WO2016024555A1 - Marqueur et procédé d'estimation d'attitude utilisant le marqueur - Google Patents

Marqueur et procédé d'estimation d'attitude utilisant le marqueur Download PDF

Info

Publication number
WO2016024555A1
WO2016024555A1 PCT/JP2015/072571 JP2015072571W WO2016024555A1 WO 2016024555 A1 WO2016024555 A1 WO 2016024555A1 JP 2015072571 W JP2015072571 W JP 2015072571W WO 2016024555 A1 WO2016024555 A1 WO 2016024555A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern data
marker
pattern
observation direction
lens
Prior art date
Application number
PCT/JP2015/072571
Other languages
English (en)
Japanese (ja)
Inventor
田中 秀幸
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2016024555A1 publication Critical patent/WO2016024555A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to a marker for estimating a posture and a posture estimation method using this marker.
  • planar pattern has been devised that enables measurement of the position and orientation in a three-dimensional space by imaging with a monocular camera, and is generally called a planar marker.
  • Such a planar marker is used by being attached to an object in the field of augmented reality (Augmented Reality: AR), robotics, and the like, and the above-described posture is converted from the apparent distortion of the contour shape of the planar marker to projective transformation. Estimated by principle.
  • the planar marker described in Patent Document 1 has been devised in order to solve such a problem, and is composed of a combination of a lenticular lens and a stripe pattern, and moire (interference) that changes depending on the viewing angle.
  • RAS Random Angle Scale
  • marker units that generate stripes are provided along two adjacent sides of a conventional AR marker, respectively.
  • planar marker having such a configuration is also described in detail in Non-Patent Document 1.
  • step S1 an initial estimated value of the posture is obtained by applying a geometric method such as projective transformation (homography calculation) to the captured image of the AR marker.
  • a geometric method such as projective transformation (homography calculation)
  • step S2 the line-of-sight angle value (observation direction) is estimated with high accuracy by analyzing the moire pattern.
  • step S3 the initial estimated value obtained in step S1 is corrected using the gaze angle value estimated in step S2.
  • the planar marker as described above has periodicity with respect to the angle (observation direction) seen by the moire, so that the posture can be estimated uniquely within an angle of ⁇ 30 degrees from the marker facing position. There is a problem that it is limited.
  • the present invention has been made to solve the above-described problems, and uses a marker capable of realizing posture estimation that is more stable than before by uniquely estimating the posture in a wider angle range, and the present marker. It is an object to provide a method for estimating a posture.
  • the present invention generates a pattern data according to the observation direction by a two-dimensional pattern code and a lens provided on the pattern, and for each range of the observation direction divided for the pattern data, Provided is a marker comprising a plurality of pattern data generating means whose observation direction is uniquely estimated according to the position of the observed pattern data.
  • the present invention generates pattern data corresponding to the observation direction by a lens provided on the pattern, and the observed pattern for each range of the divided observation directions with respect to the pattern data.
  • a posture estimation method using a marker having a plurality of pattern data generation means whose observation direction is uniquely estimated according to the position of the data, wherein the marker is determined according to the positional relationship of the elements constituting the captured image of the marker A first step for initially estimating the posture of the image, a second step for calculating an absolute value of the observation direction with respect to the pattern data in accordance with the posture estimated in the first step, and an absolute value obtained in the second step
  • Marker having a fourth step for estimating the observation direction according to the position of the pattern data and a fifth step for correcting the initial estimation in the first step according to the observation direction estimated in the fourth step
  • a posture estimation method using the is provided.
  • the present invention it is possible to provide a marker capable of realizing posture estimation more stable than before by uniquely estimating the posture in a wider angle range, and a posture estimation method using this marker.
  • FIG. 1 It is a figure which shows the structure of the planar marker 1 which concerns on embodiment of this invention. It is a figure which shows the structure of the moire pattern formation part VMP1x shown by FIG. 1, VMP1y, VMP2x, VMP2y. It is a figure which shows the relationship between the pitch LP of the semi-cylindrical lens which comprises the lenticular lens LL, and the pitch SP of the black-and-white striped pattern ST. It is a figure which shows the case where a moire pattern is observed from right above the lenticular lens LL. It is a figure which shows the case where a moire pattern is observed from the position which shifted
  • FIG. 5 is a first diagram for explaining a problem of indefiniteness in the posture of a planar marker, and is a diagram illustrating an image obtained by perspective projection of the planar marker M.
  • FIG. 5 is a first diagram for explaining a problem of indefiniteness in the posture of a planar marker, and is a diagram illustrating an image obtained by normal projection of the planar marker M; It is a 2nd figure for demonstrating the problem of the indefiniteness in the attitude
  • FIG. 1 is a diagram showing a configuration of a planar marker 1 according to an embodiment of the present invention.
  • the planar marker 1 is arranged in parallel with each side of the AR marker 2 on the same plane as the AR marker 2 and a rectangular AR marker 2 including a white two-dimensional pattern code on a black background.
  • the four moire pattern forming portions VMP1x, VMP1y, VMP2x, VMP2y and reference points RP1 to RP4 arranged at the four corners of the planar marker 1 corresponding to each vertex of the AR marker 2 are provided.
  • the moire pattern forming unit VMP1x and the moire pattern forming unit VMP1y are arranged in parallel with two adjacent sides of the AR marker 2, and the moire pattern forming unit VMP2x and the moire pattern forming unit VMP2y are respectively moire pattern forming unit VMP1x. And the moire pattern forming portion VMP1y.
  • the four moire pattern forming portions VMP1x, VMP1y, VMP2x, and VMP2y have a configuration in which a lenticular lens LL is pressure-bonded in the direction of the arrow with respect to the black and white striped pattern ST as shown in FIG. Note that the black and white striped pattern ST is composed of black lines drawn on a white background.
  • both the moire pattern forming unit VMP1x and the moire pattern forming unit VMP1y have the first configuration
  • both the moire pattern forming unit VMP2x and the moire pattern forming unit VMP2y have a second configuration different from the first configuration.
  • the black peak interval described later is common, but the periodicity of the line-of-sight angle described later and the black when the flat marker 1 is observed in a face-to-face relationship.
  • the position (phase shift) with respect to the center of the peak is different.
  • the moiré pattern forming portions VMP1x, VMP1y, VMP2x, and VMP2y may be any one that causes a change in density pattern as will be described later, and other lenses are used instead of the lenticular lens LL, or Instead of the black and white striped pattern ST, a pattern with an arbitrary pattern of an arbitrary color may be used.
  • the moire pattern forming units VMP1x, VMP1y, VMP2x, and VMP2y having the above-described configuration form moire (interference fringe) patterns that change according to the angle to be observed.
  • moire interference fringe
  • one side of the lenticular lens LL has a shape in which the same semi-cylindrical lenses are arranged side by side.
  • the pitch SP of the black and white striped pattern ST is as described above.
  • the pitch is slightly wider than the semi-cylindrical pitch LP.
  • the lenticular in both configurations is based on the characteristics of the first configuration of the moire pattern forming unit VMP1x and the moire pattern forming unit VMP1y and the second configuration of the moire pattern forming unit VMP2x and the moire pattern forming unit VMP2y as described above.
  • the pitches LP of the lenses LL are different.
  • moire patterns V1 to V3 formed by three adjacent lenses among the semicylindrical lenses constituting the lenticular lens LL are illustrated.
  • FIG. 4A shows a case where a moire pattern is observed from directly above the lenticular lens LL.
  • the leftmost semi-cylindrical lens emits reflected light from the black-and-white striped pattern ST
  • the central semi-cylindrical lens reflects from a half region of the black-and-white striped pattern ST.
  • the semi-cylindrical lens that emits light and is located on the rightmost side does not emit reflected light from the black and white striped pattern ST.
  • the moire pattern V1 is black at the left, gray at the center, and white at the right. Observed. Note that the leftmost black portion of the moire pattern V1 corresponds to the black peak position.
  • FIG. 4B shows a case where a moire pattern is observed from a position slightly shifted from directly above the lenticular lens LL.
  • the leftmost and rightmost semi-cylindrical lenses each emit reflected light from a half region of the black and white striped pattern ST, and the central semicylindrical lens has a black and white striped pattern.
  • the reflected light from ST is emitted.
  • FIG. 4C shows a case where the moire pattern is observed from a position further shifted from the position just above the lenticular lens LL than in the case of FIG. 4B.
  • the leftmost semi-cylindrical lens does not emit the reflected light from the black-and-white striped pattern ST, and the central semi-cylindrical lens from the half area of the black-and-white striped pattern ST.
  • the reflected light is emitted, and the rightmost semi-cylindrical lens emits the reflected light from the black and white striped pattern ST.
  • the orientation of the planar marker 1 is initially estimated according to the positional relationship of the elements constituting the captured image of the planar marker 1.
  • the planar marker 1 is imaged by the camera, and the positions of the images corresponding to the reference points RP1 to RP4 located at the four corners of the planar marker 1 are detected in the obtained image. Then, by applying a geometric method such as projective transformation (homography calculation) to the positional relationship between the detected images corresponding to the reference points RP1 to RP4, an initial estimated value of the posture is obtained.
  • a geometric method such as projective transformation (homography calculation)
  • step S2 the absolute value of the line-of-sight angle ⁇ v * c (* means x or y; the same applies hereinafter) is calculated according to the posture estimated in step S1.
  • the line-of-sight angle ⁇ vxc represents the angular relationship between the line-of-sight connecting the viewpoint 0 and the center 0 of the planar marker 1 and the planar marker 1. More specifically, the line-of-sight angle ⁇ vxc is a line-of-sight angle around the X axis on the planar marker 1 and is defined as an angle formed by the plane 11 including the line of sight, the X axis, and the XZ plane 10.
  • the line-of-sight angle ⁇ byc is also the line-of-sight angle around the Y axis on the planar marker 1.
  • the absolute value of the line-of-sight angle ⁇ v * c is calculated by applying the posture estimated in step S1 to the coordinate system as shown in FIG.
  • a moire pattern to be observed is selected according to the absolute value calculated in step S2.
  • the moire pattern to be observed means a moire pattern formed in any one of the moire pattern forming portions VMP1x, VMP1y, VMP2x, and VMP2y.
  • step S4 the moire pattern selected in step S3 is observed, and the observation direction is estimated according to the obtained black peak position. Note that step S3 and step S4 will be described in detail later.
  • step S5 the initial estimation in step S1 is corrected according to the observation direction estimated in step S4.
  • step S3 and step S4 shown in FIG. 5 will be described in detail.
  • the black peak position Pbx means the position of the black peak pixel in the image obtained by imaging the moire pattern.
  • the line-of-sight angle ⁇ vxb represents the angular relationship between the line-of-sight connecting the black peak position from the viewpoint VP and the planar marker 1 in the same manner as the line-of-sight angle ⁇ vxc shown in FIG.
  • the vertical axis represents the line-of-sight angle ⁇ vxb [degree (deg)]
  • the horizontal axis represents the black peak position Pbx [pixel] in the moire pattern formed by the moire pattern forming units VMP1x, VMP1y, VMP2x, and VMP2y. (pixel)].
  • the visual axis angle ⁇ vxb [deg] on the vertical axis is divided into a plurality of ranges by angles ⁇ ⁇ 1, ⁇ ⁇ 2, ⁇ ⁇ 3 as shown in FIG. 8, and in each range, the black peak position Pbx and the visual angle ⁇ vxb Graphs eq0, eq11, eq12, eq21, and eq22 that uniquely indicate the correspondence relationship are shown.
  • the correspondence relationship is as follows: graph eq0 when the line-of-sight angle ⁇ vxb is from ⁇ 1 to ⁇ 1, graph eq11 when the line-of-sight angle ⁇ vxb is from ⁇ 3 to ⁇ 2, and line-of-sight angle ⁇ vxb from ⁇ 2 to ⁇ 3.
  • a graph eq12 is shown by a graph eq21 when the line-of-sight angle ⁇ vxb is in the range from ⁇ 1 to ⁇ 2, and a graph eq22 is shown when the line-of-sight angle ⁇ vxb is from ⁇ 2 to ⁇ 1.
  • the line-of-sight angle can be uniquely estimated according to the observed black peak position. Further, the two black peak positions Pbx1 and Pbx2 are both set to threshold values described later.
  • step S1 it is determined in step S1 whether or not the absolute value of the line-of-sight angle ⁇ v * c is equal to or smaller than the angle ⁇ 1. If it is determined that the absolute value of the line-of-sight angle ⁇ v * c is equal to or smaller than the angle ⁇ 1, the process proceeds to step S10. If it is determined that the absolute value is larger than the angle ⁇ 1, the process proceeds to step S2.
  • step S10 the black peak position Pb * of the moire pattern VMP1 * formed by the moire pattern forming unit VMP1x or the moire pattern forming unit VMP1y is detected.
  • step S11 when the black peak position Pb * detected in step S10 is the black peak position of the moire pattern VMP1 * formed by the moire pattern forming unit VMP1x, the graph eq0 shown in FIG. Is used to calculate the line-of-sight angle ⁇ vxb corresponding to the black peak position Pbx detected in step S10.
  • step S2 it is determined whether or not the absolute value of the line-of-sight angle ⁇ v * c is larger than the angle ⁇ 1 and smaller than the angle ⁇ 2.
  • the process proceeds to step S3.
  • the process proceeds to step S30.
  • step S3 the black peak position Pb * of the moire pattern VMP2 * formed by the moire pattern forming unit VMP2x or the moire pattern forming unit VMP2y is detected.
  • step S4 it is determined whether or not the black peak position Pb * detected in step S3 is smaller than a threshold value Pb * 2 (where * means x or y; the same applies hereinafter). .
  • the black peak position Pb * is the black peak position of the moire pattern VMP2 * formed by the moire pattern forming unit VMP2x, it is determined whether or not the value is smaller than the threshold value Pbx2 shown in FIG. Will be.
  • step S4 when it is determined in step S4 that the black peak position Pb * detected in step S3 is smaller than the threshold value Pb * 2, the process proceeds to step S21, and the black peak position detected in step S3. If it is determined that Pb * is greater than or equal to the threshold value Pb * 2, the process proceeds to step S22.
  • step S21 when the black peak position Pb * detected in step S3 is the black peak position of the moire pattern VMP2 * formed by the moire pattern forming unit VMP2x, the graph eq21 shown in FIG. 8 is used. The line-of-sight angle ⁇ vxb corresponding to the black peak position Pbx detected in step S3 is calculated.
  • step S22 if the black peak position Pb * detected in step S3 is the black peak position of the moire pattern VMP2 * formed by the moire pattern forming unit VMP2x, the graph eq22 shown in FIG. Is used to calculate the line-of-sight angle ⁇ vxb corresponding to the black peak position Pbx detected in step S3.
  • step S30 when the absolute value of the line-of-sight angle ⁇ v * c is larger than the angle ⁇ 2 and equal to or smaller than the angle ⁇ 3, the black peak position Pb * of the moire pattern forming unit VMP1x or the moire pattern forming unit VMP1y is formed. Is detected.
  • step S31 it is determined whether or not the black peak position Pb * detected in step S30 is smaller than a threshold value Pb * 1 (where * indicates x or y; the same applies hereinafter). .
  • the black peak position Pb * is the black peak position of the moire pattern VMP1 * formed by the moire pattern forming unit VMP1x, it is determined whether or not the black peak position Pb * is smaller than the threshold value Pbx1 shown in FIG. Will be.
  • step S31 when it is determined in step S31 that the black peak position Pb * detected in step S30 is smaller than the threshold value Pb * 1, the process proceeds to step S32, and the black peak position detected in step S30. If it is determined that Pb * is greater than or equal to the threshold value Pb * 1, the process proceeds to step S33.
  • step S32 when the black peak position Pb * detected in step S30 is the black peak position of the moire pattern VMP1 * formed by the moire pattern forming unit VMP1x, the graph eq11 shown in FIG. 8 is used. The line-of-sight angle ⁇ vxb corresponding to the black peak position Pbx detected in step S30 is calculated.
  • step S33 when the black peak position Pb * detected in step S30 is the black peak position of the moire pattern VMP1 * formed by the moire pattern forming unit VMP1x, the graph eq12 shown in FIG. Is used to calculate the line-of-sight angle ⁇ vxb corresponding to the black peak position Pbx detected in step S30.
  • the method for estimating the posture by observing the moire pattern generated by the moire pattern forming unit VMP1x and the moire pattern forming unit VMP2x is described with reference to FIG. 8, but the moire pattern forming unit VMP1y is described.
  • a method for estimating the posture by observing the moire pattern generated by the moire pattern forming unit VMP2y is also conceivable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne : un marqueur qui peut obtenir une estimation d'attitude qui est plus stable qu'avec le marqueur traditionnel au moyen d'une estimation non-ambiguë d'attitude dans une plus grande plage d'angles ; un procédé d'estimation d'attitude qui utilise le marqueur. L'invention concerne un marqueur plat 1 qui est pourvu : d'un marqueur AR 2 ; d'une pluralité de sections de moirage VMP1x, VMP1y, VMP2x, VMP2y qui forment des données de motif en fonction de la direction d'observation au moyen d'une lentille réticulaire (LL), située sur un motif rayé (ST), et au moyen de laquelle la direction d'observation peut être estimée de façon non-ambiguë en fonction de la position observée des données de motif pour chaque plage divisée de directions d'observation par rapport aux données de motif.
PCT/JP2015/072571 2014-08-12 2015-08-07 Marqueur et procédé d'estimation d'attitude utilisant le marqueur WO2016024555A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014164462 2014-08-12
JP2014-164462 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016024555A1 true WO2016024555A1 (fr) 2016-02-18

Family

ID=55304182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072571 WO2016024555A1 (fr) 2014-08-12 2015-08-07 Marqueur et procédé d'estimation d'attitude utilisant le marqueur

Country Status (1)

Country Link
WO (1) WO2016024555A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025531A (ja) * 2016-08-09 2018-02-15 コー・ヤング・テクノロジー・インコーポレーテッド オプティカルトラッキング用のマーカー、オプティカルトラッキングシステム及びオプティカルトラッキング方法
WO2018110114A1 (fr) * 2016-12-12 2018-06-21 国立研究開発法人産業技術総合研究所 Marqueur et procédé de fabrication de marqueur
WO2018131679A1 (fr) * 2017-01-13 2018-07-19 株式会社エンプラス Unité de montage de marqueur et procédé de fabrication de celle-ci
WO2018131678A1 (fr) * 2017-01-13 2018-07-19 株式会社エンプラス Unité de montage de marqueur
WO2018131680A1 (fr) * 2017-01-13 2018-07-19 株式会社エンプラス Unité de montage de marqueur
WO2018135063A1 (fr) * 2017-01-17 2018-07-26 国立研究開発法人産業技術総合研究所 Marqueur, procédé d'estimation de posture et procédé d'estimation de position et de posture utilisant un marqueur
WO2018159312A1 (fr) * 2017-03-01 2018-09-07 株式会社エンプラス Unité de montage de marqueur
WO2018193806A1 (fr) * 2017-04-19 2018-10-25 株式会社エンプラス Unité de marquage
WO2018212052A1 (fr) * 2017-05-17 2018-11-22 株式会社エンプラス Unité de marqueur
CN109716061A (zh) * 2016-09-13 2019-05-03 国立研究开发法人产业技术综合研究所 标记器和使用了标记器的姿势推定方法
WO2019124167A1 (fr) * 2017-12-21 2019-06-27 株式会社エンプラス Procédé de fabrication d'une unité de marqueur
WO2020031659A1 (fr) * 2018-08-06 2020-02-13 国立研究開発法人産業技術総合研究所 Système d'estimation de position et d'assiette, appareil d'estimation de position et d'assiette, et procédé d'estimation de position et d'assiette
JP2020053008A (ja) * 2018-09-26 2020-04-02 深セン市優必選科技股▲ふん▼有限公司Ubtech Pobotics Corp Ltd 位置決め方法、ロボット及びコンピューター記憶媒体
CN115066591A (zh) * 2020-02-06 2022-09-16 大日本印刷株式会社 标记、标记的制造方法以及检测对象物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267879A (ja) * 2005-03-25 2006-10-05 Canon Inc 画像処理方法、画像処理装置、マーカ
JP2012145559A (ja) * 2010-12-24 2012-08-02 National Institute Of Advanced Industrial & Technology マーカ
JP2014102246A (ja) * 2012-10-24 2014-06-05 National Institute Of Advanced Industrial & Technology 位置姿勢検出システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267879A (ja) * 2005-03-25 2006-10-05 Canon Inc 画像処理方法、画像処理装置、マーカ
JP2012145559A (ja) * 2010-12-24 2012-08-02 National Institute Of Advanced Industrial & Technology マーカ
JP2014102246A (ja) * 2012-10-24 2014-06-05 National Institute Of Advanced Industrial & Technology 位置姿勢検出システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIDEYUKI TANAKA ET AL.: "LentiMark: A Visual Marker for Precise Pose Estimation Based on Lenticular Lenses", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS. D, vol. J95-D, no. 8, 1 August 2012 (2012-08-01), pages 1522 - 1529, ISSN: 1880-4535 *
TANAKA ET AL.: "A solution to pose ambiguity of visual markers using Moire patterns", 2014 IEEE /RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014, September 2014 (2014-09-01), pages 3129 - 3134, XP032676546, DOI: doi:10.1109/IROS.2014.6942995 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018025531A (ja) * 2016-08-09 2018-02-15 コー・ヤング・テクノロジー・インコーポレーテッド オプティカルトラッキング用のマーカー、オプティカルトラッキングシステム及びオプティカルトラッキング方法
EP3499180A4 (fr) * 2016-09-13 2019-06-26 National Institute of Advanced Industrial Science and Technology Marqueur et procédé d'estimation d'orientation utilisant le marqueur
JPWO2018051843A1 (ja) * 2016-09-13 2019-06-24 国立研究開発法人産業技術総合研究所 マーカとマーカを用いた姿勢推定方法
CN109716061A (zh) * 2016-09-13 2019-05-03 国立研究开发法人产业技术综合研究所 标记器和使用了标记器的姿势推定方法
CN109716061B (zh) * 2016-09-13 2020-12-01 国立研究开发法人产业技术综合研究所 标记器和使用了标记器的姿势推定方法
US11030770B2 (en) 2016-09-13 2021-06-08 National Institute Of Advanced Industrial Science And Technology Marker and posture estimating method using marker
US11391565B2 (en) 2016-12-12 2022-07-19 National Institute Of Advanced Industrial Science And Technology Marker and marker manufacturing method
JPWO2018110114A1 (ja) * 2016-12-12 2019-07-18 国立研究開発法人産業技術総合研究所 マーカとマーカの製造方法
WO2018110114A1 (fr) * 2016-12-12 2018-06-21 国立研究開発法人産業技術総合研究所 Marqueur et procédé de fabrication de marqueur
JP2018116037A (ja) * 2017-01-13 2018-07-26 株式会社エンプラス マーカ搭載用ユニットおよびその製造方法
WO2018131680A1 (fr) * 2017-01-13 2018-07-19 株式会社エンプラス Unité de montage de marqueur
WO2018131678A1 (fr) * 2017-01-13 2018-07-19 株式会社エンプラス Unité de montage de marqueur
WO2018131679A1 (fr) * 2017-01-13 2018-07-19 株式会社エンプラス Unité de montage de marqueur et procédé de fabrication de celle-ci
CN110177994A (zh) * 2017-01-13 2019-08-27 恩普乐股份有限公司 标记安装单元
WO2018135063A1 (fr) * 2017-01-17 2018-07-26 国立研究開発法人産業技術総合研究所 Marqueur, procédé d'estimation de posture et procédé d'estimation de position et de posture utilisant un marqueur
US10928191B2 (en) 2017-01-17 2021-02-23 National Institute Of Advanced Industrial Science And Technology Marker, and posture estimation method and position and posture estimation method using marker
EP3550259A4 (fr) * 2017-01-17 2020-07-22 National Institute of Advanced Industrial Science and Technology Marqueur, procédé d'estimation de posture et procédé d'estimation de position et de posture utilisant un marqueur
JPWO2018135063A1 (ja) * 2017-01-17 2019-07-18 国立研究開発法人産業技術総合研究所 マーカとマーカを用いた姿勢推定方法及び位置姿勢推定方法
WO2018159312A1 (fr) * 2017-03-01 2018-09-07 株式会社エンプラス Unité de montage de marqueur
JP2018146236A (ja) * 2017-03-01 2018-09-20 株式会社エンプラス マーカ搭載用ユニット
JPWO2018193806A1 (ja) * 2017-04-19 2020-02-06 株式会社エンプラス マーカユニット
WO2018193806A1 (fr) * 2017-04-19 2018-10-25 株式会社エンプラス Unité de marquage
JP2018194435A (ja) * 2017-05-17 2018-12-06 株式会社エンプラス マーカユニット
WO2018212052A1 (fr) * 2017-05-17 2018-11-22 株式会社エンプラス Unité de marqueur
JP2019111691A (ja) * 2017-12-21 2019-07-11 株式会社エンプラス マーカユニットの製造方法
WO2019124167A1 (fr) * 2017-12-21 2019-06-27 株式会社エンプラス Procédé de fabrication d'une unité de marqueur
WO2020031659A1 (fr) * 2018-08-06 2020-02-13 国立研究開発法人産業技術総合研究所 Système d'estimation de position et d'assiette, appareil d'estimation de position et d'assiette, et procédé d'estimation de position et d'assiette
JP2020053008A (ja) * 2018-09-26 2020-04-02 深セン市優必選科技股▲ふん▼有限公司Ubtech Pobotics Corp Ltd 位置決め方法、ロボット及びコンピューター記憶媒体
CN115066591A (zh) * 2020-02-06 2022-09-16 大日本印刷株式会社 标记、标记的制造方法以及检测对象物

Similar Documents

Publication Publication Date Title
WO2016024555A1 (fr) Marqueur et procédé d'estimation d'attitude utilisant le marqueur
EP2976600B1 (fr) Navigation en intérieur grâce à la projection de plusieurs faisceaux laser
Orghidan et al. Camera calibration using two or three vanishing points
US20150304617A1 (en) System for performing distortion correction and calibration using pattern projection, and method using the same
JP6067175B2 (ja) 位置測定装置及び位置測定方法
CN106709865B (zh) 一种深度图像合成方法及装置
WO2018135063A1 (fr) Marqueur, procédé d'estimation de posture et procédé d'estimation de position et de posture utilisant un marqueur
US20120224033A1 (en) Three-dimensional measurement method
Hansen et al. Online continuous stereo extrinsic parameter estimation
JP2022089269A (ja) キャリブレーション装置およびキャリブレーション方法
JP6755030B2 (ja) マーカとマーカを用いた姿勢推定方法
JP2014092460A (ja) 画像処理装置および方法、画像処理システム、並びにプログラム
JP6016662B2 (ja) 画像合成装置及び画像合成方法
JP6396982B2 (ja) 空間モデル処理装置
Rudakova et al. Camera matrix calibration using circular control points and separate correction of the geometric distortion field
JP2011155412A (ja) 投影システムおよび投影システムにおける歪み修正方法
US10643351B2 (en) Indoor navigation via multi beam laser projection
JP2011075336A (ja) 3次元形状計測装置、3次元形状計測方法
US20210183092A1 (en) Measuring apparatus, measuring method and microscope system
JP4775903B2 (ja) 多視点画像を用いた自由視点画像生成方法、装置及びプログラム
JP4778569B2 (ja) ステレオ画像処理装置、ステレオ画像処理方法及びステレオ画像処理プログラム
Furukawa et al. One-shot entire shape acquisition method using multiple projectors and cameras
Huang et al. A joint calibration method for the 3D sensing system composed with ToF and stereo camera
JP2019207153A (ja) シミュレーション装置、シミュレーション方法およびプログラム
KR100234196B1 (ko) 2차원 비디오 영상으로부터 높이 맵 생성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15831920

Country of ref document: EP

Kind code of ref document: A1