WO2016019578A1 - 低损耗耐高温光纤 - Google Patents

低损耗耐高温光纤 Download PDF

Info

Publication number
WO2016019578A1
WO2016019578A1 PCT/CN2014/083992 CN2014083992W WO2016019578A1 WO 2016019578 A1 WO2016019578 A1 WO 2016019578A1 CN 2014083992 W CN2014083992 W CN 2014083992W WO 2016019578 A1 WO2016019578 A1 WO 2016019578A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
layer
optical fiber
high temperature
temperature resistant
Prior art date
Application number
PCT/CN2014/083992
Other languages
English (en)
French (fr)
Inventor
徐巍
张栓民
叶亚楠
王静
Original Assignee
武汉北方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉北方光电科技有限公司 filed Critical 武汉北方光电科技有限公司
Priority to PCT/CN2014/083992 priority Critical patent/WO2016019578A1/zh
Publication of WO2016019578A1 publication Critical patent/WO2016019578A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables

Definitions

  • the invention relates to the technical fields of optical fiber communication, optical fiber sensing and optical fiber transmission, and particularly relates to a low loss high temperature resistant optical fiber having a metal outer coating on a conventional optical fiber polymer coating.
  • optical fibers In order to meet the needs of use in high temperature environments, optical fibers must maintain optical properties, mechanical strength and reliability consistent or similar to those at normal temperatures and normal use.
  • Conventional fiber coatings are polymeric materials including acrylates, high temperature acrylates, liquid crystals, Teflon, ETFE and polyimide materials.
  • the light loss of the optical fiber at the light wavelengths of 1310 nm and 1550 nm is small, and is generally less than 0.5 dB/km.
  • Acrylate-coated fibers are widely used in fiber-optic communications, and the maximum temperature at which they can operate is 85 °C. When the temperature exceeds 85 °C, the acrylate coating will be seriously deteriorated or even fail. The color of the coating will be yellow and black, and the mechanical strength will be weakened until the fiber is protected. It will easily cause fiber breakage and cannot meet the high temperature environment. Reliability requirements for fiber transmission.
  • Fibers with high temperature acrylate, liquid crystal or polyimide coatings have a maximum operating temperature of 150 ° C, 180 ° C and 300 ° C. When the ambient temperature exceeds the maximum operating temperature of these fibers, the mechanical strength of the fiber will also Attenuated, causing fiber breakage in severe cases. Details relating to polymer coated high temperature resistant fibers have been described in patents Nos. CN201310151641, CN201410017136, etc., which have improved the high temperature resistance of polymer coated optical fibers to varying degrees.
  • Optical fibers used in high temperature environments are typically coated with a metal coating directly on the glass cladding.
  • metal coating materials are aluminum, copper, copper alloy, silver, and gold.
  • the fiber can be operated up to 400 °C.
  • silver or gold is used as the metal coating material, the maximum operating temperature of the fiber can reach 700 °C.
  • Information relating to metal coated high temperature resistant fibers is described in patent number CN201110046035 and the like.
  • the hardness of the metal coating is much larger than the hardness of the polymer coating, and the thermal expansion coefficient of the metal coating is much different from that of the glass cladding, a severe microbending effect is generated on the optical fiber, resulting in a metal coated optical fiber.
  • the optical loss of metal coated fibers can be as high as 5 dB/km or more. This loss limits the length of use of these metal coated fibers, typically within 200 meters. However, in many light sensing applications, such as heavy oil wells, the well depth is often more than 2000 meters, and the well temperature is 300 °C. Above, the fiber used for well temperature and pressure sensing cannot use metal coated fiber (too much optical loss) or polyimide coated fiber (the operating ambient temperature is greater than the temperature it can withstand). Summary of the invention
  • the technical problem to be solved by the present invention is to address the shortcomings of the conventional polymer coated optical fiber and the metal coated optical fiber, and to provide the same excellent optical performance as the conventional polymer coated optical fiber and the same excellent as the conventional metal coated optical fiber. High temperature resistant fiber.
  • the low loss high temperature resistant optical fiber proposed by the present invention has the following structure: a core layer composed of a glass material having a relatively high refractive index, and light will be transmitted in the core layer; a cladding layer having a lower refractive index a glass material composition for confining light within the core layer for total reflection transmission;
  • the metal coating is applied to the outer surface of the polymer coating along the longitudinal axis of the core to isolate the contact between the polymer coating and the air.
  • the glass materials of the core layer and the cladding layer include, but are not limited to, quartz glass, chalcogenide glass, and fluorine-based glass.
  • the diameter of the core layer is l m or more, and the thickness of the single layer surrounding the core layer is 5 ⁇ m and above.
  • the polymer coating layer is one layer, two layers or more.
  • the material of the polymer coating includes, but is not limited to, an acrylate, a high temperature acrylate, a liquid crystal, a Teflon, an ETFE or a polyimide material, and the polymer coating material of each layer is the same material.
  • the single layer of the polymer coating has a thickness of 5 ⁇ m and above.
  • the number of layers of the metal coating layer is one layer, two layers or two or more layers.
  • the metal coating material includes, but is not limited to, aluminum, copper, copper-nickel, silver, gold, platinum, tungsten metal, or the foregoing metal alloy, and each layer of the metal coating is a material of the same composition.
  • the metal coating is sequentially coated on the outer surface of the polymer coating by, but not limited to, chemical vapor deposition coating, vacuum evaporation coating, vacuum sputtering coating, vacuum ion plating or atomic layer deposition. on.
  • the one, two or more metal coatings, the thickness of the single layer is
  • a bonding layer is applied between the outer surface of the polymer coating and the inner surface of the metal coating adjacent thereto to bond the metal coating more firmly to the polymer coating.
  • the bonding layer the material used includes but is not limited to the same element of titanium or titanium, and has a thickness of 5 nm or more; the bonding layer is formed by, but not limited to, chemical vapor deposition coating, vacuum evaporation coating, vacuum sputtering coating, A vacuum ion plating method or an atomic layer deposition method is applied on the outer surface of the polymer coating.
  • the low-loss high-temperature fiber with metal coating proposed in the present invention can achieve the highest working of the fiber without significantly changing the optical properties and mechanical strength of the fiber compared with the conventional fiber without the metal coating. Increase the temperature by 50 °C ⁇ 300 °C.
  • Figure 1 is a schematic cross-sectional view of a low loss, high temperature resistant fiber having a metallic coating on a polymeric coating in accordance with one embodiment.
  • FIG. 2 is a schematic cross-sectional view of a low loss, high temperature resistant fiber having a tie layer and a metal coating on a polymer coating in accordance with another embodiment. detailed description
  • the fibers described herein relate to low loss, high temperature fiber for use in the fields of fiber optic communication, fiber sensing, and fiber optic transmission.
  • the low loss high temperature resistant fiber comprises a glass core layer, a glass cladding surrounding the outer surface of the core layer, a polymer coating disposed on the cladding layer, and a metal coating layer disposed on the polymer coating layer, optionally A bonding layer may be provided between the polymer coating and the metal coating.
  • FIG. 1 A cross-sectional schematic view of a low loss, high temperature resistant fiber 101 having a metallic coating 106 on a polymeric coating 104 is shown in FIG.
  • the optical fiber 101 has a core layer 102, a cladding layer 103 surrounding the outer surface of the core layer 102, a polymer coating layer 104 disposed on the outer surface of the cladding layer 103, and a metal coating layer 106 disposed on the polymer coating layer 104.
  • the core layer 102 is located at the center of the optical fiber 101, and the core layer 102 may have a diameter of 1 ⁇ m or more.
  • the cladding layer 103 is disposed on the outer surface of the core layer 102 along the longitudinal axis direction of the core layer 102, and the thickness of the single layer of the cladding layer 103 may be 5 ⁇ m or more.
  • the refractive index of the core layer 102 is greater than the refractive index of the cladding layer 103, and the light is confined within the core layer 102 by the cladding layer 103 for total reflection transmission.
  • Core layer 102 and cladding 103 Materials include, but are not limited to, quartz glass, chalcogenide glass, fluorine-based glass, and the like.
  • the polymer coating 104 is disposed on the outer surface of the cladding 103 along the longitudinal axis of the core layer 102.
  • the polymer coating 104 may be a uniform coating or a two or more coatings with inconsistent composition, one, two or more polymer coatings 104. At 5 ⁇ ⁇ and above.
  • Polymer coating 104 materials include, but are not limited to, acrylates, high temperature acrylates, liquid crystals, Teflon, ETFE, and polyimide materials.
  • the polymer coating 104 is coated on the outer surface of the cladding layer 103 by means of a heat curing, ultraviolet curing or radiation curing lamp.
  • the metal coating 106 is coated on the outer surface of the polymer coating 104 along the longitudinal axis of the core layer 102.
  • the metal coating 106 material includes, but is not limited to, aluminum, copper, copper-nickel, silver, gold, platinum, tungsten, etc. A metal element or alloy with excellent properties.
  • the metal coating 106 is one layer, two layers or more.
  • the material composition of a single layer of metal coating may be the same, and the metal coating materials of different layers may be the same or different.
  • the thickness of the single layer metal coating is greater than or equal to 50 nm to isolate the polymer coating 104 from air, preventing oxidation or carbonization of the polymer coating 104.
  • Each of the single or multiple layers (two or more layers) of the metal coating 106 is by, but not limited to, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, A method such as atomic layer deposition is sequentially coated on the polymer coating 104.
  • FIG. 2 is a schematic cross-sectional view of a low loss, high temperature resistant fiber 201 having a tie layer 205 and a metal coating 206 on a polymer coating 204.
  • the optical fiber 201 has a core layer 202, a cladding 203 surrounding the outer surface of the core layer 202, a polymer coating 204 disposed on the outer surface of the cladding 203, a bonding layer 205 on the outer surface of the polymer coating 204, and a bonding layer.
  • a metal coating 206 on the outer surface of the layer 205.
  • the core layer 202 is located at the center of the optical fiber 201, and the core layer 202 has a diameter of 1 ⁇ m or more.
  • the cladding 203 is disposed on the outer surface of the core layer 202 along the longitudinal axis direction of the core layer 202, and the thickness of the single layer of the cladding layer 203 is 5 ⁇ m and above.
  • the refractive index of the core layer 202 is greater than the refractive index of the cladding layer 203, and the light is confined within the core layer 202 by the cladding layer 203 for total reflection transmission.
  • Materials of the core layer 202 and the cladding layer 203 include, but are not limited to, quartz glass, chalcogenide glass, fluorine-based glass, and the like.
  • the polymer coating 204 is disposed on the outer surface of the cladding 203 along the longitudinal axis of the core layer 202.
  • the polymer coating 204 may be a coating having a uniform composition of materials or a plurality of layers having inconsistent composition (two layers) Or two or more layers of coating, one or more layers (two or more layers), the polymer coating 204 may have a single side thickness of 5 ⁇ ⁇ and above.
  • Polymer coating 204 materials include, but are not limited to, acrylates, high temperature acrylates, liquid crystals, Teflon, ETFE, and polyimide materials.
  • the polymer coating 204 may be coated on the outer surface of the cladding 203 by heat curing or ultraviolet curing.
  • the bonding layer 205 is disposed on the outer surface of the coating layer 204 along the longitudinal axis direction of the core layer 202.
  • the bonding layer 205 material includes, but is not limited to, a group of elements of titanium or titanium, and the bonding layer 205 may have a thickness of 5 nm or more.
  • the bonding layer 205 may be coated on the polymer coating 204 by, but not limited to, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, an atomic layer deposition method, or the like.
  • the primary function of bonding layer 205 is to bond metal coating 206 more strongly to polymer coating 204.
  • the metal coating 206 is coated on the outer surface of the bonding layer 205 along the longitudinal axis direction of the core layer 202.
  • the material of the metal coating 206 includes, but is not limited to, aluminum, copper, copper-nickel, silver, gold, platinum, tungsten, etc. A metal element or alloy with excellent properties.
  • the number of layers of the metal coating 206 is one layer, two layers or more.
  • the material composition of a single layer of metal coating 206 may be the same, and the metal coating materials of different layers may be the same or different.
  • the thickness of the single layer metal coating is greater than or equal to 50 nm to isolate the polymer coating 204 from air, preventing oxidation or carbonization of the polymer coating 204.
  • Each of the single or multiple layers (two or more layers) of the metal coating 206 is by, but not limited to, a chemical vapor deposition coating method, a vacuum evaporation coating method, a vacuum sputtering coating method, a vacuum ion plating method, A method such as atomic layer deposition is sequentially coated on the adhesive layer 205.
  • the maximum operating temperature of an optical fiber is primarily determined by the outermost coating material of the fiber.
  • the coating of the metal coating of the optical fiber on the outer surface of the polymer coating has the following two advantages: one is to isolate the polymer coating from the air, or even completely separate it, to avoid the high temperature of the polymer coating of the optical fiber. Oxidation or carbonization occurs in contact with air in the environment, thus avoiding yellowing, blackening, and weakening of mechanical strength of the polymer coating until the protection of the optical fiber is lost, thereby increasing the maximum operating temperature of the optical fiber.
  • the metal coating is not directly in contact with the glass cladding material, avoiding the hardness being much greater than the hardness of the polymer coating and the difference in thermal expansion coefficient compared with the glass cladding material.
  • the large microbending effect produced by the large one does not significantly increase the attenuation value of the optical fiber, so the length of use of the optical fiber in a high temperature and a harsh environment can be greatly improved.
  • the low-loss high-temperature fiber with a metal coating on the polymer coating proposed in the present invention does not significantly increase the fiber failure compared with the conventional fiber with an uncoated metal coating and only a polymer coating.
  • the maximum operating temperature of the fiber can be increased by 50 ° C ⁇ 300 ° C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种低损耗耐高温光纤(101),由玻璃芯层(102)、围绕着芯层(102)外表面的玻璃包层(103)、置于包层上的聚合物涂层(104)以及置于聚合物涂层(104)上的金属涂层(106)组成。可选择地,在聚合物涂层(104)和金属涂层(106)之间设置一层粘结层(205),使得金属涂层(106)更牢固地与聚合物涂层(104)结合在一起。该具有金属涂层(106)的低损耗耐高温光纤与未涂覆金属涂层(106)时的传统聚合物涂层光纤相比,在不明显改变光纤各种光学性能和机械强度的情况下能够将光纤的最高工作温度提高50℃~300℃。

Description

低损耗耐高温光纤 技术领域
本发明涉及光纤通信、 光纤传感及光纤传能等技术领域, 尤其涉及在 传统光纤聚合物涂层上具有金属外涂层的低损耗耐高温光纤。 背景技术
为了满足高温环境下的使用需要, 光纤必须保持与常温及通常使用环境 下的一致或近似的光学性能、 机械强度及可靠性。
常规光纤的涂层为聚合物材料, 包括丙烯酸酯、 高温丙烯酸酯、 液晶、 特氟龙、 ETFE和聚酰亚胺材料。 此类光纤在光波长 1310nm和 1550nm的光损 耗小, 一般小于 0. 5dB/km。 丙烯酸酯涂层的光纤广泛用于光纤通讯, 其能够 正常工作的最高温度是 85 °C。 在温度超过 85 °C时, 丙烯酸酯涂层会严重老化 甚至失效, 表现为涂层颜色发黄、 变黑, 机械强度减弱直至失去对光纤的保 护作用, 容易引起光纤断裂, 无法满足高温环境下光纤传输的可靠性要求。 具有高温丙烯酸酯、 液晶或聚酰亚胺涂层的光纤最高工作温度分别是 150°C、 180°C和 300°C, 当环境温度超过这些光纤的最高工作温度时, 光纤的机械强 度也会减弱, 严重时引起光纤断裂。 与聚合物涂层耐高温光纤相关的详细信 息在专利号为 CN201310151641、 CN201410017136等的专利中已经有所描述, 这些专利对聚合物涂层光纤在耐高温方面都做了不同程度的改进。
在高温环境下所使用的光纤通常是在玻璃包层上直接涂覆金属涂层。 目 前, 金属涂层的材料有铝、 铜、 铜合金、 银以及金等。 使用铝、 铜及铜合金 作为金属涂层材料时, 光纤的最高工作温度可达 400°C。 使用银、 金作为金属 涂层材料时, 光纤的最高工作温度可达 700 °C。与金属涂层耐高温光纤相关的 信息在专利号为 CN201110046035等的专利中有所描述。 但是金属涂层由于其 硬度远大于聚合物涂层的硬度, 而且金属涂层的热膨胀系数与玻璃包层的相 比相差更大, 在光纤上产生了严重的微弯曲效应, 导致金属涂层光纤的光损 耗增大。 在 1310nm和 1550nm波长, 金属涂层光纤的光损耗可高达 5dB/km以 上。 此损耗限制了这些金属涂层光纤的使用长度, 一般仅在 200米以内。 但 在很多光传感应用中,如稠油井,其井深常常是 2000米以上,井内温度在 300°C 以上, 用于井内温度和压力传感的光纤就不能使用金属涂层光纤 (光损耗太 大), 也不能使用聚酰亚胺涂层光纤(工作环境温度大于其能承受的温度)。 发明内容
本发明所要解决的技术问题是针对传统聚合物涂层光纤和金属涂层光纤 存在的不足, 提出具有与传统聚合物涂层光纤同样优异的光学性能和与传统 金属涂层光纤同样优异的一种耐高温特性的光纤。
为解决上述技术问题, 本发明提出的低损耗耐高温光纤具有以下结构: 芯层, 由折射率较高的玻璃材料组成, 光将在芯层内进行传输; 包层, 由折射率较低的玻璃材料组成, 用于将光限制在芯层内进行全反 射传输;
聚合物涂层, 沿着芯层纵向轴线方向包覆在玻璃包层外表面, 用于保护 芯层和包层;
金属涂层, 沿着芯层纵向轴线方向包覆在聚合物涂层外表面, 以隔离聚 合物涂层与空气之间的接触。
所述芯层和包层的玻璃材料包括但不限于石英玻璃、 硫系玻璃、 氟系玻 璃。 所述芯层直径为 l m以上, 围绕芯层的包层单边厚度为 5 μ ιη及以上。
可优选的, 所述聚合物涂层为一层、 两层或两层以上。
所述聚合物涂层的材料包括但不限于丙烯酸酯、 高温丙烯酸酯、 液晶、 特氟龙、 ETFE或聚酰亚胺材料, 每一层的所述聚合物涂层材料为同一材料。 单层所述聚合物涂层的厚度为 5 μ m及以上。
同样可优选的, 所述金属涂层的层数为一层、 两层或两层以上。
所述金属涂层材料包括但不限于铝、 铜、 铜 -镍、 银、 金、 铂、 钨金属, 或前述金属合金, 每一层所述金属涂层为相同组分的材料。
所述金属涂层, 是通过包括但不限于化学气相沉积镀膜法、 真空蒸发镀 膜法、 真空溅射镀膜法、 真空离子镀膜法或原子层沉积法依次包覆在所述聚 合物涂层外表面上。 所述的一层、 两层或两层以上的金属涂层, 单层厚度为
50讓或以上。
最优选的, 在所述聚合物涂层外表面、 与其相邻的所述金属涂层内表面 之间涂覆一层粘结层, 使金属涂层更牢固地与聚合物涂层粘结在一起。 所述 粘结层, 所用材料包括但不局限于钛或钛的同族元素, 厚度为 5nm及以上; 粘结层是通过包括但不限于化学气相沉积镀膜法、 真空蒸发镀膜法、 真空溅 射镀膜法、 真空离子镀膜法或原子层沉积法包覆在所述的聚合物涂层外表面 上。
本发明中提出的具有金属涂层的低损耗耐高温光纤与未涂覆金属涂层 时的传统光纤相比, 在不明显改变光纤各种光学性能和机械强度的情况下 能够将光纤的最高工作温度提高 50 °C〜300 °C。
附图说明
下面结合附图和具体实施方式对本发明的技术方案作进一歩具体说明。 图 1为根据一个实施例在聚合物涂层上具有金属涂层的低损耗耐高温 光纤的横截面示意图。
图 2为根据另一个实施例在聚合物涂层上具有粘结层和金属涂层的低 损耗耐高温光纤的横截面示意图。 具体实施方式
在此描述的光纤涉及用于光纤通信、 光纤传感及光纤传能等领域的低 损耗耐高温光纤。 所述的低损耗耐高温光纤包括玻璃芯层, 围绕在芯层外 表面的玻璃包层, 置于包层上的聚合物涂层以及置于聚合物涂层上的金属 涂层, 可选择地, 可在聚合物涂层和金属涂层之间设置一层粘结层。
以下通过实施例和附图对本发明作进一歩的详细说明。
实施例 1
如图 1所示为在聚合物涂层 104上具有金属涂层 106的低损耗耐高温 光纤 101的横截面示意图。 光纤 101具有芯层 102、 围绕在芯层 102外表 面的包层 103、 置于包层 103外表面的聚合物涂层 104以及置于聚合物涂 层 104上的金属涂层 106。
芯层 102位于光纤 101的中心, 芯层 102的直径可为 1 μ m以上。 包 层 103沿着芯层 102纵向轴线方向设置在芯层 102的外表面, 包层 103的 单边厚度可在 5 μ πι及以上。 芯层 102的折射率大于包层 103的折射率, 光被包层 103限制在芯层 102内进行全反射传输。 芯层 102和包层 103的 材料包括但不限于石英玻璃、 硫系玻璃、 氟系玻璃等。 聚合物涂层 104沿 着芯层 102纵向轴线方向被设置在包层 103的外表面。 聚合物涂层 104可 以为组分一致的一层涂层或者是组分不一致的两层或两层以上涂层,一层、 两层或两层以上聚合物涂层 104的每层单边厚度在 5 μ πι及以上。 聚合物 涂层 104材料包括但不限于丙烯酸酯、高温丙烯酸酯、液晶、特氟龙、 ETFE 以及聚酰亚胺材料等。 聚合物涂层 104采用加热固化、 紫外固化或辐照固 化灯方式将其包覆在包层 103的外表面上。
金属涂层 106沿着芯层 102纵向轴线方向包覆于聚合物涂层 104的外 表面, 金属涂层 106材料包括但不限于铝、 铜、 铜 -镍、 银、 金、 铂、 钨等 稳定性能优异的金属元素或者合金。 金属涂层 106为一层、 两层或两层以 上。单个一层金属涂层的材料成分相同、不同层的金属涂层材料可以相同, 也可以不同。 单层金属涂层的厚度为大于或等于 50nm, 以使聚合物涂层 104可与空气隔离, 避免聚合物涂层 104氧化或碳化。 单层或多层 (两层 或两层以上) 的金属涂层 106中的每一层是通过但不限于化学气相沉积镀 膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真空离子镀膜法、 原子层沉积 法等方法依次包覆在聚合物涂层 104上。
实施例 2
如图 2所示为在聚合物涂层 204上具有粘结层 205和金属涂层 206的 低损耗耐高温光纤 201 的横截面示意图。 光纤 201具有芯层 202、 围绕着 芯层 202外表面的包层 203、置于包层 203外表面的聚合物涂层 204、位于 聚合物涂层 204外表面的粘结层 205以及置于粘结层 205外表面的金属涂 层 206。
芯层 202位于光纤 201的中心, 芯层 202的直径为 1 μ m以上。 包层 203被沿着芯层 202纵向轴线方向设置在芯层 202的外表面, 包层 203的 单边厚度在 5 μ πι及以上。 芯层 202的折射率大于包层 203的折射率, 光 被包层 203限制在芯层 202内进行全反射传输。 芯层 202和包层 203的材 料包括但不限于石英玻璃、 硫系玻璃、 氟系玻璃等。 聚合物涂层 204沿着 芯层 202纵向轴线方向被设置在包层 203的外表面, 聚合物涂层 204可以 为材料组分一致的一层涂层或者是组分不一致的多层 (两层或两层以上) 涂层, 一层或多层 (两层或两层以上) 聚合物涂层 204的单边厚度可在 5 μ πι及以上。聚合物涂层 204材料包括但不限于丙烯酸酯、高温丙烯酸酯、 液晶、 特氟龙、 ETFE 以及聚酰亚胺材料等。 聚合物涂层 204可采用加热 固化或紫外固化方式将其包覆在包层 203的外表面上。
粘结层 205沿着芯层 202纵向轴线方向被设置在涂覆层 204的外表面。 粘结层 205材料包括但不局限于钛或钛的同族元素, 粘结层 205的厚度可 为 5nm及以上。 粘结层 205可通过但不限于化学气相沉积镀膜法、 真空蒸 发镀膜法、 真空溅射镀膜法、 真空离子镀膜法、 原子层沉积法等方法包覆 在聚合物涂层 204上。 粘结层 205的主要作用是使金属涂层 206更牢固地 与聚合物涂层 204粘结在一起。
金属涂层 206沿着芯层 202纵向轴线方向包覆在粘结层 205的外表面, 金属涂层 206的材料包括但不限于铝、 铜、 铜 -镍、 银、 金、 铂、 钨等稳定 性能优异的金属元素或者合金。 金属涂层 206的层数为一层、 两层或两层 以上。 单个一层金属涂层 206的材料成分相同、 不同层的金属涂层材料可 以相同, 也可以不同。 其单层金属涂层的厚度为大于或等于 50nm, 以使聚 合物涂层 204可与空气隔离, 避免聚合物涂层 204氧化或碳化。 单层或多 层 (两层或两层以上) 的金属涂层 206中的每一层是通过但不限于化学气 相沉积镀膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真空离子镀膜法、 原 子层沉积法等方法依次包覆在粘结层 205上。
光纤的最高工作温度主要取决于光纤最外面的涂层材料。 本发明中光 纤的金属涂层包覆在聚合物涂层的外表面主要有以下两个优点, 一是将聚 合物涂层与空气隔离、 甚至完全隔离开, 避免光纤的聚合物涂层在高温环 境下与空气接触后发生氧化反应或碳化, 因此避免了聚合物涂层发黄、 变 黑、 机械强度弱化直至失去对光纤的保护作用, 从而可以提高光纤的最高 工作温度。 二是在提高光纤最高工作温度的同时, 金属涂层未直接与玻璃 包层材料相接触, 避免了由于其硬度远大于聚合物涂层的硬度以及其热膨 胀系数与玻璃包层材料相比相差更大所产生的较大微弯曲效应, 不会明显 提高光纤的衰减值, 因此可以大大提高光纤在高温及恶劣环境下的使用长 度。
本发明中提出的在聚合物涂层上具有金属涂层的低损耗耐高温光纤与 未涂覆金属涂层仅具有聚合物涂层的传统光纤相比, 在不明显增大光纤衰 减值的情况下能够将光纤的最高工作温度提高 50°C ~300°C。
最后所应说明的是, 以上具体实施方式仅用以说明本发明的技术方案 而非限制, 尽管参照较佳实施例对本发明进行了详细说明, 本领域的普通 技术人员应当理解, 可以对本发明的技术方案进行修改或者等同替换, 而 不脱离本发明技术方案的精神和范围, 其均应涵盖在本发明的权利要求范 围当中。

Claims

权 利 要 求
1、 一种低损耗耐高温光纤, 其特征在于, 包括:
芯层, 由折射率较高的玻璃材料组成, 光将在芯层内进行传输;
包层, 由折射率较低的玻璃材料组成, 用于将光限制在芯层内进行全反射 传输;
聚合物涂层, 沿着芯层纵向轴线方向包覆在玻璃包层外表面, 用于保护芯 层和包层;
金属涂层, 沿着芯层纵向轴线方向包覆在聚合物涂层外表面, 以隔离聚合 物涂层与空气之间的接触。
2、 根据权利要求 1所述的低损耗耐高温光纤, 其特征在于, 所述的芯层和 包层的玻璃材料包括但不限于石英玻璃、 硫系玻璃、 氟系玻璃。
3、 根据权利要求 1所述的低损耗耐高温光纤, 其特征在于, 光纤的芯层直 径为 Ι μ ιη以上, 围绕芯层的包层单边厚度为 5 μ ιη及以上。
4、 根据权利要求 1所述的低损耗耐高温光纤, 其特征在于, 所述聚合物涂 层的层数为一层、 两层或两层以上。
5、 根据权利要求 4所述的低损耗耐高温光纤, 其特征在于所述聚合物涂层 的材料包括但不限于丙烯酸酯、 高温丙烯酸酯、 液晶、 特氟龙、 ETFE或聚酰亚 胺材料, 每一层的所述聚合物涂层材料为相同组分的材料。
6、 根据权利要求要求 4或 5所述的低损耗耐高温光纤, 其特征在于, 单层 所述聚合物涂层的厚度为 5 μ m及以上。
7、 根据权利要求 1所述的低损耗耐高温光纤, 其特征在于, 所述金属涂层 的层数为一层、 两层或两层以上。
8、 根据权利要求 7所述的低损耗耐高温光纤, 其特征在于, 所述金属涂层 材料包括但不限于铝、 铜、 铜 -镍、 银、 金、 铂、 钨金属, 或前述金属合金, 单 层所述金属涂层为相同组分的材料。
9、根据权利要求 8所述的低损耗耐高温光纤,其特征在于,所述金属涂层, 是通过包括但不限于化学气相沉积镀膜法、真空蒸发镀膜法、真空溅射镀膜法、 真空离子镀膜法或原子层沉积法依次包覆在所述聚合物涂层外表面上。
10、根据权利要求 9所述的低损耗耐高温光纤, 其特征在于,所述的一层、 两层或两层以上的金属涂层, 每层厚度为 50nm或以上。
11、 根据权利要求 1 所述的低损耗耐高温光纤, 其特征在于, 在所述聚合 物涂层外表面、 与其相邻的所述金属涂层内表面之间涂覆一层粘结层, 以使所 述金属涂层更牢固地与聚合物涂层粘结在一起。
12、 根据权利要求 11的低损耗耐高温光纤, 其特征在于, 所述粘结层, 所 用材料包括但不限于钛或钛的同族元素, 厚度为 5nm及以上; 所述粘结层是通 过包括但不限于化学气相沉积镀膜法、 真空蒸发镀膜法、 真空溅射镀膜法、 真 空离子镀膜法或原子层沉积法包覆在所述的聚合物涂层外表面上。
PCT/CN2014/083992 2014-08-08 2014-08-08 低损耗耐高温光纤 WO2016019578A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083992 WO2016019578A1 (zh) 2014-08-08 2014-08-08 低损耗耐高温光纤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083992 WO2016019578A1 (zh) 2014-08-08 2014-08-08 低损耗耐高温光纤

Publications (1)

Publication Number Publication Date
WO2016019578A1 true WO2016019578A1 (zh) 2016-02-11

Family

ID=55263054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083992 WO2016019578A1 (zh) 2014-08-08 2014-08-08 低损耗耐高温光纤

Country Status (1)

Country Link
WO (1) WO2016019578A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021102A1 (de) * 2018-07-27 2020-01-30 Schott Ag Optisch-elektrische leiteranordnung mit lichtwellenleiter und elektrischer leitschicht

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747748A (en) * 1980-09-05 1982-03-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of metal coated optical fiber
JPS5917507A (ja) * 1982-07-20 1984-01-28 Fujitsu Ltd 光伝送用フアイバ
CN86103079A (zh) * 1985-12-27 1987-11-11 科纳克斯·布法罗公司 改进的金属外装光导体
JPH045606A (ja) * 1990-04-23 1992-01-09 Hitachi Cable Ltd 合成樹脂光ファイバー
JPH04260008A (ja) * 1991-02-15 1992-09-16 Kyowa Densen Kk 光ファイバ心線
JPH04331905A (ja) * 1991-05-07 1992-11-19 Hitachi Cable Ltd 耐熱光ファイバ
US5497442A (en) * 1992-02-21 1996-03-05 Rofin Sinar Laser Gmbh Assembly for transmitting high-power laser radiation
US20030142940A1 (en) * 2002-01-31 2003-07-31 Gang Qi Higher order mode stripping optical fiber and modules and systems utilizing same
JP2008292660A (ja) * 2007-05-23 2008-12-04 Fujikura Ltd 光ファイバ、光通信モジュール
CN202119938U (zh) * 2011-07-01 2012-01-18 梁璇 一种高强度高温补偿光纤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747748A (en) * 1980-09-05 1982-03-18 Nippon Telegr & Teleph Corp <Ntt> Manufacture of metal coated optical fiber
JPS5917507A (ja) * 1982-07-20 1984-01-28 Fujitsu Ltd 光伝送用フアイバ
CN86103079A (zh) * 1985-12-27 1987-11-11 科纳克斯·布法罗公司 改进的金属外装光导体
JPH045606A (ja) * 1990-04-23 1992-01-09 Hitachi Cable Ltd 合成樹脂光ファイバー
JPH04260008A (ja) * 1991-02-15 1992-09-16 Kyowa Densen Kk 光ファイバ心線
JPH04331905A (ja) * 1991-05-07 1992-11-19 Hitachi Cable Ltd 耐熱光ファイバ
US5497442A (en) * 1992-02-21 1996-03-05 Rofin Sinar Laser Gmbh Assembly for transmitting high-power laser radiation
US20030142940A1 (en) * 2002-01-31 2003-07-31 Gang Qi Higher order mode stripping optical fiber and modules and systems utilizing same
JP2008292660A (ja) * 2007-05-23 2008-12-04 Fujikura Ltd 光ファイバ、光通信モジュール
CN202119938U (zh) * 2011-07-01 2012-01-18 梁璇 一种高强度高温补偿光纤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021102A1 (de) * 2018-07-27 2020-01-30 Schott Ag Optisch-elektrische leiteranordnung mit lichtwellenleiter und elektrischer leitschicht
US11899257B2 (en) 2018-07-27 2024-02-13 Schott Ag Optical-electrical conductor assembly comprising an optical waveguide and an electrically conductive layer

Similar Documents

Publication Publication Date Title
CN104155716B (zh) 低损耗耐高温光纤
JP5323664B2 (ja) 光ファイバ心線
CN103777269B (zh) 一种耐高温光纤
US9551596B2 (en) High-temperature-resistant metal-packaged fiber bragg grating sensor and manufacturing method therefor
CN104193188A (zh) 多层金属涂层耐高温耐腐蚀光纤
MX2013007748A (es) Sustrato provisto con una pila que tiene propiedades termicas, en particular para fabricar un cristal de calefaccion.
WO2017121160A1 (zh) 一种低损耗抗辐照的双折射光子晶体光纤
JP2007322893A (ja) 光ファイバ心線とその評価方法
WO2008041724A1 (en) Optical fiber ribbon
KR20170138995A (ko) 능동 광섬유
DK170940B1 (da) Optisk fiber
WO2016019578A1 (zh) 低损耗耐高温光纤
JP2014222353A (ja) アルミニウムドープト光ファイバ
WO2010107026A1 (ja) 光ファイバ
Semjonov et al. Hermetically coated specialty optical fibers
CN109856749B (zh) 一种耐火阻燃光缆及其制备方法
KR20190131495A (ko) 열선 투과 억제 투광성 기재 및 투광성 기재 유닛
JP2019015764A5 (zh)
WO2016026110A1 (zh) 多层金属涂层耐高温耐腐蚀光纤
CN208092275U (zh) 一种低膨胀率涂层光纤
US8141393B2 (en) Glass fibers having improved durability
CN207937635U (zh) 一种双涂层耐高温耐腐蚀光纤
CN210438644U (zh) 一种耐火型夹胶玻璃
KR102195384B1 (ko) 패시베이션 유기발광소자 및 이를 구비한 폴더블 디스플레이
CN210109377U (zh) 一种高温耐油大数值孔径光纤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899500

Country of ref document: EP

Kind code of ref document: A1