fiber sensing and fiber transmission technology, and more particularly to a multilayer metal coated high temperature and corrosion resistant optical fiber. Background technique
- Conventional organic polymer coated optical fibers such as acrylate coated optical fibers and polyimide coated optical fibers, cannot meet the needs of practical applications at high temperatures above 300 °C.
- Conventional polymer coated fibers with acrylate, liquid crystal or polyimide coatings have a maximum operating temperature of 85 °C, 180 °C and 300 °C, respectively. When the ambient temperature exceeds the maximum operating temperature of these fibers, these coating materials will be severely aged, and the mechanical strength of the fibers will be weakened, causing fiber breakage in severe cases.
- the solution in this harsh environment is usually to apply a metal coating directly on the glass cladding of the fiber to achieve high temperature resistance, corrosion resistance and mechanical strength of the fiber.
- Conventional metal coatings generally use a melt coating method to directly coat a metal coating on the outer surface of a fiberglass cladding.
- the fiber drawn by the preform passes through a high-temperature molten metal bath having small holes at both upper and lower ends.
- the optical fiber passes through the small hole at the lower end of the metal liquid pool, the surface thereof is adhered with a metal liquid, and after cooling, a metal coating is formed, but is coated on the optical fiber by using the melt coating method.
- the melting point of the metal should not be too high.
- metal coating materials that have been coated on optical fibers include aluminum, copper, copper alloys, silver, and gold.
- the maximum operating temperature of the fiber can reach 40 (T45 (TC.)
- T45 TC.
- the maximum operating temperature of the fiber can reach 700 ° C.
- the ambient temperature is higher than 700 °C, if it is required to use optical fiber as a sensor, energy transmission fiber, or optical communication network in a diesel engine, a turbine engine, a nuclear power station or a steelmaking furnace, The above-mentioned metal coated optical fiber cannot be applied due to its use temperature limitation, otherwise the optical fiber will be broken, so that the entire optical fiber sensing, energy transmission or communication system cannot work normally.
- the technical problem to be solved by the present invention is to provide a multilayer metal coated high temperature and corrosion resistant optical fiber to overcome the inadequacy of the conventional common metal coated optical fiber at a higher temperature.
- the present invention provides a multilayer metal coated high temperature and corrosion resistant optical fiber, comprising:
- a core layer made of a glass material having a relatively high refractive index for transmitting light in the core layer; a cladding layer composed of a glass material having a lower refractive index for total reflection transmission of light in the core layer
- the core layer and the cladding layer are made of materials including, but not limited to, quartz glass, chalcogenide glass, and fluorine-based glass. Because of the principle of total reflection, light is transmitted within the core layer covered by the cladding.
- the glass core layer has a diameter of lm or more, and the glass cladding layer has a thickness of 5 ⁇ m or more.
- the inner metal coating includes, but is not limited to, metal elements or alloys such as aluminum, copper, copper-nickel, silver, gold, and the like.
- the inner metal coating may be a metal coating of one layer and the same component, or a metal coating of a plurality of layers and different compositions of each layer. 5 ⁇ ⁇
- the thickness of each layer is 0. 5 ⁇ ⁇ and above.
- the inner metal coating may be coated by a method such as, but not limited to, a melt coating method, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, an atomic layer deposition method, or the like.
- a method such as, but not limited to, a melt coating method, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, an atomic layer deposition method, or the like.
- a melt coating method such as, but not limited to, a melt coating method, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, an atomic layer deposition method, or the like.
- the outer metal coating material is selected from a metal having an ultrahigh melting point or an alloy thereof, and the metal having an ultrahigh melting point includes, but is not limited to, gold, platinum, palladium, tungsten or rhenium.
- the outer metal coating is a metal coating of one layer and the same composition, or a metal coating of a plurality of layers and different compositions of each layer. Each layer has a thickness of 50 nm or more.
- Each layer of the outer metal coating may be sequentially coated on the layer by a method such as, but not limited to, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, an atomic layer deposition method, or the like.
- the inner metal coating is applied to the outer surface, and these preparation processes are carried out at an operating temperature much lower than the melting point of the metal itself, thus overcoming the drawback that the melt coating method must be carried out under conditions in which the metal is melted.
- the high temperature resistant optical fiber with multi-layer metal coating proposed by the invention can compare the maximum working temperature of the optical fiber without changing the various optical properties and mechanical strength of the existing metal coated optical fiber compared with the existing metal coated optical fiber. Increase 10 (T800 ° C, while enhancing the chemical resistance of the fiber.
- a metal having excellent stability and high melting point such as platinum, palladium, tungsten or rhenium or an alloy thereof is directly coated on the glass as the outermost metal coating instead of the single metal coating.
- the outer surface of the cladding reduces the requirements for the metal coating process during production, which reduces the coating thickness, improves material utilization efficiency, and reduces production costs.
- FIG. 1 is a schematic cross-sectional view of a high temperature resistant corrosion resistant fiber having a multilayer metal coating in accordance with one embodiment.
- the fibers described herein relate to multi-layer (two and more layers) metal coated high temperature and corrosion resistant fibers for use in the fields of fiber optic communication, fiber optic sensing, and fiber optic transmission.
- the multi-layer (two layers and two or more) metal coating high temperature and corrosion resistant optical fibers comprise a glass core layer, a glass cladding surrounding the outer surface of the core layer, and an inner metal coating layer disposed on the outer surface of the cladding layer.
- An outer metal coating placed on the outer surface of the inner metal coating. Both the inner metal coating and the outer metal coating may be a metal coating of the same composition or a plurality of layers (two or more layers) of different metal coatings per layer.
- Figure 1 is a schematic cross-sectional view of a high temperature resistant corrosion resistant fiber having a multilayer metal coating in accordance with one embodiment.
- the optical fiber 101 has a core layer 102, a cladding layer 103 surrounding the outer surface of the core layer 102, an inner metal coating layer 104 disposed on the outer surface of the cladding layer 103, and an outer layer of the metal coating layer 104.
- the outer metal coating 105 of the surface is a schematic cross-sectional view of a high temperature resistant corrosion resistant fiber having a multilayer metal coating in accordance with one embodiment.
- the optical fiber 101 has a core layer 102, a cladding layer 103 surrounding the outer surface of the core layer 102, an inner metal coating layer 104 disposed on the outer surface of the cladding layer 103, and an outer layer of the metal coating layer 104.
- the outer metal coating 105 of the surface is a schematic cross-sectional view of a high temperature resistant corrosion resistant fiber having a multilayer metal coating in accordance with one embodiment.
- the core layer 102 is located at the center of the optical fiber 101, and the core layer 102 has a diameter of 1 ⁇ m or more.
- the cladding layer 103 is coated on the outer surface of the core layer 102 along the longitudinal axis direction of the core layer 102, and the single layer thickness of the cladding layer 103 is 5 ⁇ m and above.
- the refractive index of the core layer 102 is greater than the refractive index of the cladding layer 103, so that light is confined within the core layer 102 by the cladding layer 103 for total reflection transmission.
- Materials for fabricating the core layer 102 and the cladding layer 103 include, but are not limited to, quartz glass, chalcogenide glass, fluorine-based glass, and the like.
- the inner metal coating 104 is coated on the outer surface of the cladding 103 along the longitudinal axis of the core layer 102.
- the material for making the inner metal coating 104 includes, but is not limited to, metal elements or alloys such as aluminum, copper, copper-nickel, silver, gold, and the like.
- the inner metal coating 104 may be a metal coating of the same composition or a plurality of layers (two or more layers) of different metal coatings each having a minimum thickness of 0.5 ⁇ per layer. ⁇ and above.
- the inner metal coating 104 can be by, but not limited to, a melt coating method, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method.
- a method such as a method of atomic layer deposition or the like is coated on the outer surface of the cladding layer 103.
- the outer metal coating 105 covers the outer surface of the inner metal coating 104 along the longitudinal axis of the core layer 102.
- the outer metal coating 105 material includes, but is not limited to, platinum, palladium, tungsten, rhenium, and the like which are excellent in stability and have an ultrahigh melting point or an alloy thereof.
- the outer metal coating may be a metal coating of the same composition, or may be a plurality of layers (two or more layers) of different metal coatings each layer, each layer having a minimum thickness of 50 nm and the above.
- the outer metal coating 105 may be coated on the outer surface of the inner metal coating 104 by, but not limited to, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, an atomic layer deposition method, or the like. on.
- the role of the outer metal coating is mainly to isolate the inner metal coating from contact with oxygen or moisture in the air, to prevent the inner metal coating from weakening the protection of the optical fiber due to oxidation or other chemical reaction, and to increase the maximum of the optical fiber.
- Operating temperature and other physical or chemical properties such as repairing micropores, waterproof penetration and chemical resistance.
- a metal having excellent stability and high melting point such as platinum, palladium, tungsten or rhenium or an alloy thereof is directly coated as the outermost metal coating instead of the single metal coating.
- the outer surface of the glass cladding reduces the requirements of the metal coating process during production (for example, platinum, palladium, tungsten, rhodium, etc., which have ultra-high melting point metals as a non-inner metal coating can reduce the coating thickness) Improve material utilization efficiency, reduce production costs, and so on.
- the metal coating process during production for example, platinum, palladium, tungsten, rhodium, etc., which have ultra-high melting point metals as a non-inner metal coating can reduce the coating thickness
- the high temperature resistant optical fiber with multi-layer metal coating proposed by the invention can compare the maximum working temperature of the optical fiber without changing the various optical properties and mechanical strength of the existing metal coated optical fiber compared with the existing metal coated optical fiber. Increase the resistance of the fiber to 100 ⁇ 800 °C while enhancing the chemical resistance of the fiber.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
Abstract
用于光纤通信、光纤传感及光纤传能等领域的多层金属涂层耐高温耐腐蚀光纤,该光纤(101)由玻璃芯层(102),围绕在芯层(102)外表面的玻璃包层(103),置于包层(103)外表面的内层金属涂层(104)以及置于内层金属涂层(104)外表面的外层金属涂层(105)组成。所述内层金属涂层(104)和外层金属涂层(105)均可以是一层同一种组分的金属涂层、或者是多层(两层或两层以上)每层组分不同的金属涂层。具有所述多层金属涂层的耐高温耐腐蚀光纤,在不改变普通金属涂层光纤的各种光学性能和机械强度的情况下,能够将光纤的最高工作温度提高100℃~800℃,同时能够增强光纤的耐化学腐蚀能力。
Description
多层金属涂层耐高温耐腐蚀光纤 技术领域
本发明涉及光纤通信、 光纤传感及光纤传能技术领域, 尤其涉及到一 种多层金属涂层耐高温耐腐蚀光纤。 背景技术
在温度高于 300 °C时的高温环境下, 常规的有机聚合物涂层光纤, 如丙烯 酸酯涂层光纤、 聚酰亚胺涂层光纤等, 已不能满足实际应用需求。 具有丙烯 酸酯、 液晶或聚酰亚胺涂层的传统聚合物涂层光纤的最高工作温度分别为 85 °C、 180°C和 300°C。 当环境温度超过这些光纤的最高工作温度时, 这些涂 层材料会严重老化, 光纤的机械强度也会减弱, 严重时引起光纤断裂。 在此 恶劣环境下的解决办法通常是在光纤的玻璃包层上直接涂覆一层金属涂层来 达到耐高温、 耐腐蚀及提高光纤机械强度的目的。 与金属涂层光纤相关的详 细信息在之前的许多专利中已经有所描述, 这些专利对金属涂层光纤在耐高 温、耐湿以及机械强度的提高方面都做了大量的研究和改进,例如,在 Wysocki 等的专利号为 US4418984 标题为 "Multiply coated metal l ic clad f iber optical waveguide (多层金属涂层光纤)" 的美国专利中描述了在高温环境 中多层金属涂层光纤具有高的机械强度的实例, 在 Sanghera 等的专利号为 US5953487 标题为 " Metal-coated IR-transmitting chalcogenide glass f ibers (用于红外传输的金属涂层硫系玻璃光纤) " 的美国专利中描述了金属 涂层光纤具有高的弯曲强度、 耐 UV/可见光 /湿度等性能的实例。
传统的金属涂层一般采用熔融涂覆法将金属涂层直接涂覆在光纤玻璃包 层外表面上, 即将经预制棒拉丝出来的光纤通过一个上下两端均有小孔的高 温熔融金属液池, 光纤在通过金属液池下端小孔时, 其表面被粘附了一层金 属液体, 冷却后就会形成一层金属涂层, 但使用熔融涂覆法时涂覆在光纤上
的金属熔点不能太高。 目前, 已在光纤上涂覆的金属涂层材料包括铝、 铜、 铜合金、 银以及金等。 使用铝、 铜及铜合金作为金属涂层材料时, 光纤的最 高工作温度可达 40(T45(TC。 使用银、 金作为金属涂层材料时, 光纤的最高工 作温度可达 700°C。 然而在很多实际应用中, 当环境温度高于 700°C时, 如需 要在柴油发动机、 涡轮发动机、 核动力站或炼钢炉等地方需要使用光纤作为 传感器、 传能光纤、 或者光通讯网络时, 上述金属涂层光纤由于其使用温度 限制而不能应用, 否则光纤将会断裂, 使整个光纤传感、 传能或通讯系统无 法正常工作。 发明内容
本发明所要解决的技术问题是提供一种多层金属涂层耐高温耐腐蚀光纤, 以克服现有普通金属涂层光纤在更高温度下不能满足使用要求和存在的不 足。
为解决上述技术问题, 本发明提出一种多层金属涂层耐高温耐腐蚀光纤, 包括:
芯层, 由折射率较高的玻璃材料制成, 用于使光在芯层内进行传输; 包层,由折射率较低的玻璃材料组成,用于使光在芯层内进行全反射传输; 内层金属涂层, 沿着所述芯层的纵向轴线方向包覆在所述包层外表面, 用 于保护光纤不因弯曲、 拉伸和扭转外力而断裂, 并使光纤可在高温下工作; 外层金属涂层,沿着所述芯层的纵向轴线方向包覆在所述内层金属涂层外 表面, 以避免内层金属涂层与空气中的氧气或水分接触而发生氧化或其它化 学反应, 提高光纤的最高工作温度, 同时也能够提高光纤的其它物理或化学 性能, 如修补微孔、 防水渗透和防化学腐蚀等。
按照上述方案, 所述的芯层和包层的制作材料包括但不限于石英玻璃、硫 系玻璃、 氟系玻璃。 因为全反射原理, 光在被包层包覆的芯层内传输。 玻璃 芯层的直径为 l m以上, 玻璃包层的厚度为 5 μ ιη及以上。
所述的内层金属涂层包括但不限于铝、 铜、 铜 -镍、 银、 金等金属元素或 合金。 所述内层金属涂层可为一层且同一种组分的金属涂层, 或者为多层、 且每层组分各不相同的金属涂层。 每层的厚度为 0. 5 μ ιη及以上。
所述的内层金属涂层可通过但不限于熔融涂覆法、 化学气相沉积镀膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真空离子镀膜法、 原子层沉积法等方法 包覆在所述的包层外表面上。
所述外层金属涂层材料选自具有超高熔点的金属或者其合金,所述具有超 高熔点的金属包括但不限于金、 铂、 钯、 钨或铼。 所述的外层金属涂层为一 层且同一种组分的金属涂层, 或者为多层、 且每层组分各不相同的金属涂层。 每层的厚度为 50nm及以上。
所述外层金属涂层的每一层可通过但不限于化学气相沉积镀膜法、真空蒸 发镀膜法、 真空溅射镀膜法、 真空离子镀膜法、 原子层沉积法等方法依次包 覆在所述的内层金属涂层外表面上, 而这些制备工艺都是在远低于金属自身 熔点的工作温度下实施的, 所以克服了熔融涂覆法必须在金属熔化的条件下 实施的缺陷。
本发明提出的具有多层金属涂层的耐高温光纤与现有金属涂层光纤相比, 在不改变现有金属涂层光纤各种光学性能和机械强度的情况下能够将光纤的 最高工作温度提高 10(T800°C, 同时能够增强光纤的耐化学腐蚀能力。
在提高光纤最高工作温度的情况下, 将铂、 钯、 钨、 铼等稳定性能优异且 具有超高熔点的金属或者其合金作为最外层金属涂层而非单一金属涂层直接 包覆在玻璃包层外表面降低了生产时对金属涂覆工艺的要求, 可减少其涂覆 厚度、 提高材料利用效率、 降低生产成本等。 附图说明
下面结合附图和具体实施方式对本发明的技术方案作进一歩具体说 明。
图 1为根据一个实施例具有多层金属涂层的耐高温耐腐蚀光纤的横截 面示意图。 具体实施方式
在此描述的光纤涉及用于光纤通信、 光纤传感及光纤传能等领域的多 层 (两层及两层以上) 金属涂层耐高温耐腐蚀光纤。 所述的多层 (两层及 两层以上) 金属涂层耐高温耐腐蚀光纤包括玻璃芯层, 围绕在芯层外表面 的玻璃包层, 置于包层外表面的内层金属涂层, 置于内层金属涂层外表面 的外层金属涂层。 内层金属涂层和外层金属涂层均可以是一层同一种组分 的金属涂层、 或者是多层 (两层或两层以上) 每层组分不同的金属涂层。
以下通过实施例和附图对本发明做进一歩的详细说明。
图 1为根据一个实施例具有多层金属涂层的耐高温耐腐蚀光纤的横截 面示意图。 如图 1所示, 光纤 101具有芯层 102、 围绕在芯层 102外表面 的包层 103、 置于包层 103外表面的内层金属涂层 104以及包覆于内层金 属涂层 104外表面的外层金属涂层 105。
根据图 1所示, 芯层 102位于光纤 101的中心, 芯层 102的直径为 1 μ ηι以上。包层 103沿着芯层 102纵向轴线方向包覆在芯层 102的外表面, 包层 103的单层厚度在 5 μ ηι及以上。 芯层 102的折射率大于包层 103的 折射率, 使光被包层 103限制在芯层 102内进行全反射传输。 芯层 102和 包层 103的制作材料包括但不限于石英玻璃、 硫系玻璃、 氟系玻璃等。
内层金属涂层 104沿着芯层 102纵向轴线方向, 包覆在包层 103的外 表面。 内层金属涂层 104的制作材料包括但不限于铝、 铜、 铜 -镍、 银、 金 等金属元素或合金。内层金属涂层 104可以是一层同一种组分的金属涂层、 也可以是多层 (两层或两层以上) 每层组分不同的金属涂层, 每层的最小 厚度为 0.5 μ ηι及以上。 内层金属涂层 104可通过但不限于熔融涂覆法、 化学气相沉积镀膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真空离子镀膜
法、 原子层沉积法等方法包覆在包层 103外表面上。
外层金属涂层 105 沿着芯层 102 纵向轴线方向包覆在内层金属涂层 104的外表面。 外层金属涂层 105材料包括但不限于铂、 钯、 钨、 铼等稳 定性能优异且具有超高熔点的金属或者其合金。 外层金属涂层可以是一层 同一种组分的金属涂层、 也可以是多层 (两层或两层以上) 每层组分不同 的金属涂层, 每一层的最小厚度为 50nm及以上。 外层金属涂层 105可通 过但不限于化学气相沉积镀膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真 空离子镀膜法、 原子层沉积法等方法包覆在内层金属涂层 104外表面上。
外层金属涂层的作用主要是隔离内层金属涂层与空气中的氧气或水分 等接触, 避免内层金属涂层因发生氧化或其他化学反应而减弱对光纤的保 护, 提高了光纤的最高工作温度以及其他物理或化学性能, 如修补微孔、 防水渗透和防化学腐蚀等。 同时, 在提高光纤最高工作温度的情况下, 将 铂、 钯、 钨、 铼等稳定性能优异且具有超高熔点的金属或者其合金作为最 外层金属涂层而非单一金属涂层直接包覆在玻璃包层外表面降低了生产时 对金属涂覆工艺的要求 (比如, 铂、 钯、 钨、 铼等具有超高熔点金属作为 非内层金属涂层时可减少其涂覆厚度) , 可提高材料利用效率、 降低生产 成本等。
本发明提出的具有多层金属涂层的耐高温光纤与现有金属涂层光纤相 比, 在不改变现有金属涂层光纤各种光学性能和机械强度的情况下能够将 光纤的最高工作温度提高 100~800°C, 同时能够增强光纤的耐化学腐蚀能 力。
最后所应说明的是, 以上具体实施方式仅用以说明本发明的技术方案 而非限制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通 技术人员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而 不脱离本发明技术方案的精神和范围, 其均应涵盖在本发明的权利要求范 围当中。
Claims
1、 多层金属涂层耐高温耐腐蚀光纤, 其特征在于, 包括:
芯层, 由折射率较高的玻璃材料制成, 用于使光在芯层内进行传输; 包层,由折射率较低的玻璃材料组成,用于使光在芯层内进行全反射传输; 内层金属涂层, 沿着所述芯层的纵向轴线方向包覆在所述包层外表面, 用 于保护光纤不因弯曲、 拉伸和扭转外力而断裂, 并使光纤可在高温下工作; 外层金属涂层, 沿着所述芯层的纵向轴线方向包覆在所述内层金属涂层 外表面。
2、根据权利要求 1所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于, 所述的芯层或包层的制作材料包括但不限于石英玻璃、 硫系玻璃或氟系玻璃。
3、根据权利要求 2所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于, 所述芯层直径为 l m以上, 所述包层的厚度为 5 μ ιη及以上。
4、 根据权利要求 1至 3之一所述的多层金属涂层耐高温耐腐蚀光纤, 其 特征在于, 所述内层金属涂层材料包括但不限于铝、 铜、 铜 -镍、 银或金的金 属元素或合金。
5、根据权利要求 4所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于, 所述内层金属涂层为一层且同一种组分的金属涂层, 或者为多层、 且各层组 分各不相同的金属涂层, 所述内层金属涂层的单层厚度为 0. 5 μ m及以上。
6、根据权利要求 4所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于, 所述内层金属涂层通过但不限于熔融涂覆法、 化学气相沉积镀膜法、 真空蒸 发镀膜法、 真空溅射镀膜法、 真空离子镀膜法或原子层沉积法包覆在所述包 层外表面上。
7、根据权利要求 1所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于, 所述外层金属涂层材料选自具有超高熔点的金属或者其合金, 所述具有超高 熔点的金属包括但不限于金、 铂、 钯、 钨或铼。
8、根据权利要求 7所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于,
所述的外层金属涂层为一层且同一种组分的金属涂层, 或者为多层、 且各层 组分各不相同的金属涂层。
9、根据权利要求 8所述的多层金属涂层耐高温耐腐蚀光纤,其特征在于, 所述的外层金属涂层, 通过但不限于化学气相沉积镀膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真空离子镀膜法或原子层沉积法等方法包覆在所述的内层 金属涂层外表面上。
10、 根据权利要求 8所述的多层金属涂层耐高温耐腐蚀光纤, 其特征在 于, 所述的外层金属涂层的单层厚度为 50nm及以上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/084867 WO2016026110A1 (zh) | 2014-08-21 | 2014-08-21 | 多层金属涂层耐高温耐腐蚀光纤 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/084867 WO2016026110A1 (zh) | 2014-08-21 | 2014-08-21 | 多层金属涂层耐高温耐腐蚀光纤 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016026110A1 true WO2016026110A1 (zh) | 2016-02-25 |
Family
ID=55350102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/084867 WO2016026110A1 (zh) | 2014-08-21 | 2014-08-21 | 多层金属涂层耐高温耐腐蚀光纤 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016026110A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170249010A1 (en) * | 2016-02-29 | 2017-08-31 | Samsung Electronics Co., Ltd. | Video display apparatus and method for reducing vr sickness |
WO2021067619A1 (en) * | 2019-10-02 | 2021-04-08 | Verrillon, Inc. | Metal-coated optical fiber and a method of fabricating thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4418984A (en) * | 1980-11-03 | 1983-12-06 | Hughes Aircraft Company | Multiply coated metallic clad fiber optical waveguide |
WO2002041054A1 (en) * | 2000-11-15 | 2002-05-23 | Staniunas Richard F | Multi-energy waveguide for simultaneously transmitting electrical and optical signals and method for manufacturing the same |
CN1545491A (zh) * | 2001-08-23 | 2004-11-10 | 3M创新有限公司 | 镀金属的光纤 |
CN102608694A (zh) * | 2012-03-20 | 2012-07-25 | 袁芳革 | 一种金属包层光纤及其制备方法 |
CN102770387A (zh) * | 2010-02-24 | 2012-11-07 | 康宁股份有限公司 | 双涂层光纤以及用于形成该双涂层光纤的方法 |
CN104193188A (zh) * | 2014-08-21 | 2014-12-10 | 武汉北方光电科技有限公司 | 多层金属涂层耐高温耐腐蚀光纤 |
-
2014
- 2014-08-21 WO PCT/CN2014/084867 patent/WO2016026110A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4418984A (en) * | 1980-11-03 | 1983-12-06 | Hughes Aircraft Company | Multiply coated metallic clad fiber optical waveguide |
WO2002041054A1 (en) * | 2000-11-15 | 2002-05-23 | Staniunas Richard F | Multi-energy waveguide for simultaneously transmitting electrical and optical signals and method for manufacturing the same |
CN1545491A (zh) * | 2001-08-23 | 2004-11-10 | 3M创新有限公司 | 镀金属的光纤 |
CN102770387A (zh) * | 2010-02-24 | 2012-11-07 | 康宁股份有限公司 | 双涂层光纤以及用于形成该双涂层光纤的方法 |
CN102608694A (zh) * | 2012-03-20 | 2012-07-25 | 袁芳革 | 一种金属包层光纤及其制备方法 |
CN104193188A (zh) * | 2014-08-21 | 2014-12-10 | 武汉北方光电科技有限公司 | 多层金属涂层耐高温耐腐蚀光纤 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170249010A1 (en) * | 2016-02-29 | 2017-08-31 | Samsung Electronics Co., Ltd. | Video display apparatus and method for reducing vr sickness |
WO2021067619A1 (en) * | 2019-10-02 | 2021-04-08 | Verrillon, Inc. | Metal-coated optical fiber and a method of fabricating thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104193188A (zh) | 多层金属涂层耐高温耐腐蚀光纤 | |
JPH0531127B2 (zh) | ||
CN104155716B (zh) | 低损耗耐高温光纤 | |
JP5323664B2 (ja) | 光ファイバ心線 | |
EP2539293B1 (en) | Dual coated optical fibers and methods for forming the same | |
US9551596B2 (en) | High-temperature-resistant metal-packaged fiber bragg grating sensor and manufacturing method therefor | |
WO1982001365A1 (en) | Metallic clad fiber optical waveguide | |
EP3194346B1 (en) | Method for fabrication of metal-coated optical fiber | |
CN103777269B (zh) | 一种耐高温光纤 | |
WO2016026110A1 (zh) | 多层金属涂层耐高温耐腐蚀光纤 | |
CN211206888U (zh) | 一种加强型测温光缆 | |
US10983269B1 (en) | Optical fibers with two metal coatings surrounding the cladding | |
CN102981226A (zh) | 一种光纤 | |
CN207867097U (zh) | 一种室外光缆 | |
WO2016019578A1 (zh) | 低损耗耐高温光纤 | |
CN208255508U (zh) | 一种耐火光缆 | |
CN209640555U (zh) | 一种适用于直埋敷设耐腐蚀型金属光缆 | |
CN111427115A (zh) | 一种表面改性金属涂层光纤及其制备方法和制备系统 | |
CN206096568U (zh) | 一种新型全介质高强度防生物啮咬光缆 | |
CN210438644U (zh) | 一种耐火型夹胶玻璃 | |
JPH06230254A (ja) | 耐熱性ガラスファイバ | |
CN110837156A (zh) | 加强型测温光缆 | |
CN110989117A (zh) | 微型测温光缆 | |
JP2023095135A (ja) | 被膜ファイバ、センサ装置、モニタリング装置及び被膜ファイバの製造方法 | |
JPH04357427A (ja) | 温度測定用光ファイバケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14900286 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14900286 Country of ref document: EP Kind code of ref document: A1 |